1
|
Meng X, Ma Y, Li K, Ji M, Lin L, Xiao X, Zhao Y, Su G. Effect and Mechanism of Apple Polyphenols in Regulating Intestinal Flora and Inhibiting the TLR4/NF-κB/TGF-β Signaling Pathway to Alleviate Alcoholic Liver Fibrosis. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024:10.1007/s11130-024-01235-1. [PMID: 39298074 DOI: 10.1007/s11130-024-01235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 09/21/2024]
Abstract
Apple polyphenols (APs) have gained attention for their various bioactivities, while no studies on anti-liver fibrosis activity are reported. This study evaluated the protective effect of APs on liver fibrosis using LPS-treated activated HSC-T6 cells and alcohol-treated liver fibrosis (ALF) mice. The results indicated that APs inhibited HSC-T6 cells activation in vitro and reduced the level of serum hyaluronic acid (HA) (p < 0.05), decreased fibrogenesis marker expression (p < 0.05), thereby alleviating ALF. In addition, APs (800 mg/kg b.w.) decreased the Firmicutes/Bacteroidetes ratio (p < 0.05) in ALF mice, inhibited LPS accumulation in the liver tissue and serum (p < 0.05), and significantly inhibited the TLR4/NF-κB/TGF-β signaling in mice liver. In conclusion, APs markedly ameliorated ALF, possibly by improving gut microbiota homeostasis, decreasing the translocation of bacterial endotoxins to the blood, and suppressing the TLR4/NF-κB/TGF-β signaling pathway, indicating its potential as lead compounds for functional foods and/or drugs against ALF.
Collapse
Affiliation(s)
- Xianyi Meng
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yunjie Ma
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Kaidi Li
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Maxin Ji
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lizhen Lin
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xianyi Xiao
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China.
| | - Guangyue Su
- Shenyang Pharmaceutical University, Shenyang, 110016, China.
- Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2
|
Wang M, Jiang Y, Wang S, Fu L, Liang Z, Zhang Y, Huang X, Li X, Feng M, Long D. Yak milk protects against alcohol-induced liver injury in rats. Food Funct 2023; 14:9857-9871. [PMID: 37853817 DOI: 10.1039/d3fo03675h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The protective effects of yak milk (YM) against chronic alcoholic liver injury in rats were investigated in this study. Histologic and biochemical analyses demonstrated that YM consumption ameliorates alcohol-induced liver injury by increasing the liver antioxidant enzyme activity and reducing inflammation. Furthermore, microbiome and metabolomic analyses exploring YM's impact on gut microbiota and metabolism found that YM administration regulates gut microbiota composition. Specifically, there was a decrease in the relative abundance of Helicobacter, Streptococcus, Peptococcus and Tyzzerella, along with an increase in Turisibacter and Intestinimonas. Moreover, Pearson analysis indicated positive correlations between Peptococcus and Tyzzerella with ALT and AST levels, while showing a negative correlation with ADH levels. Furthermore, differential metabolite analysis of fecal samples from the YM group identified significant increases in the taurine (2-Aminoethanesulfonic acid), hypotaurine (2-Aminoethanesulfonic Acid) and isethionic acid levels. Finally, KEGG topology analysis highlighted taurine and hypotaurine metabolism as the primary pathways influenced by YM intervention. Therefore, these findings collectively suggest that YM may protect alcohol-exposed rats against liver injury by modulating oxidative stress, inflammatory response, gut microbiota disorder, and metabolic regulation.
Collapse
Affiliation(s)
- Man Wang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Yanshi Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Siying Wang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Lin Fu
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Zujin Liang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Xin Li
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Meiying Feng
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou, China.
| |
Collapse
|
3
|
Leyderman M, Wilmore JR, Shope T, Cooney RN, Urao N. Impact of intestinal microenvironments in obesity and bariatric surgery on shaping macrophages. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00033. [PMID: 38037591 PMCID: PMC10683977 DOI: 10.1097/in9.0000000000000033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Obesity is associated with alterations in tissue composition, systemic cellular metabolism, and low-grade chronic inflammation. Macrophages are heterogenous innate immune cells ubiquitously localized throughout the body and are key components of tissue homeostasis, inflammation, wound healing, and various disease states. Macrophages are highly plastic and can switch their phenotypic polarization and change function in response to their local environments. Here, we discuss how obesity alters the intestinal microenvironment and potential key factors that can influence intestinal macrophages as well as macrophages in other organs, including adipose tissue and hematopoietic organs. As bariatric surgery can induce metabolic adaptation systemically, we discuss the potential mechanisms through which bariatric surgery reshapes macrophages in obesity.
Collapse
Affiliation(s)
- Michael Leyderman
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Joel R. Wilmore
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, USA
- Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Timothy Shope
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Robert N. Cooney
- Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY, USA
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Norifumi Urao
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, USA
- Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
4
|
Kumareswaran A, Ekeuku SO, Mohamed N, Muhammad N, Hanafiah A, Pang KL, Wong SK, Chew DCH, Chin KY. The Effects of Tocotrienol on Gut Microbiota: A Scoping Review. Life (Basel) 2023; 13:1882. [PMID: 37763286 PMCID: PMC10532613 DOI: 10.3390/life13091882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Gut dysbiosis has been associated with many chronic diseases, such as obesity, inflammatory bowel disease, and cancer. Gut dysbiosis triggers these diseases through the activation of the immune system by the endotoxins produced by gut microbiota, which leads to systemic inflammation. In addition to pre-/pro-/postbiotics, many natural products can restore healthy gut microbiota composition. Tocotrienol, which is a subfamily of vitamin E, has been demonstrated to have such effects. This scoping review presents an overview of the effects of tocotrienol on gut microbiota according to the existing scientific literature. A literature search to identify relevant studies was conducted using PubMed, Scopus, and Web of Science. Only original research articles which aligned with the review's objective were examined. Six relevant studies investigating the effects of tocotrienol on gut microbiota were included. All of the studies used animal models to demonstrate that tocotrienol altered the gut microbiota composition, but none demonstrated the mechanism by which this occurred. The studies induced diseases known to be associated with gut dysbiosis in rats. Tocotrienol partially restored the gut microbiota compositions of the diseased rats so that they resembled those of the healthy rats. Tocotrienol also demonstrated strong anti-inflammatory effects in these animals. In conclusion, tocotrienol could exert anti-inflammatory effects by suppressing inflammation directly or partially by altering the gut microbiota composition, thus achieving its therapeutic effects.
Collapse
Affiliation(s)
- Aswini Kumareswaran
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| | - Sophia Ogechi Ekeuku
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia;
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| | - Norliza Muhammad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia;
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Malaysia;
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| | - Deborah Chia Hsin Chew
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia;
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| |
Collapse
|
5
|
Yan H, Zhao S, Huang HX, Xie P, Cai XH, Qu YD, Zhang W, Luo JQ, Zhang L, Li X. Systematic Mendelian randomization study of the effect of gut microbiome and plasma metabolome on severe COVID-19. Front Immunol 2023; 14:1211612. [PMID: 37662924 PMCID: PMC10468967 DOI: 10.3389/fimmu.2023.1211612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
Background COVID-19 could develop severe respiratory symptoms in certain infected patients, especially in the patients with immune disorders. Gut microbiome and plasma metabolome act important immunological modulators in the human body and could contribute to the immune responses impacting the progression of COVID-19. However, the causal relationship between specific intestinal bacteria, metabolites and severe COVID-19 remains not clear. Methods Based on two-sample Mendelian randomization (MR) framework, the causal effects of 131 intestinal taxa and 452 plasma metabolites on severe COVID-19 were evaluated. Single nucleotide polymorphisms (SNPs) strongly associated with the abundance of intestinal taxa and the concentration of plasma metabolites had been utilized as the instrument variables to infer whether they were causal factors of severe COVID-19. In addition, mediation analysis was conducted to find the potential association between the taxon and metabolite, and further colocalization analysis had been performed to validate the causal relationships. Results MR analysis identified 13 taxa and 53 metabolites, which were significantly associated with severe COVID-19 as causal factors. Mediation analysis revealed 11 mediated relationships. Myo-inositol, 2-stearoylglycerophosphocholine, and alpha-glutamyltyrosine, potentially contributed to the association of Howardella and Ruminiclostridium 6 with severe COVID-19, respectively. Butyrivibrio and Ruminococcus gnavus could mediate the association of myo-inositol and N-acetylalanine, respectively. In addition, Ruminococcus torques abundance was colocalized with severe COVID-19 (PP.H4 = 0.77) and the colon expression of permeability related protein RASIP1 (PP.H4 = 0.95). Conclusions Our study highlights the potential causal relationships between gut microbiome, plasma metabolome and severe COVID-19, which potentially serve as clinical biomarkers for risk stratification and prognostication and benefit the mechanism mechanistic investigation of severe COVID-19.
Collapse
Affiliation(s)
- Han Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Si Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Han-Xue Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pan Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin-He Cai
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-Dan Qu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian-Quan Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Longbo Zhang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Martín Giménez VM, Modrego J, Gómez-Garre D, Manucha W, de las Heras N. Gut Microbiota Dysbiosis in COVID-19: Modulation and Approaches for Prevention and Therapy. Int J Mol Sci 2023; 24:12249. [PMID: 37569625 PMCID: PMC10419057 DOI: 10.3390/ijms241512249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammation and oxidative stress are critical underlying mechanisms associated with COVID-19 that contribute to the complications and clinical deterioration of patients. Additionally, COVID-19 has the potential to alter the composition of patients' gut microbiota, characterized by a decreased abundance of bacteria with probiotic effects. Interestingly, certain strains of these bacteria produce metabolites that can target the S protein of other coronaviruses, thereby preventing their transmission and harmful effects. At the same time, the presence of gut dysbiosis can exacerbate inflammation and oxidative stress, creating a vicious cycle that perpetuates the disease. Furthermore, it is widely recognized that the gut microbiota can metabolize various foods and drugs, producing by-products that may have either beneficial or detrimental effects. In this regard, a decrease in short-chain fatty acid (SCFA), such as acetate, propionate, and butyrate, can influence the overall inflammatory and oxidative state, affecting the prevention, treatment, or worsening of COVID-19. This review aims to explore the current evidence regarding gut dysbiosis in patients with COVID-19, its association with inflammation and oxidative stress, the molecular mechanisms involved, and the potential of gut microbiota modulation in preventing and treating SARS-CoV-2 infection. Given that gut microbiota has demonstrated high adaptability, exploring ways and strategies to maintain good intestinal health, as well as an appropriate diversity and composition of the gut microbiome, becomes crucial in the battle against COVID-19.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan 5400, Argentina;
| | - Javier Modrego
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Dulcenombre Gómez-Garre
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina;
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza 5500, Argentina
| | - Natalia de las Heras
- Departamento de Fisiología, Facultad de Medicina, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
7
|
Lin Z, Li Y, Wang M, Li H, Wang Y, Li X, Zhang Y, Gong D, Fu L, Wang S, Long D. Protective effects of yeast extract against alcohol-induced liver injury in rats. Front Microbiol 2023; 14:1217449. [PMID: 37547679 PMCID: PMC10399763 DOI: 10.3389/fmicb.2023.1217449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Oxidative stress, inflammatory response, and gut-liver axis dysbiosis have been suggested as the primarily involved in the pathogenesis of alcoholic liver injury. Previous research established that yeast extract (YE) has antioxidant, immune-boosting or microbiota-regulating properties. However, there is currently lack of information regarding the efficacy of YE on alcoholic liver injury. This study seeks to obtain data that will help to address this research gap using a Wistar male rat experimental model. Histologic and biochemical analysis results showed that the groups treated with both low-dose yeast extract (YEL) and high-dose yeast extract (YEH) had lower degrees of alcohol-induced liver injury. The abundance of Peptococcus and Ruminococcus reduced in the low-dose yeast extract (YEL) group, while that of Peptococcus, Romboutsia, Parasutterella, and Faecalibaculum reduced in the high-dose (YEH) group. Furthermore, Spearman analysis showed that the gut microbes were significantly associated with several liver-related indicators. For the analysis of differential metabolites and enriched pathways in the YEL group, the abundance of lysophosphatidylcholine (16:0/0:0) significantly increased, and then the levels of histamine, adenosine and 5' -adenine nucleotide were remarkedly elevated in the YEH group. These findings suggest that both high and low doses of YE can have different protective effects on liver injury in alcoholic liver disease (ALD) rats, in addition to improving gut microbiota disorder. Besides, high-dose YE has been found to be more effective than low-dose YE in metabolic regulation, as well as in dealing with oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Zihan Lin
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yongjun Li
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Man Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yihong Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xin Li
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Di Gong
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Lin Fu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Siying Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Lempesis IG, Georgakopoulou VE. Implications of obesity and adiposopathy on respiratory infections; focus on emerging challenges. World J Clin Cases 2023; 11:2925-2933. [PMID: 37215426 PMCID: PMC10198078 DOI: 10.12998/wjcc.v11.i13.2925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Obesity is characterized by excessive adipose tissue accumulation, which impacts physiological, metabolic, and immune functions. Several respiratory infections, including bacterial pneumonia, influenza, and coronavirus disease 2019, appear to be linked to unfavorable results in individuals with obesity. These may be attributed to the direct mechanical/physiological effects of excess body fat on the lungs’ function. Notably, adipose tissue dysfunction is associated with a low-grade chronic inflammatory status and hyperleptinemia, among other characteristics. These have all been linked to immune system dysfunction and weakened immune responses to these infections. A better understanding and clinical awareness of these risk factors are necessary for better disease outcomes.
Collapse
Affiliation(s)
- Ioannis G Lempesis
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Athens 11527, Greece
| | | |
Collapse
|
9
|
Nguyen M, Gautier T, Masson D, Bouhemad B, Guinot PG. Endotoxemia in Acute Heart Failure and Cardiogenic Shock: Evidence, Mechanisms and Therapeutic Options. J Clin Med 2023; 12:jcm12072579. [PMID: 37048662 PMCID: PMC10094881 DOI: 10.3390/jcm12072579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Acute heart failure and cardiogenic shock are frequently occurring and deadly conditions. In patients with those conditions, endotoxemia related to gut injury and gut barrier dysfunction is usually described as a driver of organ dysfunction. Because endotoxemia might reciprocally alter cardiac function, this phenomenon has been suggested as a potent vicious cycle that worsens organ perfusion and leading to adverse outcomes. Yet, evidence beyond this phenomenon might be overlooked, and mechanisms are not fully understood. Subsequently, even though therapeutics available to reduce endotoxin load, there are no indications to treat endotoxemia during acute heart failure and cardiogenic shock. In this review, we first explore the evidence regarding endotoxemia in acute heart failure and cardiogenic shock. Then, we describe the main treatments for endotoxemia in the acute setting, and we present the challenges that remain before personalized treatments against endotoxemia can be used in patients with acute heart failure and cardiogenic shock.
Collapse
|
10
|
The Impact of Za'atar Antioxidant Compounds on the Gut Microbiota and Gastrointestinal Disorders: Insights for Future Clinical Applications. Antioxidants (Basel) 2023; 12:antiox12020426. [PMID: 36829984 PMCID: PMC9952350 DOI: 10.3390/antiox12020426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Since the gut microbiota plays a pivotal role in host homeostasis and energy balance, changes in its composition can be associated with disease states through the promotion of immune-mediated inflammatory disorders and increasing intestinal permeability, ultimately leading to the impairment of intestinal barrier function. Za'atar is one of the most popular plant-based foods in the Eastern Mediterranean region. Za'atar is a mixture of different plant leaves, fruits, and seeds and contains hundreds of antioxidant compounds, especially polyphenols, and fiber, with pre-clinical and clinical evidence suggesting health-promoting effects in cardiovascular and metabolic disease. Za'atar compounds have also been studied from a gastrointestinal perspective, concerning both gut microbiota and gastrointestinal diseases. Antioxidants such as Za'atar polyphenols may provide beneficial effects in the complex interplay between the diet, gut microbiota, and intestinal permeability. To our knowledge, no studies have reported the effects of the whole Za'atar mixture, however, based on the pre-clinical studies published on components and single compounds found in Za'atar, we provide a clinical overview of the possible effects on the gastrointestinal tract, focusing mainly on carvacrol, rosmarinic acid, gallic acid, and other polyphenols. We also cover the potential clinical applications of Za'atar mixture as a possible nutraceutical in disorders involving the gastrointestinal tract.
Collapse
|
11
|
Manilla V, Di Tommaso N, Santopaolo F, Gasbarrini A, Ponziani FR. Endotoxemia and Gastrointestinal Cancers: Insight into the Mechanisms Underlying a Dangerous Relationship. Microorganisms 2023; 11:microorganisms11020267. [PMID: 36838231 PMCID: PMC9963870 DOI: 10.3390/microorganisms11020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Lipopolysaccharide (LPS), also known as endotoxin, is a component of the membrane of gram-negative bacteria and a well-recognized marker of sepsis. In case of disruption of the intestinal barrier, as occurs with unhealthy diets, alcohol consumption, or during chronic diseases, the microbiota residing in the gastrointestinal tract becomes a crucial factor in amplifying the systemic inflammatory response. Indeed, the translocation of LPS into the bloodstream and its interaction with toll-like receptors (TLRs) triggers molecular pathways involved in cytokine release and immune dysregulation. This is a critical step in the exacerbation of many diseases, including metabolic disorders and cancer. Indeed, the role of LPS in cancer development is widely recognized, and examples include gastric tumor related to Helicobacter pylori infection and hepatocellular carcinoma, both of which are preceded by a prolonged inflammatory injury; in addition, the risk of recurrence and development of metastasis appears to be associated with endotoxemia. Here, we review the mechanisms that link the promotion and progression of tumorigenesis with endotoxemia, and the possible therapeutic interventions that can be deployed to counteract these events.
Collapse
Affiliation(s)
- Vittoria Manilla
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Natalia Di Tommaso
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
12
|
Dela Cruz PT, Davison D, Yamane DP, Chu E, Seneff M. Increased Endotoxin Activity in COVID-19 Patients Admitted to the Intensive Care Unit. J Intensive Care Med 2023; 38:27-31. [PMID: 36066033 PMCID: PMC9676678 DOI: 10.1177/08850666221121734] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Endotoxin is a component of Gram-negative bacteria and can be measured in blood using the endotoxin activity assay (EAA). Endotoxin exposure initiates an inflammatory cascade that may contribute to organ dysfunction. Endotoxemia has been reported in previous viral pandemics and we investigated the extent of endotoxemia and its relationship to outcomes in critically ill patients with COVID-19. MATERIALS AND METHODS We conducted a Prospective Cohort Study of 96 critically-ill COVID-19 patients admitted to the George Washington University Hospital ICU from 25 Mar-6 Jun 2020. EAA and inflammatory markers (ferritin, d dimer, IL-6, CRP) were measured on ICU admission and at the discretion of the clinical team. Clinical outcomes (mortality, LOS, need for renal replacement therapy (RRT), intubation) were measured. Statistical analysis was conducted using descriptive statistics and effect estimates with 95% confidence intervals. Comparisons were made using chi-square tests for categorical variables, and T-tests for continuous variables. RESULTS A majority of patients (68.8%) had high EAA [≥ 0.60], levels seen in septic shock. Only 3 patients had positive bacterial cultures. EAA levels did not correlate with mortality, higher levels were associated with greater organ failure (cardiovascular, renal) and longer ICU LOS. Among 14 patients receiving RRT for severe AKI, one had EAA < 0.6 (p = 0.043). EAA levels did not directly correlate with other inflammatory markers. CONCLUSIONS High levels of endotoxin activity were found in a majority of critically-ill COVID-19 patients admitted to the ICU and were associated with greater risk for cardiovascular and renal failure. Further investigation is needed to determine if endotoxin reducing strategies are useful in treating severe COVID-19 infection.
Collapse
Affiliation(s)
- Philip T.H. Dela Cruz
- Department of Anesthesia and Critical
Care, George Washington University
Hospital, Washington, DC, USA,Philip T.H. Dela Cruz, Department of
Anesthesia and Critical Care, George Washington University Hospital, 2300 Eye St
NW, 2300 M St. NW 7 Floor, Washington, DC, 20037.
| | - Danielle Davison
- Department of Anesthesia and Critical
Care, George Washington University
Hospital, Washington, DC, USA
| | - David P. Yamane
- Department of Anesthesia and Critical
Care, George Washington University
Hospital, Washington, DC, USA,Department of Emergency Medicine, George Washington University
Hospital, Washington, DC, USA
| | - Everett Chu
- Department of Anesthesia and Critical
Care, George Washington University
Hospital, Washington, DC, USA
| | - Michael Seneff
- Department of Anesthesia and Critical
Care, George Washington University
Hospital, Washington, DC, USA
| |
Collapse
|
13
|
Kostoff RN, Briggs MB, Kanduc D, Dewanjee S, Kandimalla R, Shoenfeld Y, Porter AL, Tsatsakis A. Modifiable contributing factors to COVID-19: A comprehensive review. Food Chem Toxicol 2023; 171:113511. [PMID: 36450305 PMCID: PMC9701571 DOI: 10.1016/j.fct.2022.113511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. The current study identifies eighty immune system dysfunction-enabling toxic stressors and behaviors (hereafter called modifiable contributing factors (CFs)) that also link directly to COVID-19. Each CF is assigned to one of the five categories in the CF taxonomy shown in Section 3.3.: Lifestyle (e.g., diet, substance abuse); Iatrogenic (e.g., drugs, surgery); Biotoxins (e.g., micro-organisms, mycotoxins); Occupational/Environmental (e.g., heavy metals, pesticides); Psychosocial/Socioeconomic (e.g., chronic stress, lower education). The current study shows how each modifiable factor contributes to decreased immune system capability, increased inflammation and coagulation, and increased neural damage and neurodegeneration. It is unclear how real progress can be made in combatting COVID-19 and other similar diseases caused by viral variants without addressing and eliminating these modifiable CFs.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- Independent Consultant, Gainesville, VA, 20155, USA,Corresponding author. Independent Consultant, 13500 Tallyrand Way, Gainesville, VA, 20155, USA
| | | | - Darja Kanduc
- Dept. of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via Orabona 4, Bari, 70125, Italy
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - Alan L. Porter
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| |
Collapse
|
14
|
The Supporting Role of Combined and Sequential Extracorporeal Blood Purification Therapies in COVID-19 Patients in Intensive Care Unit. Biomedicines 2022; 10:biomedicines10082017. [PMID: 36009564 PMCID: PMC9405816 DOI: 10.3390/biomedicines10082017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Critical clinical forms of COVID-19 infection often include Acute Kidney Injury (AKI), requiring kidney replacement therapy (KRT) in up to 20% of patients, further worsening the outcome of the disease. No specific medical therapies are available for the treatment of COVID-19, while supportive care remains the standard treatment with the control of systemic inflammation playing a pivotal role, avoiding the disease progression and improving organ function. Extracorporeal blood purification (EBP) has been proposed for cytokines removal in sepsis and could be beneficial in COVID-19, preventing the cytokines release syndrome (CRS) and providing Extra-corporeal organ support (ECOS) in critical patients. Different EBP procedures for COVID-19 patients have been proposed including hemoperfusion (HP) on sorbent, continuous kidney replacement therapy (CRRT) with adsorbing capacity, or the use of high cut-off (HCO) membranes. Depending on the local experience, the multidisciplinary capabilities, the hardware, and the available devices, EBP can be combined sequentially or in parallel. The purpose of this paper is to illustrate how to perform EBPs, providing practical support to extracorporeal therapies in COVID-19 patients with AKI.
Collapse
|
15
|
Prasad R, Patton MJ, Floyd JL, Fortmann S, DuPont M, Harbour A, Wright J, Lamendella R, Stevens BR, Oudit GY, Grant MB. Plasma Microbiome in COVID-19 Subjects: An Indicator of Gut Barrier Defects and Dysbiosis. Int J Mol Sci 2022; 23:9141. [PMID: 36012406 PMCID: PMC9409329 DOI: 10.3390/ijms23169141] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/16/2022] Open
Abstract
The gut is a well-established route of infection and target for viral damage by SARS-CoV-2. This is supported by the clinical observation that about half of COVID-19 patients exhibit gastrointestinal (GI) complications. We aimed to investigate whether the analysis of plasma could provide insight into gut barrier dysfunction in patients with COVID-19 infection. Plasma samples of COVID-19 patients (n = 146) and healthy individuals (n = 47) were collected during hospitalization and routine visits. Plasma microbiome was analyzed using 16S rRNA sequencing and gut permeability markers including fatty acid binding protein 2 (FABP2), peptidoglycan (PGN), and lipopolysaccharide (LPS) in both patient cohorts. Plasma samples of both cohorts contained predominately Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria. COVID-19 subjects exhibit significant dysbiosis (p = 0.001) of the plasma microbiome with increased abundance of Actinobacteria spp. (p = 0.0332), decreased abundance of Bacteroides spp. (p = 0.0003), and an increased Firmicutes:Bacteroidetes ratio (p = 0.0003) compared to healthy subjects. The concentration of the plasma gut permeability marker FABP2 (p = 0.0013) and the gut microbial antigens PGN (p < 0.0001) and LPS (p = 0.0049) were significantly elevated in COVID-19 patients compared to healthy subjects. These findings support the notion that the intestine may represent a source for bacteremia and contribute to worsening COVID-19 outcomes. Therapies targeting the gut and prevention of gut barrier defects may represent a strategy to improve outcomes in COVID-19 patients.
Collapse
Affiliation(s)
- Ram Prasad
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University BLVD, VH490, Birmingham, AL 35294, USA
| | - Michael John Patton
- Hugh Kaul Precision Medicine Institute, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jason Levi. Floyd
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University BLVD, VH490, Birmingham, AL 35294, USA
| | - Seth Fortmann
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University BLVD, VH490, Birmingham, AL 35294, USA
| | - Mariana DuPont
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University BLVD, VH490, Birmingham, AL 35294, USA
| | - Angela Harbour
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University BLVD, VH490, Birmingham, AL 35294, USA
| | | | | | - Bruce R. Stevens
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611, USA
| | - Gavin Y. Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Mazankowski Alberta Heart Institute, Edmonton, AB T6G 2B7, Canada
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University BLVD, VH490, Birmingham, AL 35294, USA
| |
Collapse
|
16
|
Ma Z(S, Zhang YP. Ecology of Human Medical Enterprises: From Disease Ecology of Zoonoses, Cancer Ecology Through to Medical Ecology of Human Microbiomes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In nature, the interaction between pathogens and their hosts is only one of a handful of interaction relationships between species, including parasitism, predation, competition, symbiosis, commensalism, and among others. From a non-anthropocentric view, parasitism has relatively fewer essential differences from the other relationships; but from an anthropocentric view, parasitism and predation against humans and their well-beings and belongings are frequently related to heinous diseases. Specifically, treating (managing) diseases of humans, crops and forests, pets, livestock, and wildlife constitute the so-termed medical enterprises (sciences and technologies) humans endeavor in biomedicine and clinical medicine, veterinary, plant protection, and wildlife conservation. In recent years, the significance of ecological science to medicines has received rising attentions, and the emergence and pandemic of COVID-19 appear accelerating the trend. The facts that diseases are simply one of the fundamental ecological relationships in nature, and the study of the relationships between species and their environment is a core mission of ecology highlight the critical importance of ecological science. Nevertheless, current studies on the ecology of medical enterprises are highly fragmented. Here, we (i) conceptually overview the fields of disease ecology of wildlife, cancer ecology and evolution, medical ecology of human microbiome-associated diseases and infectious diseases, and integrated pest management of crops and forests, across major medical enterprises. (ii) Explore the necessity and feasibility for a unified medical ecology that spans biomedicine, clinical medicine, veterinary, crop (forest and wildlife) protection, and biodiversity conservation. (iii) Suggest that a unified medical ecology of human diseases is both necessary and feasible, but laissez-faire terminologies in other human medical enterprises may be preferred. (iv) Suggest that the evo-eco paradigm for cancer research can play a similar role of evo-devo in evolutionary developmental biology. (v) Summarized 40 key ecological principles/theories in current disease-, cancer-, and medical-ecology literatures. (vi) Identified key cross-disciplinary discovery fields for medical/disease ecology in coming decade including bioinformatics and computational ecology, single cell ecology, theoretical ecology, complexity science, and the integrated studies of ecology and evolution. Finally, deep understanding of medical ecology is of obvious importance for the safety of human beings and perhaps for all living things on the planet.
Collapse
|
17
|
Vitkov L, Knopf J, Krunić J, Schauer C, Schoen J, Minnich B, Hannig M, Herrmann M. Periodontitis-Derived Dark-NETs in Severe Covid-19. Front Immunol 2022; 13:872695. [PMID: 35493525 PMCID: PMC9039207 DOI: 10.3389/fimmu.2022.872695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022] Open
Abstract
The frequent severe COVID-19 course in patients with periodontitis suggests a link of the aetiopathogenesis of both diseases. The formation of intravascular neutrophil extracellular traps (NETs) is crucial to the pathogenesis of severe COVID-19. Periodontitis is characterised by an increased level of circulating NETs, a propensity for increased NET formation, delayed NET clearance and low-grade endotoxemia (LGE). The latter has an enormous impact on innate immunity and susceptibility to infection with SARS-CoV-2. LPS binds the SARS-CoV-2 spike protein and this complex, which is more active than unbound LPS, precipitates massive NET formation. Thus, circulating NET formation is the common denominator in both COVID-19 and periodontitis and other diseases with low-grade endotoxemia like diabetes, obesity and cardiovascular diseases (CVD) also increase the risk to develop severe COVID-19. Here we discuss the role of propensity for increased NET formation, DNase I deficiency and low-grade endotoxaemia in periodontitis as aggravating factors for the severe course of COVID-19 and possible strategies for the diminution of increased levels of circulating periodontitis-derived NETs in COVID-19 with periodontitis comorbidity.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany.,Department of Environment & Biodiversity, University of Salzburg, Salzburg, Austria.,Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Bosnia and Herzegovina
| | - Jasmin Knopf
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jelena Krunić
- Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Bosnia and Herzegovina
| | - Christine Schauer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bernd Minnich
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, Austria
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
18
|
Portincasa P, Bonfrate L, Khalil M, Angelis MD, Calabrese FM, D’Amato M, Wang DQH, Di Ciaula A. Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 2021; 10:83. [PMID: 35052763 PMCID: PMC8773010 DOI: 10.3390/biomedicines10010083] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
The largest surface of the human body exposed to the external environment is the gut. At this level, the intestinal barrier includes luminal microbes, the mucin layer, gastrointestinal motility and secretion, enterocytes, immune cells, gut vascular barrier, and liver barrier. A healthy intestinal barrier is characterized by the selective permeability of nutrients, metabolites, water, and bacterial products, and processes are governed by cellular, neural, immune, and hormonal factors. Disrupted gut permeability (leaky gut syndrome) can represent a predisposing or aggravating condition in obesity and the metabolically associated liver steatosis (nonalcoholic fatty liver disease, NAFLD). In what follows, we describe the morphological-functional features of the intestinal barrier, the role of major modifiers of the intestinal barrier, and discuss the recent evidence pointing to the key role of intestinal permeability in obesity/NAFLD.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE-BRTA, 48160 Derio, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| |
Collapse
|
19
|
The Role of the Gut Microbiota in the Development and Progression of Major Depressive and Bipolar Disorder. Nutrients 2021; 14:nu14010037. [PMID: 35010912 PMCID: PMC8746924 DOI: 10.3390/nu14010037] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
A growing number of studies in rodents indicate a connection between the intestinal microbiota and the brain, but comprehensive human data is scarce. Here, we systematically reviewed human studies examining the connection between the intestinal microbiota and major depressive and bipolar disorder. In this review we discuss various changes in bacterial abundance, particularly on low taxonomic levels, in terms of a connection with the pathophysiology of major depressive and bipolar disorder, their use as a diagnostic and treatment response parameter, their health-promoting potential, as well as novel adjunctive treatment options. The diversity of the intestinal microbiota is mostly decreased in depressed subjects. A consistent elevation of phylum Actinobacteria, family Bifidobacteriaceae, and genus Bacteroides, and a reduction of family Ruminococcaceae, genus Faecalibacterium, and genus Roseburia was reported. Probiotics containing Bifidobacterium and/or Lactobacillus spp. seemed to improve depressive symptoms, and novel approaches with different probiotics and synbiotics showed promising results. Comparing twin studies, we report here that already with an elevated risk of developing depression, microbial changes towards a “depression-like” microbiota were found. Overall, these findings highlight the importance of the microbiota and the necessity for a better understanding of its changes contributing to depressive symptoms, potentially leading to new approaches to alleviate depressive symptoms via alterations of the gut microbiota.
Collapse
|
20
|
Honore PM, Redant S, Preseau T, Kaefer K, Barreto Gutierrez L, Attou R, Gallerani A, De Bels D. Septic Shock Had the Highest Concentrations of Cytokines, Yet Patients With Autoimmune Diseases have Very Low Blood Levels of Cytokines, But Dramatically Respond to Cytokine Inhibitors: How Should We Really Look at This? Shock 2021; 56:873. [PMID: 33978608 DOI: 10.1097/shk.0000000000001798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | - Sebastien Redant
- ICU Dept, Centre Hospitalier Universitaire Brugmann, ULB University, Brussels
| | - Thierry Preseau
- Emergency & ICU Dept, Centre Hospitalier Universitaire Brugmann, ULB University, Brussels
| | | | | | | | | | - David De Bels
- ICU Dept, Centre Hospitalier Universitaire Brugmann, ULB University, Brussels
| |
Collapse
|
21
|
Hariyanto TI, Intan D, Hananto JE, Putri C, Kurniawan A. Pre-admission glucagon-like peptide-1 receptor agonist (GLP-1RA) and mortality from coronavirus disease 2019 (Covid-19): A systematic review, meta-analysis, and meta-regression. Diabetes Res Clin Pract 2021; 179:109031. [PMID: 34461139 PMCID: PMC8397482 DOI: 10.1016/j.diabres.2021.109031] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022]
Abstract
AIMS GLP-1RA has many beneficial properties, including anti-inflammatory, anti-obesogenic, pulmonary protective effects as well as beneficial impact on gut microbiome. However, the evidence regarding the benefit of GLP-1RA in Covid-19 patients with diabetes is still unclear. This study sought to analyze the benefit of pre-admission use of GLP-1RA in altering the mortality outcomes of coronavirus disease 2019 (Covid-19) patients with diabetes mellitus. METHODS Using specific keywords, we comprehensively searched the potential articles on PubMed, Europe PMC, and medRxiv database until June 12th, 2021. All published studies on Covid-19 and GLP-1RA were retrieved. Statistical analysis was conducted using Review Manager 5.4 and Comprehensive Meta-Analysis version 3 software. RESULTS A total of 9 studies with 19,660 diabetes mellitus patients who were infected by SARS-CoV-2 were included in the meta-analysis. Our data suggested that pre-admission use of GLP-1RA was associated with reduction in mortality rate from Covid-19 in patients with diabetes mellitus (OR 0.53; 95 %CI: 0.43-0.66, p < 0.00001, I2 = 0%, random-effect modelling). Further analysis showed that the associations were not influenced by age (p = 0.213), gender (p = 0.421), hypertension (p = 0.131), cardiovascular disease (p = 0.293), nor the use of metformin (p = 0.189) and insulin (p = 0.117). CONCLUSIONS Our study suggests that pre-admission use of GLP-1RA may offer beneficial effects on Covid-19 mortality in patients with diabetes mellitus. However, more randomized clinical trials are required to confirm this conclusion.
Collapse
Affiliation(s)
| | - Denny Intan
- Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang 15811, Indonesia
| | - Joshua Edward Hananto
- Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang 15811, Indonesia
| | - Cynthia Putri
- Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang 15811, Indonesia
| | - Andree Kurniawan
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang 15811, Indonesia.
| |
Collapse
|
22
|
Vallianou N, Dalamaga M, Stratigou T, Karampela I, Tsigalou C. Do Antibiotics Cause Obesity Through Long-term Alterations in the Gut Microbiome? A Review of Current Evidence. Curr Obes Rep 2021; 10:244-262. [PMID: 33945146 PMCID: PMC8093917 DOI: 10.1007/s13679-021-00438-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW In this review, we summarize current evidence on the association between antibiotics and the subsequent development of obesity through modulation of the gut microbiome. Particular emphasis is given on (i) animal and human studies and their limitations; (ii) the reservoir of antibiotics in animal feed, emerging antibiotic resistance, gut dysbiosis, and obesity; (iii) the role of infections, specifically viral infections, as a cause of obesity; and (iv) the potential therapeutic approaches other than antibiotics to modulate gut microbiome. RECENT FINDINGS Overall, the majority of animal studies and meta-analyses of human studies on the association between antibiotics and subsequent development of obesity are suggestive of a link between exposure to antibiotics, particularly early exposure in life, and the development of subsequent obesity as a result of alterations in the diversity of gut microbiota. The evidence is strong in animal models whereas evidence in humans is inconclusive requiring well-designed, long-term longitudinal studies to examine this association. Based on recent meta-analyses and epidemiologic studies in healthy children, factors, such as the administration of antibiotics during the first 6 months of life, repeated exposure to antibiotics for ≥ 3 courses, treatment with broad-spectrum antibiotics, and male gender have been associated with increased odds of overweight/obesity. Early antibiotic exposure in animal models has shown that reductions in the population size of specific microbiota, such as Lactobacillus, Allobaculum, Rikenellaceae, and Candidatus Arthromitus, are related to subsequent adiposity. These data suggest that the loss of diversity of the gut microbiome, especially early in life, may have potential long-term detrimental effects on the adult host gut microbiome and metabolic health. Genetic, environmental, and age-related factors influence the gut microbiome throughout the lifetime. More large-scale, longer-term, longitudinal studies are needed to determine whether changes that occur in the microbiome after exposure to antibiotics, particularly early exposure, are causal of subsequent weight gain or consequent of weight gain in humans. Further well-designed, large-scale RCTs in humans are required to evaluate the effects of administration of antibiotics, particularly early administration, and the subsequent development of overweight/obesity. Therapeutic interventions, such as bacteriophage treatment or the use of probiotics, especially genetically engineered ones, need to be evaluated in terms of prevention and management of obesity.
Collapse
Affiliation(s)
- Natalia Vallianou
- grid.414655.70000 0004 4670 4329Department of Internal Medicine and Endocrinology, ‘Evangelismos’ General Hospital of Athens, 45-47 Ypsilantou Street, 10676 Athens, Greece
| | - Maria Dalamaga
- grid.5216.00000 0001 2155 0800Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece
| | - Theodora Stratigou
- grid.414655.70000 0004 4670 4329Department of Internal Medicine and Endocrinology, ‘Evangelismos’ General Hospital of Athens, 45-47 Ypsilantou Street, 10676 Athens, Greece
| | - Irene Karampela
- grid.5216.00000 0001 2155 0800Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece
- grid.5216.00000 0001 2155 0800Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462 Athens, Greece
| | - Christina Tsigalou
- grid.12284.3d0000 0001 2170 8022Laboratory of Microbiology, Medical School, Democritus University of Thrace, 6th Km Alexandroupolis-Makri, Alexandroupolis, Greece
| |
Collapse
|
23
|
Daoust L, Pilon G, Marette A. Perspective: Nutritional Strategies Targeting the Gut Microbiome to Mitigate COVID-19 Outcomes. Adv Nutr 2021; 12:1074-1086. [PMID: 33783468 PMCID: PMC8083677 DOI: 10.1093/advances/nmab031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
More than a year has passed since the first reported case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection in the city of Wuhan in China's Hubei Province. Until now, few antiviral medications (e.g., remdesivir) or drugs that target inflammatory complications associated with SARS-CoV2 infection have been considered safe by public health authorities. By the end of November 2020, this crisis had led to >1 million deaths and revealed the high susceptibility of people with pre-existing comorbidities (e.g., obesity, diabetes, coronary heart disease, hypertension) to suffer from a severe form of the disease. Elderly people have also been found to be highly susceptible to SARS-CoV2 infection and morbidity. Gastrointestinal manifestations and gut microbial alterations observed in SARS-CoV2-infected hospitalized patients have raised awareness of the potential role of intestinal mechanisms in increasing the severity of the disease. It is therefore critically important to find alternative or complementary approaches, not only to prevent or treat the disease, but also to reduce its growing societal and economic burden. In this review, we explore potential nutritional strategies that implicate the use of polyphenols, probiotics, vitamin D, and ω-3 fatty acids with a focus on the gut microbiome, and that could lead to concrete recommendations that are easily applicable to both vulnerable people with pre-existing metabolic comorbidities and the elderly, but also to the general population.
Collapse
Affiliation(s)
- Laurence Daoust
- Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Geneviève Pilon
- Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - André Marette
- Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
24
|
Usuda H, Okamoto T, Wada K. Leaky Gut: Effect of Dietary Fiber and Fats on Microbiome and Intestinal Barrier. Int J Mol Sci 2021; 22:ijms22147613. [PMID: 34299233 PMCID: PMC8305009 DOI: 10.3390/ijms22147613] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal tract is the boundary that prevents harmful molecules from invading into the mucosal tissue, followed by systemic circulation. Intestinal permeability is an index for intestinal barrier integrity. Intestinal permeability has been shown to increase in various diseases-not only intestinal inflammatory diseases, but also systemic diseases, including diabetes, chronic kidney dysfunction, cancer, and cardiovascular diseases. Chronic increase of intestinal permeability is termed 'leaky gut' which is observed in the patients and animal models of these diseases. This state often correlates with the disease state. In addition, recent studies have revealed that gut microbiota affects intestinal and systemic heath conditions via their metabolite, especially short-chain fatty acids and lipopolysaccharides, which can trigger leaky gut. The etiology of leaky gut is still unknown; however, recent studies have uncovered exogenous factors that can modulate intestinal permeability. Nutrients are closely related to intestinal health and permeability that are actively investigated as a hot topic of scientific research. Here, we will review the effect of nutrients on intestinal permeability and microbiome for a better understanding of leaky gut and a possible mechanism of increase in intestinal permeability.
Collapse
Affiliation(s)
- Haruki Usuda
- Correspondence: (H.U.); (T.O.); Tel.: +81-853-20-3067 (H.U.)
| | | | | |
Collapse
|
25
|
El-Sayed A, Aleya L, Kamel M. Microbiota's role in health and diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36967-36983. [PMID: 34043164 PMCID: PMC8155182 DOI: 10.1007/s11356-021-14593-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/24/2021] [Indexed: 05/06/2023]
Abstract
The microbiome is a term that usually refers to the community of various microorganisms that inhabit/live inside human/animal bodies or on their skin. It forms a complex ecosystem that includes trillions of commensals, symbiotics, and even pathogenic microorganisms. The external environment, diet, and lifestyle are the major determinants influencing the microbiome's composition and vitality. Recent studies have indicated the tremendous influence of the microbiome on health and disease. Their number, constitution, variation, and viability are dynamic. All these elements are responsible for the induction, development, and treatment of many health disorders. Serious diseases such as cancer, metabolic disorders, cardiovascular diseases, and even psychological disorders such as schizophrenia are influenced directly or indirectly by microbiota. In addition, in the last few weeks, accumulating data about the link between COVID-19 and the microbiota were published. In the present work, the role of the microbiome in health and disease is discussed. A deep understanding of the exact role of microbiota in disease induction enables the prevention of diseases and the development of new therapeutic concepts for most diseases through the correction of diet and lifestyle. The present review brings together evidence from the most recent works and discusses suggested nutraceutical approaches for the management of COVID-19 pandemic.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
26
|
Crawford MS, Nordgren TM, McCole DF. Every breath you take: Impacts of environmental dust exposure on intestinal barrier function-from the gut-lung axis to COVID-19. Am J Physiol Gastrointest Liver Physiol 2021; 320:G586-G600. [PMID: 33501887 PMCID: PMC8054554 DOI: 10.1152/ajpgi.00423.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
As countries continue to industrialize, major cities experience diminished air quality, whereas rural populations also experience poor air quality from sources such as agricultural operations. These exposures to environmental pollution from both rural and populated/industrialized sources have adverse effects on human health. Although respiratory diseases (e.g., asthma and chronic obstructive pulmonary disease) are the most commonly reported following long-term exposure to particulate matter and hazardous chemicals, gastrointestinal complications have also been associated with the increased risk of lung disease from inhalation of polluted air. The interconnectedness of these organ systems has offered valuable insights into the roles of the immune system and the micro/mycobiota as mediators of communication between the lung and the gut during disease states. A topical example of this relationship is provided by reports of multiple gastrointestinal symptoms in patients with coronavirus disease 2019 (COVID-19), whereas the rapid transmission and increased risk of COVID-19 has been linked to poor air quality and high levels of particulate matter. In this review, we focus on the mechanistic effects of environmental pollution on disease progression with special emphasis on the gut-lung axis.
Collapse
Affiliation(s)
- Meli'sa S Crawford
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| |
Collapse
|
27
|
Belančić A, Kresović A, Troskot Dijan M. Glucagon-like peptide-1 receptor agonists in the era of COVID-19: Friend or foe? Clin Obes 2021; 11:e12439. [PMID: 33423388 PMCID: PMC7995087 DOI: 10.1111/cob.12439] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 01/08/2023]
Abstract
The aim of the present manuscript is to discuss on potential pros and cons of glucagon-like peptide-1 receptor agonists (GLP-1RAs) as glucose-lowering agents during COVID-19 pandemic, and what is more to evaluate them as potential candidates for the treatment of patients, affected by COVID-19 infection, with or even without diabetes mellitus type 2. Besides being important glucose-lowering agents, GLP-1RAs pose promising anti-inflammatory and anti-obesogenic properties, pulmonary protective effects, as well as beneficial impact on gut microbiome composition. Hence, taking everything previously mentioned into consideration, GLP-1RAs seem to be potential candidates for the treatment of patients, affected by COVID-19 infection, with or even without type 2 diabetes mellitus, as well as excellent antidiabetic (glucose-lowering) agents during COVID-19 pandemic times.
Collapse
Affiliation(s)
- Andrej Belančić
- Department of Clinical PharmacologyUniversity Hospital Centre RijekaRijekaCroatia
| | - Andrea Kresović
- Division of Gastroenterology, Department of Internal MedicineUniversity Hospital Centre RijekaRijekaCroatia
| | - Marija Troskot Dijan
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Internal MedicineUniversity Hospital Centre RijekaRijekaCroatia
| |
Collapse
|
28
|
Lamadrid P, Alonso-Peña M, San Segundo D, Arias-Loste M, Crespo J, Lopez-Hoyos M. Innate and Adaptive Immunity Alterations in Metabolic Associated Fatty Liver Disease and Its Implication in COVID-19 Severity. Front Immunol 2021; 12:651728. [PMID: 33859644 PMCID: PMC8042647 DOI: 10.3389/fimmu.2021.651728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
The coronavirus infectious disease 2019 (COVID-19) pandemic has hit the world, affecting health, medical care, economies and our society as a whole. Furthermore, COVID-19 pandemic joins the increasing prevalence of metabolic syndrome in western countries. Patients suffering from obesity, type II diabetes mellitus, cardiac involvement and metabolic associated fatty liver disease (MAFLD) have enhanced risk of suffering severe COVID-19 and mortality. Importantly, up to 25% of the population in western countries is susceptible of suffering from both MAFLD and COVID-19, while none approved treatment is currently available for any of them. Moreover, it is well known that exacerbated innate immune responses are key in the development of the most severe stages of MAFLD and COVID-19. In this review, we focus on the role of the immune system in the establishment and progression of MAFLD and discuss its potential implication in the development of severe COVID-19 in MAFLD patients. As a result, we hope to clarify their common pathology, but also uncover new potential therapeutic targets and prognostic biomarkers for further research.
Collapse
Affiliation(s)
- Patricia Lamadrid
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain
| | - Marta Alonso-Peña
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain
| | - David San Segundo
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Immunology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Mayte Arias-Loste
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Gastroenterology and Hepatology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Javier Crespo
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Gastroenterology and Hepatology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Marcos Lopez-Hoyos
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Immunology Department, Marques de Valdecilla University Hospital, Santander, Spain
| |
Collapse
|
29
|
Honore PM, Redant S, De Bels D. Is an EAA > 0.6 in severe COVID-19 patients synonymous with a toxic and pro-inflammatory endotoxin profile, and should we treat it? Intensive Care Med Exp 2021; 9:16. [PMID: 33759006 PMCID: PMC7987113 DOI: 10.1186/s40635-021-00376-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Patrick M Honore
- ICU Department, Centre Hospitalier Universitaire Brugmann, Brugmann University Hospital, Place Van Gehuchtenplein, 4, 1020, Brussels, Belgium.
| | - Sebastien Redant
- ICU Department, Centre Hospitalier Universitaire Brugmann, Brugmann University Hospital, Place Van Gehuchtenplein, 4, 1020, Brussels, Belgium
| | - David De Bels
- ICU Department, Centre Hospitalier Universitaire Brugmann, Brugmann University Hospital, Place Van Gehuchtenplein, 4, 1020, Brussels, Belgium
| |
Collapse
|
30
|
Ronco C, Reis T. Continuous renal replacement therapy and extended indications. Semin Dial 2021; 34:550-560. [PMID: 33711166 DOI: 10.1111/sdi.12963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 01/16/2023]
Abstract
Extracorporeal blood purification (EBP) techniques provide support for critically ill patients with single or multiple organ dysfunction. Continuous renal replacement therapy (CRRT) is the modality of choice for kidney support for those patients and orchestrates the interactions between the different artificial organ support systems. Intensive care teams should be familiar with the concept of sequential extracorporeal therapy and plan on how to incorporate new treatment modalities into their daily practices. Importantly, scientific evidence should guide the decision-making process at the bedside and provide robust arguments to justify the costs of implementing new EBP treatments. In this narrative review, we explore the extended indications for CRRT as an adjunctive treatment to provide support for the heart, lung, liver, and immune system. We detail practicalities on how to run the treatments and how to tackle the most frequent complications regarding each of the therapies, whether applied alone or integrated. The physicochemical processes and technologies involved at the molecular level encompassing the interactions between the molecules, membranes, and resins are spotlighted. A clinical case will illustrate the timing for the initiation, maintenance, and discontinuation of EBP techniques.
Collapse
Affiliation(s)
- Claudio Ronco
- Department of Medicine (DIMED), University of Padova, Padova, Italy.,Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza (IRRIV), San Bortolo Hospital, Vicenza, Italy.,National Academy of Medicine, Young Leadership Physicians Program, Rio de Janeiro, Brazil
| | - Thiago Reis
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza (IRRIV), San Bortolo Hospital, Vicenza, Italy.,Department of Nephrology, Clínica de Doenças Renais de Brasília, Molecular Pharmacology Laboratory, University of Brasília, Brasilia, Brazil
| |
Collapse
|
31
|
Polyphenol-rich vinegar extract regulates intestinal microbiota and immunity and prevents alcohol-induced inflammation in mice. Food Res Int 2021; 140:110064. [DOI: 10.1016/j.foodres.2020.110064] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/13/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
|
32
|
Fedullo AL, Schiattarella A, Morlando M, Raguzzini A, Toti E, De Franciscis P, Peluso I. Mediterranean Diet for the Prevention of Gestational Diabetes in the Covid-19 Era: Implications of Il-6 In Diabesity. Int J Mol Sci 2021; 22:1213. [PMID: 33530554 PMCID: PMC7866163 DOI: 10.3390/ijms22031213] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of this review is to highlight the influence of the Mediterranean Diet (MedDiet) on Gestational Diabetes Mellitus (GDM) and Gestational Weight Gain (GWG) during the COVID-19 pandemic era and the specific role of interleukin (IL)-6 in diabesity. It is known that diabetes, high body mass index, high glycated hemoglobin and raised serum IL-6 levels are predictive of poor outcomes in coronavirus disease 2019 (COVID-19). The immunopathological mechanisms of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection include rising levels of several cytokines and in particular IL-6. The latter is associated with hyperglycemia and insulin resistance and could be useful for predicting the development of GDM. Rich in omega-3 polyunsaturated fatty acids, vitamins, and minerals, MedDiet improves the immune system and could modulate IL-6, C reactive protein and Nuclear Factor (NF)-κB. Moreover, polyphenols could modulate microbiota composition, inhibit the NF-κB pathway, lower IL-6, and upregulate antioxidant enzymes. Finally, adhering to the MedDiet prior to and during pregnancy could have a protective effect, reducing GWG and the risk of GDM, as well as improving the immune response to viral infections such as COVID-19.
Collapse
Affiliation(s)
- Anna Lucia Fedullo
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00178 Rome, Italy; (A.L.F.); (A.R.); (E.T.)
| | - Antonio Schiattarella
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (M.M.); (P.D.F.)
| | - Maddalena Morlando
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (M.M.); (P.D.F.)
| | - Anna Raguzzini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00178 Rome, Italy; (A.L.F.); (A.R.); (E.T.)
| | - Elisabetta Toti
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00178 Rome, Italy; (A.L.F.); (A.R.); (E.T.)
| | - Pasquale De Franciscis
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (M.M.); (P.D.F.)
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00178 Rome, Italy; (A.L.F.); (A.R.); (E.T.)
| |
Collapse
|
33
|
Pang J, Liu M, Ling W, Jin T. Friend or foe? ACE2 inhibitors and GLP-1R agonists in COVID-19 treatment. ACTA ACUST UNITED AC 2021; 22:100312. [PMID: 33426364 PMCID: PMC7785422 DOI: 10.1016/j.obmed.2020.100312] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023]
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a pandemic since WHO made the statement on March 11, 2020. The infection is causing a high mortality in old people, especially those with obesity, type 2 diabetes (T2D) or cardiovascular diseases (CVD). Extra cautions are needed in the treatment of those patients. The CVD drugs ACEIs and ARBs, as well as the T2D drugs GLP-1R agonists, were shown to activate angiotensin-converting enzyme 2 (ACE2) expression in experimental animals. Elevated ACE2 expression may accelerate virus entrance into the host cells during the infection for its replication. However, expression of the soluble ACE2, may neutralize the virus to limit the infection and replication. Given that obese, diabetes and CVD patients often take those medicines in the treatment and prevention of blood pressure and glucose elevation, it remains to be determined whether those medicines represent friend or foe in the treatment of COVID-19. We suggest that retrospective studies should be conducted to determine the exact impact of those medicines in obese, diabetic, or CVD patients who had COVID-19. Results obtained will provide guidance whether those drugs can be utilized in COVID-19 patients with obesity, diabetic, or CVD.
Collapse
Affiliation(s)
- Juan Pang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
- Div. of Advanced Therapeutic, Toronto General Hospital Research Institute, University Health Network, Canada
| | - Mingyao Liu
- Dept of Surgery, University of Toronto, Canada
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Tianru Jin
- Div. of Advanced Therapeutic, Toronto General Hospital Research Institute, University Health Network, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Canada
| |
Collapse
|
34
|
Mullish BH, Marchesi JR, McDonald JA, Pass DA, Masetti G, Michael DR, Plummer S, Jack AA, Davies TS, Hughes TR, Wang D. Probiotics reduce self-reported symptoms of upper respiratory tract infection in overweight and obese adults: should we be considering probiotics during viral pandemics? Gut Microbes 2021; 13:1-9. [PMID: 33764850 PMCID: PMC8007143 DOI: 10.1080/19490976.2021.1900997] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/04/2023] Open
Abstract
Gut microbiome manipulation to alter the gut-lung axis may potentially protect humans against respiratory infections, and clinical trials of probiotics show promise in this regard in healthy adults and children. However, comparable studies are lacking in overweight/obese people, who have increased risks in particular of viral upper respiratory tract infections (URTI). This Addendum further analyses our recent placebo-controlled trial of probiotics in overweight/obese people (focused initially on weight loss) to investigate the impact of probiotics upon the occurrence of URTI symptoms. As well as undergoing loss of weight and improvement in certain metabolic parameters, study participants taking probiotics experienced a 27% reduction in URTI symptoms versus control, with those ≥45 years or BMI ≥30 kg/m2 experiencing greater reductions. This symptom reduction is apparent within 2 weeks of probiotic use. Gut microbiome diversity remained stable throughout the study in probiotic-treated participants. Our data provide support for further trials to assess the potential role of probiotics in preventing viral URTI (and possibly also COVID-19), particularly in overweight/obese people.
Collapse
Affiliation(s)
- Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Julie A.K. McDonald
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | | | - Giulia Masetti
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, UK
- Department of Cellular Computational and Integrative Biology, University of Trento, Povo, Italy
| | - Daryn R. Michael
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, UK
| | - Sue Plummer
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, UK
| | - Alison A. Jack
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, UK
| | - Thomas S. Davies
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, UK
| | - Timothy R. Hughes
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Duolao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|