1
|
Lin Y, Kuo H, Lu M, Rungkittikhun C, Hu W. Expression of Viral DNA Polymerase in Synthetic Recombinant Adeno-Associated Virus Producer Cell Line Enhances Full Particle Productivity. Biotechnol Bioeng 2025; 122:424-434. [PMID: 39578398 PMCID: PMC11718424 DOI: 10.1002/bit.28885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is a widely used viral vector in gene therapy. To meet the growing clinical demand, a scalable production technology which can efficiently produce high-quality products is required. We have developed a synthetic biology strategy to generate HEK293-based cell lines which have integrated essential AAV and adenoviral helper genes and are capable of producing rAAV upon induction. One such cell line, GX6B, produced up to 106 capsids per cell, but only a much lower level of rAAV genomes. The low AAV genome titer limited its rAAV productivity and increased empty viral particle content. To boost AAV genome amplification, the coding sequence of the DNA polymerase complex (UL30/UL42) from helper Herpes Simplex Virus type 1 (HSV-1) was placed under an inducible promoter control and integrated into GX6B genome at a relatively low level. The resulting clones produced significantly higher titer of viral genomes, while their capsid level was unaffected. As a result, the encapsidated rAAV2 titer and the full particle content were significantly increased. We further demonstrated that this strategy of expressing HSV-1 DNA polymerase to increase full particle productivity could be implemented in a synthetic cell line producing another serotype rAAV8.
Collapse
Affiliation(s)
- Yu‐Chieh Lin
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Han‐Jung Kuo
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Min Lu
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Carissa Rungkittikhun
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Wei‐Shou Hu
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
2
|
Yang R, Tran NT, Chen T, Cui M, Wang Y, Sharma T, Liu Y, Zhang J, Yuan X, Zhang D, Chen C, Shi Z, Wang L, Dai Y, Zaidi H, Liang J, Chen M, Jaijyan D, Hu H, Wang B, Xu C, Hu W, Gao G, Yu D, Tai PWL, Wang Q. AAVone: A Cost-Effective, Single-Plasmid Solution for Efficient AAV Production with Reduced DNA Impurities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631712. [PMID: 39829756 PMCID: PMC11741346 DOI: 10.1101/2025.01.07.631712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Currently, the most common approach for manufacturing GMP-grade adeno-associated virus (AAV) vectors involves transiently transfecting mammalian cells with three plasmids that carry the essential components for production. The requirement for all three plasmids to be transfected into a single cell and the necessity for high quantities of input plasmid DNA, limits AAV production efficiency, introduces variability between production batches, and increases time and labor costs. Here, we developed an all-in-one, single-plasmid AAV production system, called AAVone. In this system, the adenovirus helper genes ( E2A , E4orf6 , and VA RNA ), packaging genes ( rep and cap ), and the vector transgene cassette are consolidated into a single compact plasmid with a 13-kb backbone. The AAVone system achieves a two- to four-fold increase in yields compared to the traditional triple-plasmid system. Furthermore, the AAVone system exhibits low batch-to-batch variation and eliminates the need for fine-tuning the ratios of the three plasmids, simplifying the production process. In terms of vector quality, AAVs generated by the AAVone system show similar in vitro and in vivo transduction efficiency, but a substantial reduction in sequences attributed to plasmid backbones and a marked reduction in non-functional snap-back genomes. In Summary, the AAVone platform is a straightforward, cost-effective, and highly consistent AAV production system - making it particularly suitable for GMP-grade AAV vectors.
Collapse
|
3
|
Mulagapati SHR, Parupudi A, Witkos T, Bond N, Chen X, Linke T, Xi G, Schmelzer AE, Xu W. Size-exclusion chromatography as a multi-attribute method for process and product characterization of adeno-associated virus. Mol Ther Methods Clin Dev 2024; 32:101382. [PMID: 39687733 PMCID: PMC11647602 DOI: 10.1016/j.omtm.2024.101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Adeno-associated viruses (AAVs) have recently emerged as a leading platform for gene therapy. Due to the complex manufacturing process and structural features of AAVs, extensive process and product characterization studies are required to better understand product quality and batch-to-batch variability. It is, therefore, critical to develop a fast and reliable analytical method to monitor different product quality attributes (PQAs) of AAVs. In this study, we developed a multiple-attribute monitoring (MAM) method for the characterization of AAV PQAs. The MAM method was developed using the separation capability of size-exclusion chromatography (SEC) in connection with multiple in-line detectors: ultraviolet (UV), fluorescence (FLD), multi-angle light scattering (MALS), and refractive index (RI). We demonstrate that our SEC-based MAM method can be used to measure different PQAs, including genome and capsid titer, purity, aggregation, and full/empty capsid ratios in a single assay. Our SEC-based MAM method achieves similar results when compared side by side with orthogonal, individual assays such as quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), and anion-exchange chromatography (AEX). Moreover, here we demonstrate that a simple, label-free, cost-effective, minimum sample requirement, and a high-throughput method can be applied to support process development, product characterization, release, and stability testing.
Collapse
Affiliation(s)
- Sri Hari Raju Mulagapati
- Process and Analytical Sciences, BioPharmaceuticals Development (BPD), R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Arun Parupudi
- Drug Product and Formulation Sciences, GSK Vaccines, Rockville, MD 20850, USA
| | - Tomasz Witkos
- Process and Analytical Sciences, BioPharmaceuticals Development (BPD), R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Nick Bond
- Process and Analytical Sciences, BioPharmaceuticals Development (BPD), R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Xiaoyu Chen
- Process and Analytical Sciences, BioPharmaceuticals Development (BPD), R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Thomas Linke
- Process and Analytical Sciences, BioPharmaceuticals Development (BPD), R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Guoling Xi
- Process and Analytical Sciences, BioPharmaceuticals Development (BPD), R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Albert Ethan Schmelzer
- Viral Vector Product Development, Process Development and Clinical Supply, Alexion, Boston, MA, USA
| | - Wei Xu
- Process and Analytical Sciences, BioPharmaceuticals Development (BPD), R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
4
|
D'Alessio AM, Boffa I, De Stefano L, Soria LR, Brunetti-Pierri N. Liver gene transfer for metabolite detoxification in inherited metabolic diseases. FEBS Lett 2024; 598:2372-2384. [PMID: 38884367 DOI: 10.1002/1873-3468.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Inherited metabolic disorders (IMDs) are a growing group of genetic diseases caused by defects in enzymes that mediate cellular metabolism, often resulting in the accumulation of toxic substrates. The liver is a highly metabolically active organ that hosts several thousands of chemical reactions. As such, it is an organ frequently affected in IMDs. In this article, we review current approaches for liver-directed gene-based therapy aimed at metabolite detoxification in a variety of IMDs. Moreover, we discuss current unresolved challenges in gene-based therapies for IMDs.
Collapse
Affiliation(s)
- Alfonso M D'Alessio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Iolanda Boffa
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Lucia De Stefano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Leandro R Soria
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
5
|
Meierrieks F, Weltken A, Pflanz K, Pickl A, Graf B, Wolff MW. A Novel and Simplified Anion Exchange Flow-Through Polishing Approach for the Separation of Full From Empty Adeno-Associated Virus Capsids. Biotechnol J 2024; 19:e202400430. [PMID: 39380499 DOI: 10.1002/biot.202400430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
Adeno-associated viruses (AAV) are widely used viral vectors for in vivo gene therapy. The purification of AAV, particularly the separation of genome-containing from empty AAV capsids, is usually time-consuming and requires expensive equipment. In this study, we present a novel laboratory scale anion exchange flow-through polishing method designed to separate full and empty AAV. Once the appropriate conditions are defined, this method eliminates the need for a chromatography system. Determination of optimal polishing conditions using a chromatography system revealed that the divalent salt MgCl2 resulted in better separation of full and empty AAV than the monovalent salt NaCl. The efficacy of the method was demonstrated for three distinct AAV serotypes (AAV8, AAV5, and AAV2) on two different stationary phases: a membrane adsorber and a monolith, resulting in a 4- to 7.5-fold enrichment of full AAV particles. Moreover, the method was shown to preserve the AAV capsids' functional potency and structural integrity. Following the successful establishment of the flow-through polishing approach, it was adapted to a manual syringe-based system. Manual flow-through polishing using the monolith or membrane adsorber achieved 3.6- and 5.4-fold enrichment of full AAV, respectively. This study demonstrates the feasibility of separating full and empty AAV without complex linear or step gradient elution and the necessity of specialized equipment. Flow-through polishing provides a rapid and easy-to-perform platform for polishing multiple vector preparations, addressing a critical aspect in the research and development of novel gene therapies.
Collapse
Affiliation(s)
- Frederik Meierrieks
- Lab Essentials Applications Development, Sartorius Lab Instruments GmbH & Co. KG, Göttingen, Germany
| | - Alisa Weltken
- Lab Essentials Applications Development, Sartorius Lab Instruments GmbH & Co. KG, Göttingen, Germany
- University of Applied Sciences Aachen, Campus Jülich, Jülich, Germany
| | - Karl Pflanz
- Lab Essentials Applications Development, Sartorius Stedim Biotech GmbH, Göttingen, Germany
| | - Andreas Pickl
- Lab Essentials Applications Development, Sartorius Lab Instruments GmbH & Co. KG, Göttingen, Germany
| | - Benjamin Graf
- Lab Essentials Applications Development, Sartorius Lab Instruments GmbH & Co. KG, Göttingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| |
Collapse
|
6
|
Penaud-Budloo M, Lecomte E, Lecomte Q, Pacouret S, Broucque F, Guy-Duché A, Dupont JB, Jeanson-Leh L, Robin C, Blouin V, Ayuso E, Adjali O. Characterization of residual microRNAs in AAV vector batches produced in HEK293 mammalian cells and Sf9 insect cells. Mol Ther Methods Clin Dev 2024; 32:101305. [PMID: 39220637 PMCID: PMC11365364 DOI: 10.1016/j.omtm.2024.101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
With more than 130 clinical trials and 8 approved gene therapy products, adeno-associated virus (AAV) stands as one of the most popular vehicles to deliver therapeutic DNA in vivo. One critical quality attribute analyzed in AAV batches is the presence of residual DNA, as it could pose genotoxic risks or induce immune responses. Surprisingly, the presence of small cell-derived RNAs, such as microRNAs (miRNAs), has not been investigated previously. In this study, we examined the presence of miRNAs in purified AAV batches produced in mammalian or in insect cells. Our findings revealed that miRNAs were present in all batches, regardless of the production cell line or capsid serotype (2 and 8). Quantitative assays indicated that miRNAs were co-purified with the recombinant AAV particles in a proportion correlated with their abundance in the production cells. The level of residual miRNAs was reduced via an immunoaffinity chromatography purification process including a tangential flow filtration step or by RNase treatment, suggesting that most miRNA contaminants are likely non-encapsidated. In summary, we demonstrate, for the first time, that miRNAs are co-purified with AAV particles. Further investigations are required to determine whether these miRNAs could interfere with the safety or efficacy of AAV-mediated gene therapy.
Collapse
Affiliation(s)
| | - Emilie Lecomte
- Nantes Université, CHU Nantes, INSERM, TARGET, 44000 Nantes, France
| | - Quentin Lecomte
- Nantes Université, CHU Nantes, INSERM, TARGET, 44000 Nantes, France
| | - Simon Pacouret
- Nantes Université, CHU Nantes, INSERM, TARGET, 44000 Nantes, France
| | | | | | | | | | - Cécile Robin
- Nantes Université, CHU Nantes, INSERM, TARGET, 44000 Nantes, France
| | - Véronique Blouin
- Nantes Université, CHU Nantes, INSERM, TARGET, 44000 Nantes, France
| | - Eduard Ayuso
- Nantes Université, CHU Nantes, INSERM, TARGET, 44000 Nantes, France
| | - Oumeya Adjali
- Nantes Université, CHU Nantes, INSERM, TARGET, 44000 Nantes, France
| |
Collapse
|
7
|
Matsuzaka Y, Yashiro R. Therapeutic Application and Structural Features of Adeno-Associated Virus Vector. Curr Issues Mol Biol 2024; 46:8464-8498. [PMID: 39194716 DOI: 10.3390/cimb46080499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Adeno-associated virus (AAV) is characterized by non-pathogenicity, long-term infection, and broad tropism and is actively developed as a vector virus for gene therapy products. AAV is classified into more than 100 serotypes based on differences in the amino acid sequence of the capsid protein. Endocytosis involves the uptake of viral particles by AAV and accessory receptors during AAV infection. After entry into the cell, they are transported to the nucleus through the nuclear pore complex. AAVs mainly use proteoglycans as receptors to enter cells, but the types of sugar chains in proteoglycans that have binding ability are different. Therefore, it is necessary to properly evaluate the primary structure of receptor proteins, such as amino acid sequences and post-translational modifications, including glycosylation, and the higher-order structure of proteins, such as the folding of the entire capsid structure and the three-dimensional (3D) structure of functional domains, to ensure the efficacy and safety of biopharmaceuticals. To further enhance safety, it is necessary to further improve the efficiency of gene transfer into target cells, reduce the amount of vector administered, and prevent infection of non-target cells.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
8
|
Kish WS, Lightholder J, Zeković T, Berrill A, Roach M, Wellborn WB, Vorst E. Removal of empty capsids from high-dose adeno-associated virus 9 gene therapies. Biotechnol Bioeng 2024; 121:2500-2523. [PMID: 38807330 DOI: 10.1002/bit.28737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
Recombinant adeno-associated virus, serotype 9 (rAAV9) has shown promise as a gene therapy vector for muscle and central nervous diseases. High-dose requirements of these therapies present critical safety considerations and biomanufacturing challenges. Notably, the reduction of empty capsids (ECs), which lack therapeutic transgene, from rAAV9 products is critical to maximize efficacy. Removal of rAAV ECs from full capsids is a major downstream challenge because of their highly similar biophysical characteristics. Ultracentrifugation (UC) reduces ECs but is laborious and difficult to scale. In this paper, to replace a poorly scalable UC process, we developed an anion exchange (AEX) chromatography for rAAV9 EC reduction from full capsids. AEX load preparation by dilution incurred major product loss. The addition of histidine and surfactants to dilution buffers increased yield and reduced aggregation. Elution salts were screened and sodium acetate was found to maximize yield and EC reduction. The most promising load dilution buffer and elution salt were used in combination to form an optimized AEX method. The process reduced ECs three-fold, demonstrated robustness to a broad range of EC load challenges, and was scaled for large-scale manufacture. Compared to UC, the AEX method simplified scale-up, reduced ECs to comparable levels (20%), afforded similar purity and product quality, and increased yield by 14%.
Collapse
Affiliation(s)
- William S Kish
- Gene Therapy Process Development, Pfizer Inc., Morrisville, North Carolina, USA
| | - John Lightholder
- Gene Therapy Process Development, Pfizer Inc., Morrisville, North Carolina, USA
| | - Tamara Zeković
- Gene Therapy Process Development, Pfizer Inc., Morrisville, North Carolina, USA
| | - Alex Berrill
- Gene Therapy Process Development, Pfizer Inc., Chesterfield, Missouri, USA
| | - Matthew Roach
- Gene Therapy Process Development, Pfizer Inc., Morrisville, North Carolina, USA
| | - William B Wellborn
- Gene Therapy Process Development, Pfizer Inc., Chesterfield, Missouri, USA
| | - Eric Vorst
- Gene Therapy Process Development, Pfizer Inc., Morrisville, North Carolina, USA
| |
Collapse
|
9
|
Ye D, Chukwu C, Yang Y, Hu Z, Chen H. Adeno-associated virus vector delivery to the brain: Technology advancements and clinical applications. Adv Drug Deliv Rev 2024; 211:115363. [PMID: 38906479 DOI: 10.1016/j.addr.2024.115363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Adeno-associated virus (AAV) vectors have emerged as a promising tool in the development of gene therapies for various neurological diseases, including Alzheimer's disease and Parkinson's disease. However, the blood-brain barrier (BBB) poses a significant challenge to successfully delivering AAV vectors to the brain. Strategies that can overcome the BBB to improve the AAV delivery efficiency to the brain are essential to successful brain-targeted gene therapy. This review provides an overview of existing strategies employed for AAV delivery to the brain, including direct intraparenchymal injection, intra-cerebral spinal fluid injection, intranasal delivery, and intravenous injection of BBB-permeable AAVs. Focused ultrasound has emerged as a promising technology for the noninvasive and spatially targeted delivery of AAV administered by intravenous injection. This review also summarizes each strategy's current preclinical and clinical applications in treating neurological diseases. Moreover, this review includes a detailed discussion of the recent advances in the emerging focused ultrasound-mediated AAV delivery. Understanding the state-of-the-art of these gene delivery approaches is critical for future technology development to fulfill the great promise of AAV in neurological disease treatment.
Collapse
Affiliation(s)
- Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Chinwendu Chukwu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA; Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO 63110 USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
10
|
Fu C, Gobbooru S, Martino AT, Low WK. Production of VP3-only virus-like particles of Adeno-associated virus 2 in E. coli cells. Protein Expr Purif 2024; 220:106502. [PMID: 38754753 DOI: 10.1016/j.pep.2024.106502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Adeno-associated Virus (AAV) is a promising vector for gene therapy. However, few studies have focused on producing virus-like particles (VLPs) of AAV in cells, especially in E. coli. In this study, we describe a method to produce empty VP3-only VLPs of AAV2 in E. coli by co-expressing VP3 and assembly-activating protein (AAP) of AAV2. Although the yields of VLPs produced with our method were low, the VLPs were able to self-assemble in E. coli without the need of in vitro capsid assembly. The produced VLPs were characterized by immunological detection and transmission electron microscopy (TEM). In conclusion, this study demonstrated that capsid assembly of AAV2 is possible in E. coli, and E. coli may be a candidate system for production of VLPs of AAV.
Collapse
Affiliation(s)
- Chengyu Fu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Shruthi Gobbooru
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Ashley T Martino
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Woon-Kai Low
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| |
Collapse
|
11
|
Wang J, Gao G, Wang D. Developing AAV-delivered nonsense suppressor tRNAs for neurological disorders. Neurotherapeutics 2024; 21:e00391. [PMID: 38959711 PMCID: PMC11269797 DOI: 10.1016/j.neurot.2024.e00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Adeno-associated virus (AAV)-based gene therapy is a clinical stage therapeutic modality for neurological disorders. A common genetic defect in myriad monogenic neurological disorders is nonsense mutations that account for about 11% of all human pathogenic mutations. Stop codon readthrough by suppressor transfer RNA (sup-tRNA) has long been sought as a potential gene therapy approach to target nonsense mutations, but hindered by inefficient in vivo delivery. The rapid advances in AAV delivery technology have not only powered gene therapy development but also enabled in vivo preclinical assessment of a range of nucleic acid therapeutics, such as sup-tRNA. Compared with conventional AAV gene therapy that delivers a transgene to produce therapeutic proteins, AAV-delivered sup-tRNA has several advantages, such as small gene sizes and operating within the endogenous gene expression regulation, which are important considerations for treating some neurological disorders. This review will first examine sup-tRNA designs and delivery by AAV vectors. We will then analyze how AAV-delivered sup-tRNA can potentially address some neurological disorders that are challenging to conventional gene therapy, followed by discussing available mouse models of neurological diseases for in vivo preclinical testing. Potential challenges for AAV-delivered sup-tRNA to achieve therapeutic efficacy and safety will also be discussed.
Collapse
Affiliation(s)
- Jiaming Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
12
|
Yuan R, Wang B, Wang Y, Liu P. Gene Therapy for Neurofibromatosis Type 2-Related Schwannomatosis: Recent Progress, Challenges, and Future Directions. Oncol Ther 2024; 12:257-276. [PMID: 38760612 PMCID: PMC11187037 DOI: 10.1007/s40487-024-00279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
Neurofibromatosis type 2 (NF2)-related schwannomatosis is a rare autosomal dominant monogenic disorder caused by mutations in the NF2 gene. The hallmarks of NF2-related schwannomatosis are bilateral vestibular schwannomas (VS). The current treatment options for NF2-related schwannomatosis, such as observation with serial imaging, surgery, radiotherapy, and pharmacotherapies, have shown limited effectiveness and serious complications. Therefore, there is a critical demand for novel effective treatments. Gene therapy, which has made significant advancements in treating genetic diseases, holds promise for the treatment of this disease. This review covers the genetic pathogenesis of NF2-related schwannomatosis, the latest progress in gene therapy strategies, current challenges, and future directions of gene therapy for NF2-related schwannomatosis.
Collapse
Affiliation(s)
- Ruofei Yuan
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Bo Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ying Wang
- Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
- Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Hu Y, Hu M, Ye X, Wu Z, Kang J, Wong C, Palackal N, Qiu H, Li N. A simple and sensitive differential digestion method to analyze adeno-associated virus residual host cell proteins by LC-MS. J Pharm Biomed Anal 2024; 242:116009. [PMID: 38354541 DOI: 10.1016/j.jpba.2024.116009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
Many methods using liquid chromatography-mass spectrometry (LC-MS) have been established for identifying residual host cell proteins (HCPs) to aid in the process development and quality control of therapeutic proteins. However, the use of MS-based techniques for adeno-associated virus (AAV) is still in its infancy, with few methods reported and minimal information available on potentially problematic HCPs. In this study, we developed a highly sensitive and effective differential digestion method to profile residual HCPs in AAV. Unlike direct digestion, which completely digests both AAV and HCPs, our differential digestion method takes advantage of AAV's unique characteristics to maintain the integrity of AAV while preferentially digesting HCPs under denaturing and reducing conditions. This differential digestion method requires only several micrograms of sample and significantly enhances the identification of HCPs. Furthermore, this method can be applied to all five different AAV serotypes for comprehensive HCP profiling. Our work fills a gap in AAV HCP analysis by providing a sensitive and robust strategy for detecting, monitoring, and measuring HCPs.
Collapse
Affiliation(s)
- Yunli Hu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA.
| | - Mengqi Hu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| | - Xiang Ye
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| | - Zhijie Wu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| | - Jianming Kang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| | - Christina Wong
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| | - Nisha Palackal
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| | - Haibo Qiu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA.
| | - Ning Li
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591-6707, USA
| |
Collapse
|
14
|
Jarand C, Baker K, Petroff M, Jin M, Reed WF. DNA Released by Adeno-Associated Virus Strongly Alters Capsid Aggregation Kinetics in a Physiological Solution. Biomacromolecules 2024; 25:2890-2901. [PMID: 38683736 PMCID: PMC11094734 DOI: 10.1021/acs.biomac.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
While adeno-associated virus is a leading vector for gene therapy, significant gaps remain in understanding AAV degradation and stability. In this work, we study the degradation of an engineered AAV serotype at physiological pH and ionic strength. Viral particles of varying fractions of encapsulated DNA were incubated between 30 and 60 °C, with changes in molecular weight measured by changes in total light scattering intensity at 90° over time. Mostly full vectors demonstrated a rapid decrease in molecular weight corresponding to the release of capsid DNA, followed by slow aggregation. In contrast, empty vectors demonstrated immediate, rapid colloid-type aggregation. Mixtures of full and empty capsids showed a pronounced decrease in initial aggregation that cannot be explained by a linear superposition of empty and full degradation scattering signatures, indicating interactions between capsids and ejected DNA that influenced aggregation mechanisms. This demonstrates key interactions between AAV capsids and their cargo that influence capsid degradation, aggregation, and DNA release mechanisms in a physiological solution.
Collapse
Affiliation(s)
- Curtis
W. Jarand
- Department
of Physics, Tulane University, New Orleans, Louisiana 70118, United States
| | - Karen Baker
- Downstream
and Drug Product Process Development, Spark
Therapeutics, Philadelphia, Pennsylvania 19143, United States
| | - Matthew Petroff
- Downstream
and Drug Product Process Development, Spark
Therapeutics, Philadelphia, Pennsylvania 19143, United States
| | - Mi Jin
- Downstream
and Drug Product Process Development, Spark
Therapeutics, Philadelphia, Pennsylvania 19143, United States
| | - Wayne F. Reed
- Department
of Physics, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
15
|
McColl-Carboni A, Dollive S, Laughlin S, Lushi R, MacArthur M, Zhou S, Gagnon J, Smith CA, Burnham B, Horton R, Lata D, Uga B, Natu K, Michel E, Slater C, DaSilva E, Bruccoleri R, Kelly T, McGivney JB. Analytical characterization of full, intermediate, and empty AAV capsids. Gene Ther 2024; 31:285-294. [PMID: 38374348 PMCID: PMC11090809 DOI: 10.1038/s41434-024-00444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
Manufacturing of recombinant adeno-associated virus (AAV) vectors produces three types of capsids: full, intermediate, and empty. While there are different opinions about the impact of intermediate and empty capsids on safety and efficacy of AAV products, they are generally considered impurities because they are not the intended fully intact vector product. The presence of these impurities could impact product efficacy due to potential competition with fully packaged AAVs for cellular transduction, as well as have potential implications to patient safety due to increased capsid load during dosing. To determine the impact of intermediate capsids on potency, an AAV preparation was separated into fractions enriched for full, intermediate, or empty capsids. Using a matrix of in vitro (infectivity, gene expression, biological activity) and in vivo potency assays to determine potency as a function of capsid content, our results indicate that while intermediate capsids contribute to the vector genome titer of the product and are equally as infectious as full capsids, they do not contribute to the potency of the AAV product. This study confirms the criticality of reducing and controlling the level of intermediate capsids to ensure a more efficacious AAV product.
Collapse
Affiliation(s)
| | - Serena Dollive
- Oxford Biomedica (US) LLC, 1 Patriots Park, Bedford, MA, 01730, USA
| | - Sarah Laughlin
- Oxford Biomedica (US) LLC, 1 Patriots Park, Bedford, MA, 01730, USA
| | - Rudenc Lushi
- Oxford Biomedica (US) LLC, 1 Patriots Park, Bedford, MA, 01730, USA
| | | | - Shanshan Zhou
- Oxford Biomedica (US) LLC, 1 Patriots Park, Bedford, MA, 01730, USA
| | - Jeffrey Gagnon
- Oxford Biomedica (US) LLC, 1 Patriots Park, Bedford, MA, 01730, USA
| | | | - Brenda Burnham
- Oxford Biomedica (US) LLC, 1 Patriots Park, Bedford, MA, 01730, USA
| | - Robert Horton
- Oxford Biomedica (US) LLC, 1 Patriots Park, Bedford, MA, 01730, USA
| | - Dimpal Lata
- Oxford Biomedica (US) LLC, 1 Patriots Park, Bedford, MA, 01730, USA
| | - Brianna Uga
- Oxford Biomedica (US) LLC, 1 Patriots Park, Bedford, MA, 01730, USA
| | - Kalyani Natu
- Oxford Biomedica (US) LLC, 1 Patriots Park, Bedford, MA, 01730, USA
| | - Emmanuela Michel
- Oxford Biomedica (US) LLC, 1 Patriots Park, Bedford, MA, 01730, USA
| | - Celia Slater
- Oxford Biomedica (US) LLC, 1 Patriots Park, Bedford, MA, 01730, USA
| | - Evan DaSilva
- Oxford Biomedica (US) LLC, 1 Patriots Park, Bedford, MA, 01730, USA
| | | | - Tim Kelly
- Oxford Biomedica (US) LLC, 1 Patriots Park, Bedford, MA, 01730, USA
| | - James B McGivney
- Oxford Biomedica (US) LLC, 1 Patriots Park, Bedford, MA, 01730, USA.
| |
Collapse
|
16
|
Coplan L, Zhang Z, Ragone N, Reeves J, Rodriguez A, Shevade A, Bak H, Tustian AD. High-yield recombinant adeno-associated viral vector production by multivariate optimization of bioprocess and transfection conditions. Biotechnol Prog 2024; 40:e3445. [PMID: 38450973 DOI: 10.1002/btpr.3445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
Recombinant adeno-associated viral vectors (rAAVs) are one of the most used vehicles for gene therapy, with five rAAV therapeutics commercially approved by the FDA. To improve product yield, we optimized the suspension production process of rAAV8 vectors carrying a proprietary transgene using a commercially available transfection reagent, FectoVIR-AAV. Using a miniaturized automated 250 mL scale bioreactor system, we generated models of vector genome (vg) titer, capsid (cp) titer, and Vg:Cp percentage from two multivariate design of experiment studies, one centered around bioreactor operating parameters, and another based on the transfection conditions. Using the optimized process returned from these models, the vector genome titer from the bioreactor was improved to beyond 1 × 1012 vg/mL. Five critical parameters were identified that had large effects on the pre-purification vector quantity-the transfection pH, production pH, complexation time, viable cell density at transfection, and transfection reagent to DNA ratio. The optimized process was further assessed for its performance extending to six AAV serotypes, namely AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9 carrying a transgene encoding for green fluorescent protein (GFP). Five of the six serotypes returned higher vector genome titers than the control condition. These data suggest that the choice of transfection reagent is a major factor in improving vector yield. The multivariate design of experiment approach is a powerful way to optimize production processes, and the optimized process from one AAV vector can to some extent be generalized to other serotypes and transgenes to accelerate development timelines of new programs.
Collapse
Affiliation(s)
- Louis Coplan
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Zhe Zhang
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Nicole Ragone
- Research Operations, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - John Reeves
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Audrey Rodriguez
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Aishwarya Shevade
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Hanne Bak
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Andrew D Tustian
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| |
Collapse
|
17
|
De Carluccio G, Fusco V, di Bernardo D. Engineering a synthetic gene circuit for high-performance inducible expression in mammalian systems. Nat Commun 2024; 15:3311. [PMID: 38632224 PMCID: PMC11024104 DOI: 10.1038/s41467-024-47592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Inducible gene expression systems can be used to control the expression of a gene of interest by means of a small-molecule. One of the most common designs involves engineering a small-molecule responsive transcription factor (TF) and its cognate promoter, which often results in a compromise between minimal uninduced background expression (leakiness) and maximal induced expression. Here, we focus on an alternative strategy using quantitative synthetic biology to mitigate leakiness while maintaining high expression, without modifying neither the TF nor the promoter. Through mathematical modelling and experimental validations, we design the CASwitch, a mammalian synthetic gene circuit based on combining two well-known network motifs: the Coherent Feed-Forward Loop (CFFL) and the Mutual Inhibition (MI). The CASwitch combines the CRISPR-Cas endoribonuclease CasRx with the state-of-the-art Tet-On3G inducible gene system to achieve high performances. To demonstrate the potentialities of the CASwitch, we apply it to three different scenarios: enhancing a whole-cell biosensor, controlling expression of a toxic gene and inducible production of Adeno-Associated Virus (AAV) vectors.
Collapse
Affiliation(s)
- Giuliano De Carluccio
- Telethon Institute of Genetics and Medicine, Naples, Italy
- University of Naples Federico II, Department of Chemical Materials and Industrial Engineering, Naples, Italy
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - Virginia Fusco
- Telethon Institute of Genetics and Medicine, Naples, Italy
- University of Naples Federico II, Department of Chemical Materials and Industrial Engineering, Naples, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine, Naples, Italy.
- University of Naples Federico II, Department of Chemical Materials and Industrial Engineering, Naples, Italy.
| |
Collapse
|
18
|
Yang Q, Wang J, Chen Z. Conditional splicing system for tight control of viral overlapping genes. J Virol 2024; 98:e0024224. [PMID: 38446633 PMCID: PMC11019872 DOI: 10.1128/jvi.00242-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 03/08/2024] Open
Abstract
Viral genomes frequently harbor overlapping genes, complicating the development of virus-vectored vaccines and gene therapies. This study introduces a novel conditional splicing system to precisely control the expression of such overlapping genes through recombinase-mediated conditional splicing. We refined site-specific recombinase (SSR) conditional splicing systems and explored their mechanisms. The systems demonstrated exceptional inducibility (116,700-fold increase) with negligible background expression, facilitating the conditional expression of overlapping genes in adenovirus-associated virus (AAV) and human immunodeficiency virus type 1. Notably, this approach enabled the establishment of stable AAV producer cell lines, encapsulating all necessary packaging genes. Our findings underscore the potential of the SSR-conditional splicing system to significantly advance vector engineering, enhancing the efficacy and scalability of viral-vector-based therapies and vaccines. IMPORTANCE Regulating overlapping genes is vital for gene therapy and vaccine development using viral vectors. The regulation of overlapping genes presents challenges, including cytotoxicity and impacts on vector capacity and genome stability, which restrict stable packaging cell line development and broad application. To address these challenges, we present a "loxp-splice-loxp"-based conditional splicing system, offering a novel solution for conditional expression of overlapping genes and stable cell line establishment. This system may also regulate other cytotoxic genes, representing a significant advancement in cell engineering and gene therapy as well as biomass production.
Collapse
Affiliation(s)
- Qing Yang
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Jinlin Wang
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
19
|
Merten OW. Development of Stable Packaging and Producer Cell Lines for the Production of AAV Vectors. Microorganisms 2024; 12:384. [PMID: 38399788 PMCID: PMC10892526 DOI: 10.3390/microorganisms12020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Today, recombinant adeno-associated virus (rAAV) vectors represent the vector systems which are mostly used for in vivo gene therapy for the treatment of rare and less-rare diseases. Although most of the past developments have been performed by using a transfection-based method and more than half of the authorized rAAV-based treatments are based on transfection process, the tendency is towards the use of stable inducible packaging and producer cell lines because their use is much more straightforward and leads in parallel to reduction in the overall manufacturing costs. This article presents the development of HeLa cell-based packaging/producer cell lines up to their use for large-scale rAAV vector production, the more recent development of HEK293-based packaging and producer cell lines, as well as of packaging cell lines based on the use of Sf9 cells. The production features are presented in brief (where available), including vector titer, specific productivity, and full-to-empty particle ratio.
Collapse
|
20
|
Yuan Y, Higashiyama K, Hashiba N, Masumi-Koizumi K, Yusa K, Uchida K. Concise Analysis of Single-Stranded DNA of Recombinant Adeno-Associated Virus By Automated Electrophoresis System. Hum Gene Ther 2024; 35:104-113. [PMID: 38062752 PMCID: PMC10890949 DOI: 10.1089/hum.2023.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/29/2023] [Indexed: 02/01/2024] Open
Abstract
Recombinant adeno-associated virus (rAAV) is a prominent viral vector currently available for human gene therapy. The diameter of the rAAV capsid is ∼25 nm, and a positive or negative single-stranded DNA is packaged within the vector capsid. In this report, we describe a concise method to examine the extracted rAAV genome using an automated electrophoresis system. The rAAV genome, prepared from vector particles through either heat treatment at 95°C for 10 min or the phenol-chloroform extraction method, was analyzed using an automated electrophoresis system under denaturation conditions. The heat treatment protocol demonstrated a comparable yield with the phenol-chloroform extraction protocol, and the quantified amounts of the rAAV genome obtained using the automated electrophoresis system were consistent with those quantitated by quantitative PCR. Additionally, crude rAAV extractions could also be analyzed by the automated electrophoresis system after DNase I treatment. These results indicated that this simple and quick analysis using automated electrophoresis is highly useful for confirming the purity and integrity of the rAAV genome.
Collapse
Affiliation(s)
- Yuzhe Yuan
- Graduate School of Science, Technology and Innovation, Kobe University, Chuo-ku, Kobe, Japan
| | - Kiyoko Higashiyama
- Graduate School of Science, Technology and Innovation, Kobe University, Chuo-ku, Kobe, Japan
| | - Noriko Hashiba
- Graduate School of Science, Technology and Innovation, Kobe University, Chuo-ku, Kobe, Japan
| | - Kyoko Masumi-Koizumi
- Graduate School of Science, Technology and Innovation, Kobe University, Chuo-ku, Kobe, Japan
| | - Keisuke Yusa
- Graduate School of Science, Technology and Innovation, Kobe University, Chuo-ku, Kobe, Japan
| | - Kazuhisa Uchida
- Graduate School of Science, Technology and Innovation, Kobe University, Chuo-ku, Kobe, Japan
| |
Collapse
|
21
|
Li L, Shen T, Liu S, Qi J, Zhao Y. Advancements and future prospects of adeno-associated virus-mediated gene therapy for sensorineural hearing loss. Front Neurosci 2024; 18:1272786. [PMID: 38327848 PMCID: PMC10847333 DOI: 10.3389/fnins.2024.1272786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Sensorineural hearing loss (SNHL), a highly prevalent sensory impairment, results from a multifaceted interaction of genetic and environmental factors. As we continually gain insights into the molecular basis of auditory development and the growing compendium of deafness genes identified, research on gene therapy for SNHL has significantly deepened. Adeno-associated virus (AAV), considered a relatively secure vector for gene therapy in clinical trials, can deliver various transgenes based on gene therapy strategies such as gene replacement, gene silencing, gene editing, or gene addition to alleviate diverse types of SNHL. This review delved into the preclinical advances in AAV-based gene therapy for SNHL, spanning hereditary and acquired types. Particular focus is placed on the dual-AAV construction method and its application, the vector delivery route of mouse inner ear models (local, systemic, fetal, and cerebrospinal fluid administration), and the significant considerations in transforming from AAV-based animal model inner ear gene therapy to clinical implementation.
Collapse
Affiliation(s)
- Linke Li
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Shen
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shixi Liu
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jieyu Qi
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yu Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Bettegazzi B, Cattaneo S, Simonato M, Zucchini S, Soukupova M. Viral Vector-Based Gene Therapy for Epilepsy: What Does the Future Hold? Mol Diagn Ther 2024; 28:5-13. [PMID: 38103141 PMCID: PMC10786988 DOI: 10.1007/s40291-023-00687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2023] [Indexed: 12/17/2023]
Abstract
In recent years, many pre-clinical studies have tested gene therapy approaches as possible treatments for epilepsy, following the idea that they may provide an alternative to conventional pharmacological and surgical options. Multiple gene therapy approaches have been developed, including those based on anti-sense oligonucleotides, RNA interference, and viral vectors. In this opinion article, we focus on translational issues related to viral vector-mediated gene therapy for epilepsy. Research has advanced dramatically in addressing issues like viral vector optimization, target identification, strategies of gene expression, editing or regulation, and safety. Some of these pre-clinically validated potential gene therapies are now being tested in clinical trials, in patients with genetic or focal forms of drug-resistant epilepsy. Here, we discuss the ongoing translational research and the advancements that are needed and expected in the near future. We then describe the clinical trials in the pipeline and the further challenges that will need to be addressed at the clinical and economic levels. Our optimistic view is that all these issues and challenges can be overcome, and that gene therapy approaches for epilepsy will soon become a clinical reality.
Collapse
Affiliation(s)
| | - Stefano Cattaneo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy
| | - Michele Simonato
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy
| | - Silvia Zucchini
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy.
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy.
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy
| |
Collapse
|
23
|
Lu M, Lee Z, Lin YC, Irfanullah I, Cai W, Hu WS. Enhancing the production of recombinant adeno-associated virus in synthetic cell lines through systematic characterization. Biotechnol Bioeng 2024; 121:341-354. [PMID: 37749931 DOI: 10.1002/bit.28562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Recombinant adeno-associated virus (rAAV) is among the most commonly used in vivo gene delivery vehicles and has seen a number of successes in clinical application. Current manufacturing processes of rAAV employ multiple plasmid transfection or rely on virus infection and face challenges in scale-up. A synthetic biology approach was taken to generate stable cell lines with integrated genetic modules, which produced rAAV upon induction albeit at a low productivity. To identify potential factors that restrained the productivity, we systematically characterized virus production kinetics through targeted quantitative proteomics and various physical assays of viral components. We demonstrated that reducing the excessive expression of gene of interest by its conditional expression greatly increased the productivity of these synthetic cell lines. Further enhancement was gained by optimizing induction profiles and alleviating proteasomal degradation of viral capsid protein by the addition of proteasome inhibitors. Altogether, these enhancements brought the productivity close to traditional multiple plasmid transfection. The rAAV produced had comparable full particle contents as those produced by conventional transient plasmid transfection. The present work exemplified the versatility of our synthetic biology-based viral vector production platform and its potential for plasmid- and virus-free rAAV manufacturing.
Collapse
Affiliation(s)
- Min Lu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zion Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yu-Chieh Lin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ibrahim Irfanullah
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wen Cai
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
24
|
Cao TM, Chen D, Barnard GC, Shen A. Recombinant adeno-associated virus production evaluation in Chinese hamster ovary cells. Biotechnol Bioeng 2024; 121:395-402. [PMID: 37902721 DOI: 10.1002/bit.28578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/29/2023] [Accepted: 10/15/2023] [Indexed: 10/31/2023]
Abstract
The gene therapy field has advanced in recent years with five recombinant adeno-associated virus (rAAV) based products winning Food and Drug Administration (FDA) approval. As the number of therapeutic applications and overall production demands for rAAV increase, it is valuable to evaluate rAAV production in different production cells. Chinese hamster ovary (CHO) cells have been a robust host for biomolecule manufacturing for more than 35 years. However, there is no report to our knowledge describing the use of CHO cells for rAAV production. In this study, we examined the ability of CHO cells to produce rAAV using a transient plasmid transfection approach. Our results demonstrated that CHO is capable of producing rAAV with detectable viral fundamental components including viral RNAs, proteins, and rAAV viral particles. We identified the expression of cap proteins as one of the limiting factors for rAAV production in CHO cells. We therefore added an additional cytomegalovirus (CMV)-Cap plasmid to the CHO transfection. After increasing cap protein expression, we detected rAAV titers as high as 3 × 108 viral genomes for every 2 × 109 capsids in CHO cells using a quintuple transfection method (standard AAV2 Rep/Cap, helper, gene of interest plasmids, plus CMV-E1, and CMV-Cap plasmids) with comparable full particle percent (average 15%) to that of human embryo kidney (HEK)-derived rAAV. Our study provides a foundation for potential rAAV production in CHO cells.
Collapse
Affiliation(s)
- Thu M Cao
- Department of Cell Culture Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| | - Dayue Chen
- Department of Cell Therapy and Engineering Development, Genentech, Inc, South San Francisco, California, USA
| | - Gavin C Barnard
- Department of Cell Culture Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| | - Amy Shen
- Department of Cell Culture Bioprocess Operations, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
25
|
Ohba K, Mizukami H. Protocol for producing an adeno-associated virus vector by controlling capsid expression timing. STAR Protoc 2023; 4:102542. [PMID: 38103199 PMCID: PMC10751547 DOI: 10.1016/j.xpro.2023.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 12/18/2023] Open
Abstract
Conventional adeno-associated virus (AAV) production systems generate vast numbers of empty capsids, which should be eliminated before clinical use. Here, we present a protocol for efficient AAV vector production. We describe steps for separating replicase and capsid genes from the plasmid and controlling capsid expression until sufficient AAV vector genome replication is achieved. This protocol can produce AAV vectors in various serotypes. For complete details on the use and execution of this protocol, please refer to Ohba et al.1.
Collapse
Affiliation(s)
- Kenji Ohba
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan.
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
26
|
Leskovec M, Raspor A, Fujs V, Mihevc A, Štrancar A. Preferential exclusion chromatography as a capture step for extracellular AAV harvest from adherent and suspension productions. Electrophoresis 2023; 44:1934-1942. [PMID: 37599280 DOI: 10.1002/elps.202300038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/22/2023] [Accepted: 07/30/2023] [Indexed: 08/22/2023]
Abstract
Preferential exclusion chromatography (PXC) sometimes described as hydrophobic interaction chromatography is a well-known, but not widely used technique for purification of Adeno-associated viruses. It employs high molarity of preferentially excluded cosolvent (salt in our case). The downside of this method is that high molarity of salt can lead to aggregation and precipitation of different compounds from the sample. In the case of viruses that are excreted to medium, the concentration of impurities is much lower compared to cell lysates, and PXC can be used as a first chromatographic, serotype independent step to concentrate and purify adeno-associated virus (AAV). Here, we explored PXC for adherent and suspension harvests using monolithic chromatographic columns (CIMmultus). Suspension extracellular adeno-associated virus, serotype 9 (AAV9) harvest had more impurities compared to adherent harvest, therefore it required higher input regarding method development. Final conditions for suspension harvest included higher molarity of binding salt and using more open channel format of chromatographic column (6 µm channel size). Vector genome analysis with droplet digital polymerase chain reaction (ddPCR) revealed 84% and 97% recovery for suspension and adherent AAV9 harvest, respectively. After PXC capture step, adherent AAV9 was purified by already described ion exchange techniques. Overall process vector genome recovery, from clarified harvest to anion exchange elution fraction, was 54% measured by ddPCR. Residual host cell DNA was measured at 40 ng per 1E13 vector genome, and empty AAV was below 5% in final anion exchange chromatography fraction.
Collapse
Affiliation(s)
- Maja Leskovec
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Andrej Raspor
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Veronika Fujs
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Andrej Mihevc
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Aleš Štrancar
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| |
Collapse
|
27
|
Kiesewetter A, Gupta A, Heinen-Kreuzig A, Greenhalgh T, Stein A. Improved endotoxin removal using ecofriendly detergents for intensified plasmid capture. Biotechnol Prog 2023; 39:e3375. [PMID: 37531318 DOI: 10.1002/btpr.3375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023]
Abstract
Increasing plasmid demand for both production of viral and gene therapies as well as nucleic acid based vaccines has highlighted bottlenecks in production. One bottleneck is traditional bead-based chromatography as a capture step. To meet the needs of fast-growing markets, new production solutions are needed. These solutions must enable efficient capture of a diverse range of plasmid types and excellent clearance of bacterial host impurities, such as endotoxin. Enhanced endotoxin clearance during chromatographic purification has previously been demonstrated with detergents such as Triton™ X-100. However, degradation products of Triton™ X-100 are known to have a negative environmental impact, and more sustainable, environmentally benign alternatives have been identified. This work establishes an efficient, intensified plasmid capture using convective anion exchange (AEX) chromatography. The feasibility of the intensified capture approach was assessed with different membrane and a monolith AEX supports. Various detergents from different physico-chemical classes were evaluated with different AEX technologies. Purification efficiency evaluated endotoxin and host cell protein (HCP) clearance, plasmid yield, potential interference of the detergents with analytical in-process control assays, and overall process compatibility. This comprehensive screening approach provides valuable insights to intensified plasmid production.
Collapse
Affiliation(s)
- André Kiesewetter
- MilliporeSigma, The Life Science Business of Merck KGaA, Darmstadt, Germany
| | - Akshat Gupta
- MilliporeSigma, The Life Science Business of Merck KGaA, Darmstadt, Germany
| | | | - Trish Greenhalgh
- MilliporeSigma, The Life Science Business of Merck KGaA, Darmstadt, Germany
| | - Andreas Stein
- MilliporeSigma, The Life Science Business of Merck KGaA, Darmstadt, Germany
| |
Collapse
|
28
|
Whiteley LO. An Overview of Nonclinical and Clinical Liver Toxicity Associated With AAV Gene Therapy. Toxicol Pathol 2023; 51:400-404. [PMID: 37772805 DOI: 10.1177/01926233231201408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
This article reviews the presentation given at the 2023 annual meeting of the Society of Toxicologic Pathology (STP) on liver toxicity observed with adeno-associated viral vector (AAV) gene therapy. After decades as a therapeutic modality largely confined to the academic research environment, gene therapy has emerged in recent years as a rapidly expanding therapeutic approach in the biopharmaceutical industry with AAV as the most commonly used viral vector for gene delivery. This interest in the field of gene therapy by industry has been enhanced by the recent success of approved therapies for curing genetic diseases such as ZOLGENSMA for spinal muscular atrophy and LUXTURNA for Leber congenital amaurosis. However, recently reported clinical and nonclinical toxicities highlight the challenges in safely developing AAV gene therapies that require high dose systemic administration. The presentation reviewed general attributes of AAV as a gene therapy vector, clinical and nonclinical liver toxicity associated with AAV gene therapy and the potential for a multimodal immune suppression strategy that may mitigate toxicities.
Collapse
|
29
|
Virgolini N, Silvano M, Hagan R, Correia R, Alves PM, Clarke C, Roldão A, Isidro IA. Impact of dual-baculovirus infection on the Sf9 insect cell transcriptome during rAAV production using single-cell RNA-seq. Biotechnol Bioeng 2023; 120:2588-2600. [PMID: 36919374 DOI: 10.1002/bit.28377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/17/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
The insect cell-baculovirus expression vector system (IC-BEVS) has shown to be a powerful platform to produce complex biopharmaceutical products, such as recombinant proteins and virus-like particles. More recently, IC-BEVS has also been used as an alternative to produce recombinant adeno-associated virus (rAAV). However, little is known about the variability of insect cell populations and the potential effect of heterogeneity (e.g., stochastic infection process and differences in infection kinetics) on product titer and/or quality. In this study, transcriptomics analysis of Sf9 insect cells during the production of rAAV of serotype 2 (rAAV2) using a low multiplicity of infection, dual-baculovirus system was performed via single-cell RNA-sequencing (scRNA-seq). Before infection, the principal source of variability in Sf9 insect cells was associated with the cell cycle. Over the course of infection, an increase in transcriptional heterogeneity was detected, which was linked to the expression of baculovirus genes as well as to differences in rAAV transgenes (rep, cap and gfp) expression. Noteworthy, at 24 h post-infection, only 29.4% of cells enclosed all three necessary rAAV transgenes to produce packed rAAV2 particles, indicating limitations of the dual-baculovirus system. In addition, the trajectory analysis herein performed highlighted that biological processes such as protein folding, metabolic processes, translation, and stress response have been significantly altered upon infection. Overall, this work reports the first application of scRNA-seq to the IC-BEVS and highlights significant variations in individual cells within the population, providing insight into the rational cell and process engineering toward improved rAAV2 production in IC-BEVS.
Collapse
Affiliation(s)
- Nikolaus Virgolini
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marco Silvano
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ryan Hagan
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Belfield, Ireland
| | - Ricardo Correia
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Colin Clarke
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Belfield, Ireland
| | - António Roldão
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês A Isidro
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
30
|
Lothert K, Wolff MW. Affinity and Pseudo-Affinity Membrane Chromatography for Viral Vector and Vaccine Purifications: A Review. MEMBRANES 2023; 13:770. [PMID: 37755191 PMCID: PMC10537005 DOI: 10.3390/membranes13090770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
Several chromatographic approaches have been established over the last decades for the production of pharmaceutically relevant viruses. Due to the large size of these products compared to other biopharmaceuticals, e.g., proteins, convective flow media have proven to be superior to bead-based resins in terms of process productivity and column capacity. One representative of such convective flow materials is membranes, which can be modified to suit the particular operating principle and are also suitable for economical single-use applications. Among the different membrane variants, affinity surfaces allow for the most selective separation of the target molecule from other components in the feed solution, especially from host cell-derived DNA and proteins. A successful membrane affinity chromatography, however, requires the identification and implementation of ligands, which can be applied economically while at the same time being stable during the process and non-toxic in the case of any leaching. This review summarizes the current evaluation of membrane-based affinity purifications for viruses and virus-like particles, including traditional resin and monolith approaches and the advantages of membrane applications. An overview of potential affinity ligands is given, as well as considerations of suitable affinity platform technologies, e.g., for different virus serotypes, including a description of processes using pseudo-affinity matrices, such as sulfated cellulose membrane adsorbers.
Collapse
Affiliation(s)
| | - Michael W. Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Department Life Science Engineering, University of Applied Sciences Mittelhessen (THM), 35390 Giessen, Germany
| |
Collapse
|
31
|
Richter K, Wurm C, Strasser K, Bauer J, Bakou M, VerHeul R, Sternisha S, Hawe A, Salomon M, Menzen T, Bhattacharya A. Purity and DNA content of AAV capsids assessed by analytical ultracentrifugation and orthogonal biophysical techniques. Eur J Pharm Biopharm 2023; 189:68-83. [PMID: 37196871 DOI: 10.1016/j.ejpb.2023.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Development and manufacturing adeno-associated virus (AAV)-based vectors for gene therapy requires suitable analytical methods to assess the quality of the formulations during development, as well as the quality of different batches and the consistency of the processes. Here, we compare biophysical methods to characterize purity and DNA content of viral capsids from five different serotypes (AAV2, AAV5, AAV6, AAV8, and AAV9). For this purpose, we apply multiwavelength sedimentation velocity analytical ultracentrifugation (SV-AUC) to obtain the species' contents and to derive the wavelength-specific correction factors for the respective insert-size. In an orthogonal manner we perform anion exchange chromatography (AEX) and UV-spectroscopy and the three methods yield comparable results on empty/filled capsid contents with these correction factors. Whereas AEX and UV-spectroscopy can quantify empty and filled AAVs, only SV-AUC could identify the low amounts of partially filled capsids present in the samples used in this study. Finally, we employ negative-staining transmission electron microscopy and mass photometry to support the empty/filled ratios with methods that classify individual capsids. The obtained ratios are consistent throughout the orthogonal approaches as long as no other impurities and aggregates are present. Our results show that the combination of selected orthogonal methods can deliver consistent empty/filled contents on non-standard genome sizes, as well as information on other relevant critical quality attributes, such as AAV capsid concentration, genome concentration, insert size length and sample purity to characterize and compare AAV preparations.
Collapse
Affiliation(s)
- Klaus Richter
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany.
| | - Christine Wurm
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Kim Strasser
- Sirion Biotech GmbH, am Haag 6, 82166 Gräfelfing, Germany
| | - Jana Bauer
- Sirion Biotech GmbH, am Haag 6, 82166 Gräfelfing, Germany
| | - Maria Bakou
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Ross VerHeul
- Beckman Coulter Life Sciences, 5350 Lakeview Pkwy S Dr, Indianapolis, IN 46268, USA
| | - Shawn Sternisha
- Beckman Coulter Life Sciences, 5350 Lakeview Pkwy S Dr, Indianapolis, IN 46268, USA
| | - Andrea Hawe
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | | | - Tim Menzen
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Akash Bhattacharya
- Beckman Coulter Life Sciences, 5350 Lakeview Pkwy S Dr, Indianapolis, IN 46268, USA.
| |
Collapse
|
32
|
De BP, Cram S, Lee H, Rosenberg JB, Sondhi D, Crystal RG, Kaminsky SM. Assessment of Residual Full-Length SV40 Large T Antigen in Clinical-Grade Adeno-Associated Virus Vectors Produced in 293T Cells. Hum Gene Ther 2023; 34:697-704. [PMID: 37171121 PMCID: PMC10457653 DOI: 10.1089/hum.2023.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Efficient production of adeno-associated virus (AAV) vectors is a significant challenge. Human embryonic kidney HEK293T cells are widely used in good manufacturing practice facilities, producing higher yield of AAV vectors for clinical applications than HEK293 through the addition of a constitutive expression of SV40 large T antigen (SV40T), which stimulates Rep expression. However, the theoretical potential for tumorigenic consequences of a clinical AAV product containing residual DNA encoding SV40T, which may inhibit p53 growth suppressive functions is a safety concern. Although the risk is theoretical, to assure a low risk/high confidence of safety for clinical drug development, we have established a sensitive assay for assessment of functional full-length transcription competent SV40T DNA in HEK293T cell-produced AAV vectors. Using HEK293T generated 8, 9, and rh.10 serotype AAV vectors, the presence of SV40T in purified vector was assessed in vitro using quantitative polymerase chain reaction (qPCR) targeting a 129 bp amplicon combined with nested PCR targeting full-length SV40T DNA. Although low levels of the smaller amplicon were present in each AAV serotype, the full-length SV40T was undetectable. No transcription competent full-length SV40T DNA was observed by reverse transcription-quantitative polymerase chain reaction using an in vivo amplification of signal in mouse liver administered (2-10 × 1010 gc) 129 bp amplicon-positive AAV vectors. As a control for gene transfer, high levels of expressed transgene mRNAs were observed from each serotype AAV vector, yet, SV40T mRNA was undetectable. In vivo assessment of these three liver-tropic AAV serotypes, each with amplicon-positive qPCR SV40T DNA, demonstrated high transgene mRNA expression but no SV40T mRNA, that is, detection of small segments of SV40T DNA in 293T cell produced AAV inappropriately leads to the conclusion of residuals with the potential to express SV40T. This sensitive assay can be used to assess the level, if any, of SV40T antigen contaminating AAV vectors generated by HEK293T cells. ClinicalTrials.gov identifier: NCT03634007; NCT05302271; NCT01414985; NCT01161576.
Collapse
Affiliation(s)
- Bishnu P. De
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Sara Cram
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Hyunmi Lee
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Stephen M. Kaminsky
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
33
|
Yip M, Chen J, Zhi Y, Tran NT, Namkung S, Pastor E, Gao G, Tai PWL. Querying Recombination Junctions of Replication-Competent Adeno-Associated Viruses in Gene Therapy Vector Preparations with Single Molecule, Real-Time Sequencing. Viruses 2023; 15:1228. [PMID: 37376529 DOI: 10.3390/v15061228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Clinical-grade preparations of adeno-associated virus (AAV) vectors used for gene therapy typically undergo a series of diagnostics to determine titer, purity, homogeneity, and the presence of DNA contaminants. One type of contaminant that remains poorly investigated is replication-competent (rc)AAVs. rcAAVs form through recombination of DNA originating from production materials, yielding intact, replicative, and potentially infectious virus-like virions. They can be detected through the serial passaging of lysates from cells transduced by AAV vectors in the presence of wildtype adenovirus. Cellular lysates from the last passage are subjected to qPCR to detect the presence of the rep gene. Unfortunately, the method cannot be used to query the diversity of recombination events, nor can qPCR provide insights into how rcAAVs arise. Thus, the formation of rcAAVs through errant recombination events between ITR-flanked gene of interest (GOI) constructs and expression constructs carrying the rep-cap genes is poorly described. We have used single molecule, real-time sequencing (SMRT) to analyze virus-like genomes expanded from rcAAV-positive vector preparations. We present evidence that sequence-independent and non-homologous recombination between the ITR-bearing transgene and the rep/cap plasmid occurs under several events and rcAAVs spawn from diverse clones.
Collapse
Affiliation(s)
- Mitchell Yip
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Jing Chen
- Spirovant Sciences, Inc., Philadelphia, PA 19104, USA
| | - Yan Zhi
- Spirovant Sciences, Inc., Philadelphia, PA 19104, USA
| | - Ngoc Tam Tran
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Suk Namkung
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Eric Pastor
- Spirovant Sciences, Inc., Philadelphia, PA 19104, USA
| | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute of Rare Diseases Research, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute of Rare Diseases Research, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
34
|
Neto S, Mendes JP, Santos SBD, Solbrand A, Carrondo MJT, Peixoto C, Silva RJS. Efficient adeno-associated virus serotype 5 capture with affinity functionalized nanofiber adsorbents. Front Bioeng Biotechnol 2023; 11:1183974. [PMID: 37260828 PMCID: PMC10229133 DOI: 10.3389/fbioe.2023.1183974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
Adeno-associated viruses (AAVs) are one of the most promising tools for gene therapy applications. These vectors are purified using affinity and ion exchange chromatography, typically using packed beds of resin adsorbents. This leads to diffusion and pressure drop limitations that affect process productivity. Due to their high surface area and porosity, electrospun nanofiber adsorbents offer mass transfer and flow rate advantages over conventional chromatographic media. The present work investigated the use of affinity cellulose-based nanofiber adsorbents for adeno-associated virus serotype 5 (AAV5) capture, evaluating dynamic binding capacity, pressure drop, and AAV5 recovery at residence times (RT) less than 5 s. The dynamic binding capacity was found to be residence time-dependent, but nevertheless higher than 1.0 × 1014 TP mL-1 (RT = 1.6 s), with a pressure drop variation of 0.14 MPa obtained after loading more than 2,000 column volumes of clarified AAV5 feedstock. The single affinity chromatography purification step using these new affinity adsorbents resulted in 80% virus recovery, with the removal of impurities comparable to that of bead-based affinity adsorbents. The high binding capacity, virus recovery and reduced pressure drop observed at residence times in the sub-minute range can potentially eliminate the need for prior concentration steps, thereby reducing the overall number of unit operations, process time and costs.
Collapse
Affiliation(s)
- Salomé Neto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João P. Mendes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo J. S. Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
35
|
Stone D, Aubert M, Jerome KR. Adeno-associated virus vectors and neurotoxicity-lessons from preclinical and human studies. Gene Ther 2023:10.1038/s41434-023-00405-1. [PMID: 37165032 PMCID: PMC11247785 DOI: 10.1038/s41434-023-00405-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
Over 15 years after hepatotoxicity was first observed following administration of an adeno-associated virus (AAV) vector during a hemophilia B clinical trial, recent reports of treatment-associated neurotoxicity in animals and humans have brought the potential impact of AAV-associated toxicity back to prominence. In both pre-clinical studies and clinical trials, systemic AAV administration has been associated with neurotoxicity in peripheral nerve ganglia and spinal cord. Neurological signs have also been seen following direct AAV injection into the brain, both in non-human primates and in a clinical trial for late infantile Batten disease. Neurotoxic events appear variable across species, and preclinical animal studies do not fully predict clinical observations. Accumulating data suggest that AAV-associated neurotoxicity may be underdiagnosed and may differ between species in terms of frequency and/or severity. In this review, we discuss the different animal models that have been used to demonstrate AAV-associated neurotoxicity, its potential causes and consequences, and potential approaches to blunt AAV-associated neurotoxicity.
Collapse
Affiliation(s)
- Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Martine Aubert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
36
|
Wan Y, Ding Y. Strategies and mechanisms of neuronal reprogramming. Brain Res Bull 2023; 199:110661. [PMID: 37149266 DOI: 10.1016/j.brainresbull.2023.110661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Traumatic injury and neurodegenerative diseases of the central nervous system (CNS) are difficult to treat due to the poorly regenerative nature of neurons. Engrafting neural stem cells into the CNS is a classic approach for neuroregeneration. Despite great advances, stem cell therapy still faces the challenges of overcoming immunorejection and achieving functional integration. Neuronal reprogramming, a recent innovation, converts endogenous non-neuronal cells (e.g., glial cells) into mature neurons in the adult mammalian CNS. In this review, we summarize the progress of neuronal reprogramming research, mainly focusing on strategies and mechanisms of reprogramming. Furthermore, we highlight the advantages of neuronal reprogramming and outline related challenges. Although the significant development has been made in this field, several findings are controversial. Even so, neuronal reprogramming, especially in vivo reprogramming, is expected to become an effective treatment for CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Yue Wan
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan Ding
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
37
|
Ohba K, Sehara Y, Enoki T, Mineno J, Ozawa K, Mizukami H. Adeno-associated virus vector system controlling capsid expression improves viral quantity and quality. iScience 2023; 26:106487. [PMID: 37096037 PMCID: PMC10122016 DOI: 10.1016/j.isci.2023.106487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Adeno-associated virus (AAV) vectors are promising tools for gene therapy. The current AAV vector system produces an abundance of empty capsids that are eliminated before clinical use, leading to increased costs for gene therapy. In the present study, we established an AAV production system that regulates the timing of capsid expression using a tetracycline-dependent promoter. Tetracycline-regulating capsid expression increased viral yield and reduced empty capsids in various serotypes without altering AAV vector infectivity in vitro and in vivo. The replicase expression pattern change observed in the developed AAV vector system improved viral quantity and quality, whereas timing control of capsid expression reduced empty capsids. These findings provide a new perspective on the development of AAV vector production systems in gene therapy.
Collapse
Affiliation(s)
- Kenji Ohba
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
- Corresponding author
| | - Yoshihide Sehara
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Tatsuji Enoki
- CDM Center, TAKARA Bio Inc., Kusatsu, Shiga 525-0058, Japan
| | - Junichi Mineno
- CDM Center, TAKARA Bio Inc., Kusatsu, Shiga 525-0058, Japan
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
- Department of Immuno-Gene & Cell Therapy (Takara Bio), Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
38
|
Ishibashi Y, Sung CYW, Grati M, Chien W. Immune responses in the mammalian inner ear and their implications for AAV-mediated inner ear gene therapy. Hear Res 2023; 432:108735. [PMID: 36965335 DOI: 10.1016/j.heares.2023.108735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/13/2023]
Abstract
Adeno-associated virus (AAV)-mediated inner ear gene therapy is a promising treatment option for hearing loss and dizziness. Several studies have shown that AAV-mediated inner ear gene therapy can be applied to various mouse models of hereditary hearing loss to improve their auditory function. Despite the increase in AAV-based animal and clinical studies aiming to rescue auditory and vestibular functions, little is currently known about the host immune responses to AAV in the mammalian inner ear. It has been reported that the host immune response plays an important role in the safety and efficacy of viral-mediated gene therapy. Therefore, in order for AAV-mediated gene therapy to be successfully and safely translated into patients with hearing loss and dizziness, a better understanding of the host immune responses to AAV in the inner ear is critical. In this review, we summarize the current knowledge on host immune responses to AAV-mediated gene therapy in the mammalian inner ear and other organ systems. We also outline the areas of research that are critical for ensuring the safety and efficacy of AAV-mediated inner ear gene therapy in future clinical and translational studies.
Collapse
Affiliation(s)
- Yasuko Ishibashi
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA; Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Cathy Yea Won Sung
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Mhamed Grati
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA
| | - Wade Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA; Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
39
|
AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release 2023; 355:458-473. [PMID: 36736907 DOI: 10.1016/j.jconrel.2023.01.067] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
In recent years, adeno-associated virus (AAV) has become the most important vector for central nervous system (CNS) gene therapy. AAV has already shown promising results in the clinic, for several CNS diseases that cannot be treated with drugs, including neurodegenerative diseases, neuromuscular diseases, and lysosomal storage disorders. Currently, three of the four commercially available AAV-based drugs focus on neurological disorders, including Upstaza for aromatic l-amino acid decarboxylase deficiency, Luxturna for hereditary retinal dystrophy, and Zolgensma for spinal muscular atrophy. All these studies have provided paradigms for AAV-based therapeutic intervention platforms. AAV gene therapy, with its dual promise of targeting disease etiology and enabling 'long-term correction' of disease processes, has the advantages of immune privilege, high delivery efficiency, tissue specificity, and cell tropism in the CNS. Although AAV-based gene therapy has been shown to be effective in most CNS clinical trials, limitations have been observed in its clinical applications, which are often associated with side effects. In this review, we summarized the therapeutic progress, challenges, limitations, and solutions for AAV-based gene therapy in 14 types of CNS diseases. We focused on viral vector technologies, delivery routes, immunosuppression, and other relevant clinical factors. We also attempted to integrate several hurdles faced in clinical and preclinical studies with their solutions, to seek the best path forward for the application of AAV-based gene therapy in the context of CNS diseases. We hope that these thoughtful recommendations will contribute to the efficient translation of preclinical studies and wide application of clinical trials.
Collapse
|
40
|
Iglesias CF, Ristovski M, Bolic M, Cuperlovic-Culf M. rAAV Manufacturing: The Challenges of Soft Sensing during Upstream Processing. Bioengineering (Basel) 2023; 10:bioengineering10020229. [PMID: 36829723 PMCID: PMC9951952 DOI: 10.3390/bioengineering10020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) is the most effective viral vector technology for directly translating the genomic revolution into medicinal therapies. However, the manufacturing of rAAV viral vectors remains challenging in the upstream processing with low rAAV yield in large-scale production and high cost, limiting the generalization of rAAV-based treatments. This situation can be improved by real-time monitoring of critical process parameters (CPP) that affect critical quality attributes (CQA). To achieve this aim, soft sensing combined with predictive modeling is an important strategy that can be used for optimizing the upstream process of rAAV production by monitoring critical process variables in real time. However, the development of soft sensors for rAAV production as a fast and low-cost monitoring approach is not an easy task. This review article describes four challenges and critically discusses the possible solutions that can enable the application of soft sensors for rAAV production monitoring. The challenges from a data scientist's perspective are (i) a predictor variable (soft-sensor inputs) set without AAV viral titer, (ii) multi-step forecasting, (iii) multiple process phases, and (iv) soft-sensor development composed of the mechanistic model.
Collapse
Affiliation(s)
| | - Milica Ristovski
- Faculty of Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Miodrag Bolic
- Faculty of Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Miroslava Cuperlovic-Culf
- Digital Technologies Research Center, National Research Council, Ottawa, ON K1A 0R6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence:
| |
Collapse
|
41
|
Extra-viral DNA in adeno-associated viral vector preparations induces TLR9-dependent innate immune responses in human plasmacytoid dendritic cells. Sci Rep 2023; 13:1890. [PMID: 36732401 PMCID: PMC9894911 DOI: 10.1038/s41598-023-28830-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Adeno-associated viral (AAV) vector suspensions produced in either human derived HEK cells or in Spodoptera frugiperda (Sf9) insect cells differ in terms of residual host cell components as well as species-specific post-translational modifications displayed on the AAV capsid proteins. Here we analysed the impact of these differences on the immunogenic properties of the vector. We stimulated human plasmacytoid dendritic cells with various lots of HEK cell-produced and Sf9 cell-produced AAV-CMV-eGFP vectors derived from different manufacturers. We found that AAV8-CMV-eGFP as well as AAV2-CMV-eGFP vectors induced lot-specific but not production platform-specific or manufacturer-specific inflammatory cytokine responses. These could be reduced or abolished by blocking toll-like receptor 9 signalling or by enzymatically reducing DNA in the vector lots using DNase. Successful HEK cell transduction by DNase-treated AAV lots and DNA analyses demonstrated that DNase did not affect the integrity of the vector but degraded extra-viral DNA. We conclude that both HEK- and Sf9-cell derived AAV preparations can contain immunogenic extra-viral DNA components which can trigger lot-specific inflammatory immune responses. This suggests that improved strategies to remove extra-viral DNA impurities may be instrumental in reducing the immunogenic properties of AAV vector preparations.
Collapse
|
42
|
Biology, Pathobiology and Gene Therapy of CNG Channel-Related Retinopathies. Biomedicines 2023; 11:biomedicines11020269. [PMID: 36830806 PMCID: PMC9953513 DOI: 10.3390/biomedicines11020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The visual process begins with the absorption of photons by photopigments of cone and rod photoreceptors in the retina. In this process, the signal is first amplified by a cyclic guanosine monophosphate (cGMP)-based signaling cascade and then converted into an electrical signal by cyclic nucleotide-gated (CNG) channels. CNG channels are purely ligand-gated channels whose activity can be controlled by cGMP, which induces a depolarizing Na+/Ca2+ current upon binding to the channel. Structurally, CNG channels belong to the superfamily of pore-loop cation channels and share structural similarities with hyperpolarization-activated cyclic nucleotide (HCN) and voltage-gated potassium (KCN) channels. Cone and rod photoreceptors express distinct CNG channels encoded by homologous genes. Mutations in the genes encoding the rod CNG channel (CNGA1 and CNGB1) result in retinitis-pigmentosa-type blindness. Mutations in the genes encoding the cone CNG channel (CNGA3 and CNGB3) lead to achromatopsia. Here, we review the molecular properties of CNG channels and describe their physiological and pathophysiological roles in the retina. Moreover, we summarize recent activities in the field of gene therapy aimed at developing the first gene therapies for CNG channelopathies.
Collapse
|
43
|
Chung CH, Murphy CM, Wingate VP, Pavlicek JW, Nakashima R, Wei W, McCarty D, Rabinowitz J, Barton E. Production of rAAV by plasmid transfection induces antiviral and inflammatory responses in suspension HEK293 cells. Mol Ther Methods Clin Dev 2023; 28:272-283. [PMID: 36819978 PMCID: PMC9937832 DOI: 10.1016/j.omtm.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Recombinant adeno-associated virus (rAAV) is a clinically proven viral vector for delivery of therapeutic genes to treat rare diseases. Improving rAAV manufacturing productivity and vector quality is necessary to meet clinical and commercial demand. These goals will require an improved understanding of the cellular response to rAAV production, which is poorly defined. We interrogated the kinetic transcriptional response of HEK293 cells to rAAV production following transient plasmid transfection, under manufacturing-relevant conditions, using RNA-seq. Time-series analyses identified a robust cellular response to transfection and rAAV production, with 1,850 transcripts differentially expressed. Gene Ontology analysis determined upregulated pathways, including inflammatory and antiviral responses, with several interferon-stimulated cytokines and chemokines being upregulated at the protein level. Literature-based pathway prediction implicated multiple pathogen pattern sensors and signal transducers in up-regulation of inflammatory and antiviral responses in response to transfection and rAAV replication. Systematic analysis of the cellular transcriptional response to rAAV production indicates that host cells actively sense vector manufacture as an infectious insult. This dataset may therefore illuminate genes and pathways that influence rAAV production, thereby enabling the rational design of next-generation manufacturing platforms to support safe, effective, and affordable AAV-based gene therapies.
Collapse
Affiliation(s)
- Cheng-Han Chung
- Pfizer Inc., Worldwide Research, Development and Medical, Bioprocess Research and Development, Morrisville, NC 27560, USA
| | - Christopher M. Murphy
- Pfizer Inc., Worldwide Research, Development and Medical, Bioprocess Research and Development, Morrisville, NC 27560, USA
| | - Vincent P. Wingate
- Pfizer Inc., Worldwide Research, Development and Medical, Bioprocess Research and Development, Morrisville, NC 27560, USA
| | - Jeffrey W. Pavlicek
- Pfizer Inc., Worldwide Research, Development and Medical, Bioprocess Research and Development, Morrisville, NC 27560, USA
| | - Reiko Nakashima
- Pfizer Inc., Worldwide Research, Development and Medical, Simulation and Modeling Sciences, Cambridge, MA 02139, USA
| | - Wei Wei
- Pfizer Inc., Worldwide Research, Development and Medical, Bioprocess Research and Development, Morrisville, NC 27560, USA
| | - Douglas McCarty
- Pfizer Inc., Worldwide Research, Development and Medical, Rare Disease Research Unit, Morrisville, NC 27560, USA
| | - Joseph Rabinowitz
- Pfizer Inc., Worldwide Research, Development and Medical, Rare Disease Research Unit, Morrisville, NC 27560, USA
| | - Erik Barton
- Pfizer Inc., Worldwide Research, Development and Medical, Bioprocess Research and Development, Morrisville, NC 27560, USA,Corresponding author: Erik Barton, Pfizer Inc., Worldwide Research, Development and Medical, Bioprocess Research and Development, Morrisville, NC 27560, USA.
| |
Collapse
|
44
|
Li D, Long M, Li T, Shu Y, Shan X, Zhang J, Ma D, Long S, Wang X, Jia F, Pan Y, Chen J, Liu P, Sun Q. The whole-genome sequencing of prevalent DENV-1 strains during the largest dengue virus outbreak in Xishuangbanna Dai autonomous prefecture in 2019. J Med Virol 2023; 95:e28115. [PMID: 36059257 DOI: 10.1002/jmv.28115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
In 2019, a serious dengue virus (DENV) infection broke out in the Xishuangbanna Dai Autonomous Prefecture, China. Therefore, we conducted a molecular epidemiological analysis in people that contracted DENV serotype 1 (DENV-1) during this year. We analyzed the molecular epidemiology of six DENV-1 epidemic strains in 2019 by full-length genome sequencing, amino acid mutation site analysis, evolutionary tree analysis, and recombination site comparison analysis. Through the analysis of amino acid mutation sites, it was found that DENV-1 strain (MW386867) was different from the other five epidemic DENV-1 strains in Xishuangbanna in 2019. MW386867 had unique mutation sites at six loci. The six epidemic DENV-1 strains in Xishuangbanna in 2019 were divided into two clusters. MW386867 was highly similar to the MG679800 (Myanmar 2017), MG679801 (Myanmar 2017), and KC172834 (Laos 2008), and the other five strains were highly similar to JQ045660 (Vietnam 2011), FJ176780 (GuangDong 2006). Genetic recombination analysis revealed that there was no recombination signal in the six epidemic DENV-1 strains in Xishuangbanna in 2019. We speculate that the DENV-1 epidemic in 2019 has a co-epidemic of local strains and cross-border strains.
Collapse
Affiliation(s)
- Daiying Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - MingWang Long
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - Tingting Li
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Yun Shu
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Xiyun Shan
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Juan Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China.,Institute of Medical Biology, Kunming Medical University, Kunming, People's Republic of China
| | - Dehong Ma
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Shuying Long
- Institute of Medical Biology, Kunming Medical University, Kunming, People's Republic of China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - Fan Jia
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China.,Institute of Medical Biology, Kunming Medical University, Kunming, People's Republic of China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - Junying Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - Pinghua Liu
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| |
Collapse
|
45
|
Kearney AM. Chromatographic Purification of Viral Vectors for Gene Therapy Applications. Methods Mol Biol 2023; 2699:51-60. [PMID: 37646993 DOI: 10.1007/978-1-0716-3362-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Chromatography has been a mainstay in the downstream processing and purification of biopharmaceutical medicines. Until now, this has largely involved the purification of protein products such as recombinant enzymes and monoclonal antibodies using large-scale column chromatography methods. The development of advanced therapeutic medicinal products (ATMP) is heralding in a new era of therapeutics for a range of indications. These new therapeutics use diverse substances ranging from live stem cell preparations to fragments of nucleic acid enclosed in a viral delivery system. With these new technologies come new challenges in their purification. In this chapter, the challenges faced in producing and purifying viral vectors capable of delivering life-altering gene therapy to the patient will be discussed. Current methods of chromatography capable of adaptation to meet these new challenges and advancements that may be needed to increase the purification capabilities for these new products will also be discussed.
Collapse
|
46
|
Katsushima K, Joshi K, Perera RJ. Diagnostic and therapeutic potential of circular RNA in brain tumors. Neurooncol Adv 2023; 5:vdad063. [PMID: 37334165 PMCID: PMC10276536 DOI: 10.1093/noajnl/vdad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of RNA with a stable cyclic structure. They are expressed in various tissues and cells with conserved, specific characteristics. CircRNAs have been found to play critical roles in a wide range of cellular processes by regulating gene expression at the epigenetic, transcriptional, and posttranscriptional levels. There is an accumulation of evidence on newly discovered circRNAs, their molecular interactions, and their roles in the development and progression of human brain tumors, including cell proliferation, cell apoptosis, invasion, and chemoresistance. Here we summarize the current state of knowledge of the circRNAs that have been implicated in brain tumor pathogenesis, particularly in gliomas and medulloblastomas. In providing a comprehensive overview of circRNA studies, we highlight how different circRNAs have oncogenic or tumor-suppressive roles in brain tumors, making them attractive therapeutic targets and biomarkers for personalized therapy and precision diagnostics. This review article discusses circRNAs' functional roles and the prospect of using them as diagnostic biomarkers and therapeutic targets in patients with brain tumors.
Collapse
Affiliation(s)
- Keisuke Katsushima
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, Florida, USA
| | - Kandarp Joshi
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, Florida, USA
| | - Ranjan J Perera
- Corresponding Author: Ranjan J. Perera, PhD, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA ()
| |
Collapse
|
47
|
Naghdi E, Moran GE, Reinau ME, De Malsche W, Neusüß C. Concepts and recent advances in microchip electrophoresis coupled to mass spectrometry: Technologies and applications. Electrophoresis 2023; 44:246-267. [PMID: 35977423 DOI: 10.1002/elps.202200179] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 02/01/2023]
Abstract
The online coupling of microchip electrophoresis (ME) as a fast, highly efficient, and low-cost miniaturized separation technique to mass spectrometry (MS) as an information-rich and sensitive characterization technique results in ME-MS an attractive tool for various applications. In this paper, we review the basic concepts and latest advances in technology for ME coupled to MS during the period of 2016-2021, covering microchip materials, structures, fabrication techniques, and interfacing to electrospray ionization (ESI)-MS and matrix-assisted laser desorption/ionization-MS. Two critical issues in coupling ME and ESI-MS include the electrical connection used to define the electrophoretic field strength along the separation channel and the generation of the electrospray for MS detection, as well as, a miniaturized ESI-tip. The recent commercialization of ME-MS in zone electrophoresis and isoelectric focusing modes has led to the widespread application of these techniques in academia and industry. Here we summarize recent applications of ME-MS for the separation and detection of antibodies, proteins, peptides, carbohydrates, metabolites, and so on. Throughout the paper these applications are discussed in the context of benefits and limitations of ME-MS in comparison to alternative techniques.
Collapse
Affiliation(s)
- Elahe Naghdi
- Department of Chemistry, Aalen University, Aalen, Germany
| | - Griffin E Moran
- Novo Nordisk A/S, Global Research Technologies, Maaloev, Denmark
| | | | - Wim De Malsche
- µFlow group, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | | |
Collapse
|
48
|
Pupo A, Fernández A, Low SH, François A, Suárez-Amarán L, Samulski RJ. AAV vectors: The Rubik's cube of human gene therapy. Mol Ther 2022; 30:3515-3541. [PMID: 36203359 PMCID: PMC9734031 DOI: 10.1016/j.ymthe.2022.09.015] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/12/2022] Open
Abstract
Defective genes account for ∼80% of the total of more than 7,000 diseases known to date. Gene therapy brings the promise of a one-time treatment option that will fix the errors in patient genetic coding. Recombinant viruses are highly efficient vehicles for in vivo gene delivery. Adeno-associated virus (AAV) vectors offer unique advantages, such as tissue tropism, specificity in transduction, eliciting of a relatively low immune responses, no incorporation into the host chromosome, and long-lasting delivered gene expression, making them the most popular viral gene delivery system in clinical trials, with three AAV-based gene therapy drugs already approved by the US Food and Drug Administration (FDA) or European Medicines Agency (EMA). Despite the success of AAV vectors, their usage in particular scenarios is still limited due to remaining challenges, such as poor transduction efficiency in certain tissues, low organ specificity, pre-existing humoral immunity to AAV capsids, and vector dose-dependent toxicity in patients. In the present review, we address the different approaches to improve AAV vectors for gene therapy with a focus on AAV capsid selection and engineering, strategies to overcome anti-AAV immune response, and vector genome design, ending with a glimpse at vector production methods and the current state of recombinant AAV (rAAV) at the clinical level.
Collapse
Affiliation(s)
- Amaury Pupo
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Audry Fernández
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Siew Hui Low
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Achille François
- Viralgen. Parque Tecnológico de Guipuzkoa, Edificio Kuatro, Paseo Mikeletegui, 83, 20009 San Sebastián, Spain
| | - Lester Suárez-Amarán
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Richard Jude Samulski
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Corresponding author: Richard Jude Samulski, R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, NC 27709, USA.
| |
Collapse
|
49
|
Prasad S, Dimmock DP, Greenberg B, Walia JS, Sadhu C, Tavakkoli F, Lipshutz GS. Immune Responses and Immunosuppressive Strategies for Adeno-Associated Virus-Based Gene Therapy for Treatment of Central Nervous System Disorders: Current Knowledge and Approaches. Hum Gene Ther 2022; 33:1228-1245. [PMID: 35994385 PMCID: PMC9808800 DOI: 10.1089/hum.2022.138] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Adeno-associated viruses (AAVs) are being increasingly used as gene therapy vectors in clinical studies especially targeting central nervous system (CNS) disorders. Correspondingly, host immune responses to the AAV capsid or the transgene-encoded protein have been observed in various clinical and preclinical studies. Such immune responses may adversely impact patients' health, prevent viral transduction, prevent repeated dosing strategies, eliminate transduced cells, and pose a significant barrier to the potential effectiveness of AAV gene therapy. Consequently, multiple immunomodulatory strategies have been used in attempts to limit immune-mediated responses to the vector, enable readministration of AAV gene therapy, prevent end-organ toxicity, and increase the duration of transgene-encoded protein expression. Herein we review the innate and adaptive immune responses that may occur during CNS-targeted AAV gene therapy as well as host- and treatment-specific factors that could impact the immune response. We also summarize the available preclinical and clinical data on immune responses specifically to CNS-targeted AAV gene therapy and discuss potential strategies for incorporating prophylactic immunosuppression regimens to circumvent adverse immune responses.
Collapse
Affiliation(s)
| | - David P. Dimmock
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Benjamin Greenberg
- Department of Neurology, O'Donnell Brain Institute, University of Texas Southwestern, Dallas, Texas, USA
| | - Jagdeep S. Walia
- Division of Medical Genetics, Department of Pediatrics, Queen's University, Kingston, Canada
| | | | | | - Gerald S. Lipshutz
- Departments of Molecular and Medical Pharmacology and Surgery, Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Correspondence: Prof. Gerald S. Lipshutz, Departments of Molecular and Medical Pharmacology and Surgery, Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
50
|
Ferrari S, Jacob A, Cesana D, Laugel M, Beretta S, Varesi A, Unali G, Conti A, Canarutto D, Albano L, Calabria A, Vavassori V, Cipriani C, Castiello MC, Esposito S, Brombin C, Cugnata F, Adjali O, Ayuso E, Merelli I, Villa A, Di Micco R, Kajaste-Rudnitski A, Montini E, Penaud-Budloo M, Naldini L. Choice of template delivery mitigates the genotoxic risk and adverse impact of editing in human hematopoietic stem cells. Cell Stem Cell 2022; 29:1428-1444.e9. [PMID: 36206730 PMCID: PMC9550218 DOI: 10.1016/j.stem.2022.09.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
Long-range gene editing by homology-directed repair (HDR) in hematopoietic stem/progenitor cells (HSPCs) often relies on viral transduction with recombinant adeno-associated viral vector (AAV) for template delivery. Here, we uncover unexpected load and prolonged persistence of AAV genomes and their fragments, which trigger sustained p53-mediated DNA damage response (DDR) upon recruiting the MRE11-RAD50-NBS1 (MRN) complex on the AAV inverted terminal repeats (ITRs). Accrual of viral DNA in cell-cycle-arrested HSPCs led to its frequent integration, predominantly in the form of transcriptionally competent ITRs, at nuclease on- and off-target sites. Optimized delivery of integrase-defective lentiviral vector (IDLV) induced lower DNA load and less persistent DDR, improving clonogenic capacity and editing efficiency in long-term repopulating HSPCs. Because insertions of viral DNA fragments are less frequent with IDLV, its choice for template delivery mitigates the adverse impact and genotoxic burden of HDR editing and should facilitate its clinical translation in HSPC gene therapy.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Aurelien Jacob
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Daniela Cesana
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marianne Laugel
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes 44200, France
| | - Stefano Beretta
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Angelica Varesi
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giulia Unali
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anastasia Conti
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Daniele Canarutto
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Vita-Salute San Raffaele University, Milan 20132, Italy,Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Luisa Albano
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Andrea Calabria
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Valentina Vavassori
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Carlo Cipriani
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Maria Carmina Castiello
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Institute for Genetic and Biomedical Research (UOS Milan Unit), National Research Council, Milan 20132, Italy
| | - Simona Esposito
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Federica Cugnata
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Oumeya Adjali
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes 44200, France
| | - Eduard Ayuso
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes 44200, France
| | - Ivan Merelli
- Institute for Biomedical Technologies, National Research Council, Segrate 20090, Italy
| | - Anna Villa
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Institute for Genetic and Biomedical Research (UOS Milan Unit), National Research Council, Milan 20132, Italy
| | - Raffaella Di Micco
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anna Kajaste-Rudnitski
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Eugenio Montini
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | | | - Luigi Naldini
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Vita-Salute San Raffaele University, Milan 20132, Italy,Corresponding author
| |
Collapse
|