1
|
Gibson RA, Jeck WR, Koch RL, Mehta A, Choi SJ, Sriraman Y, Bali D, Young S, Asokan A, Lim JA, Kishnani PS. Progressive liver disease and dysregulated glycogen metabolism in murine GSD IX γ2 models human disease. Mol Genet Metab 2024; 143:108597. [PMID: 39488079 PMCID: PMC11633833 DOI: 10.1016/j.ymgme.2024.108597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Hepatic glycogen storage disease type IX γ2 (GSD IX γ2) is a severe, liver-specific subtype of GSD IX. While all patients with hepatic GSD IX present with similar symptoms, over 95 % of patients with GSD IX γ2 progress to liver fibrosis and cirrhosis. Despite disease severity, the long-term natural history of GSD IX γ2 liver disease progression is not known. Our lab previously characterized the Phkg2-/- mouse model at 3 months of age, demonstrating that the mouse recapitulates the early liver disease phenotype of GSD IX γ2. To understand how liver disease progresses in GSD IX γ2, we characterized the mouse model through 24 months of age. Our study showed for the first time that GSD IX γ2 mice develop liver fibrosis that progresses to cirrhosis. Importantly, we observed that the progression of liver fibrosis is associated with an initial elevation and subsequent decrease of key GSD biomarkers - the latter being a finding that is often considered to be an improvement of disease in patients. In recognition of the unique liver fibrosis pattern and to support future therapeutic investigations using this model, we developed a novel scoring system for GSD IX γ2 mouse liver pathology. Lastly, this work introduces evidence of a dysregulated glycogen metabolism pathway which can serve as an endpoint for future therapeutic evaluation. As we await longitudinal clinical natural history data, these findings greatly expand our understanding of liver disease manifestations in GSD IX γ2 and have notable clinical applications.
Collapse
Affiliation(s)
- Rebecca A Gibson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - William R Jeck
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca L Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Aarav Mehta
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Su Jin Choi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Yajur Sriraman
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Deeksha Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Sarah Young
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Aravind Asokan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Priya S Kishnani
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
2
|
Liu D, Li T, Liu L, Che X, Li X, Liu C, Wu G. Adeno-associated virus therapies: Pioneering solutions for human genetic diseases. Cytokine Growth Factor Rev 2024; 80:109-120. [PMID: 39322487 DOI: 10.1016/j.cytogfr.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Adeno-associated virus (AAV) has emerged as a fundamental component in the gene therapy landscape, widely acknowledged for its effectiveness in therapeutic gene delivery. The success of AAV-based therapies, such as Luxturna and Zolgensma, underscores their potential as a leading vector in gene therapy. This article provides an in-depth review of the development and mechanisms of AAV vector-based therapies, offering a comprehensive analysis of the latest clinical trial outcomes in central nervous system (CNS) diseases, ocular conditions, and hemophilia, where AAV therapies have shown promising results. Additionally, we discusse the selection of administration methods and serotypes tailored to specific diseases. Our objective is to showcase the innovative applications and future potential of AAV-based gene therapy, laying the groundwork for continued clinical advancements.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaorui Li
- Department of oncology, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China.
| | - Chang Liu
- Department of thoracic surgery, Shenyang Tenth People's Hospital, Shenyang 110042, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
3
|
Colella P. Advances in Pompe Disease Treatment: From Enzyme Replacement to Gene Therapy. Mol Diagn Ther 2024; 28:703-719. [PMID: 39134822 DOI: 10.1007/s40291-024-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 10/27/2024]
Abstract
Pompe disease is a neuromuscular disorder caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), hydrolyzing glycogen to glucose. Pathological glycogen storage, the hallmark of the disease, disrupts the metabolism and function of various cell types, especially muscle cells, leading to cardiac, motor, and respiratory dysfunctions. The spectrum of Pompe disease manifestations spans two main forms: classical infantile-onset (IOPD) and late-onset (LOPD). IOPD, caused by almost complete GAA deficiency, presents at birth and leads to premature death by the age of 2 years without treatment. LOPD, less severe due to partial GAA activity, appears in childhood, adolescence, or adulthood with muscle weakness and respiratory problems. Since 2006, enzyme replacement therapy (ERT) has been approved for Pompe disease, offering clinical benefits but not a cure. However, advances in early diagnosis through newborn screening, recognizing disease manifestations, and developing improved treatments are set to enhance Pompe disease care. This article reviews recent progress in ERT and ongoing translational research, including the approval of second-generation ERTs, a clinical trial of in utero ERT, and preclinical development of gene and substrate reduction therapies. Notably, gene therapy using intravenous delivery of adeno-associated virus (AAV) vectors is in phase I/II clinical trials for both LOPD and IOPD. Promising data from LOPD trials indicate that most participants met the criteria to discontinue ERT several months after gene therapy. The advantages and challenges of this approach are discussed. Overall, significant progress is being made towards curative therapies for Pompe disease. While several challenges remain, emerging data are promising and suggest the potential for a once-in-a-lifetime treatment.
Collapse
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
4
|
Du A, Yang K, Zhou X, Ren L, Liu N, Zhou C, Liang J, Yan N, Gao G, Wang D. Systemic gene therapy corrects the neurological phenotype in a mouse model of NGLY1 deficiency. JCI Insight 2024; 9:e183189. [PMID: 39137042 PMCID: PMC11466192 DOI: 10.1172/jci.insight.183189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
The cytoplasmic peptide:N-glycanase (NGLY1) is ubiquitously expressed and functions as a de-N-glycosylating enzyme that degrades misfolded N-glycosylated proteins. NGLY1 deficiency due to biallelic loss-of-function NGLY1 variants is an ultrarare autosomal recessive deglycosylation disorder with multisystemic involvement; the neurological manifestations represent the main disease burden. Currently, there is no treatment for this disease. To develop a gene therapy, we first characterized a tamoxifen-inducible Ngly1-knockout (iNgly1) C57BL/6J mouse model, which exhibited symptoms recapitulating human disease, including elevation of the biomarker GlcNAc-Asn, motor deficits, kyphosis, Purkinje cell loss, and gait abnormalities. We packaged a codon-optimized human NGLY1 transgene cassette into 2 adeno-associated virus (AAV) capsids, AAV9 and AAV.PHPeB. Systemic administration of the AAV.PHPeB vector to symptomatic iNgly1 mice corrected multiple disease features at 8 weeks after treatment. Furthermore, another cohort of AAV.PHPeB-treated iNgly1 mice were monitored over a year and showed near-complete normalization of the neurological aspects of the disease phenotype, demonstrating the durability of gene therapy. Our data suggested that brain-directed NGLY1 gene replacement via systemic delivery is a promising therapeutic strategy for NGLY1 deficiency. Although the superior CNS tropism of AAV.PHPeB vector does not translate to primates, emerging AAV capsids with enhanced primate CNS tropism will enable future translational studies.
Collapse
Affiliation(s)
- Ailing Du
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Kun Yang
- Department of Immunology and
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xuntao Zhou
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lingzhi Ren
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Nan Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Chen Zhou
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jialing Liang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Nan Yan
- Department of Immunology and
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems and
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
5
|
Najac C, van der Beek NAME, Boer VO, van Doorn PA, van der Ploeg AT, Ronen I, Kan HE, van den Hout JMP. Brain glycogen build-up measured by magnetic resonance spectroscopy in classic infantile Pompe disease. Brain Commun 2024; 6:fcae303. [PMID: 39309683 PMCID: PMC11416038 DOI: 10.1093/braincomms/fcae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Classic infantile Pompe disease is caused by abnormal lysosomal glycogen accumulation in multiple tissues, including the brain due to a deficit in acid α-glucosidase. Although treatment with recombinant human acid α-glucosidase has dramatically improved survival, recombinant human acid α-glucosidase does not reach the brain, and surviving classic infantile Pompe patients develop progressive cognitive deficits and white matter lesions. We investigated the feasibility of measuring non-invasively glycogen build-up and other metabolic alterations in the brain of classic infantile Pompe patients. Four classic infantile patients (8-16 years old) and 4 age-matched healthy controls were scanned on a 7 T MRI scanner. We used T2-weighted MRI to assess the presence of white matter lesions as well as 1H magnetic resonance spectroscopy and magnetic resonance spectroscopy imaging to obtain the neurochemical profile and its spatial distribution, respectively. All patients had widespread white matter lesions on T2-weighted images. Magnetic resonance spectroscopy data from a single volume of interest positioned in the periventricular white matter showed a clear shift in the neurochemical profile, particularly a significant increase in glycogen (result of acid α-glucosidase deficiency) and decrease in N-acetyl-aspartate (marker of neuronal damage) in patients. Magnetic resonance spectroscopy imaging results were in line and showed a widespread accumulation of glycogen and a significant lower level of N-acetyl-aspartate in patients. Our results illustrate the unique potential of 1H magnetic resonance spectroscopy (imaging) to provide a non-invasive readout of the disease pathology in the brain. Further study will assess its potential to monitor disease progression and the correlation with cognitive decline.
Collapse
Affiliation(s)
- Chloé Najac
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Nadine A M E van der Beek
- Center for Lysosomal and Metabolic Diseases, Department of Neurology, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Vincent O Boer
- Danish Research Center for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, DK2650 Copenhagen, Denmark
| | - Pieter A van Doorn
- Center for Lysosomal and Metabolic Diseases, Department of Neurology, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, East Sussex BN1 9RR, UK
| | - Hermien E Kan
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Duchenne Center Netherlands, 2333 ZA Leiden, The Netherlands
| | - Johanna M P van den Hout
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
6
|
Colpaert M, Singh PK, Donohue KJ, Pires NT, Fuller DD, Corti M, Byrne BJ, Sun RC, Vander Kooi CW, Gentry MS. Neurological glycogen storage diseases and emerging therapeutics. Neurotherapeutics 2024; 21:e00446. [PMID: 39277505 PMCID: PMC11581880 DOI: 10.1016/j.neurot.2024.e00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
Glycogen storage diseases (GSDs) comprise a group of inherited metabolic disorders characterized by defects in glycogen metabolism, leading to abnormal glycogen accumulation in multiple tissues, most notably affecting the liver, skeletal muscle, and heart. Recent findings have uncovered the importance of glycogen metabolism in the brain, sustaining a myriad of physiological functions and linking its perturbation to central nervous system (CNS) pathology. This link resulted in classification of neurological-GSDs (n-GSDs), a group of diseases with shared deficits in neurological glycogen metabolism. The n-GSD patients exhibit a spectrum of clinical presentations with common etiology while requiring tailored therapeutic approaches from the traditional GSDs. Recent research has elucidated the genetic and biochemical mechanisms and pathophysiological basis underlying different n-GSDs. Further, the last decade has witnessed some promising developments in novel therapeutic approaches, including enzyme replacement therapy (ERT), substrate reduction therapy (SRT), small molecule drugs, and gene therapy targeting key aspects of glycogen metabolism in specific n-GSDs. This preclinical progress has generated noticeable success in potentially modifying disease course and improving clinical outcomes in patients. Herein, we provide an overview of current perspectives on n-GSDs, emphasizing recent advances in understanding their molecular basis, therapeutic developments, underscore key challenges and the need to deepen our understanding of n-GSDs pathogenesis to develop better therapeutic strategies that could offer improved treatment and sustainable benefits to the patients.
Collapse
Affiliation(s)
- Matthieu Colpaert
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - David D Fuller
- Department of Physical Therapy and Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Manuela Corti
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Matthew S Gentry
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Koch RL, Kiely BT, Choi SJ, Jeck WR, Flores LS, Sood V, Alam S, Porta G, LaVecchio K, Soler-Alfonso C, Kishnani PS. Natural history study of hepatic glycogen storage disease type IV and comparison to Gbe1ys/ys model. JCI Insight 2024; 9:e177722. [PMID: 38912588 PMCID: PMC11383185 DOI: 10.1172/jci.insight.177722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
BackgroundGlycogen storage disease type IV (GSD IV) is an ultrarare autosomal recessive disorder that causes deficiency of functional glycogen branching enzyme and formation of abnormally structured glycogen termed polyglucosan. GSD IV has traditionally been categorized based on primary hepatic or neuromuscular involvement, with hepatic GSD IV subclassified as discrete subtypes: classic (progressive) and nonprogressive.MethodsTo better understand the progression of liver disease in GSD IV, we present clinical and histopathology data from 23 patients from around the world and characterized the liver involvement in the Gbe1ys/ys knockin mouse model.ResultsWe propose an alternative to the established subtype-based terminology for characterizing liver disease in GSD IV and recognize 3 tiers of disease severity: (i) "severe progressive" liver disease, (ii) "intermediate progressive" liver disease, and (iii) "attenuated" liver disease. Analysis of liver pathology revealed that risk for liver failure cannot be predicted from liver biopsy findings alone in individuals affected by GSD IV. Moreover, analysis of postmortem liver pathology from an individual who died over 40 years after being diagnosed with nonprogressive hepatic GSD IV in childhood verified that liver fibrosis did not regress. Last, characterization of the liver involvement in a mouse model known to recapitulate the adult-onset neurodegenerative form of GSD IV (Gbe1ys/ys mouse model) demonstrated hepatic disease.ConclusionOur findings challenge the established subtype-based view of GSD IV and suggest that liver disease severity among patients with GSD IV represents a disease continuum.Trial registrationClinicalTrials.gov NCT02683512FundingNone.
Collapse
Affiliation(s)
- Rebecca L Koch
- Division of Medical Genetics, Department of Pediatrics, and
| | | | - Su Jin Choi
- Division of Medical Genetics, Department of Pediatrics, and
| | - William R Jeck
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Vikrant Sood
- Department of Pediatric Hepatology and Liver Transplantation, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Seema Alam
- Department of Pediatric Hepatology and Liver Transplantation, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gilda Porta
- Hepatology and Liver Transplant Unit, Menino Jesus Hospital, São Paulo, Brazil
| | - Katy LaVecchio
- Department of Pathology, The Queen's Medical Center, Honolulu, Hawaii, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
8
|
Muñoz S, Bertolin J, Jimenez V, Jaén ML, Garcia M, Pujol A, Vilà L, Sacristan V, Barbon E, Ronzitti G, El Andari J, Tulalamba W, Pham QH, Ruberte J, VandenDriessche T, Chuah MK, Grimm D, Mingozzi F, Bosch F. Treatment of infantile-onset Pompe disease in a rat model with muscle-directed AAV gene therapy. Mol Metab 2024; 81:101899. [PMID: 38346589 PMCID: PMC10877955 DOI: 10.1016/j.molmet.2024.101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Pompe disease (PD) is caused by deficiency of the lysosomal enzyme acid α-glucosidase (GAA), leading to progressive glycogen accumulation and severe myopathy with progressive muscle weakness. In the Infantile-Onset PD (IOPD), death generally occurs <1 year of age. There is no cure for IOPD. Mouse models of PD do not completely reproduce human IOPD severity. Our main objective was to generate the first IOPD rat model to assess an innovative muscle-directed adeno-associated viral (AAV) vector-mediated gene therapy. METHODS PD rats were generated by CRISPR/Cas9 technology. The novel highly myotropic bioengineered capsid AAVMYO3 and an optimized muscle-specific promoter in conjunction with a transcriptional cis-regulatory element were used to achieve robust Gaa expression in the entire muscular system. Several metabolic, molecular, histopathological, and functional parameters were measured. RESULTS PD rats showed early-onset widespread glycogen accumulation, hepato- and cardiomegaly, decreased body and tissue weight, severe impaired muscle function and decreased survival, closely resembling human IOPD. Treatment with AAVMYO3-Gaa vectors resulted in widespread expression of Gaa in muscle throughout the body, normalizing glycogen storage pathology, restoring muscle mass and strength, counteracting cardiomegaly and normalizing survival rate. CONCLUSIONS This gene therapy holds great potential to treat glycogen metabolism alterations in IOPD. Moreover, the AAV-mediated approach may be exploited for other inherited muscle diseases, which also are limited by the inefficient widespread delivery of therapeutic transgenes throughout the muscular system.
Collapse
Affiliation(s)
- Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Joan Bertolin
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Maria Luisa Jaén
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Miquel Garcia
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Anna Pujol
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Laia Vilà
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Victor Sacristan
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Elena Barbon
- INTEGRARE, Genethon, INSERM UMR951, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, INSERM UMR951, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Jihad El Andari
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, BioQuant Center, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Quang Hong Pham
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Jesus Ruberte
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, BioQuant Center, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany; German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany
| | - Federico Mingozzi
- INTEGRARE, Genethon, INSERM UMR951, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
9
|
Zhang Y, Tang D, Wang L, Yang J, Wu X, Xiao X, Wang JS. Prevention of Portal-Tract Fibrosis in Zfyve19-/- Mouse Model with Adeno-Associated Virus Vector Delivering ZFYVE19. Hum Gene Ther 2023; 34:1219-1229. [PMID: 37672510 DOI: 10.1089/hum.2023.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
Zinc finger FYVE-type containing 19 (ZFYVE19) deficiency, caused by biallelic ZFYVE19 complete loss-of-function variants, is a recently identified chronic hepatobiliary disorder characterized by obvious portal-tract fibrosis, increased numbers of bile ducts with malformations, and abnormal levels of serum markers of hepatobiliary injury. As liver-targeted adeno-associated virus (AAV) gene therapy has been used successfully in hepatobiliary diseases, liver-targeted gene therapy has been explored in a mouse model of this disorder. Three ZFYVE19 AAV vectors (AAV-hZFYVE19, AAV-hZFYVE19-m, and AAV-hZFYVE19-co) were constructed and injected into Zfyve19-/- mice, which were treated with alpha-naphthyl isothiocyanate, a hepatobiliary toxin. Hematoxylin/eosin, immunohistochemical staining, immunofluorescence staining, Sirius Red staining, real-time quantitative PCR, and Western blotting of liver tissue, along with serum hepatobiliary injury marker analyses, were performed to evaluate the effects of gene therapy. AAV-hZFYVE19 decreased serum hepatobiliary injury markers, portal-tract inflammation, ductal hyperplasia, and portal-tract fibrosis in the Zfyve19-/- model mice most substantially at a relatively low dose (1 × 1011 vg/kg), whereas AAV-hZFYVE19 at a higher dose gradually lost the abovementioned benefits and even caused deterioration at the highest dose of 5 × 1012 vg/kg. These observations verified the pathogenicity of ZFYVE19 deficiency and suggested that the ZFYVE19 gene needs to function well at an optimal level of expression; both too low and too high a ZFYVE19 expression may be harmful.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Dingyue Tang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Li Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Yang
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Xia Wu
- School of Pharmacy, East China University of Science and Technology, Shanghai, China; and
| | - Xiao Xiao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defect, Shanghai, China
| |
Collapse
|
10
|
Leon-Astudillo C, Trivedi PD, Sun RC, Gentry MS, Fuller DD, Byrne BJ, Corti M. Current avenues of gene therapy in Pompe disease. Curr Opin Neurol 2023; 36:464-473. [PMID: 37639402 PMCID: PMC10911405 DOI: 10.1097/wco.0000000000001187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Pompe disease is a rare, inherited, devastating condition that causes progressive weakness, cardiomyopathy and neuromotor disease due to the accumulation of glycogen in striated and smooth muscle, as well as neurons. While enzyme replacement therapy has dramatically changed the outcome of patients with the disease, this strategy has several limitations. Gene therapy in Pompe disease constitutes an attractive approach due to the multisystem aspects of the disease and need to address the central nervous system manifestations. This review highlights the recent work in this field, including methods, progress, shortcomings, and future directions. RECENT FINDINGS Recombinant adeno-associated virus (rAAV) and lentiviral vectors (LV) are well studied platforms for gene therapy in Pompe disease. These products can be further adapted for safe and efficient administration with concomitant immunosuppression, with the modification of specific receptors or codon optimization. rAAV has been studied in multiple clinical trials demonstrating safety and tolerability. SUMMARY Gene therapy for the treatment of patients with Pompe disease is feasible and offers an opportunity to fully correct the principal pathology leading to cellular glycogen accumulation. Further work is needed to overcome the limitations related to vector production, immunologic reactions and redosing.
Collapse
Affiliation(s)
- Carmen Leon-Astudillo
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Prasad D Trivedi
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ramon C Sun
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | - Matthew S Gentry
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | | | - Barry J Byrne
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Manuela Corti
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
11
|
Labella B, Cotti Piccinelli S, Risi B, Caria F, Damioli S, Bertella E, Poli L, Padovani A, Filosto M. A Comprehensive Update on Late-Onset Pompe Disease. Biomolecules 2023; 13:1279. [PMID: 37759679 PMCID: PMC10526932 DOI: 10.3390/biom13091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Pompe disease (PD) is an autosomal recessive disorder caused by mutations in the GAA gene that lead to a deficiency in the acid alpha-glucosidase enzyme. Two clinical presentations are usually considered, named infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD), which differ in age of onset, organ involvement, and severity of disease. Assessment of acid alpha-glucosidase activity on a dried blood spot is the first-line screening test, which needs to be confirmed by genetic analysis in case of suspected deficiency. LOPD is a multi-system disease, thus requiring a multidisciplinary approach for efficacious management. Enzyme replacement therapy (ERT), which was introduced over 15 years ago, changes the natural progression of the disease. However, it has limitations, including a reduction in efficacy over time and heterogeneous therapeutic responses among patients. Novel therapeutic approaches, such as gene therapy, are currently under study. We provide a comprehensive review of diagnostic advances in LOPD and a critical discussion about the advantages and limitations of current and future treatments.
Collapse
Affiliation(s)
- Beatrice Labella
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Stefano Cotti Piccinelli
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Barbara Risi
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Filomena Caria
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Simona Damioli
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Enrica Bertella
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Loris Poli
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| |
Collapse
|
12
|
Meena NK, Randazzo D, Raben N, Puertollano R. AAV-mediated delivery of secreted acid α-glucosidase with enhanced uptake corrects neuromuscular pathology in Pompe mice. JCI Insight 2023; 8:e170199. [PMID: 37463048 PMCID: PMC10543735 DOI: 10.1172/jci.insight.170199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
Gene therapy is under advanced clinical development for several lysosomal storage disorders. Pompe disease, a debilitating neuromuscular illness affecting infants, children, and adults with different severity, is caused by a deficiency of lysosomal glycogen-degrading enzyme acid α-glucosidase (GAA). Here, we demonstrated that adeno-associated virus-mediated (AAV-mediated) systemic gene transfer reversed glycogen storage in all key therapeutic targets - skeletal and cardiac muscles, the diaphragm, and the central nervous system - in both young and severely affected old Gaa-knockout mice. Furthermore, the therapy reversed secondary cellular abnormalities in skeletal muscle, such as those in autophagy and mTORC1/AMPK signaling. We used an AAV9 vector encoding a chimeric human GAA protein with enhanced uptake and secretion to facilitate efficient spread of the expressed protein among multiple target tissues. These results lay the groundwork for a future clinical development strategy in Pompe disease.
Collapse
Affiliation(s)
- Naresh K. Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Smith EC, Hopkins S, Case LE, Xu M, Walters C, Dearmey S, Han SO, Spears TG, Chichester JA, Bossen EH, Hornik CP, Cohen JL, Bali D, Kishnani PS, Koeberl DD. Phase I study of liver depot gene therapy in late-onset Pompe disease. Mol Ther 2023; 31:1994-2004. [PMID: 36805083 PMCID: PMC10362382 DOI: 10.1016/j.ymthe.2023.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023] Open
Abstract
Gene therapy with an adeno-associated virus serotype 8 (AAV8) vector (AAV8-LSPhGAA) could eliminate the need for enzyme replacement therapy (ERT) by creating a liver depot for acid α-glucosidase (GAA) production. We report initial safety and bioactivity of the first dose (1.6 × 1012 vector genomes/kg) cohort (n = 3) in a 52-week open-label, single-dose, dose-escalation study (NCT03533673) in patients with late-onset Pompe disease (LOPD). Subjects discontinued biweekly ERT after week 26 based on the detection of elevated serum GAA activity and the absence of clinically significant declines per protocol. Prednisone (60 mg/day) was administered as immunoprophylaxis through week 4, followed by an 11-week taper. All subjects demonstrated sustained serum GAA activities from 101% to 235% of baseline trough activity 2 weeks following the preceding ERT dose. There were no treatment-related serious adverse events. No subject had anti-capsid T cell responses that decreased transgene expression. Muscle biopsy at week 24 revealed unchanged muscle glycogen content in two of three subjects. At week 52, muscle GAA activity for the cohort was significantly increased (p < 0.05). Overall, these initial data support the safety and bioactivity of AAV8-LSPhGAA, the safety of withdrawing ERT, successful immunoprophylaxis, and justify continued clinical development of AAV8-LSPhGAA therapy in Pompe disease.
Collapse
Affiliation(s)
- Edward C Smith
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Sam Hopkins
- Asklepios Biopharmaceutical, Inc. (Askbio), Durham, NC, USA
| | - Laura E Case
- Department of Orthopedics, Duke University School of Medicine, Durham, NC, USA
| | - Ming Xu
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Crista Walters
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Stephanie Dearmey
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Sang-Oh Han
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Tracy G Spears
- Clinical Trials Statistics, Duke Clinical Research Institute, Durham, NC, USA
| | - Jessica A Chichester
- Immunology Core, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward H Bossen
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Christoph P Hornik
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Jennifer L Cohen
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Deeksha Bali
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Priya S Kishnani
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Dwight D Koeberl
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
14
|
Zhang WC, Mao YY, Chen Q. [Research progress of nervous system damage in Pompe disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:420-424. [PMID: 37073849 PMCID: PMC10120337 DOI: 10.7499/j.issn.1008-8830.2211052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Pompe disease, also known as glycogen storage disease type Ⅱ, is a rare autosomal recessive disease. With the application of enzyme replacement therapy, more and more patients with Pompe disease can survive to adulthood, and nervous system-related clinical manifestations gradually emerge. Nervous system involvement seriously affects the quality of life of patients with Pompe disease, and a systematic understanding of the clinical manifestations, imaging features and pathological changes of nervous system injury in Pompe disease is of great significance for the early identification and intervention of Pompe disease. This article reviews the research progress of neurological damage in Pompe disease.
Collapse
Affiliation(s)
- Wen-Chao Zhang
- Department of Neurology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Ying-Ying Mao
- Department of Neurology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Qian Chen
- Department of Neurology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
15
|
Lau CH, Huang S, Lam RHW, Tin C. PAM-flexible dual base editor-mediated random mutagenesis and self-activation strategies to improve CRISPRa potency. Mol Ther Methods Clin Dev 2022; 26:26-37. [PMID: 35755943 PMCID: PMC9198377 DOI: 10.1016/j.omtm.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 05/25/2022] [Indexed: 12/01/2022]
Abstract
VP64 is the smallest transactivation domain that can be packaged together with the sgRNA into a single adeno-associated virus (AAV) vector. However, VP64-based CRISPRa often exerts modest activation to the target gene when only one sgRNA is used. Herein, we used PAM-flexible dual base editor-mediated mutagenesis and self-activation strategies to derive VP64 variants with gain-of-function mutations. First, we generated an HEK293FT transgenic clone to stably expressing pTK-CRISPRa-GFP. The sgRNA of CRISPRa was designed to target the TK promoter, thereby allowing self-activation of CRISPRa-GFP. Base editors were then used to randomly mutagenesis VP64 in this transgenic cell. VP64 with enhanced potency would translate into increment of GFP fluorescence intensity, thereby allowing positive selection of the desired VP64 mutants. This strategy has enabled us to identify several VP64 variants that are more potent than the wild-type VP64. ΔCRISPRa derived from these VP64 variants also efficiently activated the endogenous promoter of anti-aging and longevity genes (KLOTHO, SIRT6, and NFE2L2) in human cells. Since the overall size of these ΔCRISPRa transgenes is not increased, it remains feasible for all-in-one AAV applications. The strategies described here can facilitate high-throughput screening of the desired protein variants and adapted to evolve any other effector domains.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biomedical Engineering, City University of Hong Kong, Room P6416, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Siping Huang
- Department of Biomedical Engineering, City University of Hong Kong, Room P6416, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Raymond H W Lam
- Department of Biomedical Engineering, City University of Hong Kong, Room P6416, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Chung Tin
- Department of Biomedical Engineering, City University of Hong Kong, Room P6416, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| |
Collapse
|
16
|
Roger AL, Sethi R, Huston ML, Scarrow E, Bao-Dai J, Lai E, Biswas DD, Haddad LE, Strickland LM, Kishnani PS, ElMallah MK. What's new and what's next for gene therapy in Pompe disease? Expert Opin Biol Ther 2022; 22:1117-1135. [PMID: 35428407 PMCID: PMC10084869 DOI: 10.1080/14712598.2022.2067476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Pompe disease is an autosomal recessive disorder caused by a deficiency of acid-α-glucosidase (GAA), an enzyme responsible for hydrolyzing lysosomal glycogen. A lack of GAA leads to accumulation of glycogen in the lysosomes of cardiac, skeletal, and smooth muscle cells, as well as in the central and peripheral nervous system. Enzyme replacement therapy has been the standard of care for 15 years and slows disease progression, particularly in the heart, and improves survival. However, there are limitations of ERT success, which gene therapy can overcome. AREAS COVERED Gene therapy offers several advantages including prolonged and consistent GAA expression and correction of skeletal muscle as well as the critical CNS pathology. We provide a systematic review of the preclinical and clinical outcomes of adeno-associated viral mediated gene therapy and alternative gene therapy strategies, highlighting what has been successful. EXPERT OPINION Although the preclinical and clinical studies so far have been promising, barriers exist that need to be addressed in gene therapy for Pompe disease. New strategies including novel capsids for better targeting, optimized DNA vectors, and adjuctive therapies will allow for a lower dose, and ameliorate the immune response.
Collapse
Affiliation(s)
- Angela L. Roger
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Ronit Sethi
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Meredith L. Huston
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Evelyn Scarrow
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Joy Bao-Dai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Elias Lai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Debolina D. Biswas
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Léa El Haddad
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Laura M. Strickland
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina USA
| | - Mai K. ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| |
Collapse
|
17
|
Mendonça RH, Zanoteli E. Gene therapy in neuromuscular disorders. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:249-256. [PMID: 35976325 PMCID: PMC9491441 DOI: 10.1590/0004-282x-anp-2022-s135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Monogenic neuromuscular disorders are potentially treatable through gene therapy. Using viral vectors, a therapeutic transgene aims to restore normal levels of a protein not produced by the defective gene, or to silence a gene whose expression leads to toxic effects. Spinal Muscular Atrophy (SMA) is a good example of a monogenic disease that currently has an AAV9-based vector gene therapy as a therapeutic option. In this review, we intend to discuss the viral vectors and their mechanisms of action, in addition to reviewing the clinical trials that supported the approval of gene therapy (AVXS-101) for SMA as well as neuromuscular diseases that are potentially treatable with gene replacement therapy.
Collapse
Affiliation(s)
- Rodrigo Holanda Mendonça
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo, SP, Brazil
| | - Edmar Zanoteli
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo, SP, Brazil
| |
Collapse
|
18
|
Kofoed RH, Heinen S, Silburt J, Dubey S, Dibia CL, Maes M, Simpson EM, Hynynen K, Aubert I. Transgene distribution and immune response after ultrasound delivery of rAAV9 and PHP.B to the brain in a mouse model of amyloidosis. Mol Ther Methods Clin Dev 2021; 23:390-405. [PMID: 34761053 PMCID: PMC8560718 DOI: 10.1016/j.omtm.2021.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/12/2021] [Accepted: 10/05/2021] [Indexed: 01/01/2023]
Abstract
Efficient disease-modifying treatments for Alzheimer disease, the most common form of dementia, have yet to be established. Gene therapy has the potential to provide the long-term production of therapeutic in the brain following a single administration. However, the blood-brain barrier poses a challenge for gene delivery to the adult brain. We investigated the transduction efficiency and immunological response following non-invasive gene-delivery strategies to the brain of a mouse model of amyloidosis. Two emerging technologies enabling gene delivery across the blood-brain barrier were used to establish the minimal vector dosage required to reach the brain: (1) focused ultrasound combined with intravenous microbubbles, which increases the permeability of the blood-brain barrier at targeted sites and (2) the recombinant adeno-associated virus (rAAV)-based capsid named rAAV-PHP.B. We found that equal intravenous dosages of rAAV9 combined with focused ultrasound, or rAAV-PHP.B, were required for brain gene delivery. In contrast to rAAV9, focused ultrasound did not decrease the rAAV-PHP.B dosage required to transduce brain cells in a mouse model of amyloidosis. The non-invasive rAAV delivery to the brain using rAAV-PHP.B or rAAV9 with focused ultrasound triggered an immune reaction including major histocompatibility complex class II expression, complement system and microglial activation, and T cell infiltration.
Collapse
Affiliation(s)
- Rikke Hahn Kofoed
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stefan Heinen
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Joseph Silburt
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sonam Dubey
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chinaza Lilian Dibia
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Miriam Maes
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at British Columbia Children’s Hospital, Department of Medical Genetics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Kullervo Hynynen
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
19
|
Fischell JM, Fishman PS. A Multifaceted Approach to Optimizing AAV Delivery to the Brain for the Treatment of Neurodegenerative Diseases. Front Neurosci 2021; 15:747726. [PMID: 34630029 PMCID: PMC8497810 DOI: 10.3389/fnins.2021.747726] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Despite major advancements in gene therapy technologies, there are no approved gene therapies for diseases which predominantly effect the brain. Adeno-associated virus (AAV) vectors have emerged as the most effective delivery vector for gene therapy owing to their simplicity, wide spread transduction and low immunogenicity. Unfortunately, the blood-brain barrier (BBB) makes IV delivery of AAVs, to the brain highly inefficient. At IV doses capable of widespread expression in the brain, there is a significant risk of severe immune-mediated toxicity. Direct intracerebral injection of vectors is being attempted. However, this method is invasive, and only provides localized delivery for diseases known to afflict the brain globally. More advanced methods for AAV delivery will likely be required for safe and effective gene therapy to the brain. Each step in AAV delivery, including delivery route, BBB transduction, cellular tropism and transgene expression provide opportunities for innovative solutions to optimize delivery efficiency. Intra-arterial delivery with mannitol, focused ultrasound, optimized AAV capsid evolution with machine learning algorithms, synthetic promotors are all examples of advanced strategies which have been developed in pre-clinical models, yet none are being investigated in clinical trials. This manuscript seeks to review these technological advancements, and others, to improve AAV delivery to the brain, and to propose novel strategies to build upon this research. Ultimately, it is hoped that the optimization of AAV delivery will allow for the human translation of many gene therapies for neurodegenerative and other neurologic diseases.
Collapse
Affiliation(s)
- Jonathan M Fischell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paul S Fishman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
20
|
López-Sánchez N, Garrido-García A, Ramón-Landreau M, Cano-Daganzo V, Frade JM. E2F4-Based Gene Therapy Mitigates the Phenotype of the Alzheimer's Disease Mouse Model 5xFAD. Neurotherapeutics 2021; 18:2484-2503. [PMID: 34766258 PMCID: PMC8804140 DOI: 10.1007/s13311-021-01151-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
After decades of unfruitful work, no effective therapies are available for Alzheimer's disease (AD), likely due to its complex etiology that requires a multifactorial therapeutic approach. We have recently shown using transgenic mice that E2 factor 4 (E2F4), a transcription factor that regulates cell quiescence and tissue homeostasis, and controls gene networks affected in AD, represents a good candidate for a multifactorial targeting of AD. Here we show that the expression of a dominant negative form of human E2F4 (hE2F4DN), unable to become phosphorylated in a Thr-conserved motif known to modulate E2F4 activity, is an effective and safe AD multifactorial therapeutic agent. Neuronal expression of hE2F4DN in homozygous 5xFAD (h5xFAD) mice after systemic administration of an AAV.PHP.B-hSyn1.hE2F4DN vector reduced the production and accumulation of Aβ in the hippocampus, attenuated reactive astrocytosis and microgliosis, abolished neuronal tetraploidization, and prevented cognitive impairment evaluated by Y-maze and Morris water maze, without triggering side effects. This treatment also reversed other alterations observed in h5xFAD mice such as paw-clasping behavior and body weight loss. Our results indicate that E2F4DN-based gene therapy is a promising therapeutic approach against AD.
Collapse
Affiliation(s)
- Noelia López-Sánchez
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, 28002, Madrid, Spain
| | - Alberto Garrido-García
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, 28002, Madrid, Spain
| | - Morgan Ramón-Landreau
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, 28002, Madrid, Spain
| | - Vanesa Cano-Daganzo
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, 28002, Madrid, Spain
| | - José M Frade
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, 28002, Madrid, Spain.
| |
Collapse
|
21
|
Davidson CD, Gibson AL, Gu T, Baxter LL, Deverman BE, Beadle K, Incao AA, Rodriguez-Gil JL, Fujiwara H, Jiang X, Chandler RJ, Ory DS, Gradinaru V, Venditti CP, Pavan WJ. Improved systemic AAV gene therapy with a neurotrophic capsid in Niemann-Pick disease type C1 mice. Life Sci Alliance 2021; 4:e202101040. [PMID: 34407999 PMCID: PMC8380657 DOI: 10.26508/lsa.202101040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Niemann-Pick C1 disease (NPC1) is a rare, fatal neurodegenerative disease caused by mutations in NPC1, which encodes the lysosomal cholesterol transport protein NPC1. Disease pathology involves lysosomal accumulation of cholesterol and lipids, leading to neurological and visceral complications. Targeting the central nervous system (CNS) from systemic circulation complicates treatment of neurological diseases with gene transfer techniques. Selected and engineered capsids, for example, adeno-associated virus (AAV)-PHP.B facilitate peripheral-to-CNS transfer and hence greater CNS transduction than parental predecessors. We report that systemic delivery to Npc1 m1N/m1N mice using an AAV-PHP.B vector ubiquitously expressing NPC1 led to greater disease amelioration than an otherwise identical AAV9 vector. In addition, viral copy number and biodistribution of GFP-expressing reporters showed that AAV-PHP.B achieved more efficient, albeit variable, CNS transduction than AAV9 in Npc1 m1N/m1N mice. This variability was associated with segregation of two alleles of the putative AAV-PHP.B receptor Ly6a in Npc1 m1N/m1N mice. Our data suggest that robust improvements in NPC1 disease phenotypes occur even with modest CNS transduction and that improved neurotrophic capsids have the potential for superior NPC1 AAV gene therapy vectors.
Collapse
Affiliation(s)
- Cristin D Davidson
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alana L Gibson
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tansy Gu
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin E Deverman
- Division of Biology and Biological Engineering, California Institutes of Technology, Pasadena, CA, USA
| | - Keith Beadle
- Division of Biology and Biological Engineering, California Institutes of Technology, Pasadena, CA, USA
| | - Arturo A Incao
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jorge L Rodriguez-Gil
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hideji Fujiwara
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Randy J Chandler
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institutes of Technology, Pasadena, CA, USA
| | - Charles P Venditti
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Korlimarla A, Lim JA, McIntosh P, Zimmerman K, Sun BD, Kishnani PS. New Insights into Gastrointestinal Involvement in Late-Onset Pompe Disease: Lessons Learned from Bench and Bedside. J Clin Med 2021; 10:jcm10153395. [PMID: 34362174 PMCID: PMC8347662 DOI: 10.3390/jcm10153395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There are new emerging phenotypes in Pompe disease, and studies on smooth muscle pathology are limited. Gastrointestinal (GI) manifestations are poorly understood and underreported in Pompe disease. METHODS To understand the extent and the effects of enzyme replacement therapy (ERT; alglucosidase alfa) in Pompe disease, we studied the histopathology (entire GI tract) in Pompe mice (GAAKO 6neo/6neo). To determine the disease burden in patients with late-onset Pompe disease (LOPD), we used Patient-Reported Outcomes Measurements Information System (PROMIS)-GI symptom scales and a GI-focused medical history. RESULTS Pompe mice showed early, extensive, and progressive glycogen accumulation throughout the GI tract. Long-term ERT (6 months) was more effective to clear the glycogen accumulation than short-term ERT (5 weeks). GI manifestations were highly prevalent and severe, presented early in life, and were not fully amenable to ERT in patients with LOPD (n = 58; age range: 18-79 years, median age: 51.55 years; 35 females; 53 on ERT). CONCLUSION GI manifestations cause a significant disease burden on adults with LOPD, and should be evaluated during routine clinical visits, using quantitative tools (PROMIS-GI measures). The study also highlights the need for next generation therapies for Pompe disease that target the smooth muscles.
Collapse
Affiliation(s)
- Aditi Korlimarla
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; (J.-A.L.); (B.D.S.)
- Correspondence: (A.K.); (P.S.K.)
| | - Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; (J.-A.L.); (B.D.S.)
| | - Paul McIntosh
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA;
| | | | - Baodong D. Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; (J.-A.L.); (B.D.S.)
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; (J.-A.L.); (B.D.S.)
- Correspondence: (A.K.); (P.S.K.)
| |
Collapse
|
23
|
Gibson RA, Lim JA, Choi SJ, Flores L, Clinton L, Bali D, Young S, Asokan A, Sun B, Kishnani PS. Characterization of liver GSD IX γ2 pathophysiology in a novel Phkg2 -/- mouse model. Mol Genet Metab 2021; 133:269-276. [PMID: 34083142 PMCID: PMC9792075 DOI: 10.1016/j.ymgme.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/15/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Liver Glycogen Storage Disease IX is a rare metabolic disorder of glycogen metabolism caused by deficiency of the phosphorylase kinase enzyme (PhK). Variants in the PHKG2 gene, encoding the liver-specific catalytic γ2 subunit of PhK, are associated with a liver GSD IX subtype known as PHKG2 GSD IX or GSD IX γ2. There is emerging evidence that patients with GSD IX γ2 can develop severe and progressive liver disease, yet research regarding the disease has been minimal to date. Here we characterize the first mouse model of liver GSD IX γ2. METHODS A Phkg2-/- mouse model was generated via targeted removal of the Phkg2 gene. Knockout (Phkg2-/-, KO) and wild type (Phkg2+/+, WT) mice up to 3 months of age were compared for morphology, Phkg2 transcription, PhK enzyme activity, glycogen content, histology, serum liver markers, and urinary glucose tetrasaccharide Glcα1-6Glcα1-4Glcα1-4Glc (Glc4). RESULTS When compared to WT controls, KO mice demonstrated significantly decreased liver PhK enzyme activity, increased liver: body weight ratio, and increased glycogen in the liver, with no glycogen accumulation observed in the brain, quadricep, kidney, and heart. KO mice demonstrated elevated liver blood markers as well as elevated urine Glc4, a commonly used biomarker for glycogen storage disease. KO mice demonstrated features of liver structural damage. Hematoxylin & Eosin and Masson's Trichrome stained KO mice liver histology slides revealed characteristic GSD hepatocyte architectural changes and early liver fibrosis, as have been reported in liver GSD patients. DISCUSSION This study provides the first evidence of a mouse model that recapitulates the liver-specific pathology of patients with GSD IX γ2. The model will provide the first platform for further study of disease progression in GSD IX γ2 as well as for the evaluation of novel therapeutics.
Collapse
Affiliation(s)
- Rebecca A Gibson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Su Jin Choi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Leticia Flores
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Lani Clinton
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Deeksha Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Sarah Young
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Aravind Asokan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Priya S Kishnani
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
24
|
Phenotypic implications of pathogenic variant types in Pompe disease. J Hum Genet 2021; 66:1089-1099. [PMID: 33972680 DOI: 10.1038/s10038-021-00935-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 11/08/2022]
Abstract
Newborn screening and therapies for Pompe disease (glycogen storage disease type II, acid maltase deficiency) will continue to expand in the future. It is thus important to determine whether enzyme activity or type of pathogenic genetic variant in GAA can best predict phenotypic severity, particularly the presence of infantile-onset Pompe disease (IOPD) versus late-onset Pompe disease (LOPD). We performed a retrospective analysis of 23 participants with genetically-confirmed cases of Pompe disease. The following data were collected: clinical details including presence or absence of cardiomyopathy, enzyme activity levels, and features of GAA variants including exon versus intron location and splice site versus non-splice site. Several combinations of GAA variant types for individual participants had significant associations with disease subtype, cardiomyopathy, age at diagnosis, gross motor function scale (GMFS), and stability of body weight. The presence of at least one splice site variant (c.546 G > C/p.T182 = , c.1076-22 T > G, c.2646 + 2 T > A, and the classic c.-32-13T > G variant) was associated with LOPD, while the presence of non-splice site variants on both alleles was associated with IOPD. Enzyme activity levels in isolation were not sufficient to predict disease subtype or other major clinical features. To extend the findings of prior studies, we found that multiple types of splice site variants beyond the classic c.-32-13T > G variant are often associated with a milder phenotype. Enzyme activity levels continue to have utility for supporting the diagnosis when the genetic variants are ambiguous. It is important for newly diagnosed patients with Pompe disease to have complete genetic, cardiac, and neurological evaluations.
Collapse
|
25
|
Massaro G, Geard AF, Liu W, Coombe-Tennant O, Waddington SN, Baruteau J, Gissen P, Rahim AA. Gene Therapy for Lysosomal Storage Disorders: Ongoing Studies and Clinical Development. Biomolecules 2021; 11:611. [PMID: 33924076 PMCID: PMC8074255 DOI: 10.3390/biom11040611] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Rare monogenic disorders such as lysosomal diseases have been at the forefront in the development of novel treatments where therapeutic options are either limited or unavailable. The increasing number of successful pre-clinical and clinical studies in the last decade demonstrates that gene therapy represents a feasible option to address the unmet medical need of these patients. This article provides a comprehensive overview of the current state of the field, reviewing the most used viral gene delivery vectors in the context of lysosomal storage disorders, a selection of relevant pre-clinical studies and ongoing clinical trials within recent years.
Collapse
Affiliation(s)
- Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Amy F. Geard
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Wenfei Liu
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Oliver Coombe-Tennant
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Simon N. Waddington
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Gene Transfer Technology Group, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK
| | - Julien Baruteau
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK;
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Paul Gissen
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Ahad A. Rahim
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| |
Collapse
|
26
|
Huang L, Wan J, Wu Y, Tian Y, Yao Y, Yao S, Ji X, Wang S, Su Z, Xu H. Challenges in adeno-associated virus-based treatment of central nervous system diseases through systemic injection. Life Sci 2021; 270:119142. [PMID: 33524419 DOI: 10.1016/j.lfs.2021.119142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022]
Abstract
Adeno-associated virus (AAV) vector, an excellent gene therapy vector, has been widely used in the treatment of various central nervous system (CNS) diseases. Due to the presence of the blood-brain barrier (BBB), early attempts at AAV-based CNS diseases treatment were mainly performed through intracranial injections. Subsequently, systemic injections of AAV9, the first AAV that was shown to have BBB-crossing ability in newborn and adult mice, were assessed in clinical trials for multiple CNS diseases. However, the development of systemic AAV injections to treat CNS diseases is still associated with many challenges, such as the efficiency of AAV in crossing the BBB, the peripheral toxicity caused by the expression of AAV-delivered genes, and the immune barrier against AAV in the blood. In this review, we will introduce the biology of the AAV vector and the advantages of systemic AAV injections to treat CNS diseases. Most importantly, we will introduce the challenges associated with systemic injection of therapeutic AAV in treating CNS diseases and suggest feasible solutions.
Collapse
Affiliation(s)
- Lan Huang
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Jie Wan
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Yinqiu Wu
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Yu Tian
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Yizheng Yao
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shun Yao
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoyun Ji
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoliang Su
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
27
|
Hu Z, Mao C, Wang H, Zhang Z, Zhang S, Luo H, Tang M, Yang J, Yuan Y, Wang Y, Liu Y, Fan L, Zhang Q, Yao D, Liu F, Schisler JC, Shi C, Xu Y. CHIP protects against MPP +/MPTP-induced damage by regulating Drp1 in two models of Parkinson's disease. Aging (Albany NY) 2021; 13:1458-1472. [PMID: 33472166 PMCID: PMC7834979 DOI: 10.18632/aging.202389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 09/18/2020] [Indexed: 04/22/2023]
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD). Carboxyl terminus of Hsp70-interacting protein (CHIP) is a key regulator of mitochondrial dynamics, and mutations in CHIP or deficits in its expression have been associated with various neurological diseases. This study explores the protective role of CHIP in cells and murine PD models. In SH-SY5Y cell line, overexpression of CHIP improved the cell viability and increased the ATP levels upon treatment with 1-methyl-4-phenylpyridinium (MPP+). To achieve CHIP overexpression in animal models, we intravenously injected mice with AAV/BBB, a new serotype of adeno-associated virus that features an enhanced capacity to cross the blood-brain barrier. We also generated gene knock-in mice that overexpressed CHIP in neural tissue. Our results demonstrated that CHIP overexpression in mice suppressed 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced damage, including movement impairments, motor coordination, and spontaneous locomotor activity, as well as loss of dopaminergic neurons. In vitro and in vivo experiments showed that overexpression of CHIP inhibited the pathological increase in Drp1 observed in the PD models, suggesting that CHIP regulates Drp1 degradation to attenuate MPP+/MPTP-induced injury. We conclude that CHIP plays a protective role in MPP+/MPTP-induced PD models. Our experiments further revealed that CHIP maintains the integrity of mitochondria.
Collapse
Affiliation(s)
- Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongxian Zhang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yutao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Qimeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Dabao Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Fen Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jonathan C. Schisler
- McAllister Heart Institute at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, and Department of Pathology and Lab Medicine at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
28
|
Liu D, Zhu M, Zhang Y, Diao Y. Crossing the blood-brain barrier with AAV vectors. Metab Brain Dis 2021; 36:45-52. [PMID: 33201426 DOI: 10.1007/s11011-020-00630-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022]
Abstract
Central nervous system (CNS) diseases are some of the most difficult to treat because the blood-brain barrier (BBB) almost entirely limits the passage of many therapeutic drugs into the CNS. Gene therapy based on the adeno-associated virus (AAV) vector has the potential to overcome this problem. For example, an AAV serotype AAV9 has been widely studied for its ability to cross the BBB to transduce astrocytes, but its efficiency is limited. The emergence of AAV directed evolution technology provides a solution, and the variants derived from AAV9 directed evolution have been shown to have significantly higher crossing efficiency than AAV9. However, the mechanisms by which AAV crosses the BBB are still unclear. In this review, we focus on recent advances in crossing the blood-brain barrier with AAV vectors. We first review the AAV serotypes that can be applied to treating CNS diseases. Recent progress in possible AAV crossing the BBB and transduction mechanisms are then summarized. Finally, the methods to improve the AAV transduction efficiency are discussed.
Collapse
Affiliation(s)
- Dan Liu
- School of Biomedical Sciences, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China.
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China.
| | - Mingyang Zhu
- School of Biomedical Sciences, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Yuqian Zhang
- School of Biomedical Sciences, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Yong Diao
- School of Biomedical Sciences, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|
29
|
Ballon DJ, Rosenberg JB, Fung EK, Nikolopoulou A, Kothari P, De BP, He B, Chen A, Heier LA, Sondhi D, Kaminsky SM, Mozley PD, Babich JW, Crystal RG. Quantitative Whole-Body Imaging of I-124-Labeled Adeno-Associated Viral Vector Biodistribution in Nonhuman Primates. Hum Gene Ther 2020; 31:1237-1259. [PMID: 33233962 PMCID: PMC7769048 DOI: 10.1089/hum.2020.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
A method is presented for quantitative analysis of the biodistribution of adeno-associated virus (AAV) gene transfer vectors following in vivo administration. We used iodine-124 (I-124) radiolabeling of the AAV capsid and positron emission tomography combined with compartmental modeling to quantify whole-body and organ-specific biodistribution of AAV capsids from 1 to 72 h following administration. Using intravenous (IV) and intracisternal (IC) routes of administration of AAVrh.10 and AAV9 vectors to nonhuman primates in the absence or presence of anticapsid immunity, we have identified novel insights into initial capsid biodistribution and organ-specific capsid half-life. Neither I-124-labeled AAVrh.10 nor AAV9 administered intravenously was detected at significant levels in the brain relative to the administered vector dose. Approximately 50% of the intravenously administered labeled capsids were dispersed throughout the body, independent of the liver, heart, and spleen. When administered by the IC route, the labeled capsid had a half-life of ∼10 h in the cerebral spinal fluid (CSF), suggesting that by this route, the CSF serves as a source with slow diffusion into the brain. For both IV and IC administration, there was significant influence of pre-existing anticapsid immunity on I-124-capsid biodistribution. The methodology facilitates quantitative in vivo viral vector dosimetry, which can serve as a technique for evaluation of both on- and off-target organ biodistribution, and potentially accelerate gene therapy development through rapid prototyping of novel vector designs.
Collapse
Affiliation(s)
- Douglas J. Ballon
- Department of Radiology, Citigroup Biomedical Imaging Center
- Department of Genetic Medicine
| | | | - Edward K. Fung
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | | - Paresh Kothari
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | | - Bin He
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | | - Linda A. Heier
- Department of Radiology; Weill Cornell Medical College, New York, New York, USA
| | | | | | | | - John W. Babich
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | |
Collapse
|
30
|
Reynaud-Dulaurier R, Decressac M. PHP.B/eB Vectors Bring New Successes to Gene Therapy for Brain Diseases. Front Bioeng Biotechnol 2020; 8:582979. [PMID: 33178675 PMCID: PMC7593648 DOI: 10.3389/fbioe.2020.582979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Affiliation(s)
| | - Michael Decressac
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
| |
Collapse
|
31
|
Salabarria SM, Nair J, Clement N, Smith BK, Raben N, Fuller DD, Byrne BJ, Corti M. Advancements in AAV-mediated Gene Therapy for Pompe Disease. J Neuromuscul Dis 2020; 7:15-31. [PMID: 31796685 PMCID: PMC7029369 DOI: 10.3233/jnd-190426] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pompe disease (glycogen storage disease type II) is caused by mutations in acid α-glucosidase (GAA) resulting in lysosomal pathology and impairment of the muscular and cardio-pulmonary systems. Enzyme replacement therapy (ERT), the only approved therapy for Pompe disease, improves muscle function by reducing glycogen accumulation but this approach entails several limitations including a short drug half-life and an antibody response that results in reduced efficacy. To address these limitations, new treatments such as gene therapy are under development to increase the intrinsic ability of the affected cells to produce GAA. Key components to gene therapy strategies include the choice of vector, promoter, and the route of administration. The efficacy of gene therapy depends on the ability of the vector to drive gene expression in the target tissue and also on the recipient's immune tolerance to the transgene protein. In this review, we discuss the preclinical and clinical studies that are paving the way for the development of a gene therapy strategy for patients with early and late onset Pompe disease as well as some of the challenges for advancing gene therapy.
Collapse
Affiliation(s)
- S M Salabarria
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - J Nair
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - N Clement
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - B K Smith
- Department of Physical Therapy and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida, USA
| | - N Raben
- Laboratory of Protein Trafficking and Organelle Biology, Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - D D Fuller
- Department of Physical Therapy and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida, USA
| | - B J Byrne
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - M Corti
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| |
Collapse
|
32
|
Silva-Pinheiro P, Cerutti R, Luna-Sanchez M, Zeviani M, Viscomi C. A Single Intravenous Injection of AAV-PHP.B- hNDUFS4 Ameliorates the Phenotype of Ndufs4 -/- Mice. Mol Ther Methods Clin Dev 2020; 17:1071-1078. [PMID: 32478122 PMCID: PMC7248291 DOI: 10.1016/j.omtm.2020.04.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022]
Abstract
Leigh syndrome, or infantile necrotizing subacute encephalopathy (OMIM #256000), is one of the most common manifestations of mitochondrial dysfunction, due to mutations in more than 75 genes, with mutations in respiratory complex I subunits being the most common cause. In the present study, we used the recently described PHP.B serotype, characterized by efficient capacity to cross the blood-brain barrier, to express the hNDUFS4 gene in the Ndufs4 -/- mouse model of Leigh disease. A single intravenous injection of PHP.B-hNDUFS4 in adult Ndufs4 -/- mice led to a normalization of the body weight, marked amelioration of the rotarod performance, delayed onset of neurodegeneration, and prolongation of the lifespan up to 1 year of age. hNDUFS4 protein was expressed in virtually all brain regions, leading to a partial recovery of complex I activity. Our findings strongly support the feasibility and effectiveness of adeno-associated viral vector (AAV)-mediated gene therapy for mitochondrial disease, particularly with new serotypes showing increased permeability to the blood-brain barrier in order to achieve widespread expression in the central nervous system.
Collapse
Affiliation(s)
- Pedro Silva-Pinheiro
- MRC/University of Cambridge Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - Raffaele Cerutti
- MRC/University of Cambridge Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - Marta Luna-Sanchez
- MRC/University of Cambridge Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | - Massimo Zeviani
- Department of Neurosciences, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy
- Venetian Institute of Molecular Medicine, Via Orus, 2, 35128 Padova, Italy
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padova, Italy
| |
Collapse
|
33
|
Han SO, Li S, McCall A, Arnson B, Everitt JI, Zhang H, Young SP, ElMallah MK, Koeberl DD. Comparisons of Infant and Adult Mice Reveal Age Effects for Liver Depot Gene Therapy in Pompe Disease. Mol Ther Methods Clin Dev 2020; 17:133-142. [PMID: 31909086 PMCID: PMC6938806 DOI: 10.1016/j.omtm.2019.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/26/2019] [Indexed: 01/20/2023]
Abstract
Pompe disease is caused by the deficiency of lysosomal acid α-glucosidase (GAA). It is expected that gene therapy to replace GAA with adeno-associated virus (AAV) vectors will be less effective early in life because of the rapid loss of vector genomes. AAV2/8-LSPhGAA (3 × 1010 vector genomes [vg]/mouse) was administered to infant (2-week-old) or adult (2-month-old) GAA knockout mice. AAV vector transduction in adult mice significantly corrected GAA deficiency in the heart (p < 0.0001), diaphragm (p < 0.01), and quadriceps (p < 0.001) for >50 weeks. However, in infant mice, the same treatment only partially corrected GAA deficiency in the heart (p < 0.05), diaphragm (p < 0.05), and quadriceps (p < 0.05). The clearance of glycogen was much more efficient in adult mice compared with infant mice. Improved wire hang test latency was observed for treated adults (p < 0.05), but not for infant mice. Abnormal ventilation was corrected in both infant and adult mice. Vector-treated female mice demonstrated functional improvement, despite a lower degree of biochemical correction compared with male mice. The relative vector dose for infants was approximately 3-fold higher than adults, when normalized to body weight at the time of vector administration. Given these data, the dose requirement to achieve similar efficacy will be higher for the treatment of young patients.
Collapse
Affiliation(s)
- Sang-oh Han
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Songtao Li
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Angela McCall
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Benjamin Arnson
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey I. Everitt
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Haoyue Zhang
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sarah P. Young
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Mai K. ElMallah
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dwight D. Koeberl
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Metabolism, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
34
|
Lim JA, Choi SJ, Gao F, Kishnani PS, Sun B. A Novel Gene Therapy Approach for GSD III Using an AAV Vector Encoding a Bacterial Glycogen Debranching Enzyme. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:240-249. [PMID: 32637453 PMCID: PMC7327847 DOI: 10.1016/j.omtm.2020.05.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
Abstract
Glycogen storage disease type III (GSD III) is an inherited disorder caused by a deficiency of glycogen debranching enzyme (GDE), which results in the accumulation of abnormal glycogen (limit dextrin) in the cytoplasm of liver, heart, and skeletal muscle cells. Currently, there is no curative treatment for this disease. Gene therapy with adeno-associated virus (AAV) provides an optimal treatment approach for monogenic diseases like GSD III. However, the 4.6 kb human GDE cDNA is too large to be packaged into a single AAV vector due to its small carrying capacity. To overcome this limitation, we tested a new gene therapy approach in GSD IIIa mice using an AAV vector ubiquitously expressing a smaller bacterial GDE, Pullulanase, whose cDNA is 2.2 kb. Intravenous injection of the AAV vector (AAV9-CB-Pull) into 2-week-old GSD IIIa mice blocked glycogen accumulation in both cardiac and skeletal muscles, but not in the liver, accompanied by the improvement of muscle functions. Subsequent treatment with a liver-restricted AAV vector (AAV8-LSP-Pull) reduced liver glycogen content by 75% and reversed hepatic fibrosis while maintaining the effect of AAV9-CB-Pull treatment on heart and skeletal muscle. Our results suggest that AAV-mediated gene therapy with Pullulanase is a possible treatment for GSD III.
Collapse
Affiliation(s)
- Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Su Jin Choi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Fengqin Gao
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
35
|
Abstract
Glycogen storage disease type II (also known as Pompe disease (PD)) is an autosomal recessive disorder caused by defects in α-glucosidase (AαGlu), resulting in lysosomal glycogen accumulation in skeletal and heart muscles. Accumulation and tissue damage rates depend on residual enzyme activity. Enzyme replacement therapy (ERT) should be started before symptoms are apparent in order to achieve optimal outcomes. Early initiation of ERT in infantile-onset PD improves survival, reduces the need for ventilation, results in earlier independent walking, and enhances patient quality of life. Newborn screening (NBS) is the optimal approach for early diagnosis and treatment of PD. In NBS for PD, measurement of AαGlu enzyme activity in dried blood spots (DBSs) is conducted using fluorometry, tandem mass spectrometry, or digital microfluidic fluorometry. The presence of pseudodeficiency alleles, which are frequent in Asian populations, interferes with NBS for PD, and current NBS systems cannot discriminate between pseudodeficiency and cases with PD or potential PD. The combination of GAA gene analysis with NBS is essential for definitive diagnoses of PD. In this review, we introduce our experiences and discuss NBS programs for PD implemented in various countries.
Collapse
|
36
|
Cagin U, Puzzo F, Gomez MJ, Moya-Nilges M, Sellier P, Abad C, Van Wittenberghe L, Daniele N, Guerchet N, Gjata B, Collaud F, Charles S, Sola MS, Boyer O, Krijnse-Locker J, Ronzitti G, Colella P, Mingozzi F. Rescue of Advanced Pompe Disease in Mice with Hepatic Expression of Secretable Acid α-Glucosidase. Mol Ther 2020; 28:2056-2072. [PMID: 32526204 PMCID: PMC7474269 DOI: 10.1016/j.ymthe.2020.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/15/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Pompe disease is a neuromuscular disorder caused by disease-associated variants in the gene encoding for the lysosomal enzyme acid α-glucosidase (GAA), which converts lysosomal glycogen to glucose. We previously reported full rescue of Pompe disease in symptomatic 4-month-old Gaa knockout (Gaa−/−) mice by adeno-associated virus (AAV) vector-mediated liver gene transfer of an engineered secretable form of GAA (secGAA). Here, we showed that hepatic expression of secGAA rescues the phenotype of 4-month-old Gaa−/− mice at vector doses at which the native form of GAA has little to no therapeutic effect. Based on these results, we then treated severely affected 9-month-old Gaa−/− mice with an AAV vector expressing secGAA and followed the animals for 9 months thereafter. AAV-treated Gaa−/− mice showed complete reversal of the Pompe phenotype, with rescue of glycogen accumulation in most tissues, including the central nervous system, and normalization of muscle strength. Transcriptomic profiling of skeletal muscle showed rescue of most altered pathways, including those involved in mitochondrial defects, a finding supported by structural and biochemical analyses, which also showed restoration of lysosomal function. Together, these results provide insight into the reversibility of advanced Pompe disease in the Gaa−/− mouse model via liver gene transfer of secGAA.
Collapse
Affiliation(s)
- Umut Cagin
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Francesco Puzzo
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France; Sorbonne Université, Paris, France
| | - Manuel Jose Gomez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | | | - Pauline Sellier
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Catalina Abad
- Université de Rouen Normandie-IRIB, 76183 Rouen, France
| | | | - Nathalie Daniele
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Nicolas Guerchet
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Bernard Gjata
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Fanny Collaud
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Severine Charles
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Marcelo Simon Sola
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Olivier Boyer
- Université de Rouen Normandie-IRIB, 76183 Rouen, France
| | | | - Giuseppe Ronzitti
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Pasqualina Colella
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France
| | - Federico Mingozzi
- INTEGRARE, Genethon, INSERM, Université d'Evry, Université Paris-Saclay, 91002 Evry, France; Sorbonne Université, Paris, France; Spark Therapeutics, Philadelphia, PA 19103, USA.
| |
Collapse
|
37
|
Fusco AF, McCall AL, Dhindsa JS, Zheng L, Bailey A, Kahn AF, ElMallah MK. The Respiratory Phenotype of Pompe Disease Mouse Models. Int J Mol Sci 2020; 21:ijms21062256. [PMID: 32214050 PMCID: PMC7139647 DOI: 10.3390/ijms21062256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/10/2023] Open
Abstract
Pompe disease is a glycogen storage disease caused by a deficiency in acid α-glucosidase (GAA), a hydrolase necessary for the degradation of lysosomal glycogen. This deficiency in GAA results in muscle and neuronal glycogen accumulation, which causes respiratory insufficiency. Pompe disease mouse models provide a means of assessing respiratory pathology and are important for pre-clinical studies of novel therapies that aim to treat respiratory dysfunction and improve quality of life. This review aims to compile and summarize existing manuscripts that characterize the respiratory phenotype of Pompe mouse models. Manuscripts included in this review were selected utilizing specific search terms and exclusion criteria. Analysis of these findings demonstrate that Pompe disease mouse models have respiratory physiological defects as well as pathologies in the diaphragm, tongue, higher-order respiratory control centers, phrenic and hypoglossal motor nuclei, phrenic and hypoglossal nerves, neuromuscular junctions, and airway smooth muscle. Overall, the culmination of these pathologies contributes to severe respiratory dysfunction, underscoring the importance of characterizing the respiratory phenotype while developing effective therapies for patients.
Collapse
|
38
|
ElMallah MK, Desai AK, Nading EB, DeArmey S, Kravitz RM, Kishnani PS. Pulmonary outcome measures in long-term survivors of infantile Pompe disease on enzyme replacement therapy: A case series. Pediatr Pulmonol 2020; 55:674-681. [PMID: 31899940 PMCID: PMC7053514 DOI: 10.1002/ppul.24621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To report the respiratory function of school-aged children with infantile Pompe disease (IPD) who started enzyme replacement therapy (ERT) in infancy and early childhood. STUDY DESIGN This is a retrospective chart review of pulmonary function tests of: (a) patients with IPD 5 to 18 years of age, (b) who were not ventilator dependent, and (c) were able to perform upright and supine spirometry. Subjects were divided into a younger (5-9 years) and older cohort (10-18 years) for the analysis. Upright and supine forced vital capacity (FVC), maximal inspiratory pressure (MIP), and maximal expiratory pressure (MEP) were analyzed. RESULTS Fourteen patients, all cross-reactive immunologic material (CRIM)-positive, met the inclusion criteria and were included in this study. Mean upright and supine FVC were 70.3% and 64.9% predicted, respectively, in the 5- to 9-year-old cohort; and 61.5% and 52.5% predicted, respectively, in the 10- to 18-year-old group. Individual patient trends showed stability in FVC overtime in six of the 14 patients. MIPs and MEPs were consistent with inspiratory and expiratory muscle weakness in the younger and older age group but did not decline with age. CONCLUSION Data from this cohort of CRIM-positive patients with IPD showed that ERT is able to maintain respiratory function in a subgroup of patients whereas others had a steady decline. There was a statistically significant decline in FVC from the upright to a supine position in both the younger and older age groups of CRIM-positive ERT-treated patients. Before ERT, patients with IPD were unable to maintain independent ventilation beyond the first few years of life.
Collapse
Affiliation(s)
- Mai K ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Ankit K Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Erica B Nading
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Stephanie DeArmey
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Richard M Kravitz
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
39
|
Bragato C, Carra S, Blasevich F, Salerno F, Brix A, Bassi A, Beltrame M, Cotelli F, Maggi L, Mantegazza R, Mora M. Glycogen storage in a zebrafish Pompe disease model is reduced by 3-BrPA treatment. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165662. [PMID: 31917327 DOI: 10.1016/j.bbadis.2020.165662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022]
Abstract
Pompe disease (PD) is an autosomal recessive muscular disorder caused by deficiency of the glycogen hydrolytic enzyme acid α-glucosidase (GAA). The enzyme replacement therapy, currently the only available therapy for PD patients, is efficacious in improving cardiomyopathy in the infantile form, but not equally effective in the late onset cases with involvement of skeletal muscle. Correction of the skeletal muscle phenotype has indeed been challenging, probably due to concomitant dysfunctional autophagy. The increasing attention to the pathogenic mechanisms of PD and the search of new therapeutic strategies prompted us to generate and characterize a novel transient PD model, using zebrafish. Our model presented increased glycogen content, markedly altered motor behavior and increased lysosome content, in addition to altered expression of the autophagy-related transcripts and proteins Beclin1, p62 and Lc3b. Furthermore, the model was used to assess the beneficial effects of 3-bromopyruvic acid (3-BrPA). Treatment with 3-BrPA induced amelioration of the model phenotypes regarding glycogen storage, motility behavior and autophagy-related transcripts and proteins. Our zebrafish PD model recapitulates most of the defects observed in human patients, proving to be a powerful translational model. Moreover, 3-BrPA unveiled to be a promising compound for treatment of conditions with glycogen accumulation.
Collapse
Affiliation(s)
- Cinzia Bragato
- PhD program in Neuroscience, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy; Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy.
| | - Silvia Carra
- Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, Milan, 20149, Italy
| | - Flavia Blasevich
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Franco Salerno
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Alessia Brix
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Andrea Bassi
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Monica Beltrame
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, Milan, 20133, Italy
| | - Franco Cotelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, Milan, 20133, Italy
| | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Renato Mantegazza
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy.
| |
Collapse
|
40
|
Kishnani PS, Sun B, Koeberl DD. Gene therapy for glycogen storage diseases. Hum Mol Genet 2019; 28:R31-R41. [PMID: 31227835 PMCID: PMC6796997 DOI: 10.1093/hmg/ddz133] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/02/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022] Open
Abstract
The focus of this review is the development of gene therapy for glycogen storage diseases (GSDs). GSD results from the deficiency of specific enzymes involved in the storage and retrieval of glucose in the body. Broadly, GSDs can be divided into types that affect liver or muscle or both tissues. For example, glucose-6-phosphatase (G6Pase) deficiency in GSD type Ia (GSD Ia) affects primarily the liver and kidney, while acid α-glucosidase (GAA) deficiency in GSD II causes primarily muscle disease. The lack of specific therapy for the GSDs has driven efforts to develop new therapies for these conditions. Gene therapy needs to replace deficient enzymes in target tissues, which has guided the planning of gene therapy experiments. Gene therapy with adeno-associated virus (AAV) vectors has demonstrated appropriate tropism for target tissues, including the liver, heart and skeletal muscle in animal models for GSD. AAV vectors transduced liver and kidney in GSD Ia and striated muscle in GSD II mice to replace the deficient enzyme in each disease. Gene therapy has been advanced to early phase clinical trials for the replacement of G6Pase in GSD Ia and GAA in GSD II (Pompe disease). Other GSDs have been treated in proof-of-concept studies, including GSD III, IV and V. The future of gene therapy appears promising for the GSDs, promising to provide more efficacious therapy for these disorders in the foreseeable future.
Collapse
Affiliation(s)
- Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
41
|
Abstract
Pompe disease (PD) is caused by the deficiency of the lysosomal enzyme acid α-glucosidase (GAA), resulting in systemic pathological glycogen accumulation. PD can present with cardiac, skeletal muscle, and central nervous system manifestations, as a continuum of phenotypes among two main forms: classical infantile-onset PD (IOPD) and late-onset PD (LOPD). IOPD is caused by severe GAA deficiency and presents at birth with cardiac hypertrophy, muscle hypotonia, and severe respiratory impairment, leading to premature death, if not treated. LOPD is characterized by levels of residual GAA activity up to ∼20% of normal and presents both in children and adults with a varied severity of muscle weakness and motor and respiratory deficit. Enzyme replacement therapy (ERT), based on repeated intravenous (i.v.) infusions of recombinant human GAA (rhGAA), represents the only available treatment for PD. Upon more than 10 years from its launch, it is becoming evident that ERT can extend the life span of IOPD and stabilize disease progression in LOPD; however, it does not represent a cure for PD. The limited uptake of the enzyme in key affected tissues and the high immunogenicity of rhGAA are some of the hurdles that limit ERT efficacy. GAA gene transfer with adeno-associated virus (AAV) vectors has been shown to reduce glycogen storage and improve the PD phenotype in preclinical studies following different approaches. Here, we present an overview of the different gene therapy approaches for PD, focusing on in vivo gene transfer with AAV vectors and discussing the potential opportunities and challenges in developing safe and effective gene therapies for the disease. Based on emerging safety and efficacy data from clinical trials for other protein deficiencies, in vivo gene therapy with AAV vectors appears to have the potential to provide a therapeutically relevant, stable source of GAA enzyme, which could be highly beneficial in PD.
Collapse
Affiliation(s)
- Pasqualina Colella
- Genethon, Evry, France.,Department of Pediatrics, Stanford University, Stanford, California
| | - Federico Mingozzi
- Genethon, Evry, France.,Spark Therapeutics, Philadelphia, Pennsylvania
| |
Collapse
|
42
|
Korlimarla A, Lim JA, Kishnani PS, Sun B. An emerging phenotype of central nervous system involvement in Pompe disease: from bench to bedside and beyond. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:289. [PMID: 31392201 DOI: 10.21037/atm.2019.04.49] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pompe disease (PD) is a lysosomal storage disorder caused by deficiency of the lysosomal enzyme acid-alpha glucosidase (GAA). Pathogenic variants in the GAA gene lead to excessive accumulation of lysosomal glycogen primarily in the cardiac, skeletal, and smooth muscles. There is growing evidence of central nervous system (CNS) involvement in PD. Current research is focused on determining the true extent of CNS involvement, its effects on behavior and cognition, and effective therapies that would correct the disease in both muscle and the CNS. This review article summarizes the CNS findings in patients, highlights the importance of research on animal models, explores the probable success of gene therapy in reversing CNS pathologies as reported by some breakthrough preclinical studies, and emphasizes the need to follow patients and monitor for CNS involvement over time. Lessons learned from animal models (bench) and from the literature available to date on patients will guide future clinical trials in patients (bedside) with PD. Our preliminary studies in infantile PD show that some patients are susceptible to early and extensive CNS pathologies, as assessed by neuroimaging and developmental assessments. This article highlights the importance of neuroimaging which could serve as useful tools to diagnose and monitor certain CNS pathologies such as white matter hyperintense foci (WMF) in the brain. Longitudinal studies with large sample sizes are warranted at this time to better understand the emergence, progression and consequences of CNS involvement in patients with PD.
Collapse
Affiliation(s)
- Aditi Korlimarla
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Jeong-A Lim
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Priya S Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Baodong Sun
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
43
|
Ronzitti G, Collaud F, Laforet P, Mingozzi F. Progress and challenges of gene therapy for Pompe disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:287. [PMID: 31392199 DOI: 10.21037/atm.2019.04.67] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pompe disease (PD) is a monogenic disorder caused by mutations in the acid alpha-glucosidase gene (Gaa). GAA is a lysosomal enzyme essential for the degradation of glycogen. Deficiency of GAA results in a severe, systemic disorder that, in its most severe form, can be fatal. About a decade ago, the prognosis of PD has changed dramatically with the marketing authorization of an enzyme replacement therapy (ERT) based on recombinant GAA. Despite the breakthrough nature of ERT, long-term follow-up of both infantile and late-onset Pompe disease patients (IOPD and LOPD, respectively), revealed several limitations of the approach. In recent years several investigational therapies for PD have entered preclinical and clinical development, with a few next generation ERTs entering late-stage clinical development. Gene therapy holds the potential to change dramatically the way we treat PD, based on the ability to express the Gaa gene long-term, ideally driving enhanced therapeutic efficacy compared to ERT. Several gene therapy approaches to PD have been tested in preclinical animal models, with a handful of early phase clinical trials started or about to start. The complexity of PD and of the endpoints used to measure efficacy of investigational treatments remains a challenge, however the hope is for a future with more therapeutic options for both IOPD and LOPD patients.
Collapse
Affiliation(s)
| | | | - Pascal Laforet
- Raymond Poincaré Teaching Hospital, APHP, Garches, France.,Nord/Est/Ile de France Neuromuscular Center, France
| | | |
Collapse
|
44
|
Hahn A, Schänzer A. Long-term outcome and unmet needs in infantile-onset Pompe disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:283. [PMID: 31392195 DOI: 10.21037/atm.2019.04.70] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Infantile-onset Pompe disease (IOPD) is characterized by virtually complete absence of acid alpha-glucosidase (GAA)-activity, resulting in rapidly progressive hypertrophic cardiomyopathy (HCM), profound skeletal muscle weakness, and death usually within the first 12 months of life. Enzyme replacement therapy (ERT) with recombinant GAA in humans started in 1999, and pivotal studies demonstrated that the treatment ameliorated HCM, improved motor function in some patients, and prolonged overall and ventilator-free survival. These outcomes led to the approval of ERT in 2006. Implementation of ERT has uncovered multisystemic character of IOPD, not known in the pre-ERT era. Although ERT has substantially improved the prognosis of IOPD, mortality is still considerable, and decline of motor function with time is frequent in long-term survivors. This review details the new complex IOPD phenotype, outlines problems related to ERT, and highlights unmet needs.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Child Neurology, Justus-Liebig-University, Giessen, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|