1
|
Yin X, Sui Y, Chu Z, Han S, Ge X, Liu T, Zeng F, Chen L, Shao R, Xu W. Regulation of intestinal flora by Suaeda salsa extract ameliorates hyperglycemia in a mouse model of type 2 diabetes mellitus. Front Nutr 2024; 11:1499196. [PMID: 39737156 PMCID: PMC11682902 DOI: 10.3389/fnut.2024.1499196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) often leads to elevated blood glucose levels and lipid metabolism disorder, which is generally accompanied by dysbiosis of gut microbiota and metabolic dysfunction. Methods In this study, a mouse model of T2DM was established by feeding a high-fat/sucrose diet combined with injecting a low dose of streptozotocin. The aim of this study was to analyze the regulatory effect of Suaeda salsa extract (SSE) on T2DM and its effect on the intestinal flora of mice. Results The results showed that SSE could significantly improve the body weight, fasting blood glucose (FBG), area under the curve (AUC) of the oral glucose tolerance test (OGTT), glycosylated serum protein (GSP) and islet function index. Moreover, 4-week body weight, FBG, AUC of OGTT, GSP, as well as intestinal acetic and butyric acid were significantly better in the SSE-L than in the MET group (p < 0.05). In addition, it was also found that the potential hypoglycemic mechanism of SSE was related to the expression of Akt serine/threonine kinase (AKT-1) and glucose transporter-2 (GLUT-2) genes. Compared with the model group, SSE intervention significantly increased the abundance of probiotics, such as Soleaferrea, Alloprevotella, Lactobacillus and Faecalibaculum, while decreasing the relative abundance of harmful bacteria, such as Phocaeicola and Bilophila. Analysis of the correlation among intestinal microbiota, short chain fatty acids (SCFAs) and the hypoglycemic index showed that Dwaynesavagella was significantly correlated with acetic, propionic and butyric acid, as well as all the diabetes-related indexes analyzed in this study. Discussion Thus, this taxon can potentially be used as a microbiological marker of type 2 diabetes. Taken together, these findings demonstrate that SSE can alleviate T2DM and its complications by improving glycemia-related indicators and modulating the structure of intestinal flora.
Collapse
Affiliation(s)
- Xuemei Yin
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Yinzi Sui
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Zhengyan Chu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Suqing Han
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Xiaodong Ge
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Tingting Liu
- Clinical Pharmacy Department, Yancheng Second People’s Hospital, Yancheng, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ligen Chen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Rong Shao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Wei Xu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| |
Collapse
|
2
|
Park EJ, Kim JY, Jaiswal V, Park HS, Ki DB, Lee YS, Lee HJ. High-molecular-weight Fucoidan exerts an immune-enhancing effect in RAW 264.7 cells and cyclophosphamide-induced immunosuppression rat by altering the gut microbiome. Int Immunopharmacol 2024; 139:112677. [PMID: 39024753 DOI: 10.1016/j.intimp.2024.112677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
High-molecular-weight fucoidan (Fucoidan P), sourced from Undaria pinnatifida exhibits several health benefits, including immunomodulation. However, the mechanisms underlying the immune-enhancing effects of Fucoidan P remain unclear. Here, we investigated the immune-enhancing effects and the potential mechanisms of Fucoidan P using RAW 264.7 macrophages and cyclophosphamide (CP)-induced immunosuppression rat model. In macrophages, Fucoidan P showed dose-dependent stimulation by increasing cell proliferation, nitric oxide production, and gene expression of inducible nitric oxide synthase, cyclooxygenase-2, and proinflammatory cytokines. These effects are mediated through the activation of the nuclear factor-kappa B (NF-κB) signaling pathway. Moreover, orally administered Fucoidan P was evaluated in immunosuppressed rats treated with CP. Fucoidan P administration increased hematological values and natural killer cell activity, and positively affected nitrite and prostaglandin E2 levels. The Fucoidan P treatment groups exhibited improved serum cytokine levels as well as splenic and intestinal cytokine mRNA expression compared to the model group. Fucoidan P also mitigated splenic damage and increased the phosphorylation of NF-κB and NF-κB inhibitor alpha (IκBα). Furthermore, Fucoidan P treatment altered the gut microbiota composition, enhancing the alpha diversity, evenness, and abundance of Bacteroidetes, which are associated with immune function. Taken together, our findings suggest that Fucoidan P exerts beneficial effects on immune function by activating NF-κB and modulating gut microbiota. These findings suggested its potential as a therapeutic agent for immune enhancement.
Collapse
Affiliation(s)
- Eun-Jung Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea
| | - Jong-Yeon Kim
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea
| | - Varun Jaiswal
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea
| | - Hae-Sun Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea
| | - Dan-Bi Ki
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea
| | - You-Suk Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea; Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea.
| |
Collapse
|
3
|
Kim CG, Choi JH, Ku SK, Song CH. Immunostimulatory Effects of Korean Mineral-Rich Seawaters on Cyclophosphamide-Induced Immunosuppression in Mice. Mar Drugs 2024; 22:234. [PMID: 38921545 PMCID: PMC11204486 DOI: 10.3390/md22060234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Deep seawater (DS), obtained from a depth over 200 m, has health benefits due to its rich nutrients and minerals, and intake of DS has shown diverse immunomodulatory effects in allergies and cancer. Therefore, the immunostimulatory effects of Korean mineral-rich seawaters were examined in a cyclophosphamide (CPA)-induced immunosuppression model. Three samples of Korean seawater, namely DS from the East Sea off the coasts of Pohang (PDS) and Uljin (UDS), and seawater from the West Sea off the coast of Boryeong (BS), were collected. The seawaters were abundant in several minerals (calcium, iron, zinc, selenium, etc.). Mice were orally administered the seawaters for 42 days, followed by CPA-induced immunosuppression. The CPA induction reduced the weight of the spleen and lymph nodes; however, the administration of seawaters increased the weight of the lymphoid organs, accompanied by stimulation of natural killer cells' activity and NF-kB-mediated cytokine production (IFNγ, TNFα, IL1β, IL6, and IL12). The mouse-derived splenocytes showed lymphoproliferation without cytotoxicity in the seawater groups. Histopathological analysis revealed that the seawaters improved the CPA-induced atrophic changes by promoting lymphoproliferation in the spleen and lymph nodes. These results provide useful information for the use of Korean mineral-rich seawaters, particularly PDS and UDS, as alternative immunostimulants under immunosuppressive conditions.
Collapse
Affiliation(s)
- Choong-Gon Kim
- Marine Ecosystem Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; (C.-G.K.); (J.H.C.)
| | - Jae Ho Choi
- Marine Ecosystem Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; (C.-G.K.); (J.H.C.)
- Ocean Science and Technology School, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Chang-Hyun Song
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| |
Collapse
|
4
|
Jung J, Kim JS, Jeong UY, Bae UJ, Kim M, Park SY, Hwang IG, Heo JW, Shim CK, Ham JS, Lee SH. The Immune-Stimulating and Anti-Diabetic Effects of Allium hookeri Leaves Grown in a Plant Factory with Artificial Lights in Immunosuppressed Obese C57BL/6 Mice. Pharmaceuticals (Basel) 2024; 17:91. [PMID: 38256924 PMCID: PMC10818880 DOI: 10.3390/ph17010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
We investigated the immune-stimulating and anti-diabetic effects of Allium hookeri leaves grown in a plant factory with artificial lights. The immunomodulatory effects of A. hookeri leaves' ethanol extracts were evaluated with immune-related hematological factors in blood, the proliferation of splenocytes, NK cell activity, IgG and cytokine levels, and their mechanisms in immunosuppressed obese mice. Anti-diabetic effects were determined by the inhibitory activity against α-amylase and α-glucosidase in vitro and fasting blood glucose levels and biochemical factors in the serum of immunosuppressed obese mice. A. hookeri leaf extracts increased WBC and LYM counts, the proliferation of splenocytes, and serum IgG and IL-1β concentrations compared to those of the NC group, which was used as a negative control. A. hookeri leaf extracts also improved serum HDL levels while they decreased the activities of digestive enzymes, fasting blood glucose, and biochemical factors (ALT, AST, T-Chol, TG, LDL, and GLU). The expressions of IL-1β, JNK, c-Jun, p65, and iNOS in the thymus of immunosuppressed mice were activated by the treatment of A. hookeri leaf extracts. The results suggest that A. hookeri leaves grown in a plant factory with artificial lights also have immune-stimulatory and anti-diabetic effects and can be used as novel functional supplements to control related diseases and to improve public health.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - Ji-Su Kim
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - Un-Yul Jeong
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - Ui-Jin Bae
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - Mina Kim
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - Shin-Young Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - In-Guk Hwang
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - Jeong-Wook Heo
- Department of Agricultural Engineering, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Chang-Ki Shim
- Department of Agricultural Environment, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Jun-Sang Ham
- Department of Animal Biotechnology and Environment, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Sung-Hyen Lee
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| |
Collapse
|
5
|
Hu X, Wang Y, Lin Y, Yang N, Yao J, Shan W, Rao G, Ying Y. Bioassay-guided isolation and characterisation of α-glucosidase inhibitors from Sanghuangporus baumii. Nat Prod Res 2024:1-9. [PMID: 38179617 DOI: 10.1080/14786419.2023.2300397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
Bioassay-guided fractionation of the isopropanol extract of the medicinal mushroom Sanghuangporus baumii led to the isolation and characterisation of a new acorane-type sesquiterpenoid bauminene (1) and seven known compounds 2-8. The planar structure of 1 was elucidated on the basis of extensive spectroscopic analysis, including 1D, 2D NMR and HR-ESI-MS. The relative configuration of 1 was determined by a combination of ROESY experiment, density functional theory calculation of 13C NMR, and DP4+ probability analysis, while the absolute configuration of 1 was established by comparative electronic circular dichroism (ECD) spectra analysis. In the in vitro bioassay, compounds 1-8 exhibited potent to moderate α-glucosidase inhibitory activity with IC50 values ranging from 6.8 ± 0.68 to 221.4 ± 6.57 µM. The presences of these bioactive constituents in the sclerotia of S. baumii may be related to the use of the fungus as 'Sanghuang' for the adjuvant treatment of DM.
Collapse
Affiliation(s)
- Xiaoyan Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yanling Wang
- Hangzhou Allsino Chemicals Co., LTD, Hangzhou, P.R. China
| | - Yuhao Lin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Nini Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Junyi Yao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Weiguang Shan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Guiwei Rao
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Youmin Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- Department of Emergency, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, P.R. China
| |
Collapse
|
6
|
Ge X, Liu T, Chen Z, Zhang J, Yin X, Huang Z, Chen L, Zhao C, Shao R, Xu W. Fagopyrum tataricum ethanol extract ameliorates symptoms of hyperglycemia by regulating gut microbiota in type 2 diabetes mellitus mice. Food Funct 2023; 14:8487-8503. [PMID: 37655471 DOI: 10.1039/d3fo02385k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is typically accompanied by sudden weight loss, dyslipidemia-related indicators, decreased insulin sensitivity, and altered gut microbial communities. Fagopyrum tataricum possesses many biological activities, such as antioxidant, hypolipidemic, and hypotensive activities. However, only a few studies have attempted to elucidate the regulatory effects of F. tataricum ethanol extract (FTE) on intestinal microbial communities and its potential relationships with T2DM. In this study, we established a T2DM mouse model and investigated the regulatory effects of FTE on hyperglycemia symptoms and intestinal microbial communities. FTE intervention significantly improved the levels of fasting blood glucose, the area under the curve of oral glucose tolerance test (OGTT), and glycosylated serum protein, as well as pancreas islet function correlation index. In addition, FTE effectively improved hepatic and cecum injuries and insulin secretion due to T2DM. It was also revealed that the potential hypoglycemic mechanism of FTE was involved in the regulation of protein kinase B (AKT-1) and glucose transporter 2 (GLUT-2). Furthermore, compared with the Model group, the FTE-H intervention exhibited a significantly decreased ratio of Firmicutes to Bacteroidetes at the phylum level, reduced relative abundance of pernicious bacteria at the genus level, such as Desulfovibrio, Oscillibacter, Blautia, Parabacteroides, and Erysipelatoclostridium, and ameliorated inflammatory response and insulin resistance. Moreover, the correlation between gut microbiota and hypoglycemic indicators was predicted. The results showed that Lachnoclostridium, Lactobacillus, Oscillibacter, Bilophila, and Roseburia have the potential to be used as bacterial markers for T2DM. In conclusion, our research showed that FTE alleviates hyperglycemia symptoms by regulating the expression of AKT-1 and GLUT-2, as well as intestinal microbial communities in T2DM mice.
Collapse
Affiliation(s)
- Xiaodong Ge
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| | - Tingting Liu
- Clinical Pharmacy Department, Yancheng Second People's Hospital, Yancheng, Jiangsu 224051, China
| | - Zhuo Chen
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Jiawei Zhang
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Xuemei Yin
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| | - Zirui Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ligen Chen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rong Shao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| | - Wei Xu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| |
Collapse
|
7
|
Yan C, Qu H, Li X, Feng B. Holothurian Wall Hydrolysate Ameliorates Cyclophosphamide-Induced Immunocompromised Mice via Regulating Immune Response and Improving Gut Microbiota. Int J Mol Sci 2023; 24:12583. [PMID: 37628768 PMCID: PMC10454611 DOI: 10.3390/ijms241612583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Some biologically active compounds isolated from sea cucumbers stimulate the body's immune response by activating immune cells. Immune function is closely related to the integrity intestinal barrier and balanced gut microbiota. However, it is unknown whether the daily administration of holothurian wall hydrolysate (HWH) ameliorated intestinal dysbiosis and barrier injury induced by immunodeficiency. This study aimed to investigate the immunomodulatory effect and the underlying mechanism of HWH in cyclophosphamide (CTX)-induced immunocompromised mice. BALB/c mice received CTX (80 mg/kg, intraperitoneally) once a day for 3 days to induce immunodeficiency, and then they received the oral administration of HWH (80 or 240 mg/kg) or levamisole hydrochloride (LH, 40 mg/kg, positive control), respectively, once a day for 7 days. We utilized 16S rRNA sequencing for microbial composition alterations, histopathological analysis for splenic and colonic morphology, Western blotting for expressions of tight junction proteins (TJs), and quantitative real-time (qRT)-PCR for measurements of pro-inflammatory cytokines. HWH attenuated the immune organ damage induced by CTX, increased the secretions of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, and promoted the recovery of goblet cells and the production of TJs (claudin-1, occludin, and ZO-1) in the colon of the immunocompromised mice. Moreover, HWH promoted the growth of beneficial microorganisms such as Lactobacillus, Lachnospiraceae, Christensenellaceae, and Bifidobacterium, while it suppressed the populations of Ruminococcus, Staphylococcus, and Streptococcus. These results demonstrate that HWH elicits intestinal mucosal immunity, repairs the damage to intestinal mucosal integrity, and normalizes the imbalanced intestinal microbial profiles in immunocompromised mice. It may be helpful to identify the biological activities of HWH to support its potential use in new prebiotics, immunomodulatory agents, and medical additives for intestinal repair.
Collapse
Affiliation(s)
| | | | - Xinli Li
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; (C.Y.); (H.Q.)
| | - Bin Feng
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; (C.Y.); (H.Q.)
| |
Collapse
|
8
|
Kim JS, Lee EB, Choi JH, Jung J, Jeong UY, Bae UJ, Jang HH, Park SY, Cha YS, Lee SH. Antioxidant and Immune Stimulating Effects of Allium cepa Skin in the RAW 264.7 Cells and in the C57BL/6 Mouse Immunosuppressed by Cyclophosphamide. Antioxidants (Basel) 2023; 12:antiox12040892. [PMID: 37107267 PMCID: PMC10135734 DOI: 10.3390/antiox12040892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Allium cepa L. (onion) has been reported to have various pharmacological effects, such as preventing heart disease, and improving antimicrobial activity and immunological effects. The Republic of Korea produced 1,195,563 tons of onions (2022). The flesh of onion is used as food while the onion skin (OS) is thrown away as an agro-food by-product and is considered to induce environmental pollution. Thus, we hypothesize that increasing usage of OS as functional food material could help protect from the environment pollution. The antioxidant effects and immune-enhancing effects of OS were evaluated as functional activities of OS. In this study, OS showed high 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities and xanthine oxidase (XO) inhibitory activity. The antioxidant activities increased in a dose-dependent manner. The IC50 values of DPPH, ABTS radical scavenging activity, and XO inhibitory activity were 954.9 μg/mL, 28.0 μg/mL, and 10.7 μg/mL, respectively. Superoxide dismutase and catalase activities of OS in RAW 264.7 cells were higher than those of the media control. There was no cytotoxicity of OS found in RAW 264.7 cells. Nitric oxide and cytokines (IL-1β, IL-6, IFN-γ, and TNF-α) concentrations in RAW 264.7 cells significantly increased in a dose dependent manner. Immune-stimulating effects of OS were evaluated in immunosuppressed mice induced by cyclophosphamide. White blood cell count and the B cell proliferation of splenocytes were higher in OS100 (OS extract 100 mg/kg body weight) and OS200 (OS extract 200 mg/kg body weight) groups than in the negative control (NC) group. Serum IgG and cytokine (IL-1β and IFN-γ) levels were also higher in OS100 and OS200 groups than in the NC group. OS treatment increased NK cell activity compared with the NC group. The results suggested that OS can improve antioxidant and immune stimulating effects. The use of OS as functional supplement can reduce the agro-food by-product and it may contribute to carbon neutrality.
Collapse
Affiliation(s)
- Ji-Su Kim
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Eun-Byeol Lee
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Ji-Hye Choi
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Jieun Jung
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Un-Yul Jeong
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Ui-Jin Bae
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hwan-Hee Jang
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Shin-Young Park
- Fermented and Processed Food Science Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University, 567 Baekje-Daero, Jeonju 54896, Republic of Korea
| | - Sung-Hyen Lee
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| |
Collapse
|
9
|
Wang H, Ma JX, Wu DM, Gao N, Si J, Cui BK. Identifying Bioactive Ingredients and Antioxidant Activities of Wild Sanghuangporus Species of Medicinal Fungi. J Fungi (Basel) 2023; 9:jof9020242. [PMID: 36836356 PMCID: PMC9959451 DOI: 10.3390/jof9020242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Sanghuangporus refers to a group of rare medicinal fungi with remarkable therapeutic properties. However, current knowledge on the bioactive ingredients and antioxidant activities of different species of this genus is limited. In this study, a total of 15 wild strains from 8 species of Sanghuangporus were selected as the experimental materials for identification of the bioactive components (polysaccharide, polyphenol, flavonoid, triterpenoid, and ascorbic acid) and antioxidant activities (scavenging activities against hydroxyl, superoxide, DPPH, and ABTS radicals; superoxide dismutase activity; and ferric reducing ability of plasma). Notably, individual strains contained different levels of various indicators, among which Sanghuangporus baumii Cui 3573, S. sanghuang Cui 14419 and Cui 14441, S. vaninii Dai 9061, and S. zonatus Dai 10841 displayed the strongest activities. The correlation analysis of bioactive ingredients and antioxidant activities revealed that the antioxidant capacity of Sanghuangporus is mainly associated with the contents of flavonoid and ascorbic acid, followed by polyphenol and triterpenoid, and finally, polysaccharide. Together, the results obtained from the comprehensive and systematic comparative analyses contribute further potential resources and critical guidance for the separation, purification, and further development and utilization of bioactive agents from wild Sanghuangporus species, as well as the optimization of their artificial cultivation conditions.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jin-Xin Ma
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Dong-Mei Wu
- Xinjiang Academy of Agricultural and Reclamation Sciences/Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Shihezi 832000, China
| | - Neng Gao
- Xinjiang Academy of Agricultural and Reclamation Sciences/Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Shihezi 832000, China
| | - Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- Correspondence: (J.S.); (B.-K.C.)
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- Correspondence: (J.S.); (B.-K.C.)
| |
Collapse
|
10
|
Zheng M, Wang L, Sun Y, Pi X, Zhang W, Gao P, Lu S, Liu W. Hypoglycemic effect of the Phellinus baumii extract with α-glucosidase-inhibited activity and its modulation to gut microbiota in diabetic patients. Biomed Pharmacother 2023; 158:114130. [PMID: 36577329 DOI: 10.1016/j.biopha.2022.114130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
Phellinus baumii extract (PBE) possesses considerable α-glucosidase-inhibited activity. This study investigated the hypoglycemic effect in vitro and in vivo using a glucose consumption assay in HepG2 cells, intragastric administration for ten weeks in STZ-induced mice, and intestinal flora fermentation in patients with type 2 diabetes to reveal the possible underlying mechanisms. PBE was prepared, including α-glucosidase-inhibited ethanol extract (EE) and aqueous extract (AE). In vitro, PBE promoted glucose consumption and enhanced glycogen content and hexokinase activity but lowered phosphoenolpyruvate carboxylase kinase activity in HepG2 cells. In vivo, PBE treatment significantly reduced the body weight (p < 0.05) and fasting blood glucose levels of diabetic mice (p < 0.01), with the lowest blood glucose level observed in the EE+AE group. Furthermore, the serum insulin levels and insulin resistance index (HOMA) of PBE-treated groups decreased significantly (p < 0.01). Moreover, gene expression levels of the IRS-1/PI3K/AKT pathway were significantly upregulated by PBE treatment (p < 0.01). In vitro fermentation demonstrated that EE significantly inhibited the production of H2S and NH3 in the intestinal flora fermentation model in diabetic patients (p < 0.05). In addition, the ratio of Firmicutes to Bacteroidetes was reduced, the growth of Lactobacillus and Prevotella 9 was promoted, and Pseudomonas aeruginosa was inhibited. This study provides new insights and clues for using PBE as a functional food and clinical drug for glycemic control.
Collapse
Affiliation(s)
- Meiyu Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetable Preservation and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Fruit Post-harvest Handling, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetable Preservation and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Fruit Post-harvest Handling, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuqing Sun
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenjuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetable Preservation and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Fruit Post-harvest Handling, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Pu Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetable Preservation and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Fruit Post-harvest Handling, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetable Preservation and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Fruit Post-harvest Handling, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
11
|
Chen L, Ren A, Wang Y, Qu Y, Gong H, Mayo KH, Zhou Y, Cheng H. Heterogalactan WPEP-N-b from Pleurotus eryngii enhances immunity in immunocompromised mice. Int J Biol Macromol 2023; 225:1010-1020. [PMID: 36410539 DOI: 10.1016/j.ijbiomac.2022.11.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
This study reports on in vivo immunomodulatory activities mediated by WPEP-N-b, a heterogalactan from Pleurotus eryngii. Using cyclophosphamide (CTX)-induced immunosuppressed mice, we demonstrate here that WPEP-N-b enhances immunity as determined by the immune organ index, peripheral blood immune cell content, splenocyte proliferation, NK cell activity and T lymphocyte subpopulations. WPEP-N-b prevented apoptosis of bone marrow cells induced by CTX. The level of cytokines (i.e. TNF-α, IL-6 and IL-1β) and macrophage activity in these immunocompromised mice were restored upon treated with WPEP-N-b. Mechanistically, it appears that WPEP-N-b enhances splenocyte proliferation and NK cell activity might through the Toll-like receptor 4 (TLR4)-PKC signaling axis, and increases macrophage activity by activating JNK, p38 and NF-κB signaling pathways and Toll-like receptor 2 (TLR2) is the possible receptor of WPEP-N-b in macrophages. Our findings indicate that WPEP-N-b may function as a natural immune stimulant.
Collapse
Affiliation(s)
- Lei Chen
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Ai Ren
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yushi Wang
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yunhe Qu
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Changchun 130032, China
| | - Hesong Gong
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Hairong Cheng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
12
|
Dimitrijević M, Stanković M, Nikolić J, Mitić V, Stankov Jovanović V, Stojanović G, Miladinović D. The effect of arsenic, cadmium, mercury, and lead on the genotoxic activity of Boletaceae family mushrooms present in Serbia. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:23-35. [PMID: 36445018 DOI: 10.1080/15287394.2022.2150992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The aim of this study was to determine accumulation of heavy metals and metalloids which are widely distributed in the environment and in food chain using wild edible mushrooms belonging to the Boletaceae family mushrooms. In addition, methanol extracts of mushrooms were tested for in vitro protective effect by the cytochalasin-B blocked micronucleus (CBMN) assay using chromosome aberrations in human peripheral lymphocytes as a model. The genotoxic activity of methanol extracts prepared at 4 different concentrations (1, 2, 3 or 6 µg/ml) was examined using amifostine and mitomycin C as positive controls. Extracts of species B. regius and B. edulis exhibited the greatest reduction in the frequency of micronuclei (MN). Extract of B. regius at concentrations of 2 µg/ml showed the highest decrease in number of MN. In comparison, extract of mushroom B. edulis at a concentration of 3 µg/ml displayed less reduction. However, as heavy metals and metalloids are found in mushrooms, another aim was to examine whether these agents affected genotoxicity. Principal component analysis (PCA) identified clustering differences between control and heavy metals and metalloids groups and might explain the influence of heavy element content and genotoxic activity in mushrooms.
Collapse
Affiliation(s)
| | - M Stanković
- Nuclear Facilities of Serbia, Vinča, Belgrade, Serbia
| | - J Nikolić
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - V Mitić
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - V Stankov Jovanović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - G Stojanović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - D Miladinović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|
13
|
Fu L, Song J, Lu N, Yan J, Lin J, Wang W. Effects of Cultivation Methods on the Nutritional Content, Active Component Content, and Antioxidant Activity of Fruiting Bodies of Sanghuangporus baumii (Agaricomycetes). Int J Med Mushrooms 2023; 25:45-54. [PMID: 37585315 DOI: 10.1615/intjmedmushrooms.2023048534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
To provide a scientific reference for improving the sawdust cultivation of Sanghuangporus baumii, comparative studies were conducted on the contents of nutritional components and active components and the antioxidant activity of the fruiting bodies of S. baumii cultivated with sawdust and cut logs. The results indicate that, first, cultivation methods had little effect on the contents of crude fat and the measured 16 kinds of amino acids [including total essential amino acids (EAA), total nonessential amino acids (NEAA), EAA/NEAA, and EAA/total amino acid (TAA)], but had a great influence on the contents of crude protein, crude fiber and TAA. These results suggest that the nutritional content under sawdust cultivation was significantly higher than that under cut-log cultivation. Second, the cultivation methods had little effect on the content of triterpenoids but had a great effect on the contents of polysaccharides, total flavonoids and total phenols, which showed that cut-log cultivation was significantly higher than sawdust cultivation. Third, the cultivation methods had a great effect on the antioxidant activities (ABTS and FRAP), which showed that cut-log cultivation was significantly higher than sawdust cultivation. The contents of polysaccharides, total flavonoids, and total phenols and the ABTS and FRAP activities using sawdust cultivation were lower than those using cut-log cultivation, which may be related to the mushroom strains, cultivation medium formula and cultivation technology. The results provide a solid basis for the improvement and promotion of new cultivation technologies for S. baumii.
Collapse
Affiliation(s)
- Lizhong Fu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Jiling Song
- Hangzhou Academy of Agricultural Sciences, Hangzhou, P.R. China
| | - Na Lu
- Hangzhou Academy of Agricultural Sciences, Hangzhou, P.R. China
| | - Jing Yan
- Hangzhou Academy of Agricultural Sciences, Hangzhou, P.R. China
| | - Jiayao Lin
- Hangzhou Academy of Agricultural Sciences, Hangzhou, P.R. China
| | - Weike Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou, P.R. China
| |
Collapse
|
14
|
Zhang J, Wang X, Li H, Chen C, Liu X. Immunomodulatory Effects of Chicken Broth and Histidine Dipeptides on the Cyclophosphamide-Induced Immunosuppression Mouse Model. Nutrients 2022; 14:4491. [PMID: 36364753 PMCID: PMC9659005 DOI: 10.3390/nu14214491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
The carnosine and anserine, which represent histidine dipeptides (HD), are abundant in chicken broth (CB). HD are endogenous dipeptide that has excellent antioxidant and immunomodulatory effects. The immunomodulatory effect of CB hydrolysate (CBH) and HD in cyclophosphamide (CTX)-induced immunosuppressed mice was examined in this study. CBH and HD were given to mice via oral gavage for 15 days, accompanied by intraperitoneal CTX administration to induce immunosuppression. CBH and HD treatment were observed to reduce immune organ atrophy (p < 0.05) and stimulate the proliferation of splenic lymphocytes (p < 0.05) while improving white blood cell, immunoglobulin M (IgM), IgG, and IgA levels (p < 0.05). Moreover, CBH and HD strongly stimulated interleukin-2 (IL-2) and interferon-gamma (IFN-γ) production by up-regulating IL-2 and IFN-γ mRNA expression (p < 0.05) while inhibiting interleukin-10 (IL-10) overproduction and IL-10 mRNA expression (p < 0.05). In addition, CBH and HD prevented the inhibition of the nitric oxide (NP)/cyclic guanosine monophosphate-cyclic adenosine monophosphate (cGMP-cAMP)/protein kinase A (PKA) signaling pathway (p < 0.05). These results indicate that CBH and HD have the potential to prevent immunosuppression induced by CTX. Our data demonstrate that CBH can effectively improve the immune capacity of immunosuppressed mice similar to the same amount of purified HD, which indicates that CBH plays its role through its own HD.
Collapse
Affiliation(s)
- Jian Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xixi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- China Animal Disease Control Center, Beijing 102618, China
| | - He Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Cunshe Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
15
|
Zhang H, Jiang F, Li L, Liu X, Yan JK. Recent advances in the bioactive polysaccharides and other key components from Phellinus spp. and their pharmacological effects: A review. Int J Biol Macromol 2022; 222:3108-3128. [DOI: 10.1016/j.ijbiomac.2022.10.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
16
|
Boulaka A, Mantellou P, Stanc GM, Souka E, Valavanis C, Saxami G, Mitsou E, Koutrotsios G, Zervakis GI, Kyriacou A, Pletsa V, Georgiadis P. Genoprotective activity of the Pleurotus eryngii mushrooms following their in vitro and in vivo fermentation by fecal microbiota. Front Nutr 2022; 9:988517. [PMID: 36082029 PMCID: PMC9445615 DOI: 10.3389/fnut.2022.988517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Pleurotus eryngii mushrooms are commercially cultivated and widely consumed due to their organoleptic properties, and the low caloric and high nutritional value. In addition, they contain various biologically active and health-promoting compounds; very recently, their genoprotective effect in Caco-2 cells after their fermentation by the human fecal microbiota was also documented. In the current study, the effect of P. eryngii pre- and post-fermentation supernatants in micronuclei formation was evaluated in human lymphocytes. In addition, the genoprotective properties of increasing concentrations of aqueous extracts from P. eryngii mushrooms (150, 300, 600 mg/kg) against the cyclophosphamide-induced DNA damage were studied in young and elderly female and male mice in bone marrow and whole blood cells. The ability of the highest dose (600 mg/kg) to regulate the main cellular signaling pathways was also evaluated in gut and liver tissues of female animals by quantifying the mRNA expression of NrF2, Nfkβ, DNMT1, and IL-22 genes. P. eryngii post-fermentation, but not pre-fermentation, supernatants were able to protect human lymphocytes from the mitomycin C-induced DNA damage in a dose-dependent manner. Similarly, genoprotection was also observed in bone marrow cells of mice treated by gavage with P. eryngii extract. The effect was observed in all the experimental groups of mice (young and elderly, male and female) and was more potent in young female mice. Overexpression of all genes examined was observed in both tissues, mainly among the elderly animals. In conclusion, P. eryngii mushrooms were shown to maintain genome integrity through protecting cells from genotoxic insults. These beneficial effects can be attributed to their antioxidant and immunomodulatory properties, as well as their ability to regulate the cell's epigenetic mechanisms and maintain cell homeostasis.
Collapse
Affiliation(s)
- Athina Boulaka
- Laboratory of Environment and Health, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Panagiota Mantellou
- Laboratory of Environment and Health, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Gabriela-Monica Stanc
- Department of Pathology, Molecular Pathology Unit, Metaxa Cancer Hospital, Piraeus, Greece
| | - Efthymia Souka
- Department of Pathology, Molecular Pathology Unit, Metaxa Cancer Hospital, Piraeus, Greece
| | - Christoς Valavanis
- Department of Pathology, Molecular Pathology Unit, Metaxa Cancer Hospital, Piraeus, Greece
| | - Georgia Saxami
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Evdokia Mitsou
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Georgios Koutrotsios
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Athens, Greece
| | - Georgios I. Zervakis
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Athens, Greece
| | | | - Vasiliki Pletsa
- Laboratory of Environment and Health, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Panagiotis Georgiadis
- Laboratory of Environment and Health, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
17
|
Gong R, Cao W, Huang H, Yu B, Chen H, Tao W, Luorong Q, Luo J, Zhang D. Antitumor Potential and Structure Characterization of Polysaccharides From Lagotis brevituba Maxim in the Tibetan Plateau. Front Nutr 2022; 9:921892. [PMID: 35903443 PMCID: PMC9320327 DOI: 10.3389/fnut.2022.921892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
This study purified two polysaccharides (LBMPs) from Lagotis brevituba Maxim in several steps. The chemical structure of LBMP-2 was determined by HPGPC, FT-IR, IC, 1H and 13C NMR, AFM, SEM, and TEM. The results show that LBMP-2 was mainly composed of GalA, and the Mw of LBMP-2 is 23.799 kDa. In addition, the antioxidant activity, and the antitumor activity in vitro and in vivo were studied. LBMP-2 has excellent antioxidant and antitumor capacity. The inhibition of tumor cell proliferation in vitro may result in the inhibition of aerobic respiration and glycolysis. Tumor growth inhibition in vivo may inhibit the expression of AMPK in tumors and enhance spleen function. Compared with conventional chemotherapy drug cyclophosphamide, LBMP-2 is less harmful to the body and safer. Therefore, LBMP-2 provides a potential source of antitumor drugs.
Collapse
|
18
|
Guo B, Dong W, Huo J, Sun G, Qin Z, Liu X, Zhang B, Wang W. Integrated Metabolomics and Network Pharmacology Analysis Immunomodulatory Mechanisms of Qifenggubiao Granules. Front Pharmacol 2022; 13:828175. [PMID: 35479328 PMCID: PMC9037242 DOI: 10.3389/fphar.2022.828175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Qifenggubiao granules (QFGBG) is a new Chinese medicine independently developed by Heilongjiang Academy of Traditional Chinese Medicine, which combines the essence of Yupingfeng powder and Shengmai yin (invention patent number: CN1325098C, approval number: Sinopharm Zhunzi B20020410), and has been included in the 2020 edition of Chinese Pharmacopoeia. It has remarkable pharmacodynamic results and conclusive clinical effects in the treatment of allergic rhinitis, chronic cough and other diseases. Previous pharmacological studies have shown that it has immunomodulatory effect, but its immunomodulatory mechanism is still unclear. Methods: In this study, cyclophosphamide (CTX) was used to establish the immune hypofunction model in mice, and the weight change, index of immune organs in spleen and thymus, pathological sections of immune organs and inflammatory factors were used to evaluate the model. Based on the metabolic biomarkers obtained by metabonomics technology, the potential targets of Qifeng Gubiao Granule immunomodulation were obtained by integrating the targets of blood components, metabolites and diseases through network pharmacology. Meanwhile, GO enrichment analysis and KEGG pathway analysis were carried out on the potential targets. Results: QFGBG can increase body weight and organ index, and recover immune organ damage caused by CP. Metabonomics identified 13 metabolites with significant changes, among which the level of phospholipid (PC) metabolites decreased significantly in the model group. Sphingosine -1- phosphate, 1- palmitoyl phosphatidylcholine [LysoPC (16:0/0:0)] and other metabolites were significantly increased in the model group, and 98 targets of Qifeng’s external immune regulation were obtained by intersecting 629 component targets, 202 metabolite targets and 1916 disease targets. KEGG pathway analysis obtained 233 related metabolic pathways, and the top 20 metabolic pathways mainly involved IL-17 signaling pathway, TNF signaling pathway, Sphingolipid signaling pathway, and so on. Conclusion: QFGBG may act on AKT1, IL6, MAPK3, PTGS2, CASP3, MAPK1, ESR1, PPARG, HSP90AA1, PPARA and other targets, acting through Sphingolipid signaling pathway and signaling pathway. Combined with pharmacodynamic evaluation, the immunomodulatory effect of QFGBG was confirmed, and the immunomodulatory mechanism of QFGBG with multiple targets and multiple pathways was preliminarily clarified.
Collapse
Affiliation(s)
- Bindan Guo
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Wenting Dong
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jinhai Huo
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Guodong Sun
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Zhiwei Qin
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiaodong Liu
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Bihai Zhang
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Weiming Wang
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| |
Collapse
|
19
|
Anti-Diabetic Effects of Ethanol Extract from Sanghuangporous vaninii in High-Fat/Sucrose Diet and Streptozotocin-Induced Diabetic Mice by Modulating Gut Microbiota. Foods 2022; 11:foods11070974. [PMID: 35407061 PMCID: PMC8997417 DOI: 10.3390/foods11070974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) may lead to abnormally elevated blood glucose, lipid metabolism disorder, and low-grade inflammation. Besides, the development of T2DM is always accompanied by gut microbiota dysbiosis and metabolic dysfunction. In this study, the T2DM mice model was established by feeding a high-fat/sucrose diet combined with injecting a low dose of streptozotocin. Additionally, the effects of oral administration of ethanol extract from Sanghuangporous vaninii (SVE) on T2DM and its complications (including hypoglycemia, hyperlipidemia, inflammation, and gut microbiota dysbiosis) were investigated. The results showed SVE could improve body weight, glycolipid metabolism, and inflammation-related parameters. Besides, SVE intervention effectively ameliorated the diabetes-induced pancreas and jejunum injury. Furthermore, SVE intervention significantly increased the relative abundances of Akkermansia, Dubosiella, Bacteroides, and Parabacteroides, and decreased the levels of Lactobacillus, Flavonifractor, Odoribacter, and Desulfovibrio compared to the model group (LDA > 3.0, p < 0.05). Metabolic function prediction of the intestinal microbiota by PICRUSt revealed that glycerolipid metabolism, insulin signaling pathway, PI3K-Akt signaling pathway, and fatty acid degradation were enriched in the diabetic mice treated with SVE. Moreover, the integrative analysis indicated that the key intestinal microbial phylotypes in response to SVE intervention were strongly correlated with glucose and lipid metabolism-associated biochemical parameters. These findings demonstrated that SVE has the potential to alleviate T2DM and its complications by modulating the gut microbiota imbalance.
Collapse
|
20
|
Immune-Enhancing Effect of Submerged Culture of Ceriporia lacerata Mycelia on Cyclophosphamide-Induced Immunosuppressed Mice and the Underlying Mechanisms in Macrophages. Int J Mol Sci 2022; 23:ijms23020597. [PMID: 35054804 PMCID: PMC8775494 DOI: 10.3390/ijms23020597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
The white-rot fungi Ceriporia lacerata is used in bioremediation, such as lignocellulose degradation, in nature. Submerged cultures and extracts of C. lacerata mycelia (CLM) have been reported to contain various active ingredients, including β-glucan and extracellular polysaccharides, and to exert anti-diabetogenic properties in mice and cell lines. However, the immunostimulatory effects have not yet been reported. This study aimed to identify the immunomodulatory effects, and underlying mechanisms thereof, of submerged cultures of CLM using RAW264.7 macrophages and cyclophosphamide (CTX)-induced immunosuppression in mice. Compared to CTX-induced immunosuppressed mice, the spleen and thymus indexes in mice orally administered CLM were significantly increased; body weight loss was alleviated; and natural killer (NK) cytotoxicity, lymphocyte proliferation, and cytokine (tumor necrosis factor [TNF]-α, interferon [IFN]-γ, and interleukin [IL]-2) production were elevated in the serum. In RAW264.7 macrophages, treatment with CLM induced phagocytic activity, increased the production of nitric oxide (NO), and promoted mRNA expression of the immunomodulatory cytokines TNF-α, IFN-γ, IL-1β, IL-6, IL-10, and IL-12. In addition, CLM increased the inducible NO synthase (iNOS) concentration in macrophages, similar to lipopolysaccharide (LPS) stimulation. Mechanistic studies showed that CLM induced the activation of the NF-κB, PI3k/Akt, ERK1/2, and JNK1/2 pathways. Moreover, the phosphorylation of NF-κB and IκB induced by CLM in RAW264.7 cells was suppressed by specific MAPKs and PI3K inhibitors. Further experiments with a TLR4 inhibitor demonstrated that the production of TNF-α, IL-1β, and IL-6 induced by CLM was decreased after TLR4 was blocked. Overall, CLM protected against CTX-induced adverse reactions by enhancing humoral and cellular immune functions, and has potential as an immunomodulatory agent.
Collapse
|
21
|
Egg Yolk Protein Water Extracts Modulate the Immune Response in BALB/c Mice with Immune Dysfunction Caused by Forced Swimming. Foods 2022; 11:foods11010121. [PMID: 35010247 PMCID: PMC8750884 DOI: 10.3390/foods11010121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 01/15/2023] Open
Abstract
The objective of this study was to determine the immunomodulatory effects of egg yolk protein–water extract (EYW) on splenocyte proliferation, cytokine secretion, immunoglobulin production, and NK cell cytotoxic activity in BALB/c mice. The forced swimming test (FST) was used to provide a model for suppressing immune regulation. The proliferation of B cells in the EYW supplementation group was significantly increased from the level to which it was reduced by the FST (from 40.9% to 81.8%, p < 0.05). EYW supplementation affected cytokine secretion of splenocytes. Levels of interleukin (IL)-2 and IL-10—as Th1 and Th2 cytokines, respectively—were decreased after the FST. However, EYW supplementation showed that secretion levels of these cytokines were significantly increased to pre-FST levels (p < 0.05). The production of immunoglobulins (IgA and IgG) was increased abnormally after the FST, whereas EYW supplementation significantly decreased it to pre-FST levels (p < 0.05). EYW supplementation also improved NK cell cytotoxic activity against YAC-1 tumor cells compared to the PC group (p < 0.05). These data suggest that EYW has potential as an immunomodulatory agent in the food and/or pharmaceutical industries.
Collapse
|
22
|
Inhibitory Effect of Phellinus baumii Extract on CFA-Induced Inflammation in MH-S Cells through Nuclear Factor- κB and Mitogen-Activated Protein Kinase Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5535630. [PMID: 34733341 PMCID: PMC8560242 DOI: 10.1155/2021/5535630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022]
Abstract
Phellinus baumii is a mushroom utilized as a traditional medicine for a wide range of human ailments, including diabetes, hypertension, hypercholesterolemia, and cancer, in Asia. The purpose of this study was to find out whether Phellinus baumii extract (PBE) could reduce inflammation caused by coal fly ash (CFA) in alveolar macrophages (MH-S). The anti-inflammatory effect of PBE was evaluated by measuring the nitric oxide (NO) concentration after the onset of CFA-stimulated inflammation in MH-S cells. Polymerase chain reaction (PCR) was used to examine inflammatory gene expression. Western blotting and immunofluorescence (IF) studies were used to investigate the inflammatory mechanism in MH-S cells. According to our results, the PBE suppressed CFA-induced NO generation in the MH-S cells dose-dependently. Furthermore, PBE inhibited the proinflammatory mediators and cytokines generated by exposure to CFA, including cyclooxygenase 2 (COX-2) and inducible NO synthase (iNOS), interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α). Real-time PCR was also used to determine the inhibiting effect of the PBE on proinflammatory factors such as COX-2, iNOS, IL-1β, IL-6, and TNF-α. Moreover, Western blot was used to assess the effects of the PBE on the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in the CFA-stimulated MH-S cells. The suppressive effect of the PBE on phosphorylated (p)-NF-κB translocation was also investigated using IF analysis. This study showed that the PBE suppressed the CFA-induced inflammation in the MH-S cells by suppressing the NF-κB and MAPK signaling pathways, which suggests its potential usefulness in reducing lung inflammation.
Collapse
|
23
|
Anti-Inflammatory Properties In Vitro and Hypoglycaemic Effects of Phenolics from Cultivated Fruit Body of Phellinus baumii in Type 2 Diabetic Mice. Molecules 2021; 26:molecules26082285. [PMID: 33920885 PMCID: PMC8071318 DOI: 10.3390/molecules26082285] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
Dietary intervention in type 2 diabetes mellitus (T2DM) is a hotspot in international research because of potential threats to human health. Phellinus baumii, a wild fungus traditionally used as a food and medicine source, is now cultivated in certain East Asian countries, and is rich in polyphenols, which are effective anti-inflammatory ingredients useful in treatment of T2DM, with fewer side effects than drugs. To examine the hypoglycaemic effects of Phellinus baumii phenolics (PPE), the metabolite profiles of T2DM mice induced by streptozotocin after PPE intervention were systematically analyzed. Here, 10 normal mice were given normal saline as control group, and 50 model mice were randomly assigned to five groups and daily intragastric administrated with saline, metformin (100 mg/kg), and PPE (50, 100, 150 mg/kg of body weight), for 60 days. The pro-inflammatory factor contents of lipopolysaccharide stimulation of RAW 264.7 cells were decreased in a dose-dependent manner after PPE treatment, we propose that PPE could exert anti-inflammatory properties. PPE could also effectively reduce blood glucose levels, increased insulin sensitivity, and improved other glucolipid metabolism. Q-PCR results suggested that the hypoglycemic effects of PPE might be through activating IRS1/PI3K/AKT pathway in diabetic mice. These results suggest that PPE has strong potential as dietary components in the prevention or management of T2DM.
Collapse
|