1
|
Lima LS, Ribeiro M, Cardozo LFMF, Moreira NX, Teodoro AJ, Stenvinkel P, Mafra D. Amazonian Fruits for Treatment of Non-Communicable Diseases. Curr Nutr Rep 2024; 13:611-638. [PMID: 38916807 DOI: 10.1007/s13668-024-00553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE OF REVIEW The Amazon region has a high biodiversity of flora, with an elevated variety of fruits, such as Camu-Camu (Myrciaria dúbia), Açaí (Euterpe oleracea Mart.), Tucumã (Astrocaryum aculeatum and Astrocaryum vulgare), Fruta-do-conde (Annona squamosa L.), Cupuaçu (Theobroma grandiflorum), Graviola (Annona muricata L.), Guarana (Paullinia cupana Kunth var. sorbilis), and Pitanga (Eugenia uniflora), among many others, that are rich in phytochemicals, minerals and vitamins with prominent antioxidant and anti-inflammatory potential. RECENT FINDINGS Studies evaluating the chemical composition of these fruits have observed a high content of nutrients and bioactive compounds. Such components are associated with significant biological effects in treating various non-communicable diseases (NCDs) and related complications. Regular intake of these fruits from Amazonas emerges as a potential therapeutic approach to preventing and treating NCDs as a nutritional strategy to reduce the incidence or mitigate common complications in these patients, which are the leading global causes of death. As studies remain largely unexplored, this narrative review discusses the possible health-beneficial effects for patients with NCDs.
Collapse
Affiliation(s)
- Ligia Soares Lima
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Ludmila F M F Cardozo
- Nutrition Faculty, Federal Fluminense University, Niterói-Rio de Janeiro (RJ), Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Nara Xavier Moreira
- Nutrition Faculty, Federal Fluminense University, Niterói-Rio de Janeiro (RJ), Brazil
| | - Anderson Junger Teodoro
- Nutrition Faculty, Federal Fluminense University, Niterói-Rio de Janeiro (RJ), Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil.
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
- Unidade de Pesquisa Clínica-UPC. Rua Marquês de Paraná, Niterói-RJ, 303/4 Andar , Niterói, RJ, 24033-900, Brazil.
| |
Collapse
|
2
|
Maresca V, Capasso L, Rigano D, Stornaiuolo M, Sirignano C, Piacente S, Cerulli A, Marallo N, Basile A, Nebbioso A, Giordano D, Facchiano A, De Masi L, Bontempo P. Health-Promoting Effects, Phytochemical Constituents and Molecular Genetic Profile of the Purple Carrot 'Purple Sun' ( Daucus carota L.). Nutrients 2024; 16:2505. [PMID: 39125387 PMCID: PMC11314219 DOI: 10.3390/nu16152505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The purple carrot cultivar 'Purple Sun' (Daucus carota L.) is characterized by a relevant content of phenolic compounds and anthocyanins, which may play an important role in reducing the risk of chronic diseases and in the treatment of metabolic syndrome. In the present study, the genetic diversity, phytochemical composition, and bioactivities of this outstanding variety were studied for the first time. Genetic analysis by molecular markers estimated the level of genetic purity of this carrot cultivar, whose purple-pigmented roots were used for obtaining the purple carrot ethanol extract (PCE). With the aim to identify specialized metabolites potentially responsible for the bioactivities, the analysis of the metabolite profile of PCE by LC-ESI/LTQ Orbitrap/MS/MS was carried out. LC-ESI/HRMS analysis allowed the assignment of twenty-eight compounds, putatively identified as isocitric acid (1), phenolic acid derivatives (2 and 6), hydroxycinnamic acid derivatives (9, 10, 12-14, 16, 17, 19, 22, and 23), anthocyanins (3-5, 7, 8, 11, and 18), flavanonols (15 and 21), flavonols (20 and 24), oxylipins (25, 26, and 28), and the sesquiterpene 11-acetyloxytorilolone (27); compound 26, corresponding to the primary metabolite trihydroxyoctanoic acid (TriHOME), was the most abundant compound in the LC-ESI/HRMS analysis of the PCE, and hydroxycinnamic acid derivatives followed by anthocyanins were the two most represented groups. The antioxidant activity of PCE, expressed in terms of reactive oxygen species (ROS) level and antioxidant enzymes activity, and its pro-metabolic effect were evaluated. Moreover, the antibacterial activity on Gram (-) and (+) bacterial strains was investigated. An increase in the activity of antioxidant enzymes (SOD, CAT, and GPx), reaching a maximum at 0.5 mg/mL of PCE with a plateau at higher PCE concentrations (1.25, 2.5, and 5.0 mg/mL), was observed. PCE induced an initial decrease in ROS levels at 0.1 and 0.25 mg/mL concentrations, reaching the ROS levels of control at 0.5 mg/mL of PCE with a plateau at higher PCE concentrations (1.25, 2.5, and 5.0 mg/mL). Moreover, significant antioxidant and pro-metabolic effects of PCE on myoblasts were shown by a reduction in ROS content and an increase in ATP production linked to the promotion of mitochondrial respiration. Finally, the bacteriostatic activity of PCE was shown on the different bacterial strains tested, while the bactericidal action of PCE was exclusively observed against the Gram (+) Staphylococcus aureus. The bioactivities of PCE were also investigated from cellular and molecular points of view in colon and hematological cancer cells. The results showed that PCE induces proliferative arrest and modulates the expression of important cell-cycle regulators. For all these health-promoting effects, also supported by initial computational predictions, 'Purple Sun' is a promising functional food and an optimal candidate for pharmaceutical and/or nutraceutical preparations.
Collapse
Affiliation(s)
- Viviana Maresca
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (V.M.); (A.B.)
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.); (P.B.)
| | - Daniela Rigano
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy; (M.S.); (C.S.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy; (M.S.); (C.S.)
| | - Carmina Sirignano
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy; (M.S.); (C.S.)
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano (Salerno), Italy; (S.P.); (A.C.)
| | - Antonietta Cerulli
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano (Salerno), Italy; (S.P.); (A.C.)
| | - Nadia Marallo
- Agronomist Consultant, Via S. Moccia 2/B, 83100 Avellino, Italy;
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (V.M.); (A.B.)
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.); (P.B.)
| | - Deborah Giordano
- Institute of Food Science (ISA), National Research Council (CNR), Via Roma 64, 83100 Avellino, Italy; (D.G.); (A.F.)
| | - Angelo Facchiano
- Institute of Food Science (ISA), National Research Council (CNR), Via Roma 64, 83100 Avellino, Italy; (D.G.); (A.F.)
| | - Luigi De Masi
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Università 133, 80055 Portici (Naples), Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.); (P.B.)
| |
Collapse
|
3
|
Rios-Mera JD, Arteaga H, Ruiz R, Saldaña E, Tello F. Amazon Fruits as Healthy Ingredients in Muscle Food Products: A Review. Foods 2024; 13:2110. [PMID: 38998616 PMCID: PMC11241114 DOI: 10.3390/foods13132110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
When looking for new ingredients to process red meat, poultry, and fish products, it is essential to consider using vegetable resources that can replace traditional ingredients such as animal fat and synthetic antioxidants that may harm health. The Amazon, home to hundreds of edible fruit species, can be a viable alternative for new ingredients in processing muscle food products. These fruits have gained interest for their use as natural antioxidants, fat replacers, colorants, and extenders. Some of the fruits that have been tested include açai, guarana, annatto, cocoa bean shell, sacha inchi oil, and peach palm. Studies have shown that these fruits can be used as dehydrated products or as liquid or powder extracts in doses between 250 and 500 mg/kg as antioxidants. Fat replacers can be added directly as flour or used to prepare emulsion gels, reducing up to 50% of animal fat without any detrimental effects. However, oxidation problems of the gels suggest that further investigation is needed by incorporating adequate antioxidant levels. In low doses, Amazon fruit byproducts such as colorants and extenders have been shown to have positive technological and sensory effects on muscle food products. While evidence suggests that these fruits have beneficial health effects, their in vitro and in vivo nutritional effects should be evaluated in muscle food products containing these fruits. This evaluation needs to be intended to identify safe doses, delay the formation of key oxidation compounds that directly affect health, and investigate other factors related to health.
Collapse
Affiliation(s)
- Juan D. Rios-Mera
- Instituto de Investigación de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Jaén, Jaén 06800, Peru; (J.D.R.-M.); (H.A.)
| | - Hubert Arteaga
- Instituto de Investigación de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Jaén, Jaén 06800, Peru; (J.D.R.-M.); (H.A.)
| | - Roger Ruiz
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru;
| | - Erick Saldaña
- Sensory Analysis and Consumer Study Group, Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Moquegua 18001, Peru;
| | - Fernando Tello
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru;
| |
Collapse
|
4
|
Scognamiglio M, Maresca V, Basile A, Pacifico S, Fiorentino A, Bruno M, Badalamenti N, Kapelusz M, Marino P, Capasso L, Bontempo P, Bazan G. Phytochemical Characterization, Antioxidant, and Anti-Proliferative Activities of Wild and Cultivated Nigella damascena Species Collected in Sicily (Italy). Antioxidants (Basel) 2024; 13:402. [PMID: 38671850 PMCID: PMC11047655 DOI: 10.3390/antiox13040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The use of Nigella damascena seeds in the culinary field or as aerial parts infusions in the pharmaceutical and cosmetic fields is widely reported. The biological activity of this plant, as demonstrated over the years, is closely related to its phytochemical content. This investigation focused on the comparative study of the same plants of N. damascena, one totally wild (WND), while the other two, one with white flowers (CWND) and the other with blue flowers (CBND), were subject to cultivation, irrigation, and manual weeding. Using the potential of 1D and 2D-NMR spectroscopy, coupled with MS/MS spectrometric studies, the three methanolic extracts of N. damascena were investigated. Chemical studies have highlighted the presence of triterpene saponin compounds and various glycosylated flavonoids. Finally, the in vitro antiproliferative and antioxidant activities of the three individual extracts were evaluated. The antiproliferative activity performed on U-937, HL-60, and MCF-7 tumor cell lines highlighted a greater anticancer effect of the CBND and CWND extracts compared to the data obtained using WND. The antioxidant activity, however, performed to quantify ROS generation is comparable among the extracts used.
Collapse
Affiliation(s)
- Monica Scognamiglio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.S.); (S.P.); (A.F.)
| | - Viviana Maresca
- Department of Biology, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Adriana Basile
- Department of Biology, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.S.); (S.P.); (A.F.)
| | - Antonio Fiorentino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.S.); (S.P.); (A.F.)
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (M.B.); (G.B.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
- Centro Interdipartimentale di Ricerca “Riutilizzo Bio-Based Degli Scarti da Matrici Agroalimentari” (RIVIVE), University of Palermo, 90128 Palermo, Italy
| | - Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (M.B.); (G.B.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marta Kapelusz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80210 Gdańsk, Poland;
| | | | - Lucia Capasso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (P.B.)
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (P.B.)
| | - Giuseppe Bazan
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (M.B.); (G.B.)
- Centro Interdipartimentale di Ricerca “Riutilizzo Bio-Based Degli Scarti da Matrici Agroalimentari” (RIVIVE), University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
5
|
da Silva Júnior ME, Araújo MVRL, Martins ACS, Dos Santos Lima M, da Silva FLH, Converti A, Maciel MIS. Microencapsulation by spray-drying and freeze-drying of extract of phenolic compounds obtained from ciriguela peel. Sci Rep 2023; 13:15222. [PMID: 37709786 PMCID: PMC10502068 DOI: 10.1038/s41598-023-40390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
Microcapsules of ciriguela peel extracts obtained by ultrasound-assisted extraction were prepared by spray drying, whose results were compared with those of freeze-drying as a control. The effects of spray-drying air temperature, feed flow rate and ratio of encapsulating agents (maltodextrin and arabic gum) were studied. Encapsulation efficiency, moisture content, total phenolic compounds (TPC), water activity, hygroscopicity, solubility, colorimetric parameters, phenolic profile by HPLC/DAD, simulated gastrointestinal digestion and morphology of spray-dried and freeze-dried microcapsules were evaluated, as well as their stability of TPC during 90 days storage at 7 and 25 °C. Spray-dried extract showed higher encapsulation efficiency (98.83%) and TPC (476.82 mg GAE g-1) than freeze-dried extract. The most abundant compounds in the liquid extract of ciriguela peel flour were rutin, epicatechin gallate, chlorogenic acid and quercetin. Rutin and myricetin were the major flavonoids in the spray-dried extract, while quercetin and kaempferol were in the freeze-dried one. The simulated gastrointestinal digestion test of microencapsulated extracts revealed the highest TPC contents after the gastric phase and the lowest one after the intestinal one. Rutin was the most abundant compound after the digestion of both spray-dried (68.74 µg g-1) and freeze-dried (93.98 µg g-1) extracts. Spray-dried microcapsules were of spherical shape, freeze-dried products of irregular structures. Spray-dried microcapsules had higher phenolic compounds contents after 90 days of storage at 7 °C compared to those stored at 25 °C, while the lyophilized ones showed no significant difference between the two storage temperatures. The ciriguela agro-industrial residue can be considered an interesting alternative source of phenolic compounds that could be used, in the form of bioactive compounds-rich powders, as an ingredient in pharmaceutical, cosmetic and food industries.
Collapse
Affiliation(s)
| | - Maria Vitória Rolim Lemos Araújo
- Laboratory of Physical-Chemical Analysis of Food, Department of Consumer Sciences, Federal Rural University of Pernambuco, Recife, Brazil
| | | | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Campus Petrolina, Rod. BR 407 Km 08, S/N, Jardim São Paulo, Petrolina, PE, 56314-520, Brazil
| | | | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Via Opera Pia 15, 16145, Genoa, Italy
| | - Maria Inês Sucupira Maciel
- Food Science and Technology Graduate Program, Technology Center, Federal University of Paraíba, João Pessoa, Brazil.
- Food Science and Technology Graduate Program, Federal Rural University of Pernambuco, Recife, Brazil.
| |
Collapse
|
6
|
Cardoso AL, Teixeira LDL, Hassimotto NMA, Baptista SDL, Copetti CLK, Rieger DK, Vieira FGK, Micke GA, Vitali L, Assis MAAD, Schulz M, Fett R, Silva ELD, Pietro PFD. Kinetic Profile of Urine Metabolites after Acute Intake of a Phenolic Compounds-Rich Juice of Juçara ( Euterpe edulis Mart.) and Antioxidant Capacity in Serum and Erythrocytes: A Human Study. Int J Mol Sci 2023; 24:ijms24119555. [PMID: 37298506 DOI: 10.3390/ijms24119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 06/12/2023] Open
Abstract
The juçara palm tree produces a small spherical and black-purple fruit similar to açaí. It is rich in phenolic compounds, especially anthocyanins. A clinical trial evaluated the absorption and excretion of the main bioactive compounds in urine and the antioxidant capacity in serum and erythrocytes of 10 healthy subjects after juçara juice intake. Blood samples were collected before (0.0 h) and 0.5 h, 1 h, 2 h, and 4 h after a single dose (400 mL) of juçara juice, while urine was collected at baseline and 0-3 and 3-6 h after juice intake. Seven phenolic acids and conjugated phenolic acids were identified in urine deriving from the degradation of anthocyanins: protocatechuic acid, vanillic acid, vanillic acid glucuronide, hippuric acid, hydroxybenzoic acid, hydroxyphenylacetic acid, and ferulic acid derivative. In addition, kaempferol glucuronide was also found in urine as a metabolite of the parent compound in juçara juice. Juçara juice caused a decrease in the total oxidant status of serum after 0.5 h in comparison to baseline values (p < 0.05) and increased the phenolic acid metabolites excretion. This study shows the relationship between the production of metabolites of juçara juice and the total antioxidant status in human serum, indicating evidence of its antioxidant capacity.
Collapse
Affiliation(s)
- Alyne Lizane Cardoso
- Graduate Program in Nutrition, Department of Nutrition, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Luciane de Lira Teixeira
- Department of Food Science and Experimental Nutrition, University of São Paulo, São Paulo 05508-900, SP, Brazil
| | | | - Sheyla de Liz Baptista
- Graduate Program in Nutrition, Department of Nutrition, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Cândice Laís Knöner Copetti
- Graduate Program in Nutrition, Department of Nutrition, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Debora Kurrler Rieger
- Graduate Program in Nutrition, Department of Nutrition, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | | | - Gustavo Amadeu Micke
- Department of Chemistry, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Luciano Vitali
- Department of Chemistry, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Maria Alice Altenburg de Assis
- Graduate Program in Nutrition, Department of Nutrition, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis 88034-001, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis 88034-001, SC, Brazil
| | - Edson Luiz da Silva
- Graduate Program in Nutrition, Department of Clinical Analysis, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Patricia Faria Di Pietro
- Graduate Program in Nutrition, Department of Nutrition, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| |
Collapse
|
7
|
Oral Treatment with the Extract of Euterpe oleracea Mart. Improves Motor Dysfunction and Reduces Brain Injury in Rats Subjected to Ischemic Stroke. Nutrients 2023; 15:nu15051207. [PMID: 36904206 PMCID: PMC10005587 DOI: 10.3390/nu15051207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Ischemic stroke is one of the principal causes of morbidity and mortality around the world. The pathophysiological mechanisms that lead to the formation of the stroke lesions range from the bioenergetic failure of the cells and the intense production of reactive oxygen species to neuroinflammation. The fruit of the açaí palm, Euterpe oleracea Mart. (EO), is consumed by traditional populations in the Brazilian Amazon region, and it is known to have antioxidant and anti-inflammatory properties. We evaluated whether the clarified extract of EO was capable of reducing the area of lesion and promoting neuronal survival following ischemic stroke in rats. Animals submitted to ischemic stroke and treated with EO extract presented a significant improvement in their neurological deficit from the ninth day onward. We also observed a reduction in the extent of the cerebral injury and the preservation of the neurons of the cortical layers. Taken together, our findings indicate that treatment with EO extract in the acute phase following a stroke can trigger signaling pathways that culminate in neuronal survival and promote the partial recovery of neurological scores. However, further detailed studies of the intracellular signaling pathways are needed to better understand the mechanisms involved.
Collapse
|
8
|
Di Napoli M, Castagliuolo G, Badalamenti N, Maresca V, Basile A, Bruno M, Varcamonti M, Zanfardino A. Antimicrobial, Antibiofilm, and Antioxidant Properties of Essential Oil of Foeniculum vulgare Mill. Leaves. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243573. [PMID: 36559685 PMCID: PMC9783700 DOI: 10.3390/plants11243573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 05/13/2023]
Abstract
Foeniculum vulgare (Apiaceae) is an aromatic fennel with important practices in medicinal and traditional fields, used in the treatment of digestive complications, and gastrointestinal and respiratory disorders. Its leaves and stems, tender and fresh, are used in the production of pasta dressing and main courses, while its seeds, with a strong smell of anise, are excellent flavoring for baked goods, meat dishes, fish, and alcoholic beverages. The aim of this work is concerning the extraction of essential oil (EO) from the leaves of F. vulgare subsp. vulgare var. vulgare, investigating antimicrobial, antibiofilm, and antioxidant efficacy. In particular, GC-MS analysis showed how the chemical composition of EO was influenced by the massive presence of monoterpene hydrocarbons (α-pinene 33.75%) and phenylpropanoids (estragole 25.06%). F. vulgare subsp. vulgare var. vulgare EO shows excellent antimicrobial activity against both Gram-positive and Gram-negative strains. This EO can inhibit biofilm formation at very low concentrations and has a good ability to scavenge oxygen radicals in vitro. F. vulgare subsp. vulgare var. vulgare EO also has an increased activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) enzymes and decreased ROS levels in zymosan opsonized PMNs (OZ).
Collapse
Affiliation(s)
- Michela Di Napoli
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Giusy Castagliuolo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, 90128 Palermo, Italy
| | - Viviana Maresca
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, 90128 Palermo, Italy
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Correspondence:
| |
Collapse
|
9
|
Badalamenti N, Maresca V, Di Napoli M, Bruno M, Basile A, Zanfardino A. Chemical Composition and Biological Activities of Prangos ferulacea Essential Oils. Molecules 2022; 27:7430. [PMID: 36364254 PMCID: PMC9657548 DOI: 10.3390/molecules27217430] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 07/27/2023] Open
Abstract
Prangos ferulacea (L.) Lindl, which belongs to the Apiaceae family, is a species that mainly grows in the eastern Mediterranean region and in western Asia. It has been largely used in traditional medicine in several countries and it has been shown to possess several interesting biological properties. With the aim to provide new insights into the phytochemistry and pharmacology of this species, the essential oils of flowers and leaves from a local accession that grows in Sicily (Italy) and has not yet been previously studied were investigated. The chemical composition of both oils, obtained by hydrodistillation from the leaves and flowers, was evaluated by GC-MS. This analysis allowed us to identify a new chemotype, characterized by a large amount of (Z)-β-ocimene. Furthermore, these essential oils have been tested for their possible antimicrobial and antioxidant activity. P. ferulacea essential oils exhibit moderate antimicrobial activity; in particular, the flower essential oil is harmful at low and wide spectrum concentrations. They also exhibit good antioxidant activity in vitro and in particular, it has been shown that the essential oils of the flowers and leaves of P. ferulacea caused a decrease in ROS and an increase in the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) in OZ-stimulated PMNs. Therefore, these essential oils could be considered as promising candidates for pharmaceutical and nutraceutical preparations.
Collapse
Affiliation(s)
- Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, 90128 Palermo, Italy
| | - Viviana Maresca
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Michela Di Napoli
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, 90128 Palermo, Italy
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
10
|
Napolitano A, Di Napoli M, Castagliuolo G, Badalamenti N, Cicio A, Bruno M, Piacente S, Maresca V, Cianciullo P, Capasso L, Bontempo P, Varcamonti M, Basile A, Zanfardino A. The chemical composition of the aerial parts of Stachys spreitzenhoferi (Lamiaceae) growing in Kythira Island (Greece), and their antioxidant, antimicrobial, and antiproliferative properties. PHYTOCHEMISTRY 2022; 203:113373. [PMID: 35977603 DOI: 10.1016/j.phytochem.2022.113373] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 05/27/2023]
Abstract
The Stachys L. genus has been used in traditional medicine to treat skin inflammations, stomach disorders, and stress. The aim of this study was to investigate the chemical profile and biological activity of the methanolic extract of Stachys spreitzenhoferi Heldr. (Lamiaceae) aerial parts, collected on the island of Kythira, South Greece. The analysis by liquid chromatography coupled with electrospray ionization and high-resolution mass spectrometry [LC-(-)ESI/HRMSn] of the methanol extract revealed the occurrence of thirty-six compounds - flavonoids, phenylethanoid glycosides, iridoids, quinic acid derivatives, aliphatic alcohol glycosides, and oligosaccharides - highlighting the substantial presence, as main peaks, of the iridoid melittoside (2) along with flavonoid compounds such as 4'-O-methylisoscutellarein mono-acetyl-diglycoside/chrysoeriol mono-acetyl-diglycoside (24), trimethoxy- (35) and tetramethoxyflavones (36). This extract was tested for its antimicrobial properties against Gram-positive and negative pathogenic strains. The extract was not active against Gram-negative bacteria tested, but it possessed a good dose-dependent antimicrobial activity towards S. aureus (MIC: 1.0 mg/mL) and L. monocytogenes (MIC: 1.0 mg/mL) Gram-(+) strains. Furthermore, this extract has been tested for its possible antioxidant activity in vitro. In particular, it has been shown that these molecules cause a decrease in DPPH, ABTS, and H2O2 radicals. The extract of S. spreitzenhoferi exhibited anti-DPPH activity (IC50: 0.17 mg/mL), anti-H2O2 activity (IC50: 0.125 mg/mL), and promising antiradical effect with an IC50 value of 0.18 mg/mL for anti-ABTS activity. S. spreitzenhoferi extract caused a decrease in ROS (at the concentration of 200 μg/mL) and an increase in the activity of the antioxidant enzymes SOD, CAT, and GPX in OZ-stimulated PMNs. Furthermore, it exhibited antiproliferative activity against acute myeloid leukemia (U937 cell), causing 50% of cell death at the 0.75 mg/mL.
Collapse
Affiliation(s)
- Assunta Napolitano
- Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy
| | - Michela Di Napoli
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| | - Giusy Castagliuolo
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| | - Natale Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Adele Cicio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy; Centro Interdipartimentale di Ricerca "Riutilizzo bio-based degli scarti da matrici agroalimentari" (RIVIVE), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy
| | - Viviana Maresca
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| | | | - Lucia Capasso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7,80138 Naples, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7,80138 Naples, Italy
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy.
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| |
Collapse
|
11
|
Vetrani C, Piscitelli P, Muscogiuri G, Barrea L, Laudisio D, Graziadio C, Marino F, Colao A. "Planeterranea": An attempt to broaden the beneficial effects of the Mediterranean diet worldwide. Front Nutr 2022; 9:973757. [PMID: 36118764 PMCID: PMC9480100 DOI: 10.3389/fnut.2022.973757] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Non-communicable diseases (NCDs) lead to a dramatic burden on morbidity and mortality worldwide. Diet is a modifiable risk factor for NCDs, with Mediterranean Diet (MD) being one of the most effective dietary strategies to reduce diabetes, cardiovascular diseases, and cancer. Nevertheless, MD transferability to non-Mediterranean is challenging and requires a shared path between the scientific community and stakeholders. Therefore, the UNESCO Chair on Health Education and Sustainable Development is fostering a research project-"Planeterranea"-aiming to identify a healthy dietary pattern based on food products available in the different areas of the world with the nutritional properties of MD. This review aimed to collect information about eating habits and native crops in 5 macro-areas (North America, Latin America, Africa, Asia, and Australia). The information was used to develop specific "nutritional pyramids" based on the foods available in the macro-areas presenting the same nutritional properties and health benefits of MD.
Collapse
Affiliation(s)
- Claudia Vetrani
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Naples, Italy
| | - Prisco Piscitelli
- UNESCO Chair “Education for Health and Sustainable Development, ” University of Naples “Federico II”, Naples, Italy
| | - Giovanna Muscogiuri
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Naples, Italy
- UNESCO Chair “Education for Health and Sustainable Development, ” University of Naples “Federico II”, Naples, Italy
| | - Luigi Barrea
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Naples, Italy
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Napoli, Italy
| | - Daniela Laudisio
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Naples, Italy
| | - Chiara Graziadio
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Naples, Italy
| | - Francesca Marino
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Naples, Italy
- UNESCO Chair “Education for Health and Sustainable Development, ” University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
12
|
ALNasser MN, Mellor IR. Neuroprotective activities of acai berries (Euterpe sp.): A review. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dietary interventions rich in fruits and vegetables in aging people can reverse or mitigate age-related cognitive declines, delay the onset of neurodegenerative diseases (NDDs), and provide long-term health dividends. The novel food, popularly known as "Acai", is a berry belonging to the Euterpe genus of tropical palms trees and natively found in South America. Euterpe oleracea has been given much attention among scientists due to its high antioxidant capacity compared to other fruits and berries. Additionally, acai pulp composition analysis found that it contains various biologically active phytochemicals. In this review, we focused on current evidence relating to acai berry neuroprotection mechanisms and its efficacy in preventing or reversing neurodegeneration and age-related cognitive decline. A number of studies have illustrated the potential neuroprotective properties of acai berries. They have shown that their chemical extracts have antioxidant and anti-inflammatory properties and maintain proteins, calcium homeostasis, and mitochondrial function. Moreover, acai berry extract offers other neuromodulatory mechanisms, including anticonvulsant, antidepressant, and anti-aging properties. This neuromodulation gives valuable insights into the acai pulp and its considerable pharmacological potential on critical brain areas involved in memory and cognition. The isolated chemical matrix of acai berries could be a new substitute in research for NDD medicine development. However, due to the limited number of investigations, there is a need for further efforts to establish studies that enable progressing to clinical trials to consequently prove and ratify the therapeutic potential of this berry for several incurable NDDs.
Collapse
Affiliation(s)
- Maryam N. ALNasser
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
- Department of Biological Sciences, College of Science, King Faisal University, Saudi Arabia
| | - Ian R. Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
13
|
Figueiredo AM, Cardoso AC, Pereira BLB, Silva RAC, Ripa AFGD, Pinelli TFB, Oliveira BC, Rafacho BPM, Ishikawa LLW, Azevedo PS, Okoshi K, Fernandes AAH, Zornoff LAM, Minicucci MF, Polegato BF, Paiva SAR. Açai supplementation (Euterpe oleracea Mart.) attenuates cardiac remodeling after myocardial infarction in rats through different mechanistic pathways. PLoS One 2022; 17:e0264854. [PMID: 35245316 PMCID: PMC8896726 DOI: 10.1371/journal.pone.0264854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Myocardial infarction has a high mortality rate worldwide. Therefore, clinical intervention in cardiac remodeling after myocardial infarction is essential. Açai pulp is a natural product and has been considered a functional food because of its antioxidant/anti-inflammatory properties. The aim of the present study was to analyze the effect of açai pulp supplementation on cardiac remodeling after myocardial infarction in rats. After 7 days of surgery, male Wistar rats were assigned to six groups: sham animals fed standard chow (SA0, n = 14), fed standard chow with 2% açai pulp (SA2, n = 12) and fed standard chow with 5% açai pulp (SA5, n = 14), infarcted animals fed standard chow (IA0, n = 12), fed standard chow with 2% açai pulp (IA2, n = 12), and fed standard chow with 5% açai pulp (IA5, n = 12). After 3 months of supplementation, echocardiography and euthanasia were performed. Açai pulp supplementation, after myocardial infarction, improved energy metabolism, attenuated oxidative stress (lower concentration of malondialdehyde, P = 0.023; dose-dependent effect), modulated the inflammatory process (lower concentration of interleukin-10, P<0.001; dose-dependent effect) and decreased the deposit of collagen (lower percentage of interstitial collagen fraction, P<0.001; dose-dependent effect). In conclusion, açai pulp supplementation attenuated cardiac remodeling after myocardial infarction in rats. Also, different doses of açai pulp supplementation have dose-dependent effects on cardiac remodeling.
Collapse
Affiliation(s)
- Amanda Menezes Figueiredo
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
- * E-mail:
| | - Ana Carolina Cardoso
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Leticia Buzati Pereira
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Renata Aparecida Candido Silva
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Bruna Camargo Oliveira
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Paola Murino Rafacho
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Larissa Lumi Watanabe Ishikawa
- Chemistry and Biochemistry Department, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Paula Schmidt Azevedo
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Katashi Okoshi
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Ana Angelica Henrique Fernandes
- Chemistry and Biochemistry Department, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | | - Marcos Ferreira Minicucci
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Bertha Furlan Polegato
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Sergio Alberto Rupp Paiva
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
14
|
DOS REIS TMP, AGUIAR GG, BARBOSA-FILHO V, LIMA EDS, ROSSATO M. Effect of açai supplementation (Euterpe Oleracea Mart.) associated with exercise in animals and human: a scoping review. REV NUTR 2022. [DOI: 10.1590/1678-9865202235e210266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ABSTRACT Objective This scoping review aimed to map evidence on açai supplementation combined with exercise in animal and/or human experimental studies. Methods The search considered six electronic databases and screening of relevant references. The selection process and data extraction were performed by two independent authors. The study characteristics, and AS (e.g., form, intervention time, amount ingested) and exercise (e.g., types, intensity, and duration) strategies were summarized, as well as their reported results. Results From an initial total of 342 studies identified; 11 (5 with animal and 6 with human models) were eligible. In animals, açai supplementation and exercise led to benefits in exercise tolerance and improvements in several hemodynamic parameters, as well as significant improvements in liver markers and glucose metabolism. In humans, açai supplementation indicated positive results in increasing exhaustion time to 90% of VO2max and increasing intensity at the anaerobic threshold. Conclusion We conclude that future research involving animals and humans should examine açai supplementation and exercise with (a) obesity models to test the effect of adiponectin on body composition with analysis of histological and histochemical parameters; (b) eccentric injury protocols with the incorporation of muscle quality variables to assess recovery; (c) chronic açai supplementation and strength training; (d) comparison of different forms of açai supplementation in exercise protocols.
Collapse
|
15
|
Badalamenti N, Russi S, Bruno M, Maresca V, Vaglica A, Ilardi V, Zanfardino A, Di Napoli M, Varcamonti M, Cianciullo P, Calice G, Laurino S, Falco G, Basile A. Dihydrophenanthrenes from a Sicilian Accession of Himantoglossum robertianum (Loisel.) P. Delforge Showed Antioxidant, Antimicrobial, and Antiproliferative Activities. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122776. [PMID: 34961247 PMCID: PMC8708532 DOI: 10.3390/plants10122776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 05/02/2023]
Abstract
The peculiar aspect that emerges from the study of Orchidaceae is the presence of various molecules, which are particularly interesting for pharmaceutical chemistry due to their wide range of biological resources. The aim of our study was to investigate the properties of two dihydrophenanthrenes, isolated, for the first time, from Himantoglossum robertianum (Loisel.) P. Delforge (Orchidaceae) bulbs and roots. Chemical and spectroscopic study of the bulbs and roots of Himantoglossumrobertianum (Loisel.) P. Delforge resulted in the isolation of two known dihydrophenanthrenes-loroglossol and hircinol-never isolated from this plant species. The structures were evaluated based on 1H-NMR, 13C-NMR, and two-dimensional spectra, and by comparison with the literature. These two molecules have been tested for their possible antioxidant, antimicrobial, antiproliferative, and proapoptotic activities. In particular, it has been shown that these molecules cause an increase in the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) in polymorphonuclear leukocytes (PMN); show antimicrobial activity against Escherichia coli and Staphylococcus aureus, and have anti-proliferative effects on gastric cancer cell lines, inducing apoptosis effects. Therefore, these two molecules could be considered promising candidates for pharmaceutical and nutraceutical preparations.
Collapse
Affiliation(s)
- Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, 90128 Palermo, Italy; (M.B.); (A.V.); (V.I.)
- Correspondence: (N.B.); (V.M.); (S.L.); Tel.: +39-081-2538508 (V.M.)
| | - Sabino Russi
- IRCCS CROB—Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy; (S.R.); (G.C.)
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, 90128 Palermo, Italy; (M.B.); (A.V.); (V.I.)
- Centro Interdipartimentale di Ricerca “Riutilizzo bio-based degli scarti da matrici agroalimentari” (RIVIVE), Università di Palermo, 90128 Palermo, Italy
| | - Viviana Maresca
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.Z.); (M.D.N.); (M.V.); (P.C.); (G.F.); (A.B.)
- Correspondence: (N.B.); (V.M.); (S.L.); Tel.: +39-081-2538508 (V.M.)
| | - Alessandro Vaglica
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, 90128 Palermo, Italy; (M.B.); (A.V.); (V.I.)
| | - Vincenzo Ilardi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, 90128 Palermo, Italy; (M.B.); (A.V.); (V.I.)
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.Z.); (M.D.N.); (M.V.); (P.C.); (G.F.); (A.B.)
| | - Michela Di Napoli
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.Z.); (M.D.N.); (M.V.); (P.C.); (G.F.); (A.B.)
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.Z.); (M.D.N.); (M.V.); (P.C.); (G.F.); (A.B.)
| | - Piergiorgio Cianciullo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.Z.); (M.D.N.); (M.V.); (P.C.); (G.F.); (A.B.)
| | - Giovanni Calice
- IRCCS CROB—Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy; (S.R.); (G.C.)
| | - Simona Laurino
- IRCCS CROB—Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy; (S.R.); (G.C.)
- Correspondence: (N.B.); (V.M.); (S.L.); Tel.: +39-081-2538508 (V.M.)
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.Z.); (M.D.N.); (M.V.); (P.C.); (G.F.); (A.B.)
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.Z.); (M.D.N.); (M.V.); (P.C.); (G.F.); (A.B.)
| |
Collapse
|
16
|
Brazilian berries prevent colitis induced in obese mice by reducing the clinical signs and intestinal damage. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Assmann CE, Weis GCC, da Rosa JR, Bonadiman BDSR, Alves ADO, Schetinger MRC, Ribeiro EE, Morsch VMM, da Cruz IBM. Amazon-derived nutraceuticals: Promises to mitigate chronic inflammatory states and neuroinflammation. Neurochem Int 2021; 148:105085. [PMID: 34052297 DOI: 10.1016/j.neuint.2021.105085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Nutraceuticals have been the focus of numerous research in recent years and accumulating data support their use for promoting some health benefits. Several nutraceuticals have been widely studied as supplements due to their functional properties ameliorating symptoms associated with neurological disorders, such as oxidative stress and chronic inflammatory states. This seems to be the case of some fruits and seeds from the Amazon Biome consumed since the pre-Columbian period that could have potential beneficial impact on the human nervous system. The beneficial activities of these food sources are possibly related to a large number of bioactive molecules including polyphenols, carotenoids, unsaturated fatty acids, vitamins, and trace elements. In this context, this review compiled the research on six Amazonian fruits and seeds species and some of the major nutraceuticals found in their composition, presenting brief mechanisms related to their protagonist action in improving inflammatory responses and neuroinflammation.
Collapse
Affiliation(s)
- Charles Elias Assmann
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Grazielle Castagna Cezimbra Weis
- Post-Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Jéssica Righi da Rosa
- Post-Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Beatriz da Silva Rosa Bonadiman
- Post-Graduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Audrei de Oliveira Alves
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Maria Rosa Chitolina Schetinger
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | | | - Vera Maria Melchiors Morsch
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Ivana Beatrice Mânica da Cruz
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil; Post-Graduate Program in Gerontology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
18
|
Costa R, Azevedo D, Barata P, Soares R, Guido LF, Carvalho DO. Antiangiogenic and Antioxidant In Vitro Properties of Hydroethanolic Extract from açaí ( Euterpe oleracea) Dietary Powder Supplement. Molecules 2021; 26:molecules26072011. [PMID: 33916166 PMCID: PMC8036632 DOI: 10.3390/molecules26072011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The Euterpe oleracea fruit (açaí) is a promising source of polyphenols with health-promoting properties. To our knowledge, few studies have focused on the influence of açaí phytochemicals on angiogenesis, with a significant impact on cancer. This study aimed at investigating the phytochemical profile of a purple açaí hydroethanolic extract (AHE) obtained from a commercial dietary powder supplement by high-performance liquid chromatography coupled to diode array detection and electrospray ionization mass spectrometry, and evaluate its in vitro effects on distinct angiogenic steps during vessel growth and on oxidative markers in human microvascular endothelial cells (HMEC-1). The phenolic profile of AHE revealed the presence of significant levels of anthocyanins, mainly cyanidin-3-O-rutinoside, and other flavonoids with promising health effects. The in vitro studies demonstrated that AHE exerts antiangiogenic activity with no cytotoxic effect. The AHE was able to decrease HMEC-1 migration and invasion potential, as well as to inhibit the formation of capillary-like structures. Additionally, AHE increased antioxidant defenses by upregulating superoxide dismutase and catalase enzymatic activities, accompanied by a reduction in the production of reactive oxygen species. These data bring new insights into the potential application of angiogenic inhibitors present in AHE on the development of novel therapeutic approaches for angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Raquel Costa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.C.); (P.B.); (R.S.)
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal;
| | - Daniela Azevedo
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal;
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal;
| | - Pedro Barata
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.C.); (P.B.); (R.S.)
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Praça 9 de Abril 349, 4249-004 Porto, Portugal
| | - Raquel Soares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.C.); (P.B.); (R.S.)
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal;
| | - Luís F. Guido
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal;
| | - Daniel O. Carvalho
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal;
- Correspondence: ; Tel.: +351-220-40-26-39
| |
Collapse
|
19
|
Baptista SDL, Copetti CLK, Cardoso AL, Di Pietro PF. Biological activities of açaí (Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart.) intake in humans: an integrative review of clinical trials. Nutr Rev 2021; 79:1375-1391. [PMID: 33555024 DOI: 10.1093/nutrit/nuab002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Açaí (E. oleracea) and juçara (E. edulis) are berries considered a source of bioactive compounds, especially anthocyanins and unsaturated fatty acids, with recognized health-promoting activities. An integrative review was conducted to identify available clinical trials that evaluated the effects of açaí and juçara intake on the human organism. Science Direct and Medline databases were searched. Human studies that evaluated any biological activities after açaí and juçara intake were included in this review. Twenty-three clinical trials were identified up to April 12, 2020. Studies evaluated the biological effects of açaí (n = 17), juçara (n = 5), or both berries simultaneously (n = 1). The results of these trials suggest both types of berries may contribute to improved antioxidant defense and to attenuating metabolic stress and inflammation. However, considerable heterogeneity was observed among trials, and few studies explored the bioactive compounds of the food matrix provided in the interventions. More clinical trials are encouraged to strengthen the current evidence on human biological outcomes, including comparative analysis between these berries.
Collapse
Affiliation(s)
- Sheyla de L Baptista
- S. de L. Baptista, C.L.K. Copetti, A.L. Cardoso, and P.F. Di Pietro are with the Nutrition Post-Graduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Cândice L K Copetti
- S. de L. Baptista, C.L.K. Copetti, A.L. Cardoso, and P.F. Di Pietro are with the Nutrition Post-Graduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Alyne L Cardoso
- S. de L. Baptista, C.L.K. Copetti, A.L. Cardoso, and P.F. Di Pietro are with the Nutrition Post-Graduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Patricia F Di Pietro
- S. de L. Baptista, C.L.K. Copetti, A.L. Cardoso, and P.F. Di Pietro are with the Nutrition Post-Graduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| |
Collapse
|
20
|
Effect of Feijoa Sellowiana Acetonic Extract on Proliferation Inhibition and Apoptosis Induction in Human Gastric Cancer Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gastric cancer (GC) still represents a relevant health problem in the world for both incidence and mortality rates. Many studies underlined that natural products consumption could reduce GC risk, indicating flavonoids as responsible for the beneficial effects through the modulation of several biological processes, such as the inhibition of cancer antioxidant defense and induction of apoptosis. Since Feijoa sellowiana fruit is known to contain high amounts of flavonoids, among which is flavone, we evaluated the antiproliferative and proapoptotic effects of F. sellowiana acetonic extract on GC cell lines through MTS and Annexin-V FITC assays. Among three GC cell lines tested, SNU-1 results being sensitive to both the F. sellowiana acetonic extract and synthetic flavone, which was used as the reference treatment. Moreover, we evaluated their antioxidant effects, assessing the activity of the antioxidant enzymes supeoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in polymorphonuclear cells. We found a significant increase of their activity after exposure to both F. sellowiana acetonic extract and flavone, supporting the idea that a diet that includes flavone-rich fruits could be of benefit for health. In addition to this antioxidant effect on normal cells, this study indicates, for the first time, an anticancer effect of F. sellowiana acetonic extract in GC cells.
Collapse
|
21
|
(+)-(E)-Chrysanthenyl Acetate: A Molecule with Interesting Biological Properties Contained in the Anthemis secundiramea (Asteraceae) Flowers. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Anthemis secundiramea is a perennial herb native widespread throughout the Mediterranean basin. The oil obtained from the flowers of this plant has antimicrobial properties against gram-positive and -negative bacteria, and inhibits the biofilm formation. The extract of A. secundiramea also has antioxidant activity—increasing the activity of different enzymes (SOD, CAT, and GPx). Surprisingly, in the oil extracted from the flowers, there is a single molecule, called (+)-(E)-chrysanthenyl acetate: This makes the A. secundiramea flowers extract extremely interesting for future topical, cosmetic, and nutraceutical applications.
Collapse
|
22
|
de Souza FG, de Araújo FF, de Paulo Farias D, Zanotto AW, Neri-Numa IA, Pastore GM. Brazilian fruits of Arecaceae family: An overview of some representatives with promising food, therapeutic and industrial applications. Food Res Int 2020; 138:109690. [PMID: 33292959 DOI: 10.1016/j.foodres.2020.109690] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/07/2020] [Accepted: 09/06/2020] [Indexed: 02/08/2023]
Abstract
The Arecaceae family is widely distributed and comprises about 2600 species, in which 48 of them are native to Brazil and occurs in transition biomes between the Amazon, Cerrado and Caatinga. In addition to being used as a source of food and subsistence, they are also rich in lipophilic bioactive compounds, mainly carotenoids, polyunsaturated fatty acids, tocopherols and vitamin A. Moreover, they have considerable content of phenolic compounds, fibers and minerals. Therefore, the objective of this review is to present the physical-chemical and nutritional aspects, the main bioactive compounds, the biological properties and the innovative potential of four Brazilian palm-tree fruits of the Arecaceae family. Due to the presence of bioactive compounds, these fruits have the potential to promote health and can be used to prevent chronic non-communicable diseases, such as obesity, type 2 diabetes and others. Furthermore, these raw materials and their by-products can be used in the development of new food, chemical, pharmaceutical and cosmetic products. To ensure better use of these crops, promote their commercial value, benefit family farming and contribute to the country's sustainable development, it is necessary to implement new cultivation, post-harvest and processing techniques. Investing in research to publicize their potential is equally important, mainly of the ones still little explored, such as the buritirana.
Collapse
Affiliation(s)
| | | | - David de Paulo Farias
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| | - Aline Wasem Zanotto
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| | | | - Glaucia Maria Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| |
Collapse
|
23
|
Fatty Acid Composition of the Oil from the Fruit of Three Species of Palm Trees Found in the Amazon: Astrocaryum gynacanthum, Geonoma deversa, and Iriartella setigera. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Cury BJ, Boeing T, Somensi LB, Mariano LNB, de Andrade SF, Breviglieri E, Klein-Junior LC, de Souza P, da Silva LM. Açaí berries (Euterpe oleracea Mart.) dried extract improves ethanol-induced ulcer in rats. J Pharm Pharmacol 2020; 72:1239-1244. [PMID: 32430960 DOI: 10.1111/jphp.13290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Açaí (Euterpe oleracea) is widely consumed in Brazil and known for its numerous health-beneficial properties. This study investigated the gastroprotective potential of the dried açaí berries extract (DAE). METHODS Dried açaí berries extract effect was evaluated against ethanol-induced gastric ulcer in rats. Its ability to regulate antioxidant defenses and reduce inflammatory parameters was evaluated in the ulcerated tissues. The scavenger capability of DAE was assessed by DPPH assay, and phytochemical composition was accessed by UHPLC. KEY FINDINGS The extract showed radical scavenger activity in vitro (IC50 = 210 µg/ml) and gastroprotective effect in vivo, reducing the ulcerated area by 83%, 67% and 48% at doses of 30 and 100 mg/kg (p.o) and 3 mg/kg (i.p), respectively, compared with vehicle group. Besides, DAE (100 mg/kg, p.o) increased the GSH content and GST activity in ulcerated mucosa. Animals treated with DAE showed normalized levels of SOD activity, elevated CAT activity and decreased MPO activity, as well as reduced TNF-α levels, compared with vehicle group. Peonidin-3-glucoside, peonidin-3-rutinoside, cyanidin-3,5-hexoside-pentoside, cyaniding-3-glucoside, pelargonidin-3-glucoside and pelargonidin-3-rutinoside were identified in DAE. CONCLUSIONS Our findings suggest that DAE reduces the inflammation and maintains the oxidative balance of gastric mucosa, therefore being a promising natural resource or useful nutraceutical to protect gastric mucosa.
Collapse
Affiliation(s)
- Benhur Judah Cury
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí - UNIVALI, Itajaí, Santa Catarina, Brazil
| | - Thaise Boeing
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí - UNIVALI, Itajaí, Santa Catarina, Brazil
| | - Lincon Bordignon Somensi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí - UNIVALI, Itajaí, Santa Catarina, Brazil
| | - Luisa Nathália Bolda Mariano
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí - UNIVALI, Itajaí, Santa Catarina, Brazil
| | - Sergio Faloni de Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí - UNIVALI, Itajaí, Santa Catarina, Brazil.,CBIOS, Research Center for Biosciences and Health Technologies, Universidade Lusófona, Lisboa, Portugal
| | - Eduardo Breviglieri
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí - UNIVALI, Itajaí, Santa Catarina, Brazil.,Faculdade de Medicina - Estácio de Jaraguá, Jaraguá do Sul, Santa Catarina, Brazil
| | - Luiz Carlos Klein-Junior
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí - UNIVALI, Itajaí, Santa Catarina, Brazil
| | - Priscila de Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí - UNIVALI, Itajaí, Santa Catarina, Brazil
| | - Luisa Mota da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí - UNIVALI, Itajaí, Santa Catarina, Brazil
| |
Collapse
|
25
|
Magalhães TAFM, Souza MOD, Gomes SV, Mendes E Silva R, Martins FDS, Freitas RND, Amaral JFD. Açaí ( Euterpe oleracea Martius) Promotes Jejunal Tissue Regeneration by Enhancing Antioxidant Response in 5-Fluorouracil-Induced Mucositis. Nutr Cancer 2020; 73:523-533. [PMID: 32367766 DOI: 10.1080/01635581.2020.1759659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Intestinal mucositis (IM) caused by antineoplastic chemotherapy is characterized by an important inflammatory process, which may compromise ongoing treatment. Our study aimed to investigate the effect of Açaí (Euterpe oleracea Martius) on the antioxidant response in BALB/c mice pretreated with Açaí pulp (200 g/kg) for 14 day. A group of animals receiving a single intraperitoneal injection of 5-FU (200 mg/kg) were euthanized on day three (D3) or seven (D7) after administration, the distal jejunum was isolated for the analyses of histology, superoxide dismutase (SOD) and catalase (CAT) enzyme activities, and concentration of total sulfhydryl groups (GSH). Seven days after induction, the intake of Açaí by the IM group almost completely regenerated tissue histology. Notably, SOD activity decreased in the MUC + Açaí group (D3). CAT activity reduced on D3 and D7 in the IM groups and Açaí treatment groups, respectively. No change was observed in the total GSH concentration at the tissue level. Our results demonstrated the protective effect of Açaí pulp components on intestinal damage induced by 5-FU, as well as the ability to control the response to oxidative stress, in order to mobilize defense pathways and promote tissue repair.
Collapse
Affiliation(s)
| | | | - Sttefany Viana Gomes
- Nucleus of Research in Biological Sciences, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Raiana Mendes E Silva
- Nucleus of Research in Biological Sciences, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Flaviano Dos Santos Martins
- Departament of Microbiology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renata Nascimento de Freitas
- School of Nutrition, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.,Nucleus of Research in Biological Sciences, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | |
Collapse
|
26
|
Effects of a hypoenergetic diet associated with açaí (Euterpe oleracea Mart.) pulp consumption on antioxidant status, oxidative stress and inflammatory biomarkers in overweight, dyslipidemic individuals. Clin Nutr 2020; 39:1464-1469. [DOI: 10.1016/j.clnu.2019.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 01/05/2023]
|
27
|
de Liz S, Cardoso AL, Copetti CLK, Hinnig PDF, Vieira FGK, da Silva EL, Schulz M, Fett R, Micke GA, Di Pietro PF. Açaí (Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart.) juices improved HDL-c levels and antioxidant defense of healthy adults in a 4-week randomized cross-over study. Clin Nutr 2020; 39:3629-3636. [PMID: 32349893 DOI: 10.1016/j.clnu.2020.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To evaluate the effects of moderate-term açaí and juçara juice intake on fasting glucose, lipid profile, and oxidative stress biomarkers in healthy subjects. METHODS A randomized cross-over study was performed with 30 healthy adults. The subjects were assigned to drink 200 mL/day of açaí or juçara juice for four weeks with a 4-week washout period. Before and after each nutritional intervention, blood samples were obtained to evaluate the outcomes: fasting glucose, total cholesterol, triglycerides, high-density lipoprotein-cholesterol (HDL-c), low-density lipoprotein-cholesterol (LDL-c), small, dense LDL-c (sd-LDL-c), total antioxidant capacity (TAC), total oxidant status (TOS), oxidative stress index (OSI), uric acid, and activity of the enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). RESULTS After four weeks, açaí and juçara juices increased the concentrations of HDL-c by 7.7% and 11.4%, respectively (P < 0.05). In addition, açaí juice intake promoted significant increases in TAC (66.7%), CAT (275.1%), GPx (15.3%), and a decrease in OSI (55.7%) compared to baseline (P < 0.05 for all). Juçara juice intake significantly increased CAT activity (~15.0%) in relation to baseline. No significant intergroup differences were observed for any outcomes (P > 0.05). CONCLUSION The results indicated a positive impact of regular consumption of açaí and juçara juices on the HDL-c levels, as well as on the antioxidant enzyme activities, which may contribute to cardiovascular health.
Collapse
Affiliation(s)
- Sheyla de Liz
- Nutrition Post-Graduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Alyne Lizane Cardoso
- Nutrition Post-Graduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Cândice Laís Knöner Copetti
- Nutrition Post-Graduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Patrícia de Fragas Hinnig
- Nutrition Post-Graduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | | | - Edson Luiz da Silva
- Nutrition Post-Graduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil; Department of Clinical Analysis, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Gustavo Amadeu Micke
- Department of Chemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Patricia Faria Di Pietro
- Nutrition Post-Graduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil.
| |
Collapse
|
28
|
Jeong SJ, Lee JS, Lee HG. Nanoencapsulation of synergistic antioxidant fruit and vegetable concentrates and their stability during in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1056-1063. [PMID: 31650546 DOI: 10.1002/jsfa.10110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/29/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Natural antioxidants have received increased attention owing to their safe use without side effects; however, their application has been limited because of lower antioxidant activity and stability during digestion when compared with those of synthetic antioxidants. Although research is ongoing to overcome these problems, it is still challenging to find effective solutions. In this study, we aimed to improve the properties and stability of natural antioxidants during in vitro digestion by synergistic combination and nanoencapsulation. RESULTS Ten selected fruit and vegetable concentrates (acai berry, aronia, blackberry, cranberry, wild berry, raspberry, blueberry, red grape, cabbage, and spinach) were evaluated for their antioxidant capacity when combined via the oxygen radical absorbance capacity (ORAC) assay. Among the 45 combinations, the highest synergistic ORAC value was noted for the blueberry and cabbage concentrates (BUCA; 0.8 and 1.2 mg mL-1 ) at an antioxidant ratio of 5:5. Chitosan/carrageenan (CSCR) nanoparticles are physically more stable than chitosan/gum arabic nanoparticles during in vitro digestion and were selected for the oral delivery of BUCA. Under simulated intestinal conditions, BUCA-loaded CSCR nanoparticles showed significantly more stable antioxidant activity and total phenolic content than non-nanoencapsulated BUCA. The highest antioxidant stability was observed in the BUCA-loaded CSCR nanoparticles prepared with 0.2 mg mL-1 carrageenan, which showed two-times higher ORAC value and ten-times higher total phenolic content than non-nanoencapsulated BUCA after 12 h of in vitro digestion. CONCLUSION CSCR nanoencapsulation of natural antioxidants could be an effective technique for improving antioxidant stability during digestion. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Su J Jeong
- Department of Food and Nutrition, Hanyang University, Seoul, Republic of Korea
| | - Ji-Soo Lee
- Department of Food and Nutrition, Hanyang University, Seoul, Republic of Korea
| | - Hyeon G Lee
- Department of Food and Nutrition, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Extraction of Anthocyanins and Total Phenolic Compounds from Açai (Euterpe oleracea Mart.) Using an Experimental Design Methodology. Part 1: Pressurized Liquid Extraction. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Currently, açai is one of the most important fruits present in the world. Several studies have demonstrated its high content in phenolic compounds and anthocyanins. Both of them are responsible of interesting properties of the fruit such as anti-inflammatory, antioxidant or anticancer. In the present study, two optimized pressurized liquid extraction (PLE) methods have been developed for the extraction of anthocyanins and total phenolic compounds from açai. A full factorial design (Box–Behnken design) with six variables (solvent composition (25–75% methanol-in-water), temperature (50–100 °C), pressure (100–200 atm), purge time (30–90 s), pH (2–7) and flushing (50–150%)) were employed. The percentage of methanol in the extraction solvent was proven to be the most significant variable for the extraction of anthocyanins. In the case of total phenolic compounds, the extraction temperature was the most influential variable. The developed methods showed high precision, with relative standard deviations (RSD) of less than 5%. The applicability of the methods was successfully evaluated in real samples. In conclusion, two rapid and reliable PLE extraction methods to be used for laboratories and industries to determine anthocyanins and total phenolic compounds in açai and its derived products were developed in this work.
Collapse
|
30
|
Guo Y, Zhang P, Liu Y, Zha L, Ling W, Guo H. A dose-response evaluation of purified anthocyanins on inflammatory and oxidative biomarkers and metabolic risk factors in healthy young adults: A randomized controlled trial. Nutrition 2020; 74:110745. [PMID: 32278858 DOI: 10.1016/j.nut.2020.110745] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/28/2019] [Accepted: 12/01/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Anthocyanins derived from different plant sources have been found to possess a variety of health-promoting effects, including antiinflammatory properties and protection from oxidative stress. The aim of this study was to investigate the dose-response relationship between anthocyanins and metabolic risk factors as well as inflammatory and oxidative biomarkers in healthy adult volunteers. METHODS We conducted a randomized, double-blind, placebo-controlled trial, which included an increasing dosing schedule of 20, 40, 80, 160, and 320 mg of purified anthocyanins or placebo. Participants (n = 111) were administered either agent for 14 consecutive days. RESULTS No significant differences in either baseline characteristics or daily intake of dietary nutrients were detected between the experimental and control groups. After anthocyanin supplementation, there was a significant difference in adjusted fasting plasma glucose levels. The group receiving 80 mg/d of anthocyanin had the lowest baseline-adjusted fasting plasma glucose when compared with placebo (F = 3.556, P = 0.007). Logarithmically adjusted plasma interleukin-10 levels were negatively correlated with increasing anthocyanin dose (F = 2.738, P = 0.025). Similarly, 8-iso-prostaglandin F2α levels decreased with increasing anthocyanins dose (F = 3.513, P = 0.009). CONCLUSIONS Taken together, our results suggest that anthocyanin supplementation at a dose greater than 80 mg/d is an effective antioxidant and antiinflammatory agent in healthy young adults.
Collapse
Affiliation(s)
- Yi Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Peiwen Zhang
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yongji Liu
- Department of Nutrition, Henry Fok School of Food Science and Engineering, Shaoguan University, Shaoguan, China
| | - Longying Zha
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, China; Department of Nutrition, Henry Fok School of Food Science and Engineering, Shaoguan University, Shaoguan, China.
| |
Collapse
|
31
|
Barbosa PO, de Souza MO, Pala D, Freitas RN. Açaí (Euterpe oleracea Martius) as an antioxidant. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
A prospective study in women: açaí (Euterpe oleracea Martius) dietary intake affects serum p-selectin, leptin, and visfatin levels. NUTR HOSP 2020; 38:121-127. [PMID: 33319583 DOI: 10.20960/nh.03342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Background: açaí is the fruit of the palm tree Euterpe oleracea Martius, which is native to the Amazon region. This fruit has been extensively studied due to its potential effects on human health. Studies have also evaluated the potential effect of açaí on the inflammatory response, but there are still few studies that have assessed this property in humans. Objective: in this study we aimed to evaluate the effects of 200 g of açaí pulp consumption per day during four weeks on a rich panel of inflammatory biomarkers. Methods: a prospective nutritional intervention study was conducted on forty apparently healthy women who consumed 200 g of açaí pulp per day for four weeks. A panel of serum inflammatory markers were evaluated before and after the nutritional intervention, namely, cell adhesion molecules (ICAM-1, IVAM-1, P-selectin, MCP-1, and fractalkine), interleukins (IL-1β, IL-6, IL-8, IL-10, and IL-17) and adipokines (adiponectin, leptin, visfatin, and adipsin). The data were analyzed using paired Student's t-test to evaluate the effect of the intervention using PASW Statistics, version 17.0, and a p-value of < 0.05 was considered significant. Results: four weeks of açaí pulp consumption decreased p-selectin, leptin, and visfatin concentrations in the serum of the participating women. Conclusion: these results show that consumption of açaí pulp was able to modulate important biomarkers of the inflammatory process in apparently healthy women.
Collapse
|
33
|
Terrazas SIBM, Galan BSM, De Carvalho FG, Venancio VP, Antunes LMG, Papoti M, Toro MJU, da Costa IF, de Freitas EC. Açai pulp supplementation as a nutritional strategy to prevent oxidative damage, improve oxidative status, and modulate blood lactate of male cyclists. Eur J Nutr 2019; 59:2985-2995. [DOI: 10.1007/s00394-019-02138-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/04/2019] [Indexed: 01/10/2023]
|
34
|
Türck P, Fraga S, Salvador I, Campos-Carraro C, Lacerda D, Bahr A, Ortiz V, Hickmann A, Koetz M, Belló-Klein A, Henriques A, Agostini F, da Rosa Araujo AS. Blueberry extract decreases oxidative stress and improves functional parameters in lungs from rats with pulmonary arterial hypertension. Nutrition 2019; 70:110579. [PMID: 31743815 DOI: 10.1016/j.nut.2019.110579] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Pulmonary arterial hypertension (PAH) is a condition characterized by an increased resistance of pulmonary vasculature, culminating in an increase in pulmonary pressure. This process involves disturbances in lung redox homeostasis, causing progressive right heart failure. In this context, the use of natural antioxidants, such as those found in blueberries, may represent a therapeutic approach. The aim of this study was to evaluate the effect of blueberry extract (BB) on functional parameters and oxidative stress levels in rat lungs with induced PAH. METHODS Forty-eight male Wistar rats (weighing 200 ± 20 g) were randomized into five groups: control, monocrotaline, monocrotaline + BB 50, monocrotaline + BB 100, and monocrotaline + BB 200. PAH was induced by the administration of monocrotaline (60 mg/kg, intraperitoneal). Rats were treated with BB at doses of 50, 100, and 200 mg/kg via gavage for 5 wk (2 wk before monocrotaline and 3 wk after monocrotaline injection). At day 35, rats were submitted to echocardiography and catheterization. They were then sacrificed and lungs were harvested for biochemical analyses. RESULTS BB increased the E/A ratio of blood flow across the tricuspid valve and tricuspid annular phase systolic excursion, as wells as decreased the mean pulmonary artery pressure of animals compared with the PAH group. Moreover, BB decreased total reactive species concentration and lipid oxidation, reduced activity of nicotinamide adenine dinucleotide phosphate oxidase and expression of xanthine oxidase, increased the activity of superoxide dismutase and restored sulfhydryl content in the animal lungs compared with those in the PAH group. Additionally, BB restored expression of the antioxidant transcriptional factor Nrf2 in the lungs of the animal subjects. Finally, BB normalized the endothelin receptor (ETA/ETB) expression ratio in the animal lungs, which were increased in the PAH group. CONCLUSION Intervention with BB mitigated functional PAH outcomes through improvement of the pulmonary redox state. Our results provide a basis for future research on natural antioxidant interventions as a novel treatment strategy in PAH.
Collapse
Affiliation(s)
- Patrick Türck
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil.
| | - Schauana Fraga
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Isadora Salvador
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Cristina Campos-Carraro
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Denise Lacerda
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Alan Bahr
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Vanessa Ortiz
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Alexandre Hickmann
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Mariana Koetz
- Postgraduate Program in Pharmaceutical Sciences, Pharmacy College, Federal University of Rio Grande do Sul, Brazil
| | - Adriane Belló-Klein
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| | - Amélia Henriques
- Postgraduate Program in Pharmaceutical Sciences, Pharmacy College, Federal University of Rio Grande do Sul, Brazil
| | - Fabiana Agostini
- Postgraduate Program at Biosciences and Rehabilitation, Centro Universitário Metodista-IPA, Porto Alegre, Brazil
| | - Alex Sander da Rosa Araujo
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil; Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Brazil
| |
Collapse
|
35
|
de Freitas Carvalho MM, Lage NN, de Souza Paulino AH, Pereira RR, de Almeida LT, da Silva TF, de Brito Magalhães CL, de Lima WG, Silva ME, Pedrosa ML, da Costa Guerra JF. Effects of açai on oxidative stress, ER stress, and inflammation-related parameters in mice with high fat diet-fed induced NAFLD. Sci Rep 2019; 9:8107. [PMID: 31147590 PMCID: PMC6542795 DOI: 10.1038/s41598-019-44563-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most predominant liver disease worldwide, is a progressive condition that encompasses a spectrum of disorders ranging from steatosis to steatohepatitis, and, ultimately, cirrhosis and hepatocellular carcinoma. Although the underlying mechanism is complex and multifactorial, several intracellular events leading to its progression have been identified, including oxidative stress, inflammation, mitochondrial dysfunction, apoptosis, and altered endoplasmic reticulum (ER) homeostasis. Phenolic compounds, such as those present in açai (Euterpe oleracea Mart.), are considered promising therapeutic agents due to their possible beneficial effects on the prevention and treatment of NAFLD. We tested in vitro effects of aqueous açai extract (AAE) in HepG2 cells and its influence on oxidative stress, endoplasmic reticulum stress, and inflammation in a murine model of high fat diet-induced NAFLD. In vitro AAE exhibited high antioxidant capacity, high potential to inhibit reactive oxygen species production, and no cytotoxicity. In vivo, AAE administration (3 g/kg) for six weeks attenuated liver damage (alanine aminotransferase levels), inflammatory process (number of inflammatory cells and serum TNFα), and oxidative stress, through the reduction of lipid peroxidation and carbonylation of proteins determined by OxyBlot and modulation of the antioxidant enzymes: glutathione reductase, SOD and catalase. No change was observed in collagen content indicating an absence of fibrosis, stress-related genes in RE, and protein expression of caspase-3, a marker of apoptosis. With these results, we provide evidence that açai exhibits hepatoprotective effects and may prevent the progression of liver damage related to NAFLD by targeting pathways involved in its progression.
Collapse
Affiliation(s)
- Mayara Medeiros de Freitas Carvalho
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Nara Nunes Lage
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Alice Helena de Souza Paulino
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Renata Rebeca Pereira
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Letícia Trindade de Almeida
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Tales Fernando da Silva
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Cíntia Lopes de Brito Magalhães
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Wanderson Geraldo de Lima
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Marcelo Eustáquio Silva
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Department of Foods, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Maria Lucia Pedrosa
- Research Center in Biological Sciences; Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | |
Collapse
|
36
|
Supercritical CO2 extraction of lyophilized Açaí (Euterpe oleracea Mart.) pulp oil from three municipalities in the state of Pará, Brazil. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Antioxidant Properties of Amazonian Fruits: A Mini Review of In Vivo and In Vitro Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8204129. [PMID: 30911350 PMCID: PMC6398032 DOI: 10.1155/2019/8204129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/27/2018] [Accepted: 12/06/2018] [Indexed: 12/02/2022]
Abstract
Brazil, Colombia, Ecuador, Peru, Bolivia, Venezuela, Suriname, Guyana, and French Guiana share an area of 7,295,710 km2 of the Amazon region. It is estimated that the Amazonian forest offers the greatest flora and fauna biodiversity on the planet and on its surface could cohabit 50% of the total existing living species; according to some botanists, it would contain about 16-20% of the species that exist today. This region has native fruit trees in which functional properties are reported as antioxidant and antiproliferative characteristics. Amazon plants offer a great therapeutic potential attributed to the content of bioactive phytochemicals. The aim of this mini review is to examine the state of the art of the main bioactive components of the most studied Amazonian plants. Among the main functional compounds reported were phenolic compounds, unsaturated fatty acids, carotenoids, phytosterols, and tocopherols, with flavonoids and carotenoids being the groups of greatest interest. The main beneficial effect reported has been the antioxidant effect, evaluated in most of the fruits investigated; other reported functional properties were antimicrobial, antimutagenic, antigenotoxic, analgesic, immunomodulatory, anticancer, bronchodilator, antiproliferative, and anti-inflammatory, including hypercholesterolemic effects, leishmanicidal activity, induction of apoptosis, protective action against diabetes, gastroprotective activity, and antidepressant effects.
Collapse
|
38
|
de Oliveira NKS, Almeida MRS, Pontes FMM, Barcelos MP, de Paula da Silva CHT, Rosa JMC, Cruz RAS, da Silva Hage-Melim LI. Antioxidant Effect of Flavonoids Present in Euterpe oleracea Martius and Neurodegenerative Diseases: A Literature Review. Cent Nerv Syst Agents Med Chem 2019; 19:75-99. [PMID: 31057125 DOI: 10.2174/1871524919666190502105855] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Neurodegenerative diseases (NDDs) are progressive, directly affecting the central nervous system (CNS), the most common and recurrent are Alzheimer's disease (AD) and Parkinson's disease (PD). One factor frequently mentioned in the etiology of NDDs is the generation of free radicals and oxidative stress, producing cellular damages. Studies have shown that the consumption of foods rich in polyphenols, especially those of the flavonoid class, has been related to the low risk in the development of several diseases. Due to the antioxidant properties present in the food, a fruit that has been gaining prominence among these foods is the Euterpe oleracea Mart. (açaí), because it presents in its composition significant amounts of a subclass of the flavonoids, the anthocyanins. METHODS In the case review, the authors receive a basic background on the most common NDDs, oxidative stress and antioxidants. In addition, revisiting the various studies related to NDDs, including flavonoids and consumption of açaí. RESULTS Detailed analysis of the recently reported case studies reveal that dietary consumption of flavonoid-rich foods, such as açaí fruits, suggests the efficacy to attenuate neurodegeneration and prevent or reverse the age-dependent deterioration of cognitive function. CONCLUSION This systematic review points out that flavonoids presenting in açaí have the potential for the treatment of diseases such as PD and AD and are candidates for drugs in future clinical research. However, there is a need for in vitro and in vivo studies with polyphenol that prove and ratify the therapeutic potential of this fruit for several NDDs.
Collapse
Affiliation(s)
| | - Marcos Rafael Silva Almeida
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapa, Macapa, Brazil
| | - Franco Márcio Maciel Pontes
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapa, Macapa, Brazil
| | - Mariana Pegrucci Barcelos
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlos Henrique Tomich de Paula da Silva
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Joaquín María Campos Rosa
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain, Instituto de Investigación, Biosanitaria ibs, Granada, Universidad de Granada, Granada, Spain
| | | | | |
Collapse
|
39
|
Santos NLD, Silva KBD, Oliveira ERLD, Goulart HF, Santana AEG, Guzzo EC. Sexual dimorphism in Ozopherus muricatus Pascoe, 1872 (Coleoptera: Curculionidae). ARQUIVOS DO INSTITUTO BIOLÓGICO 2018. [DOI: 10.1590/1808-1657000432017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT: The weevil Ozopherus muricatus Pascoe, 1872 (Coleoptera: Curculionidae) is already considered a pest in Brazil for açaí palm (Euterpe oleracea Mart.) plantations. Its presence has become more frequent and caused significant reduction in the production of açaí fruit. Studies on the biology of this insect pest are still scarce, hindering its management. For studies on pheromones, for instance, it is essential to correctly identify the sex of the insect. The objective of this study was to evaluate the existence of sexual dimorphism in pupae and adults of O. muricatus in order to allow the identification of males and females. Larvae, pupae and adults were collected from açaí plantations and kept in biochemical oxygen demand (BOD) type incubation chambers. Adults and pupae were examined under a stereomicroscope, and dimorphism was determined through observation of external morphological characteristics. In addition, adults were dissected in order to observe genitalia and confirm the sex of specimens. In the pupae, sexual dimorphism was characterized by the presence of two protuberances in the terminal ventral region of the abdomen of females, which were absent in males. In adults, sexual dimorphism was also observed, based on the final abdominal segments. In males, it was possible to see all eight abdominal tergites, while in females tergite VIII is covered by tergite VII. Thus, the sexual dimorphism present in the morphological characteristics of O. muricatus allows the distinction between males and females of this species.
Collapse
Affiliation(s)
| | | | | | | | | | - Elio Cesar Guzzo
- Universidade Federal de Alagoas, Brazil; Embrapa Tabuleiros Costeiros, Brazil
| |
Collapse
|
40
|
Agostini-Costa TDS. Bioactive compounds and health benefits of some palm species traditionally used in Africa and the Americas - A review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:202-229. [PMID: 29842962 DOI: 10.1016/j.jep.2018.05.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to previous ethno-medicinal reviews, Cocos nucifera, Elaeis guineensis and Phoenix dactylifera are among the main palms which are often used on the American and African continents to treat infections, infestations and disorders in the digestive, respiratory, genito-urinary, dermal, endocrine, cardiovascular, muscular-skeletal, mental and neural systems, as well as neoplasms, dental issues and metabolic and nutritional disorders. In addition, one or more species of the wild genera Acrocomia, Areca, Astrocaryum, Attalea, Bactris, Borassus, Calamus, Chamaedorea, Chamaerops, Euterpe, Hyphaene, Mauritia, Oenocarpus and Syagrus have a high number of records of these ethno-medicinal uses. The most used parts of the palm tree are the fruits, followed by roots, seeds, leaves and flower sap. AIM OF THE STUDY This review discusses the phytochemical composition and the pharmacological properties of these important ethno-medicinal palms, aiming to provide a contribution to future research prospects. MATERIALS AND METHODS Significant information was compiled from an electronic search in widely used international scientific databases (Google Scholar, Science Direct, SciFinder, Web of Science, PubMed, Wiley on line Library, Scielo, ACS Publications), and additional information was obtained from dissertations, theses, books and other relevant websites. RESULTS Palms, in general, are rich in oils, terpenoids and phenolic compounds. Fruits of many species are notable for their high content of healthy oils and fat-soluble bioactive compounds, mainly terpenoids, such as pigment carotenoids (and provitamin A), phytosterols, triterpene pentacyclics and tocols (and vitamin E), while other species stood out for their phenolic compounds derived from benzoic and cinnamic acids, along with flavan-3-ol, flavone, flavonol, and stilbene compounds or anthocyanin pigments. In addition to fruits, other parts of the plant such as seeds, leaves, palm heart, flowers and roots are also sources of many bioactive compounds. These compounds are linked to the ethno-medicinal use of many palms that improve human health against infections, infestations and disorders of human systems. CONCLUSIONS Palms have provided bioactive samples that validate their effectiveness in traditional medicine. However, the intensive study of all palm species related to ethno-medicinal use is needed, along with selection of the most appropriate palm accessions, ripe stage of the fruit and /or part of the plant. Furthermore, the complete profiles of all phytochemicals, their effects on animal models and human subjects, and toxicological and clinical trials are suggested, which, added to the incorporation of improved technological processes, should represent a significant advance for the implementation of new opportunities with wide benefits for human health.
Collapse
|
41
|
Alessandra-Perini J, Rodrigues-Baptista KC, Machado DE, Nasciutti LE, Perini JA. Anticancer potential, molecular mechanisms and toxicity of Euterpe oleracea extract (açaí): A systematic review. PLoS One 2018; 13:e0200101. [PMID: 29966007 PMCID: PMC6028114 DOI: 10.1371/journal.pone.0200101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
Cancer is an increasingly frequent malignancy worldwide, and despite the advances in drug development, it is still necessary to develop new plant-derived medicines. Euterpe oleracea (açaí) is abundant in South and Central America and has health benefits due to its high levels of phytochemicals, including lignans and polyphenols. The aim of this review was to systematically describe the safety and antitumor effects of açaí in preclinical models using rodents to provide a more comprehensive assessment of açaí for both therapeutic uses and the development of future clinical studies in cancer. Eligible studies were identified using four international databases (PubMed, Medline, Lilacs and SciELO) from their inception date through December 2017. The included studies were analyzed with methodological rigor (QATRS) to enable better quality control for these experimental studies. Sixty publications were identified in the databases, but only 9 articles were eligible: 6 evaluated the pharmacological effects of açaí in animal models of cancer (1 model each of esophageal cancer, urothelial cancer, melanoma and Walker-256 tumor and 2 models of colon cancer), and 3 were toxicological assays using preclinical models with rodents. Overall, 747 animals were analyzed. On a QATRS score scale of 0-20, the quality of the studies ranged from 16 to 20 points. Pulp was the main fraction of açaí administered, and an oral administration route was most common. The açaí dosage administered by gavage ranged from 30 mg/kg to 40,000 mg/kg, and açaí fed in the diet accounted for 2.5% to 5% of the diet. The anticarcinogenic and chemopreventive activities of açaí were observed in all experimental models of cancer and reduced the incidence, tumor cell proliferation, multiplicity and size of the tumors due to the antiinflammatory, antiproliferative and proapoptotic properties of açaí. No genotoxic effects were observed after açaí administration. The results of this review suggest that açaí is safe and can be used as a chemoprotective agent against cancer development. Açaí therapy may be a novel strategy for treating cancer.
Collapse
Affiliation(s)
- Jéssica Alessandra-Perini
- Morphological Science Program—PCM, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Research Laboratory of Pharmaceutical Sciences—LAPESF, West Zone State University, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - Karina Cristina Rodrigues-Baptista
- Research Laboratory of Pharmaceutical Sciences—LAPESF, West Zone State University, Rio de Janeiro, Rio de Janeiro, Brazil
- Program of Post-graduation in Public Health and Environment—ENSP, National School of Public Health, Oswald Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Escorsim Machado
- Morphological Science Program—PCM, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Research Laboratory of Pharmaceutical Sciences—LAPESF, West Zone State University, Rio de Janeiro, Rio de Janeiro, Brazil
- University Center IBMR, Laureate Universities, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eurico Nasciutti
- Morphological Science Program—PCM, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jamila Alessandra Perini
- Research Laboratory of Pharmaceutical Sciences—LAPESF, West Zone State University, Rio de Janeiro, Rio de Janeiro, Brazil
- Program of Post-graduation in Public Health and Environment—ENSP, National School of Public Health, Oswald Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
- Research Division, National Institute of Traumatology and Orthopedics—INTO, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Martins ICVS, Borges NA, Stenvinkel P, Lindholm B, Rogez H, Pinheiro MCN, Nascimento JLM, Mafra D. The value of the Brazilian açai fruit as a therapeutic nutritional strategy for chronic kidney disease patients. Int Urol Nephrol 2018; 50:2207-2220. [PMID: 29915880 DOI: 10.1007/s11255-018-1912-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
Abstract
Açai (Euterpe oleracea Mart.) fruit from the Amazon region in Brazil contains bioactive compounds such as α-tocopherol, anthocyanins (cyanidin 3-glycoside and cyanidin 3-rutinoside), and other flavonoids with antioxidant and anti-inflammatory properties. Moreover, the prebiotic activity of anthocyanins in modulating the composition of gut microbiota has emerged as an additional mechanism by which anthocyanins exert health-promoting effects. Açai consumption may be a nutritional therapeutic strategy for chronic kidney disease (CKD) patients since these patients present with oxidative stress, inflammation, and dysbiosis. However, the ability of açai to modulate these conditions has not been studied in CKD, and this review presents recent information about açai and its possible therapeutic effects in CKD.
Collapse
Affiliation(s)
- Isabelle C V S Martins
- Neuroscience and Cell Biology Graduate Program, Federal University Pará (UFPA), Av. Generalíssimo Deodoro, 92 - Umarizal, Belém, PA, 66055-240, Brazil.
| | - Natália A Borges
- Cardiovascular Science Graduate Program, Federal University Fluminense (UFF), Niterói, Brazil
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine, Department of Clinical Science Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Hervé Rogez
- Centre for Agro-food Valorisation of Amazonian Bioactive Compound, UFPA, Belém, Brazil
| | | | - José L M Nascimento
- Neuroscience and Cell Biology Graduate Program, Federal University Pará (UFPA), Av. Generalíssimo Deodoro, 92 - Umarizal, Belém, PA, 66055-240, Brazil
- Neuroscience Research, Ceuma University, São Luis, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation, Rio de Janeiro, RJ, Brazil
| | - Denise Mafra
- Cardiovascular Science Graduate Program, Federal University Fluminense (UFF), Niterói, Brazil
- Medical Science Graduate Program, UFF, Niterói, Brazil
| |
Collapse
|
43
|
Pala D, Barbosa PO, Silva CT, de Souza MO, Freitas FR, Volp ACP, Maranhão RC, Freitas RND. Açai ( Euterpe oleracea Mart.) dietary intake affects plasma lipids, apolipoproteins, cholesteryl ester transfer to high-density lipoprotein and redox metabolism: A prospective study in women. Clin Nutr 2018; 37:618-623. [DOI: 10.1016/j.clnu.2017.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 07/14/2016] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
|
44
|
Chang SK, Alasalvar C, Shahidi F. Superfruits: Phytochemicals, antioxidant efficacies, and health effects - A comprehensive review. Crit Rev Food Sci Nutr 2018; 59:1580-1604. [PMID: 29360387 DOI: 10.1080/10408398.2017.1422111] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The term "superfruit" has gained increasing usage and attention recently with the marketing strategy to promote the extraordinary health benefits of some exotic fruits, which may not have worldwide popularity. This has led to many studies with the identification and quantification of various groups of phytochemicals. This contribution discusses phytochemical compositions, antioxidant efficacies, and potential health benefits of the main superfruits such as açai, acerola, camu-camu, goji berry, jaboticaba, jambolão, maqui, noni, and pitanga. Novel product formulations, safety aspects, and future perspectives of these superfruits have also been covered. Research findings from the existing literature published within the last 10 years have been compiled and summarized. These superfruits having numerous phytochemicals (phenolic acids, flavonoids, proanthocyanidins, iridoids, coumarins, hydrolysable tannins, carotenoids, and anthocyanins) together with their corresponding antioxidant activities, have increasingly been utilized. Hence, these superfruits can be considered as a valuable source of functional foods due to the phytochemical compositions and their corresponding antioxidant activities. The phytochemicals from superfruits are bioaccessible and bioavailable in humans with promising health benefits. More well-designed human explorative studies are needed to validate the health benefits of these superfruits.
Collapse
Affiliation(s)
- Sui Kiat Chang
- a Department of Nutrition and Dietetics , School of Health Sciences, International Medical University , Kuala Lumpur , Malaysia
| | | | - Fereidoon Shahidi
- c Department of Biochemistry , Memorial University of Newfoundland , St. John's , NL , Canada
| |
Collapse
|
45
|
Neri-Numa IA, Soriano Sancho RA, Pereira APA, Pastore GM. Small Brazilian wild fruits: Nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Res Int 2018; 103:345-360. [DOI: 10.1016/j.foodres.2017.10.053] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/19/2017] [Accepted: 10/28/2017] [Indexed: 01/19/2023]
|
46
|
Bioaccessibility and antioxidant activity of phenolic compounds in frozen pulps of Brazilian exotic fruits exposed to simulated gastrointestinal conditions. Food Res Int 2017; 100:650-657. [DOI: 10.1016/j.foodres.2017.07.047] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/23/2022]
|
47
|
Malvidin and cyanidin derivatives from açai fruit ( Euterpe oleracea Mart. ) counteract UV-A-induced oxidative stress in immortalized fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:42-51. [DOI: 10.1016/j.jphotobiol.2017.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 11/19/2022]
|
48
|
Açai (Euterpe oleracea Mart.) Upregulates Paraoxonase 1 Gene Expression and Activity with Concomitant Reduction of Hepatic Steatosis in High-Fat Diet-Fed Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8379105. [PMID: 27642496 PMCID: PMC5014968 DOI: 10.1155/2016/8379105] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/15/2016] [Accepted: 07/11/2016] [Indexed: 12/20/2022]
Abstract
Açai (Euterpe oleracea Mart.), a fruit from the Amazon region, has emerged as a promising source of polyphenols. Açai consumption has been increasing owing to ascribed health benefits and antioxidant properties; however, its effects on hepatic injury are limited. In this study, we evaluated the antioxidant effect of filtered açai pulp on the expression of paraoxonase (PON) isoforms and PON1 activity in rats with nonalcoholic fatty liver disease (NAFLD). The rats were fed a standard AIN-93M (control) diet or a high-fat (HF) diet containing 25% soy oil and 1% cholesterol with or without açai pulp (2 g/day) for 6 weeks. Our results show that açai pulp prevented low-density lipoprotein (LDL) oxidation, increased serum and hepatic PON1 activity, and upregulated the expression of PON1 and ApoA-I in the liver. In HF diet-fed rats, treatment with açai pulp attenuated liver damage, reducing fat infiltration and triglyceride (TG) content. In rats receiving açai, increased serum PON1 activity was correlated with a reduction in hepatic steatosis and hepatic injury. These findings suggest the use of açai as a potential therapy for liver injuries, supporting the idea that dietary antioxidants are a promising approach to enhance the defensive systems against oxidative stress.
Collapse
|