1
|
Calder PC. Novel Lipid Emulsion Supports Positive Outcomes in Piglets Receiving Total Parenteral Nutrition. J Nutr 2024:S0022-3166(24)01241-0. [PMID: 39736326 DOI: 10.1016/j.tjnut.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
2
|
Sakamoto N, Oka T, Matsuzawa Y, Nishida K, Jayaprakash J, Hori A, Arita M, Tsugawa H. MS2Lipid: A Lipid Subclass Prediction Program Using Machine Learning and Curated Tandem Mass Spectral Data. Metabolites 2024; 14:602. [PMID: 39590838 PMCID: PMC11596251 DOI: 10.3390/metabo14110602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Untargeted lipidomics using collision-induced dissociation-based tandem mass spectrometry (CID-MS/MS) is essential for biological and clinical applications. However, annotation confidence still relies on manual curation by analytical chemists, despite the development of various software tools for automatic spectral processing based on rule-based fragment annotations. Methods: In this study, we present a novel machine learning model, MS2Lipid, for the prediction of known lipid subclasses from MS/MS queries, providing an orthogonal approach to existing lipidomics software programs in determining the lipid subclass of ion features. We designed a new descriptor, MCH (mode of carbon and hydrogen), to increase the specificity of lipid subclass prediction in nominal mass resolution MS data. Results: The model, trained with 6760 and 6862 manually curated MS/MS spectra for the positive and negative ion modes, respectively, classified queries into one or several of 97 lipid subclasses, achieving an accuracy of 97.4% in the test set. The program was further validated using various datasets from different instruments and curators, with the average accuracy exceeding 87.2%. Using an integrated approach with molecular spectral networking, we demonstrated the utility of MS2Lipid by annotating microbiota-derived esterified bile acids, whose abundance was significantly increased in fecal samples of obese patients in a human cohort study. This suggests that the machine learning model provides an independent criterion for lipid subclass classification, enhancing the annotation of lipid metabolites within known lipid classes. Conclusions: MS2Lipid is a highly accurate machine learning model that enhances lipid subclass annotation from MS/MS data and provides an independent criterion.
Collapse
Affiliation(s)
- Nami Sakamoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan; (N.S.); (T.O.); (Y.M.); (K.N.)
| | - Takaki Oka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan; (N.S.); (T.O.); (Y.M.); (K.N.)
| | - Yuki Matsuzawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan; (N.S.); (T.O.); (Y.M.); (K.N.)
| | - Kozo Nishida
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan; (N.S.); (T.O.); (Y.M.); (K.N.)
| | - Jayashankar Jayaprakash
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-0809, Japan;
| | - Aya Hori
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan;
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan;
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
- Molecular and Cellular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, 35 Shinanomachi, Tokyo 160-8512, Japan
| | - Hiroshi Tsugawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan; (N.S.); (T.O.); (Y.M.); (K.N.)
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan;
- Molecular and Cellular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
| |
Collapse
|
3
|
Barkizatova G, Turgumbayeva A, Zhakipbekov K, Bekesheva K, Arystanov Z, Arystanova T, Kayupova F, Zhumalina K, Toxanbayeva Z, Ibragimova A, Blinova O, Utegenova G, Iztileu N, Shynykul Z. Exploring the Pharmacological Potential of Lithospermum officinale L.: A Review of Phytochemicals and Ethnomedicinal Uses. Molecules 2024; 29:1856. [PMID: 38675676 PMCID: PMC11055044 DOI: 10.3390/molecules29081856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Exploring phytochemicals from ethnomedicinal plants for pharmacological applications is a promising research area. By studying ethnomedicine, researchers can identify plants used for centuries to treat ailments and investigate their phytochemicals. Consequently, phytochemicals can be isolated, characterized, and tested for pharmacological activities, leading to new drug development. This research also helps preserve traditional knowledge and biodiversity. Lithospermum officinale L., found in Eurasia, Argentina (South), Colombia, and the United States, is valued for its medicinal properties, including anti-inflammatory, antioxidant, and antimicrobial effects. The current review emphasizes L. officinale L. as a significant reservoir of bioactive phytochemicals, with alkaloids, quinones, glucosides, phenolics, flavonoids, and lipids identified as the principal metabolites. It also unveils the unexplored potential of this plant for future research endeavors. Continued research on L. officinale L. can unlock its full potential, providing insights into its medicinal uses and contributing to biodiversity preservation.
Collapse
Affiliation(s)
- Gulzhanat Barkizatova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole Bi St. 94, Almaty 050000, Kazakhstan;
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Kairat Zhakipbekov
- Department of Organization, Management and Economics of Pharmacy and Clinical Pharmacy, Asfendiyarov Kazakh National Medical University, Tole Bi St. 94, Almaty 050000, Kazakhstan;
| | - Kuralay Bekesheva
- JSC “Scientific Centre for Anti-Infectious Drug”, Astana 010000, Kazakhstan;
| | - Zhalgaskali Arystanov
- Department of Pharmaceutical Disciplines, Astana Medical University, Beibitshilik Street 49/A, Astana 010000, Kazakhstan; (Z.A.); (T.A.); (N.I.)
| | - Tanagul Arystanova
- Department of Pharmaceutical Disciplines, Astana Medical University, Beibitshilik Street 49/A, Astana 010000, Kazakhstan; (Z.A.); (T.A.); (N.I.)
| | - Farida Kayupova
- Department of Pharmacy, Kazakh-Russian Medical University, Abylai Khan St. 51/53, Almaty 050004, Kazakhstan; (F.K.); (K.Z.)
| | - Klara Zhumalina
- Department of Pharmacy, Kazakh-Russian Medical University, Abylai Khan St. 51/53, Almaty 050004, Kazakhstan; (F.K.); (K.Z.)
| | - Zhanat Toxanbayeva
- Department of Pharmacology, Pharmacotherapy and Clinical Pharmacology, South Kazakhstan Medical Academy, Al Farabi Sq. 1, Shymkent 160019, Kazakhstan; (Z.T.); (A.I.)
| | - Aigul Ibragimova
- Department of Pharmacology, Pharmacotherapy and Clinical Pharmacology, South Kazakhstan Medical Academy, Al Farabi Sq. 1, Shymkent 160019, Kazakhstan; (Z.T.); (A.I.)
| | - Olga Blinova
- Department of Organization and Management of Pharmaceutical Business, South Kazakhstan Medical Academy, Alfarabi Sq. 1, Shymkent 160000, Kazakhstan; (O.B.); (G.U.)
| | - Gulnara Utegenova
- Department of Organization and Management of Pharmaceutical Business, South Kazakhstan Medical Academy, Alfarabi Sq. 1, Shymkent 160000, Kazakhstan; (O.B.); (G.U.)
| | - Nurzhan Iztileu
- Department of Pharmaceutical Disciplines, Astana Medical University, Beibitshilik Street 49/A, Astana 010000, Kazakhstan; (Z.A.); (T.A.); (N.I.)
| | - Zhanserik Shynykul
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW The very-long chain (VLC) omega-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) promote optimal development, physiological function and healthy ageing and help to manage disease. EPA and DHA are sourced mainly from fish, which is not sustainable. This review explores alternative sustainable sources. RECENT FINDINGS Recent research confirms that higher intake and status of EPA and DHA are associated with health benefits including lower risk of incident type-2 diabetes and cardiovascular disease mortality. Meta-analyses confirm benefits of intravenous EPA and DHA in hospitalized adults. Algal oils and seed oils from some genetically modified (GM) plants are sources of EPA and DHA. An oil from GM camelina showed equivalence with fish oil in human trials. Ahiflower oil, a source of stearidonic acid, had biological effects in experimental studies that might translate into health benefits. An intravenous lipid emulsion based on Ahiflower oil has been tested in experimental research. Pine nut oil (PNO) is a source of pinolenic acid, which is not an omega-3 PUFA but has similar actions. SUMMARY Algal oils, oils from GM seed crops, Ahiflower oil and other sources of stearidonic acid, and nonomega-3 oils including PNO, are plant-sourced sustainable alternatives to fish-sourced VLC omega-3 PUFAs.
Collapse
Affiliation(s)
- Ella J Baker
- School of Human Development and Health, Faculty of Medicine
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| |
Collapse
|
5
|
Varmira K, Kahrizi D, Sanjari A, Rashidi K, Hosseinzadeh L, Amin N, Jalilian F. Non-clinical Safety Evaluation of Camelina Oil: Acute and 12-Week Oral Toxicities. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e140666. [PMID: 39005736 PMCID: PMC11246644 DOI: 10.5812/ijpr-140666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/27/2024] [Indexed: 07/16/2024]
Abstract
This study assessed the acute and sub-chronic toxicity of Camelina oil, a well-known oil rich in polyunsaturated fatty acids that enhance cellular immunity and human health, in Wistar rats. Wistar rats, 5 per sex per group, were randomly assigned to three groups for acute (14 days) toxicity studies and five groups for sub-chronic (90 days) toxicity studies. In the acute study, Camelina sativa oil was administered orally at a single dose of 5000 mg/kg of body weight (BW). The positive control group received a single dose of 5 000 mg/kg BW Canola oil by gavage. In the sub-chronic study, Groups III-V received 250, 500, and 1 000 mg/kg BW of Camelina oil, while Groups I and II received ultra-pure water and Canola oil at a dose of 500 mg/kg BW, respectively. Throughout the experiment, clinical signs, mortality, and body weight were monitored. At the end of the sub-chronic study, hematological, biochemical, and histopathological investigations were conducted. Administration of Camelina oil and Canola had no significant effect on daily weight gain (P > 0.05) of the test rats. Serum calcium levels decreased while phosphorous levels increased in male rats treated with Camelina oil. Other hematological and biochemical parameters showed no significant differences or dose-response effects between control and seed oil groups in both sexes (P < 0.05). Moreover, in animal necropsy, there were no apparent lesions in the liver, heart, and kidney organs in any of the doses administered. In conclusion, the results suggest that oral administration of Camelina oil is unlikely to be toxic. Therefore, the possibility for the development of future human nutrition should be considered.
Collapse
Affiliation(s)
- Kambiz Varmira
- Research Center of Oils and Fats, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Danial Kahrizi
- Department of Agricultural Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - Khodabakhsh Rashidi
- Research Center of Oils and Fats, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Hosseinzadeh
- Research Center of Oils and Fats, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Niloufar Amin
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fereshteh Jalilian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Roussel C, Sola M, Lessard-Lord J, Nallabelli N, Généreux P, Cavestri C, Azeggouar Wallen O, Villano R, Raymond F, Flamand N, Silvestri C, Di Marzo V. Human gut microbiota and their production of endocannabinoid-like mediators are directly affected by a dietary oil. Gut Microbes 2024; 16:2335879. [PMID: 38695302 PMCID: PMC11067990 DOI: 10.1080/19490976.2024.2335879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) and the gut microbiome affect each other. We investigated the impact of supplementation with Buglossoides arvensis oil (BO), rich in stearidonic acid (SDA), on the human gut microbiome. Employing the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), we simulated the ileal and ascending colon microbiomes of four donors. Our results reveal two distinct microbiota clusters influenced by BO, exhibiting shared and contrasting shifts. Notably, Bacteroides and Clostridia abundance underwent similar changes in both clusters, accompanied by increased propionate production in the colon. However, in the ileum, cluster 2 displayed a higher metabolic activity in terms of BO-induced propionate levels. Accordingly, a triad of bacterial members involved in propionate production through the succinate pathway, namely Bacteroides, Parabacteroides, and Phascolarctobacterium, was identified particularly in this cluster, which also showed a surge of second-generation probiotics, such as Akkermansia, in the colon. Finally, we describe for the first time the capability of gut bacteria to produce N-acyl-ethanolamines, and particularly the SDA-derived N-stearidonoyl-ethanolamine, following BO supplementation, which also stimulated the production of another bioactive endocannabinoid-like molecule, commendamide, in both cases with variations across individuals. Spearman correlations enabled the identification of bacterial genera potentially involved in endocannabinoid-like molecule production, such as, in agreement with previous reports, Bacteroides in the case of commendamide. This study suggests that the potential health benefits on the human microbiome of certain dietary oils may be amenable to stratified nutrition strategies and extend beyond n-3 PUFAs to include microbiota-derived endocannabinoid-like mediators.
Collapse
Affiliation(s)
- Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
| | - Mathilde Sola
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada
| | - Nayudu Nallabelli
- Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada
| | - Pamela Généreux
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
| | - Camille Cavestri
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
| | - Oumaima Azeggouar Wallen
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
- Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada
| | - Rosaria Villano
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (Napoli), Italy
| | - Frédéric Raymond
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
| | - Nicolas Flamand
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
- Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada
| | - Cristoforo Silvestri
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
- Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada
| | - Vincenzo Di Marzo
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec, QC, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec, QC, Canada
- Faculty of Medicine, Department of Medicine, Laval University, Quebec, QC, Canada
| |
Collapse
|
7
|
Khan I, Hussain M, Jiang B, Zheng L, Pan Y, Hu J, Khan A, Ashraf A, Zou X. Omega-3 long-chain polyunsaturated fatty acids: Metabolism and health implications. Prog Lipid Res 2023; 92:101255. [PMID: 37838255 DOI: 10.1016/j.plipres.2023.101255] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Recently, omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) have gained substantial interest due to their specific structure and biological functions. Humans cannot naturally produce these fatty acids (FAs), making it crucial to obtain them from our diet. This comprehensive review details n-3 LC-PUFAs and their role in promoting and maintaining optimal health. The article thoroughly analyses several sources of n-3 LC-PUFAs and their respective bioavailability, covering marine, microbial and plant-based sources. Furthermore, we provide an in-depth analysis of the biological impacts of n-3 LC-PUFAs on health conditions, with particular emphasis on cardiovascular disease (CVD), gastrointestinal (GI) cancer, diabetes, depression, arthritis, and cognition. In addition, we highlight the significance of fortification and supplementation of n-3 LC-PUFAs in both functional foods and dietary supplements. Additionally, we conducted a detailed analysis of the several kinds of n-3 LC-PUFAs supplements currently available in the market, including an assessment of their recommended intake, safety, and effectiveness. The dietary guidelines associated with n-3 LC-PUFAs are also highlighted, focusing on the significance of maintaining a well-balanced intake of n-3 PUFAs to enhance health benefits. Lastly, we highlight future directions for further research in this area and their potential implications for public health.
Collapse
Affiliation(s)
- Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yuechao Pan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jijie Hu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Adil Khan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Azqa Ashraf
- School of Food Science and Engineering, Ocean University of China, Qingdao 2666100, China
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
8
|
Rizzo G, Baroni L, Lombardo M. Promising Sources of Plant-Derived Polyunsaturated Fatty Acids: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1683. [PMID: 36767052 PMCID: PMC9914036 DOI: 10.3390/ijerph20031683] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/01/2023]
Abstract
(1) Background: Polyunsaturated fatty acids (PUFAs) are known for their ability to protect against numerous metabolic disorders. The consumption of oily fish is the main source of PUFAs in human nutrition and is commonly used for supplement production. However, seafood is an overexploited source that cannot be guaranteed to cover the global demands. Furthermore, it is not consumed by everyone for ecological, economic, ethical, geographical and taste reasons. The growing demand for natural dietary sources of PUFAs suggests that current nutritional sources are insufficient to meet global needs, and less and less will be. Therefore, it is crucial to find sustainable sources that are acceptable to all, meeting the world population's needs. (2) Scope: This review aims to evaluate the recent evidence about alternative plant sources of essential fatty acids, focusing on long-chain omega-3 (n-3) PUFAs. (3) Method: A structured search was performed on the PubMed search engine to select available human data from interventional studies using omega-3 fatty acids of non-animal origin. (4) Results: Several promising sources have emerged from the literature, such as algae, microorganisms, plants rich in stearidonic acid and GM plants. However, the costs, acceptance and adequate formulation deserve further investigation.
Collapse
Affiliation(s)
- Gianluca Rizzo
- Independent Researcher, Via Venezuela 66, 98121 Messina, Italy
| | - Luciana Baroni
- Scientific Society for Vegetarian Nutrition, 30171 Venice, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, 00166 Rome, Italy
| |
Collapse
|
9
|
Minevich IE, Nechiporenko AP, Goncharova AA, Uschapovsky VI. Study of macronutrients in hemp seeds during short-term germination. PROCEEDINGS OF UNIVERSITIES. APPLIED CHEMISTRY AND BIOTECHNOLOGY 2023. [DOI: 10.21285/2227-2925-2022-12-4-576-588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
At present, hemp seeds are becoming increasingly popular as a source of nutrients. This work addressed the dynamics of macronutrients in the process of short-term germination of hempseeds by chemical and spectroscopic methods. Lyudmila 2021 cultivated hemp seeds along with hemp sprouts were used as objects of research. The germination of hemp seeds was carried out under laboratory conditions using special trays at 18–20 °C with the water added at a ratio of 2:1 for 5 days with periodic moistening. The obtained experimental data on the protein complex suggested that, in the studied interval of the germination of hemp seeds, the key hydrolytic decomposition of proteins occurs along with changes in structural components, including through the synthesis of new proteins accompanying the sprouting. The variations in such parameters as fat content, acid number and peak intensity of functional groups in the lipid fingerprint region (1745, 1157 and 1140 cm-1) indicated the accumulation of fatty acids as a result of the hydrolysis of triglycerides. The analysis of the IR spectra of hemp sprouts and the intensity of the bands of the corresponding functional groups in the carbohydrate region (1200–680 cm-1) suggested the intensive hydrolytic decomposition of polysaccharides. The variation in the content of extractive matter in the aqueous solutions of hemp sprouts indicated the accumulation and utilisation of water-soluble substances at the early stages of germination. The data on the predominance of water- and salt-soluble protein fractions indicated an increase in the biological value of hemp seeds during short-term germination.
Collapse
Affiliation(s)
| | - A. P. Nechiporenko
- National Research University of Information Technology, Mechanics and Optic
| | | | | |
Collapse
|
10
|
Yu W, Liang Z, Li Q, Liu Y, Liu X, Jiang L, Liu C, Zhang Y, Kang C, Yan J. The pharmacological validation of the Xiao-Jian-Zhong formula against ulcerative colitis by network pharmacology integrated with metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115647. [PMID: 35987415 DOI: 10.1016/j.jep.2022.115647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is pathologically characterized by an immune response accommodative insufficiency and dysbiosis accompanied by persistent epithelial barrier dysfunction, and is divided into ulcerative colitis (UC) and Crohn's disease (CD). Its progression increases the susceptibility to colitis-associated cancer (CAC), as well as other complications. The Xiao-Jian-Zhong (XJZ) formula has a historical application in the clinic to combat gastrointestinal disorders. AIM OF THE STUDY The investigation aimed to explore the molecular and cellular mechanisms of XJZ. MATERIALS AND METHODS Dextran sodium sulfate (DSS) was diluted in drinking water and given to mice for a week to establish murine models of experimental colitis, and the XJZ solution was administered for two weeks. Network pharmacology analysis and weighted gene co-expression network analysis (WGCNA) were utilized to predict the therapeutic role of XJZ against UC and CAC. 16S rRNA sequencing and untargeted metabolomics were conducted utilizing murine feces to examine the changes in the microbiome profile. Biochemical experiments were conducted to confirm the predicted functions. RESULTS XJZ treatment markedly attenuated DSS-induced experimental colitis progression, and the targets were enriched in inflammation, infection, and tumorigenesis, predicted by network pharmacology analysis. Based on The Cancer Genome Atlas (TCGA) database, the XJZ-targets were related to the survival probability in patients with colorectal cancer, underlying a potential therapeutic value in cancer intervention. Moreover, the XJZ therapy successfully rescued the decreased richness and diversity of microbiota, suppressed the potentially pathogenic phenotype of the gut microorganisms, and reversed the declined linoleic acid metabolism and increased cytochrome P450 activity in murine colitis models. Our in-vitro experiments confirmed that the XJZ treatment suppressed Caspase1-dependent pyroptosis and increased peroxisome proliferators-activated receptor-γ(PPAR-γ) expression in the colon, facilitated the alternative activation of macrophages (Mφs), inhibited tumor necrosis factor-α (TNFα)-induced reactive oxygen species (ROS) level in intestinal organoids (IOs), thereby favoring the mucosal healing. CONCLUSION The XJZ formula is efficacious for colitis by a prompt resolution of inflammation and dysbiosis, and by re-establishing a microbiome profile that favors re-epithelization, and prevents carcinogenesis.
Collapse
Affiliation(s)
- Wei Yu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Zhenghao Liang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Qi Li
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Yanzhi Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Xincheng Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Lu Jiang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Chen Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Yijia Zhang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Cai Kang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Jing Yan
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| |
Collapse
|
11
|
Cheng C, Ma H, Liu G, Deng Y, Jiang J, Feng J, Guo Z. Biochemical, metabolic, and immune responses of mud crab (Scylla paramamosain) after mud crab reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:437-445. [PMID: 35779811 DOI: 10.1016/j.fsi.2022.06.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Mud crab reovirus (MCRV) is a serious pathogen that leads to large economic losses in the mud crab farming. However, the molecular mechanism of the immune response after MCRV infection is unclear. In the present study, physiological, transcriptomic, and metabolomic responses after MCRV infection were investigated. The results showed that MCRV infection could increase lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase activities. MCRV infection decreased antioxidant enzyme activity levels, induced oxidative stress, and caused severe histological damage. Transcriptome analysis identified 416 differentially expressed genes, including 354 up-regulated and 62 down-regulated genes. The detoxification, immune response, and metabolic processes-related genes were found. The results showed that two key pathways including phagocytosis and apoptosis played important roles in response to MCRV infection. The combination of transcriptomic and metabolomic analyses showed that related metabolic pathways, such as glycolysis, citrate cycle, lipid, and amino acid metabolism were also significantly disrupted. Moreover, the biosynthesis of unsaturated fatty acids was activated in response to MCRV infection. This study provided a novel insight into the understanding of cellular mechanisms in crustaceans against viral invasion.
Collapse
Affiliation(s)
- ChangHong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - HongLing Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - GuangXin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - YiQing Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - JianJun Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - ZhiXun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China.
| |
Collapse
|
12
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
13
|
Banskota AH, Jones A, Hui JPM, Stefanova R. Triacylglycerols and Other Lipids Profiling of Hemp By-Products. Molecules 2022; 27:2339. [PMID: 35408737 PMCID: PMC9000728 DOI: 10.3390/molecules27072339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
Hemp seed by-products, namely hemp cake (hemp meal) and hemp hulls were studied for their lipid content and composition. Total lipid content of hemp cake and hemp hulls was 13.1% and 17.5%, respectively. Oil extraction yields using hexane, on the other hand, were much lower in hemp cake (7.4%) and hemp hulls (12.1%). Oil derived from both hemp seeds and by-products were primarily composed of neutral lipids (>97.1%), mainly triacylglycerols (TAGs), determined by SPE and confirmed by NMR study. Linoleic acid was the major fatty acid present in oils derived from hemp by-products, covering almost 55%, followed by α-linolenic acid, covering around 18% of the total fatty acids. For the first time, 47 intact TAGs were identified in the hemp oils using UPLC-HRMS. Among them, TAGs with fatty acid acyl chain 18:3/18:2/18:2 and 18:3/18:2/18:1 were the major ones, followed by TAGs with fatty acid acyl chain of 18:3/18:3/18:2, 18:2/18:2/16:0, 18:2/18:2/18:1, 18:3/18:2.18:0, 18:2/18:2/18:0, 18:2/18:1/18:1 and 18:3/18:2:16:0. Besides TAGs, low levels of terpenes, carotenoids and cannabidiolic acid were also detected in the oils. Moreover, the oils extracted from hemp by-products possessed a dose-dependent DPPH radical scavenging property and their potencies were in a similar range compared to other vegetable oils.
Collapse
Affiliation(s)
- Arjun H. Banskota
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada; (A.J.); (J.P.M.H.); (R.S.)
| | | | | | | |
Collapse
|
14
|
Gutiérrez‐Luna K, Ansorena D, Astiasarán I. Fatty acid profile, sterols, and squalene content comparison between two conventional (olive oil and linseed oil) and three non‐conventional vegetable oils (echium oil, hempseed oil, and moringa oil). J Food Sci 2022; 87:1489-1499. [PMID: 35279846 PMCID: PMC9313813 DOI: 10.1111/1750-3841.16111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/31/2022]
Abstract
Abstract New sources of bioactive compounds are constantly explored for reformulating healthier foods. This work aimed to explore and characterize the fatty acid profile and sterol content of three non‐conventional oils used in functional food products (hempseed oil, moringa oil, and echium oil) and to compare them with two conventional ones (extra virgin olive oil [EVOO] and linseed oil). Oxidative stability was assessed by determining their acidity value and peroxide content. All oils showed adequate values for acidity and oxidation status. Echium and hempseed oils showed a high content of polyunsaturated fatty acids (>70%), especially omega‐3 fatty acids, while moringa oil was rich in oleic acid. Echium oil, hempseed oil, and moringa oil presented higher sterol content than EVOO, but lower than that of linseed oil. Sitosterol was the most abundant sterol in all samples (97.88–275.36 mg/100 g oil), except in echium oil, where campesterol (170.62 mg/100 g oil) was the major sterol. Squalene was only found in significant amounts in EVOO. In conclusion, non‐conventional oils seem to be interesting sources of bioactive compounds and have great potential for the food industry. Practical Application Non‐conventional vegetable oils can be used as alternative sources of lipids in a variety of food products. Additionally, these oils have great potential to be included in the formulation of functional ingredients for the delivery of omega‐3 fatty acids, antioxidants, fiber, among others.
Collapse
Affiliation(s)
- Katherine Gutiérrez‐Luna
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition University of Navarra Pamplona Spain
| | - Diana Ansorena
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition University of Navarra Pamplona Spain
| | - Iciar Astiasarán
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition University of Navarra Pamplona Spain
| |
Collapse
|
15
|
Liu Y, Li Y, Shen H, Li Y, Xu Y, Zhou M, Xia X, Shi B. Association between the metabolic profile of serum fatty acids and diabetic nephropathy: a study conducted in northeastern China. Ther Adv Endocrinol Metab 2022; 13:20420188221118750. [PMID: 36157308 PMCID: PMC9490461 DOI: 10.1177/20420188221118750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND PURPOSE With the progressive increase in the prevalence of type 2 diabetes mellitus (T2DM), diabetic nephropathy (DN) - one of the most common chronic microvascular complications - has evolved into a significant cause of death worldwide among end-stage renal disease patients. Academic researchers have for decades focused on the development of DN and recently found that free fatty acids (FFAs) constituted an independent risk factor for vascular complications in T2DM patients. It is therefore critical to determine whether the metabolic profile of FFAs is related to DN. METHODS This study comprised 611 research subjects in Dalian, a city in northeast China: 52 DN patients, 115 T2DM patients, and 444 healthy controls. We determined 15 forms of serum FFAs, including arachidonic acid (AA, C20:4), docosahexaenoic acid (DHA, C22:6), erucic acid (C22:1), nervonic acid (NA, C24:1), estimated total omega-3s, total omega-6s, the omega-3/omega-6 ratio, and total FFA content by liquid chromatography-mass spectrometry (LC-MS). RESULTS The levels of NA (mean = 45.27, range = 0.84-76.57) and DHA (mean = 324.58, range = 205.38-450.03) in DN patients were slightly lower than those in T2DM patients or healthy controls. The serum omega-3 polyunsaturated fatty acid (PUFA) DHA (C22:6) was significantly negatively correlated with microalbuminuria (MAU), the albumin/creatinine ratio (ACR), body mass index (BMI), fasting plasma glucose (FPG), and glycosylated hemoglobin (HbA1c). The serum monounsaturated fatty acid (MUFA) NA (C24:1) was significantly negatively correlated with BMI, FPG, and HbA1c. After adjustment of variables, multiple logistic regression analysis revealed significant odds ratios (ORs) [with confidence intervals (CIs)] for DHA (0.991, 0.985-0.997; p = 0.002) and NA (0.978, 0.958-0.999; p = 0.037). CONCLUSION In this study, we ascertained that the contents of NA and DHA in patients with DN were relatively low, and that DHA was negatively correlated with MAU and the ACR. However, large-scale, population-based studies focusing on the role of NA and DHA in the pathogenesis of DN are still required in the future.
Collapse
Affiliation(s)
- Yazhuo Liu
- Department of Endocrinology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yingying Li
- Department of Clinical Nutrition and Metabolism, Dalian University Affiliated Zhongshan Hospital, Dalian, China
| | - Hui Shen
- Department of Clinical Nutrition and Metabolism, Dalian University Affiliated Zhongshan Hospital, Dalian, China
| | - Yike Li
- Department of Clinical Nutrition and Metabolism, Dalian University Affiliated Zhongshan Hospital, Dalian, China
| | - Yanbing Xu
- Department of Clinical Nutrition and Metabolism, Dalian University Affiliated Zhongshan Hospital, Dalian, China
| | - Mi Zhou
- Department of Ophthalmology, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Xinghai Xia
- Department of Ophthalmology, Penn State Hershey Medical Center, Hershey, PA, USA
| | | |
Collapse
|
16
|
Effects of light intensity on the production of phycoerythrin and polyunsaturated fatty acid by microalga Rhodomonas salina. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Xu S, Lv X, Wu B, Xie Y, Wu Z, Tu X, Chen H, Wei F. Pseudotargeted Lipidomics Strategy Enabling Comprehensive Profiling and Precise Lipid Structural Elucidation of Polyunsaturated Lipid-Rich Echium Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9012-9024. [PMID: 33683118 DOI: 10.1021/acs.jafc.0c07268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Echium oil has great nutritional value as a result of its high content of α-linolenic acid (ALA, 18:3ω-3) and stearidonic acid (SDA, 18:4ω-3). However, the comprehensive lipid profiling and exact structural characterization of bioactive polyunsaturated lipids in echium oil have not yet been obtained. In this study, we developed a novel pseudotargeted lipidomics strategy for comprehensive profiling and lipid structural elucidation of polyunsaturated lipid-rich echium oil. Our approach integrated untargeted lipidomics analysis with a targeted lipidomics strategy based on Paternò-Büchi (PB)-tandem mass spectrometry (MS/MS) using 2-acetylpyridine (2-AP) as the reaction reagent, allowing for high-coverage lipid profiling and simultaneous determination of C═C locations in triacylglycerols (TGs), diacylglycerols (DGs), free fatty acids (FFAs), and sterol esters (SEs) in echium oil. A total of 209 lipid species were profiled, among which 162 unsaturated lipids were identified with C═C location assignment and 42 groups of ω-3 and ω-6 C═C location isomers were discovered. In addition, relative isomer ratios of certain groups of lipid C═C location isomers were revealed. This pseudotargeted lipidomics strategy described in this study is expected to provide new insight into structural characterization of distinctive bioactive lipids in food.
Collapse
Affiliation(s)
- Shuling Xu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xin Lv
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Bangfu Wu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Ya Xie
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Zongyuan Wu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xinghao Tu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Hong Chen
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
18
|
Robinson DT, Van Horn L, Balmert L, Silver RM, Parry S, Haas DM, Wing DA, Grobman WA. Dietary Fat and Fatty Acid Intake in Nulliparous Women: Associations with Preterm Birth and Distinctions by Maternal BMI. Curr Dev Nutr 2021; 5:nzab074. [PMID: 34104849 PMCID: PMC8178106 DOI: 10.1093/cdn/nzab074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Evidence documenting whether diet quality, particularly dietary fatty acids, is associated with preterm birth (PTB) is limited. OBJECTIVE The aim was to measure associations between dietary fatty acid intake prior to pregnancy, specifically n-3 (ɷ-3) PUFAs and odds of PTB in US women and determine if associations differed by prepregnancy BMI. METHODS We designed a secondary analysis of dietary intake in nulliparous women enrolled in a longitudinal cohort (NCT01322529). Participants completed an FFQ, modified to assess detailed PUFA intake, during the 3 mo preceding pregnancy. Inclusion in this analytic cohort required total energy intake within 2 SDs of the group mean. Prepregnancy BMI was categorized as underweight, normal, overweight, or obese. The primary exposure was estimated intake of EPA and DHA (combined EPA+DHA), in the context of a recommended intake of 250 mg. The primary outcome was PTB (<37 wk). Adjusted regression models controlled for maternal factors relevant to PTB and evaluated associations with PUFAs. Interaction terms estimated effect modification of BMI. A false discovery rate (FDR) correction accounted for multiple comparisons. RESULTS Median daily intake of combined EPA+DHA in 7365 women was 70 mg (IQR: 32, 145 mg). A significant interaction term indicated the effects of EPA+DHA on odds of PTB were different for different BMI categories (P < 0.01). Specifically, higher intake of combined EPA+DHA was nominally associated with reduced odds of PTB in women with underweight (OR: 0.67; 95% CI: 0.46-0.98) and normal BMI (OR: 0.87; 95% CI: 0.78-0.96), yet was associated with increased odds of overweight BMI (OR: 1.21; 95% CI: 1.02-1.44). Associations remained significant after FDR correction. CONCLUSIONS Based on a cohort of US women designed to identify predictors of adverse pregnancy outcomes, dietary intake of combined EPA+DHA was considerably lower than recommended. Associations between intake of these recommended n-3 fatty acids and risk of PTB differ by maternal BMI.
Collapse
Affiliation(s)
- Daniel T Robinson
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Linda Van Horn
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lauren Balmert
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert M Silver
- University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Samuel Parry
- University of Pennsylvania, Philadelphia, PA, USA
| | - David M Haas
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - William A Grobman
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
19
|
Naegeli H, Bresson JL, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Frenzel T, Gómez Ruiz JÁ. Statement complementing the EFSA Scientific Opinion on application (EFSA-GMO-NL-2010-85) for authorisation of food and feed containing, consisting of and produced from genetically modified soybean MON 87769 × MON 89788. EFSA J 2021; 19:e06589. [PMID: 34012490 PMCID: PMC8114199 DOI: 10.2903/j.efsa.2021.6589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The European Commission mandated EFSA to complement its original scientific opinion on soybean MON 87769 × MON 89788 (EFSA-GMO-NL-2010-85) considering additional information on the human nutritional assessment of refined bleached deodorised oil produced from the two-event stack soybean (RBD GM-oil). The assessment was mainly based on a replacement scenario with a list of target foods where RBD GM-oil is intended to be added. Intake estimations for several fatty acids present in the RBD GM-oil, in particular γ-linolenic acid (GLA), stearidonic acid (SDA) and linoleic acid (LA) were based on the consumption of the corresponding foods that are likely to be displaced. The assessment of LA considered the established adequate intake of 4% of total energy intake (E%) and that LA deficiency has not been observed with intakes > 1 E%. The assessment of GLA and SDA was conducted using maximum doses without adverse effects from intervention human studies as reference (4.2 grams/day for SDA and 2.8 grams/day for GLA) since no tolerable upper intake levels are set for these fatty acids. The decrease observed in the levels of LA in RBD GM-oil as compared to oil from conventional soybean does not represent a nutritional concern as intakes were in all cases above 1 E%. For GLA, all intake estimations were below the reference dose indicating no safety concern. SDA intake estimations do not pose any safety concerns based on the overly conservative nature of the estimates, the absence of toxicological hazards and the rapid metabolism of SDA in humans. The GMO Panel concluded that the consumption of soybean MON 87769 × MON 89788 and their derived products, in particular its RBD oil, does not represent a nutritional concern in humans. A post-market monitoring plan is recommended to confirm the predicted consumption and the application of conditions of uses considered during the pre-market risk assessment.
Collapse
|
20
|
Kadri L, Bacle A, Khoury S, Vandebrouck C, Bescond J, Faivre JF, Ferreira T, Sebille S. Polyunsaturated Phospholipids Increase Cell Resilience to Mechanical Constraints. Cells 2021; 10:937. [PMID: 33920685 PMCID: PMC8073313 DOI: 10.3390/cells10040937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
If polyunsaturated fatty acids (PUFAs) are generally accepted to be good for health, the mechanisms of their bona fide benefits still remain elusive. Membrane phospholipids (PLs) of the cardiovascular system and skeletal muscles are particularly enriched in PUFAs. The fatty acid composition of PLs is known to regulate crucial membrane properties, including elasticity and plasticity. Since muscle cells undergo repeated cycles of elongation and relaxation, we postulated in the present study that PUFA-containing PLs could be central players for muscle cell adaptation to mechanical constraints. By a combination of in cellulo and in silico approaches, we show that PUFAs, and particularly the ω-3 docosahexaenoic acid (DHA), regulate important properties of the plasma membrane that improve muscle cell resilience to mechanical constraints. Thanks to their unique property to contortionate within the bilayer plane, they facilitate the formation of vacuole-like dilation (VLD), which, in turn, avoid cell breakage under mechanical constraints.
Collapse
|
21
|
Pigment and Fatty Acid Production under Different Light Qualities in the Diatom Phaeodactylum tricornutum. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diatoms are microscopic biorefineries producing value-added molecules, including unique pigments, triglycerides (TAGs) and long-chain polyunsaturated fatty acids (LC-PUFAs), with potential implications in aquaculture feeding and the food or biofuel industries. These molecules are utilized in vivo for energy harvesting from sunlight to drive photosynthesis and as photosynthetic storage products, respectively. In the present paper, we evaluate the effect of narrow-band spectral illumination on carotenoid, LC-PUFAs and TAG contents in the model diatom Phaeodactylum tricornutum. Shorter wavelengths in the blue spectral range resulted in higher production of total fatty acids, namely saturated TAGs. Longer wavelengths in the red spectral range increased the cell’s content in Hexadecatrienoic acid (HTA) and Eicosapentaenoic acid (EPA). Red wavelengths induced higher production of photoprotective carotenoids, namely fucoxanthin. In combination, the results demonstrate how diatom value-added molecule production can be modulated by spectral light control during the growth. How diatoms could use such mechanisms to regulate efficient light absorption and cell buoyancy in the open ocean is discussed.
Collapse
|
22
|
Castejón N, Señoráns FJ. Integrated Green and Enzymatic Process to Produce Omega‐3 Acylglycerols from
Echium plantagineum
Using Immobilized Lipases. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Natalia Castejón
- Healthy‐Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Francisco Javier Señoráns
- Healthy‐Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
23
|
Different Dietary N-3 Polyunsaturated Fatty Acid Formulations Distinctively Modify Tissue Fatty Acid and N-Acylethanolamine Profiles. Nutrients 2021; 13:nu13020625. [PMID: 33671938 PMCID: PMC7919039 DOI: 10.3390/nu13020625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/08/2023] Open
Abstract
We investigated the influence of different dietary formulation of n-3 polyunsaturated fatty acids (PUFA) on rat tissue fatty acid (FA) incorporation and consequent modulation of their bioactive metabolite N-acylethanolamines (NAE). For 10 weeks, rats were fed diets with 12% of fat from milk + 4% soybean oil and 4% of oils with different n-3 PUFA species: soybean oil as control, linseed oil rich in α-linolenic (ALA), Buglossoides arvensis oil rich in ALA and stearidonic acid (SDA), fish oil rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), Nannochloropsis microalga oil rich in EPA or Schizochytrium microalga oil rich in DHA. FA and NAE profiles were determined in plasma, liver, brain and adipose tissues. Different dietary n-3 PUFA distinctively influenced tissue FA profiles and consequently NAE tissue concentrations. Interestingly, in visceral adipose tissue the levels of N-arachidonoylethanolamide (AEA) and N-docosahexaenoylethanolamide (DHEA), NAE derived from arachidonic acid (AA) and DHA, respectively, significantly correlated with NAE in plasma, and circulating DHEA levels were also correlated with those in liver and brain. Circulating NAE derived from stearic acid, stearoylethanolamide (SEA), palmitic acid and palmitoylethanolamide (PEA) correlated with their liver concentrations. Our data indicate that dietary n-3 PUFA are not all the same in terms of altering tissue FA and NAE concentrations. In addition, correlation analyses suggest that NAE levels in plasma may reflect their concentration in specific tissues. Given the receptor-mediated tissue specific metabolic role of each NAE, a personalized formulation of dietary n-3 PUFA might potentially produce tailored metabolic effects in different pathophysiological conditions.
Collapse
|
24
|
Schots PC, Pedersen AM, Eilertsen KE, Olsen RL, Larsen TS. Possible Health Effects of a Wax Ester Rich Marine Oil. Front Pharmacol 2020; 11:961. [PMID: 32676029 PMCID: PMC7333527 DOI: 10.3389/fphar.2020.00961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
The consumption of seafood and the use of fish oil for the production of nutraceuticals and fish feed have increased over the past decades due the high content of long-chain polyunsaturated omega-3 fatty acids. This increase has put pressure on the sustainability of fisheries. One way to overcome the limited supply of fish oil is to harvest lower in the marine food web. Calanus finmarchicus, feeding on phytoplankton, is a small copepod constituting a considerable biomass in the North Atlantic and is a novel source of omega-3 fatty acids. The oil is, however, different from other commercial marine oils in terms of chemistry and, possibly, bioactivity since it contains wax esters. Wax esters are fatty acids that are esterified with alcohols. In addition to the long-chain polyunsaturated omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the oil is also rich in stearidonic acid (SDA), long-chain monounsaturated fatty acids, and the long-chain fatty alcohols eicosenol and docosenol. Recent animal studies have indicated anti-inflammatory and anti-obesogenic actions of this copepod oil beyond that provided by EPA and DHA. This review will discuss potential mechanisms behind these beneficial effects of the oil, focusing on the impact of the various components of the oil. The health effects of EPA and DHA are well recognized, whereas long-chain monounsaturated fatty acids and long-chain fatty alcohols have to a large degree been overlooked in relation to human health. Recently, however the fatty alcohols have received interest as potential targets for improved health via conversion to their corresponding fatty acids. Together, the different lipid components of the oil from C. finmarchicus may have potential as nutraceuticals for reducing obesity and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Pauke Carlijn Schots
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Karl-Erik Eilertsen
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ragnar Ludvig Olsen
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Terje Steinar Larsen
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
25
|
Prasad P, Anjali P, Sreedhar RV. Plant-based stearidonic acid as sustainable source of omega-3 fatty acid with functional outcomes on human health. Crit Rev Food Sci Nutr 2020; 61:1725-1737. [PMID: 32431176 DOI: 10.1080/10408398.2020.1765137] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dietary omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA) like eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) are known to be potent biological regulators with therapeutic and preventive effects on human health. Many global health organizations have recommended consuming marine based omega-3 sources for neonatal brain development and reducing the risk of various chronic diseases. However, due to concerns regarding the origin, sustainable supply and safety of the marine sources, alternative n-3 PUFA sources are being explored. Recently, plant-based omega-3 sources are gaining much importance because of their sustainable supply and dietary acceptance. α-linolenic acid (ALA, 18:3n-3) rich seed oils are the major omega-3 fatty acid source available for human consumption. But, efficiency of conversion of ALA to n-3 LC-PUFAs in humans is limited due to a rate-limiting step in the n-3 pathway catalyzed by Δ6-desaturase. Botanical stearidonic acid (SDA, 18:4n-3) rich oils are emerging as a sustainable omega-3 source with efficient conversion rate to n-3 LC-PUFA especially to EPA, as it bypasses the Δ6-desaturase rate limiting step. Several recent studies have identified the major plant sources of SDA and explored its potential health benefits and preventive roles in inflammation, cardiovascular disease (CVD) and cancer. This systematic review summarizes the current state of knowledge on the sources, nutraceutical roles, food-based applications and the future perspectives of botanical SDA.
Collapse
Affiliation(s)
- P Prasad
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - P Anjali
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - R V Sreedhar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
26
|
da Silveira TFF, Cajaíba LM, Valentin L, Baréa B, Villeneuve P, Castro IA. Effect of sinapic acid ester derivatives on the oxidative stability of omega-3 fatty acids rich oil-in-water emulsions. Food Chem 2020; 309:125586. [DOI: 10.1016/j.foodchem.2019.125586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/27/2023]
|
27
|
Rincón‐Cervera MÁ, Galleguillos‐Fernández R, González‐Barriga V, Valenzuela R, Speisky H, Fuentes J, Valenzuela A. Fatty Acid Profile and Bioactive Compound Extraction in Purple Viper's Bugloss Seed Oil Extracted with Green Solvents. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Valeria González‐Barriga
- Institute of Nutrition and Food TechnologyUniversity of Chile El Líbano 5524, Macul, Santiago 7830490 Chile
| | - Rodrigo Valenzuela
- Institute of Nutrition and Food TechnologyUniversity of Chile El Líbano 5524, Macul, Santiago 7830490 Chile
- Department of Nutrition, Faculty of MedicineUniversity of Chile Avenida Independencia 1027, Independencia, Santiago 8380453 Chile
| | - Hernán Speisky
- Institute of Nutrition and Food TechnologyUniversity of Chile El Líbano 5524, Macul, Santiago 7830490 Chile
| | - Jocelyn Fuentes
- Institute of Nutrition and Food TechnologyUniversity of Chile El Líbano 5524, Macul, Santiago 7830490 Chile
| | - Alfonso Valenzuela
- Institute of Nutrition and Food TechnologyUniversity of Chile El Líbano 5524, Macul, Santiago 7830490 Chile
| |
Collapse
|
28
|
Calanus oil in the treatment of obesity-related low-grade inflammation, insulin resistance, and atherosclerosis. Appl Microbiol Biotechnol 2019; 104:967-979. [PMID: 31853565 DOI: 10.1007/s00253-019-10293-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022]
Abstract
Calanus oil (COil) is a natural product extracted from marine zooplankton Calanus finmarchicus found in the North Atlantic Ocean. This oil is rich in wax esters of polyunsaturated fatty acids (PUFAs) and has been projected as the best alternative to fish oil because its production cannot keep pace with the demands from the growing markets. The COil is the only commercially available marine source of wax esters, whereas classic ω-3 PUFAs comes from triglycerides, ethyl esters, and phospholipids. It has, in recent decades, been seen that there is an unprecedented rise in the use of PUFA-rich oil in the aquaculture industry. A simultaneous rise in the demand of PUFAs is also observed in the health care industry, where PUFAs are suggested preventing various disorders related to lifestyles such as obesity, diabetes mellitus, chronic low-grade inflammation, atherosclerosis, and brain and cardiovascular disorders (CVDs). In this review, we will explore the metabolic aspects related to the use of COil as an antioxidant, anticholesterinemic, and anti-inflammatory dietary source and its impact on the prevention and therapy of obesity-related metabolic disorders.
Collapse
|
29
|
He Y, Wu T, Sun H, Sun P, Liu B, Luo M, Chen F. Comparison of fatty acid composition and positional distribution of microalgae triacylglycerols for human milk fat substitutes. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Drouin G, Guillocheau E, Catheline D, Baudry C, Le Ruyet P, Rioux V, Legrand P. Impact of n-3 Docosapentaenoic Acid Supplementation on Fatty Acid Composition in Rat Differs Depending upon Tissues and Is Influenced by the Presence of Dairy Lipids in the Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9976-9988. [PMID: 30056717 DOI: 10.1021/acs.jafc.8b03069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The n-3 docosapentaenoic acid (n-3 DPA) could be a novel source of n-3 long-chain polyunsaturated fatty acids (LCPUFA) with beneficial physiological effects. Following the supplementation of 0.5% purified n-3 DPA for 3 weeks from weaning, the n-3 DPA content increased in one-half of the 18 studied tissues (from +50% to +110%, p < 0.05) and mostly affected the spleen, lung, heart, liver, and bone marrow. The n-3 DPA was slightly converted into DHA (+20% in affected tissues, p < 0.05) and mostly retroconverted into EPA (35-46% of n-3 DPA intake in liver and kidney) showing an increased content of these LCPUFA in specific tissues. The partial incorporation of dairy lipids in the diet for 6 weeks increased overall n-3 PUFA status and brain DHA status. Furthermore, the n-3 DPA supplementation and dairy lipids had an additive effect on the increase of n-3 PUFA tissue contents. Moreover, n-3 DPA supplementation decreased plasma cholesterol.
Collapse
Affiliation(s)
- Gaetan Drouin
- Laboratory of Biochemistry and Human Nutrition , Agrocampus Ouest , Rennes F-35000 , France
| | - Etienne Guillocheau
- Laboratory of Biochemistry and Human Nutrition , Agrocampus Ouest , Rennes F-35000 , France
| | - Daniel Catheline
- Laboratory of Biochemistry and Human Nutrition , Agrocampus Ouest , Rennes F-35000 , France
| | | | | | - Vincent Rioux
- Laboratory of Biochemistry and Human Nutrition , Agrocampus Ouest , Rennes F-35000 , France
| | - Philippe Legrand
- Laboratory of Biochemistry and Human Nutrition , Agrocampus Ouest , Rennes F-35000 , France
| |
Collapse
|
31
|
Cardoso C, Martinho JP, Lopes PA, Martins S, Correia J, Afonso C, Alarcón FJ, González-Fernández MJ, Pinto RM, Prates JA, Bandarra NM, Guil-Guerrero JL. Stearidonic acid combined with alpha-linolenic acid improves lipemic and neurological markers in a rat model subject to a hypercaloric diet. Prostaglandins Leukot Essent Fatty Acids 2018; 135:137-146. [PMID: 30103925 DOI: 10.1016/j.plefa.2018.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/18/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022]
Abstract
In this study, we hypothesized that terrestrial plant oils, rich in alpha linolenic acid (ALA) and stearidonic acid (SDA) relative to fish oil, rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), prevent negative effects on cardiovascular and neurological function using a rat model fed a hypercaloric diet. Results showed effects on the FA profile, namely, eicosapentaenoic, EPA, and docosahexaenoic, DHA, levels. There were also effects on neural aspects (cAMP response element-binding protein, CREB, gene expression, at least, doubled) and the pro-inflammatory/anti-inflammatory balance (TNF-α, tumor necrosis factor alpha reduced by 30-50%). The most positive impact of ALA and SDA was the beneficial reduction of total lipids (from 395 ± 3 to 352-361 mg/dL), VLDL-cholesterol (from 21.8 ± 0.2 to 14.1-17.8 mg/dL), and triacylglycerols (from 109 ± 1 to 71-89 mg/dL) in both LIN (diet enriched in linseed oil) and BUG (diet enriched in Buglossoides oil) groups. Overall, data indicate that ALA- and SDA-rich lipid sources may counteract the undesirable cardiovascular effects of a hypercaloric diet based on milk fat.
Collapse
Affiliation(s)
- Carlos Cardoso
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Rua Alfredo Magalhães Ramalho, 6, 1495-006, Lisbon, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal.
| | - Joana Paiva Martinho
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Paula A Lopes
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Susana Martins
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Jorge Correia
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Cláudia Afonso
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Rua Alfredo Magalhães Ramalho, 6, 1495-006, Lisbon, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal.
| | - Francisco J Alarcón
- Food Technology Division, University of Almería, Crta, Sacramento s/n, 04120, Almería, Spain
| | | | - Rui M Pinto
- iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - José A Prates
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Narcisa M Bandarra
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Rua Alfredo Magalhães Ramalho, 6, 1495-006, Lisbon, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - José L Guil-Guerrero
- Food Technology Division, University of Almería, Crta, Sacramento s/n, 04120, Almería, Spain
| |
Collapse
|
32
|
Kumsiri B, Pekkoh J, Pathom-aree W, Lumyong S, Pumas C. Synergistic effect of co-culture of microalga and actinomycete in diluted chicken manure digestate for lipid production. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
CHAMBÓ APS, SOUZA MLRD, OLIVEIRA ERND, MIKCHA JMG, MARQUES DR, MAISTROVICZ FC, VISENTAINER JV, GOES ESDR. Roll enriched with Nile tilapia meal: sensory, nutritional, technological and microbiological characteristics. FOOD SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1590/1678-457x.15317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Abstract
EPA and DHA appear to be the most important n-3 fatty acids, but roles for n-3 docosapentaenoic acid are now also emerging. Intakes of EPA and DHA are usually low, typically below those recommended. Increased intakes result in higher concentrations of EPA and DHA in blood lipids, cells and tissues. Increased content of EPA and DHA modifies the structure of cell membranes and the function of membrane proteins. EPA and DHA modulate the production of lipid mediators and through effects on cell signalling can alter the patterns of gene expression. Through these mechanisms, EPA and DHA alter cell and tissue responsiveness in a way that often results in more optimal conditions for growth, development and maintenance of health. DHA has vital roles in brain and eye development and function. EPA and DHA have a wide range of physiological roles, which are linked to certain health or clinical benefits, particularly related to CVD, cancer, inflammation and neurocognitive function. The benefits of EPA and DHA are evident throughout the life course. Future research will include better identification of the determinants of variation of responses to increased intake of EPA and DHA; more in-depth dose-response studies of the effects of EPA and DHA; clearer identification of the specific roles of EPA, docosapentaenoic acid and DHA; testing strategies to enhance delivery of n-3 fatty acids to the bloodstream; and exploration of sustainable alternatives to fish-derived very long-chain n-3 fatty acids.
Collapse
|
35
|
Sung J, Jeon H, Kim IH, Jeong HS, Lee J. Anti-Inflammatory Effects of Stearidonic Acid Mediated by Suppression of NF-κB and MAP-Kinase Pathways in Macrophages. Lipids 2017; 52:781-787. [PMID: 28744771 DOI: 10.1007/s11745-017-4278-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 07/13/2017] [Indexed: 11/27/2022]
Abstract
Stearidonic acid (SDA, 18:4n-3) is an omega-3 polyunsaturated fatty acid present in oils derived from plants of the Boraginaceae family. In this study, we determined the anti-inflammatory effects of SDA isolated from echium oil on lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 macrophages. SDA significantly downregulated the levels of the inducible nitric oxide synthase (iNOS) protein, thereby suppressing the production of nitric oxide (NO) in LPS-stimulated RAW 264.7 cells. In addition, SDA inhibited the nuclear translocation and promoter activity of nuclear factor κB (NFκB) and the phosphorylation of mitogen-activated protein kinases (MAPK) such as extracellular signal regulated kinase 1/2, c-jun N terminal kinase, and p38 in LPS-stimulated RAW 264.7 cells. Our results showed that SDA exerted anti-inflammatory effects by suppressing iNOS-mediated NO production via inactivation of NFκB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Jeehye Sung
- Division of Food and Animal Sciences, College of Agriculture, Life, and Environmental Sciences, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk, 28644, Korea
| | - Heemang Jeon
- Research and Innovation Center, Cosmax Bio Inc., Seongnam, Gyeonggi, 13486, Korea
| | - In-Hwan Kim
- Department of Food and Nutrition, Korea University, Seoul, 02841, Korea
| | - Heon Sang Jeong
- Division of Food and Animal Sciences, College of Agriculture, Life, and Environmental Sciences, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk, 28644, Korea
| | - Junsoo Lee
- Division of Food and Animal Sciences, College of Agriculture, Life, and Environmental Sciences, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk, 28644, Korea.
| |
Collapse
|
36
|
Zamroziewicz MK, Paul EJ, Zwilling CE, Barbey AK. Determinants of fluid intelligence in healthy aging: Omega-3 polyunsaturated fatty acid status and frontoparietal cortex structure. Nutr Neurosci 2017; 21:570-579. [DOI: 10.1080/1028415x.2017.1324357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marta K. Zamroziewicz
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Erick J. Paul
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Chris E. Zwilling
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Aron K. Barbey
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Psychology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carle Neuroscience Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| |
Collapse
|
37
|
KIMURA KS, SOUZA MLRD, GASPARINO E, MIKCHA JMG, CHAMBÓ APS, VERDI R, CORADINI MF, MARQUES DR, FEIHRMANN A, GOES ESDR. Preparation of lasagnas with dried mix of tuna and tilapia. FOOD SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1590/1678-457x.24816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
de Los Reyes C, Ortega MJ, Rodríguez-Luna A, Talero E, Motilva V, Zubía E. Molecular Characterization and Anti-inflammatory Activity of Galactosylglycerides and Galactosylceramides from the Microalga Isochrysis galbana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8783-8794. [PMID: 27786470 DOI: 10.1021/acs.jafc.6b03931] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Isochrysis galbana is a marine microalga rich in PUFAs that is widely used as feed in aquaculture and more recently investigated for its potential in food applications and as source of bioactive compounds. In this study, the biomass obtained from cultures of I. galbana has been investigated to determine its content in glycosylglycerides and glycosylceramides. By using NMR, UPLC-MS/MS, and fatty acid profiles, the structures of ten monogalactosyldiacylglycerols (MGDGs 1-10) and nine digalactosyldiacylglycerols (DGDGs 11-19) have been established. Two distinctive features of the galactosylglycerides from I. galbana are the wide presence of highly unsaturated acyl chains derived from stearidonic acid (18:4Δ6Z,9Z,12Z,15Z) and octadecapentaenoic acid (18:5Δ3Z,6Z,9Z,12Z,15Z), as well as the unusual coexistence of αβ-DGDGs and ββ-DGDGs. Three new galactosylceramides, isogalbamides A-C (20-22), have also been isolated and characterized by NMR and MS/MS. These metabolites, which are the first galactosylceramides described from microalgae, derive from unprecedented tetraolefinic sphingoid bases. In anti-inflammatory assays, the MGDG and DGDG mixtures and the isolated DGDGs 11 and 12 showed significant activity as inhibitors of the production of the pro-inflammatory cytokine TNF-α in lipopolysaccharide-stimulated human THP-1 macrophages, while the galactosylceramides showed moderated activity.
Collapse
Affiliation(s)
- Carolina de Los Reyes
- Departamento de Quı́mica Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , 11510 Puerto Real (Cádiz), Spain
| | - María J Ortega
- Departamento de Quı́mica Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , 11510 Puerto Real (Cádiz), Spain
| | - Azahara Rodríguez-Luna
- Departamento de Farmacologı́a, Facultad de Farmacia, Universidad de Sevilla , 41012 Sevilla, Spain
| | - Elena Talero
- Departamento de Farmacologı́a, Facultad de Farmacia, Universidad de Sevilla , 41012 Sevilla, Spain
| | - Virginia Motilva
- Departamento de Farmacologı́a, Facultad de Farmacia, Universidad de Sevilla , 41012 Sevilla, Spain
| | - Eva Zubía
- Departamento de Quı́mica Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , 11510 Puerto Real (Cádiz), Spain
| |
Collapse
|
39
|
Baker EJ, Miles EA, Burdge GC, Yaqoob P, Calder PC. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog Lipid Res 2016; 64:30-56. [DOI: 10.1016/j.plipres.2016.07.002] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022]
|
40
|
Finco AMDO, Mamani LDG, Carvalho JCD, de Melo Pereira GV, Thomaz-Soccol V, Soccol CR. Technological trends and market perspectives for production of microbial oils rich in omega-3. Crit Rev Biotechnol 2016; 37:656-671. [PMID: 27653190 DOI: 10.1080/07388551.2016.1213221] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In recent years, foods that contain omega-3 lipids have emerged as important promoters of human health. These lipids are essential for the functional development of the brain and retina, and reduction of the risk of cardiovascular and Alzheimer's diseases. The global market for omega-3 production, particularly docosahexaenoic acid (DHA), saw a large expansion in the last decade due to the increasing use of this lipid as an important component of infant food formulae and supplements. The production of omega-3 lipids from fish and vegetable oil sources has some drawbacks, such as complex purification procedures, unwanted contamination by marine pollutants, reduction or even extinction of several species of fish, and aspects related to sustainability. A promising alternative system for the production of omega-3 lipids is from microbial metabolism of yeast, fungi, or microalgae. The aim of this review is to discuss the various omega-3 sources in the context of the global demand and market potential for these bioactive compounds. To summarize, it is clear that fish and vegetable oil sources will not be sufficient to meet the future needs of the world population. The biotechnological production of single-cell oil comes as a sustainable alternative capable of supplementing the global demand for omega-3, causing less environmental impact.
Collapse
Affiliation(s)
- Ana Maria de Oliveira Finco
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | - Luis Daniel Goyzueta Mamani
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | - Júlio Cesar de Carvalho
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | | | - Vanete Thomaz-Soccol
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | - Carlos Ricardo Soccol
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| |
Collapse
|
41
|
Elkin RG, Ying Y, Fan Y, Harvatine KJ. Influence of feeding stearidonic acid (18:4n-3)-enriched soybean oil, as compared to conventional soybean oil, on tissue deposition of very long-chain omega-3 fatty acids in meat-type chickens. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Ulven T, Christiansen E. Dietary Fatty Acids and Their Potential for Controlling Metabolic Diseases Through Activation of FFA4/GPR120. Annu Rev Nutr 2016; 35:239-63. [PMID: 26185978 DOI: 10.1146/annurev-nutr-071714-034410] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well known that the amount and type of ingested fat impacts the development of obesity and metabolic diseases, but the potential for beneficial effects from fat has received less attention. It is becoming clear that the composition of the individual fatty acids in diet is important. Besides acting as precursors of potent signaling molecules, dietary fatty acids act directly on intracellular and cell surface receptors. The free fatty acid receptor 4 (FFA4, previously GPR120) is linked to the regulation of body weight, inflammation, and insulin resistance and represents a potential target for the treatment of metabolic disorders, including type 2 diabetes and obesity. In this review, we discuss the various types of dietary fatty acids, the link between FFA4 and metabolic diseases, the potential effects of the individual fatty acids on health, and the ability of fatty acids to activate FFA4. We also discuss the possibility of dietary schemes that implement activation of FFA4.
Collapse
Affiliation(s)
- Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark;
| | | |
Collapse
|
43
|
Wang HL, Chou CH, Yu YS, Hsu CL, Wang SY, Ko YF, Chen YC. Chicken surimi fortified by omega-3 fatty acid addition: manufacturing and quality properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1609-17. [PMID: 25988217 DOI: 10.1002/jsfa.7262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/29/2015] [Accepted: 05/15/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND The meat of spent hens is hard to use owing to its small amount and poor quality. A washing process to remove sarcoplasmic proteins and other impurities can prolong the shelf life of surimi-like products. Owing to the benefits of omega-3 polyunsaturated fatty acids (ω-3 PUFAs), functional foods fortified with ω-3 PUFAs are increasingly being marketed. Hence, in this study, ω-3 FA-fortified chicken surimi was manufactured, and how to ameliorate its lipid peroxidation during frozen storage was investigated. RESULTS A 0.10% (w/v) solution of sodium chloride (NaCl) instead of distilled water in the third washing step decreased (P < 0.05) myofibrillar protein loss and moisture content of spent hen breast protein recoveries. Oil droplets in fish, flaxseed or soybean oil-added chicken surimi were well distributed. Moreover, flaxseed oil addition increased (P < 0.05) total ω-3 FAs and ω-3/ω-6 FA ratio, while only fish oil provided long-chain PUFAs. Oil addition decreased (P < 0.05) hardness and gumminess of chicken surimi, while flaxseed oil resulted in more (P < 0.05) yellow surimi than fish and soybean oil. Fish oil-added samples showed higher (P < 0.05) lipid oxidation than flaxseed or soybean oil-added samples under -15 to -10 °C storage, but α-tocopherol addition ameliorated it. CONCLUSION A novel semi-manufactured chicken surimi product with nutritional benefits could be developed by fortification with fish or flaxseed oil.
Collapse
Affiliation(s)
- Hao-Lun Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Chung-Hsi Chou
- School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Shan Yu
- Health Bureau of Taichung City Government, Taichung, 420, Taiwan
| | - Chin-Lin Hsu
- School of Nutrition, Chung-Shan Medical University, Taichung, 402, Taiwan
| | - Sheng-Yao Wang
- Experimental Farm, Collage of Bioresources and Agriculture, National Taiwan University, Taipei, 106, Taiwan
| | - Yi-Feng Ko
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
- Seafood Technology Division, Fish Research Institute, Council of Agriculture, Keelung, 202, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
44
|
Effect of ruminally unprotected Echium oil on milk yield, composition and fatty acid profile in mid-lactation goats. J DAIRY RES 2016; 83:28-34. [PMID: 26869109 DOI: 10.1017/s0022029915000655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study investigated the effects on goat milk yield and composition of a diet supplemented with Echium plantagineum oil (EPO). Twenty-four mid-lactation multiparous Camosciata goats were divided into two balanced groups and fed for 44 d a diet based on hay and concentrate, supplemented (EPO group, Echium) or not (CON group, control) with 40 ml of ruminally unprotected EPO. Individual milk yield was recorded and individual milk samples were collected at 11, 22, 33, and 44 d after supplementation. Milk samples were analysed for milk components and fatty acids (FA). Data were statistically analysed by repeated-measures analysis of variance. Milk yield, protein and lactose contents were significantly higher in EPO than CON group. The inclusion of EPO significantly decreased total saturated FA and total branched-chain FA, and contemporarily sharply increased trans biohydrogenation intermediates (P ⩽ 0.001). Milk concentration of α-linolenic, stearidonic and γ-linolenic acids increased by 23, 1000 and 67%, respectively (P ⩽ 0.001). Due to extensive ruminal biohydrogenation, their apparent transfer rate was less than 3%. As a consequence, the milk concentrations of very long-chain (VLC) polyunsaturated fatty acids (PUFA), such as eicosapentaenoic (20:5 n-3) and dihomo-γ-linolenic (20:3 n-6) acids, significantly increased with EPO treatment, but values remained very low. Docosahexaenoic acid (22:6 n-3) was undetectable in all analysed milk samples. Results show that ruminally unprotected EPO can enhance milk yield and protein and improve the overall goat milk FA profile. However, this kind of supplementation cannot be considered a valuable strategy to develop goat functional dairy products enriched with VLC n-3 PUFA for human consumption.
Collapse
|
45
|
Tejera N, Vauzour D, Betancor MB, Sayanova O, Usher S, Cochard M, Rigby N, Ruiz-Lopez N, Menoyo D, Tocher DR, Napier JA, Minihane AM. A Transgenic Camelina sativa Seed Oil Effectively Replaces Fish Oil as a Dietary Source of Eicosapentaenoic Acid in Mice. J Nutr 2016; 146:227-35. [PMID: 26791554 PMCID: PMC4725436 DOI: 10.3945/jn.115.223941] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/08/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Fish currently supplies only 40% of the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) required to allow all individuals globally to meet the minimum intake recommendation of 500 mg/d. Therefore, alternative sustainable sources are needed. OBJECTIVE The main objective was to investigate the ability of genetically engineered Camelina sativa (20% EPA) oil (CO) to enrich tissue EPA and DHA relative to an EPA-rich fish oil (FO) in mammals. METHODS Six-week-old male C57BL/6J mice were fed for 10 wk either a palm oil-containing control (C) diet or diets supplemented with EPA-CO or FO, with the C, low-EPA CO (COL), high-EPA CO (COH), low-EPA FO (FOL), and high-EPA FO (FOH) diets providing 0, 0.4, 3.4, 0.3, and 2.9 g EPA/kg diet, respectively. Liver, muscle, and brain were collected for fatty acid analysis, and blood glucose and serum lipids were quantified. The expression of selected hepatic genes involved in EPA and DHA biosynthesis and in modulating their cellular impact was determined. RESULTS The oils were well tolerated, with significantly greater weight gain in the COH and FOH groups relative to the C group (P < 0.001). Significantly lower (36-38%) blood glucose concentrations were evident in the FOH and COH mice relative to C mice (P < 0.01). Hepatic EPA concentrations were higher in all EPA groups relative to the C group (P < 0.001), with concentrations of 0.0, 0.4, 2.9, 0.2, and 3.6 g/100 g liver total lipids in the C, COL, COH, FOL, and FOH groups, respectively. Comparable dose-independent enrichments of liver DHA were observed in mice fed CO and FO diets (P < 0.001). Relative to the C group, lower fatty acid desaturase 1 (Fads1) expression (P < 0.005) was observed in the COH and FOH groups. Higher fatty acid desaturase 2 (Fads2), peroxisome proliferator-activated receptor α (Ppara), and peroxisome proliferator-activated receptor γ (Pparg) (P < 0.005) expressions were induced by CO. No impact of treatment on liver X receptor α (Lxra) or sterol regulatory element-binding protein 1c (Srebp1c) was evident. CONCLUSIONS Oil from transgenic Camelina is a bioavailable source of EPA in mice. These data provide support for the future assessment of this oil in a human feeding trial.
Collapse
Affiliation(s)
- Noemi Tejera
- Department of Nutrition, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom;
| | - David Vauzour
- Department of Nutrition, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom;,Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Monica B Betancor
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Olga Sayanova
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom; and
| | - Sarah Usher
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom; and
| | - Marianne Cochard
- Department of Nutrition, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - Neil Rigby
- Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Noemi Ruiz-Lopez
- Department of Agricultural Production, School of Agricultural Engineering, Technical University of Madrid, Madrid, Spain
| | - David Menoyo
- Department of Agricultural Production, School of Agricultural Engineering, Technical University of Madrid, Madrid, Spain
| | - Douglas R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Johnathan A Napier
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom; and
| | - Anne Marie Minihane
- Department of Nutrition, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
46
|
Jeromson S, Gallagher IJ, Galloway SDR, Hamilton DL. Omega-3 Fatty Acids and Skeletal Muscle Health. Mar Drugs 2015; 13:6977-7004. [PMID: 26610527 PMCID: PMC4663562 DOI: 10.3390/md13116977] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle.
Collapse
Affiliation(s)
- Stewart Jeromson
- Health and Exercise Sciences Research Group, School of Sport, University of Stirling, Stirling, FK9 4LA Scotland, UK.
| | - Iain J Gallagher
- Health and Exercise Sciences Research Group, School of Sport, University of Stirling, Stirling, FK9 4LA Scotland, UK.
| | - Stuart D R Galloway
- Health and Exercise Sciences Research Group, School of Sport, University of Stirling, Stirling, FK9 4LA Scotland, UK.
| | - D Lee Hamilton
- Health and Exercise Sciences Research Group, School of Sport, University of Stirling, Stirling, FK9 4LA Scotland, UK.
| |
Collapse
|
47
|
Givens DI. Manipulation of lipids in animal-derived foods: Can it contribute to public health nutrition? EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400427] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- D. Ian Givens
- Food Production and Quality Division; Faculty of Life Sciences; School of Agriculture, Policy, and Development; University of Reading; Reading UK
| |
Collapse
|
48
|
Esquerdo V, Dotto G, Pinto L. Preparation of nanoemulsions containing unsaturated fatty acid concentrate–chitosan capsules. J Colloid Interface Sci 2015; 445:137-142. [DOI: 10.1016/j.jcis.2014.12.094] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 12/26/2014] [Accepted: 12/29/2014] [Indexed: 12/29/2022]
|
49
|
Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases. Br J Nutr 2015; 113:1677-88. [PMID: 25916176 DOI: 10.1017/s000711451500118x] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Various foods are associated with effects against metabolic diseases such as insulin resistance and type 2 diabetes; however, their mechanisms of action are mostly unclear. Fatty acids may contribute by acting as precursors of signalling molecules or by direct activity on receptors. The medium- and long-chain NEFA receptor FFA1 (free fatty acid receptor 1, previously known as GPR40) has been linked to enhancement of glucose-stimulated insulin secretion, whereas FFA4 (free fatty acid receptor 4, previously known as GPR120) has been associated with insulin-sensitising and anti-inflammatory effects, and both receptors are reported to protect pancreatic islets and promote secretion of appetite and glucose-regulating hormones. Hypothesising that FFA1 and FFA4 mediate therapeutic effects of dietary components, we screened a broad selection of NEFA on FFA1 and FFA4 and characterised active compounds in concentration-response curves. Of the screened compounds, pinolenic acid, a constituent of pine nut oil, was identified as a relatively potent and efficacious dual FFA1/FFA4 agonist, and its suitability for further studies was confirmed by additional in vitro characterisation. Pine nut oil and free and esterified pure pinolenic acid were tested in an acute glucose tolerance test in mice. Pine nut oil showed a moderately but significantly improved glucose tolerance compared with maize oil. Pure pinolenic acid or ethyl ester gave robust and highly significant improvements of glucose tolerance. In conclusion, the present results indicate that pinolenic acid is a comparatively potent and efficacious dual FFA1/FFA4 agonist that exerts antidiabetic effects in an acute mouse model. The compound thus deserves attention as a potential active dietary ingredient to prevent or counteract metabolic diseases.
Collapse
|
50
|
Salem N, Eggersdorfer M. Is the world supply of omega-3 fatty acids adequate for optimal human nutrition? Curr Opin Clin Nutr Metab Care 2015; 18:147-54. [PMID: 25635599 DOI: 10.1097/mco.0000000000000145] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW To delineate the available sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for human consumption and to determine if the available supply is capable of supplying the nutrient levels recommended by expert bodies. RECENT FINDINGS There are converging opinions among experts, professional organizations and health professionals that a recommendation for a daily individual consumption of 500 mg of EPA/DHA would provide health benefits, and this translates to an annual human consumption of 1.3 million metric tons. Current human consumption of EPA/DHA is estimated to be only a small fraction of this amount and many people may suffer from suboptimal health as a result of low intake. EPA and DHA originate in the phytoplankton and are made available in the human food chain mainly through fish and other seafood. SUMMARY The fish catch is not elastic and in fact has long since reached a plateau. Aquaculture has grown rapidly, but most of the fish oil produced is currently being used to support aquaculture feed and so this would appear to limit aquaculture growth - or at least the growth in availability of fish sources of EPA/DHA. Vegetable oil-derived alpha-linolenic acid, though relatively plentiful, is converted only at a trace level in humans to DHA and not very efficiently to EPA, and so cannot fill this gap. Microbial EPA/DHA production can in the future be increased, although this oil is likely to remain more expensive than fish oil. Plant sources of EPA and DHA have now been produced in the laboratory via transgenic means and will eventually clear regulatory hurdles for commercialization, but societal acceptance remains in question. The purpose of this review is to discuss the various sources of omega-3 fatty acids within the context of the potential world demand for these nutrients. In summary, it is concluded that fish and vegetable oil sources will not be adequate to meet future needs, but that algal oil and terrestrial plants modified genetically to produce EPA and DHA could provide for the increased world demand.
Collapse
Affiliation(s)
- Norman Salem
- aNutritional Lipids, DSM Nutritional Lipids, Columbia, Maryland, USA bNutrition Science & Advocacy, DSM Nutritional Products, Basel, Switzerland
| | | |
Collapse
|