1
|
Castro BFM, Steel JC, Layton CJ. AAV-Based Strategies for Treatment of Retinal and Choroidal Vascular Diseases: Advances in Age-Related Macular Degeneration and Diabetic Retinopathy Therapies. BioDrugs 2024; 38:73-93. [PMID: 37878215 PMCID: PMC10789843 DOI: 10.1007/s40259-023-00629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are vascular diseases with high prevalence, ranking among the leading causes of blindness and vision loss worldwide. Despite being effective, current treatments for AMD and DR are burdensome for patients and clinicians, resulting in suboptimal compliance and real risk of vision loss. Thus, there is an unmet need for long-lasting alternatives with improved safety and efficacy. Adeno-associated virus (AAV) is the leading vector for ocular gene delivery, given its ability to enable long-term expression while eliciting relatively mild immune responses. Progress has been made in AAV-based gene therapies for not only inherited retinal diseases but also acquired conditions with preclinical and clinical studies of AMD and DR showing promising results. These studies have explored several pathways involved in the disease pathogenesis, as well as different strategies to optimise gene delivery. These include engineered capsids with enhanced tropism to particular cell types, and expression cassettes incorporating elements for a targeted and controlled expression. Multiple-acting constructs have also been investigated, in addition to gene silencing and editing. Here, we provide an overview of strategies employing AAV-mediated gene delivery to treat AMD and DR. We discuss preclinical efficacy studies and present the latest data from clinical trials for both diseases.
Collapse
Affiliation(s)
- Brenda F M Castro
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia.
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia.
| | - Jason C Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Christopher J Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia.
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia.
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia.
| |
Collapse
|
2
|
Wang C, Li X, Su J, Duan J, Yao Y, Shang Q. Crocetin inhibits choroidal neovascularization in both in vitro and in vivo models. Exp Eye Res 2024; 238:109751. [PMID: 38097101 DOI: 10.1016/j.exer.2023.109751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Choroidal neovascularization (CNV) is the primary pathogenic process underlying wet age-related macular degeneration, leading to severe vision loss. Despite current anti-vascular endothelial growth factor (VEGF) therapies, several limitations persist. Crocetin, a major bioactive constituent of saffron, exhibits multiple pharmacological activities, yet its role and mechanism in CNV remain unclear. Here, we investigated the potential effects of crocetin on CNV using in vitro and in vivo models. In human umbilical vein endothelial cells, crocetin demonstrated inhibition of VEGF-induced cell proliferation, migration, and tube formation in vitro, as assessed by CCK-8 and EdU assays, transwell and scratch assays, and tube formation analysis. Additionally, crocetin suppressed choroidal sprouting in ex vivo experiments. In the human retinal pigment epithelium (RPE) cell line ARPE-19, crocetin attenuated cobalt chloride-induced hypoxic cell injury, as evidenced by CCK-8 assay. As evaluated by quantitative PCR and Western blot assay, it also reduced hypoxia-induced expression of VEGF and hypoxia-inducible factor 1α (HIF-1α), while enhancing zonula occludens-1 expression. In a laser-induced CNV mouse model, intravitreal administration of crocetin significantly reduced CNV size and suppressed elevated expressions of VEGF, HIF-1α, TNFα, IL-1β, and IL-6. Moreover, crocetin treatment attenuated the elevation of phospho-S6 in laser-induced CNV and hypoxia-induced RPE cells, suggesting its potential anti-angiogenic effects through antagonizing the mechanistic target of rapamycin complex 1 (mTORC1) signaling. Our findings indicate that crocetin may hold promise as an effective drug for the prevention and treatment of CNV.
Collapse
Affiliation(s)
- Caixia Wang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xuejing Li
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jing Su
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jialiang Duan
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yimin Yao
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Qingli Shang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
3
|
Essential Role of Multi-Omics Approaches in the Study of Retinal Vascular Diseases. Cells 2022; 12:cells12010103. [PMID: 36611897 PMCID: PMC9818611 DOI: 10.3390/cells12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Retinal vascular disease is a highly prevalent vision-threatening ocular disease in the global population; however, its exact mechanism remains unclear. The expansion of omics technologies has revolutionized a new medical research methodology that combines multiple omics data derived from the same patients to generate multi-dimensional and multi-evidence-supported holistic inferences, providing unprecedented opportunities to elucidate the information flow of complex multi-factorial diseases. In this review, we summarize the applications of multi-omics technology to further elucidate the pathogenesis and complex molecular mechanisms underlying retinal vascular diseases. Moreover, we proposed multi-omics-based biomarker and therapeutic strategy discovery methodologies to optimize clinical and basic medicinal research approaches to retinal vascular diseases. Finally, the opportunities, current challenges, and future prospects of multi-omics analyses in retinal vascular disease studies are discussed in detail.
Collapse
|
4
|
Hottin C, Perron M, Roger JE. GSK3 Is a Central Player in Retinal Degenerative Diseases but a Challenging Therapeutic Target. Cells 2022; 11:cells11182898. [PMID: 36139472 PMCID: PMC9496697 DOI: 10.3390/cells11182898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a key regulator of many cellular signaling processes and performs a wide range of biological functions in the nervous system. Due to its central role in numerous cellular processes involved in cell degeneration, a rising number of studies have highlighted the interest in developing therapeutics targeting GSK3 to treat neurodegenerative diseases. Although recent works strongly suggest that inhibiting GSK3 might also be a promising therapeutic approach for retinal degenerative diseases, its full potential is still under-evaluated. In this review, we summarize the literature on the role of GSK3 on the main cellular functions reported as deregulated during retinal degeneration, such as glucose homeostasis which is critical for photoreceptor survival, or oxidative stress, a major component of retinal degeneration. We also discuss the interest in targeting GSK3 for its beneficial effects on inflammation, for reducing neovascularization that occurs in some retinal dystrophies, or for cell-based therapy by enhancing Müller glia cell proliferation in diseased retina. Together, although GSK3 inhibitors hold promise as therapeutic agents, we highlight the complexity of targeting such a multitasked kinase and the need to increase our knowledge of the impact of reducing GSK3 activity on these multiple cellular pathways and biological processes.
Collapse
Affiliation(s)
- Catherine Hottin
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, 91400 Saclay, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, 91400 Saclay, France
| | - Jérôme E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, 91400 Saclay, France
| |
Collapse
|
5
|
Wang Y, Fung NSK, Lam WC, Lo ACY. mTOR Signalling Pathway: A Potential Therapeutic Target for Ocular Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11071304. [PMID: 35883796 PMCID: PMC9311918 DOI: 10.3390/antiox11071304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Recent advances in the research of the mammalian target of the rapamycin (mTOR) signalling pathway demonstrated that mTOR is a robust therapeutic target for ocular degenerative diseases, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. Although the exact mechanisms of individual ocular degenerative diseases are unclear, they share several common pathological processes, increased and prolonged oxidative stress in particular, which leads to functional and morphological impairment in photoreceptors, retinal ganglion cells (RGCs), or retinal pigment epithelium (RPE). mTOR not only modulates oxidative stress but is also affected by reactive oxygen species (ROS) activation. It is essential to understand the complicated relationship between the mTOR pathway and oxidative stress before its application in the treatment of retinal degeneration. Indeed, the substantial role of mTOR-mediated autophagy in the pathogenies of ocular degenerative diseases should be noted. In reviewing the latest studies, this article summarised the application of rapamycin, an mTOR signalling pathway inhibitor, in different retinal disease models, providing insight into the mechanism of rapamycin in the treatment of retinal neurodegeneration under oxidative stress. Besides basic research, this review also summarised and updated the results of the latest clinical trials of rapamycin in ocular neurodegenerative diseases. In combining the current basic and clinical research results, we provided a more complete picture of mTOR as a potential therapeutic target for ocular neurodegenerative diseases.
Collapse
|
6
|
mTOR inhibition as a novel gene therapeutic strategy for diabetic retinopathy. PLoS One 2022; 17:e0269951. [PMID: 35709240 PMCID: PMC9202865 DOI: 10.1371/journal.pone.0269951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
In addition to laser photocoagulation, therapeutic interventions for diabetic retinopathy (DR) have heretofore consisted of anti-VEGF drugs, which, besides drawbacks inherent to the treatments themselves, are limited in scope and may not fully address the condition’s complex pathophysiology. This is because DR is a multifactorial condition, meaning a gene therapy focused on a target with broader effects, such as the mechanistic target of rapamycin (mTOR), may prove to be the solution in overcoming these concerns. Having previously demonstrated the potential of a mTOR-inhibiting shRNA packaged in a recombinant adeno-associated virus to address a variety of angiogenic retinal diseases, here we explore the effects of rAAV2-shmTOR-SD in a streptozotocin-induced diabetic mouse model. Delivered via intravitreal injection, the therapeutic efficacy of the virus vector upon early DR processes was examined. rAAV2-shmTOR-SD effectively transduced mouse retinas and therein downregulated mTOR expression, which was elevated in sham-treated and control shRNA-injected (rAAV2-shCon-SD) control groups. mTOR inhibition additionally led to marked reductions in pericyte loss, acellular capillary formation, vascular permeability, and retinal cell layer thinning, processes that contribute to DR progression. Immunohistochemistry showed that rAAV2-shmTOR-SD decreased ganglion cell loss and pathogenic Müller cell activation and proliferation, while also having anti-apoptotic activity, with these effects suggesting the therapeutic virus vector may be neuroprotective. Taken together, these results build upon our previous work to demonstrate the broad ability of rAAV2-shmTOR-SD to address aspects of DR pathophysiology further evidencing its potential as a human gene therapeutic strategy for DR.
Collapse
|
7
|
Zhao Z, Zhang Y, Zhang C, Zhang J, Luo X, Qiu Q, Luo D, Zhang J. TGF-β promotes pericyte-myofibroblast transition in subretinal fibrosis through the Smad2/3 and Akt/mTOR pathways. Exp Mol Med 2022; 54:673-684. [PMID: 35624154 PMCID: PMC9166792 DOI: 10.1038/s12276-022-00778-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/20/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Subretinal fibrosis remains a major obstacle to the management of neovascular age-related macular degeneration. Choroidal pericytes were found to be a significant source of subretinal fibrosis, but the underlying mechanisms of pericyte-myofibroblast transition (PMT) remain largely unknown. The goal of this study was to explore the role and potential mechanisms by which PMT contributes to subretinal fibrosis. Choroidal neovascularization (CNV) was induced by laser photocoagulation in transgenic mice with the collagen1α1-green fluorescent protein (Col1α1-GFP) reporter, and recombinant adeno-associated virus 2 (rAAV2)-mediated TGF-β2 (rAAV2-TGF-β2) was administered intravitreally to further induce PMT. Primary mouse choroidal GFP-positive pericytes were treated with TGF-β2 in combination with siRNAs targeting Smad2/3, the Akt inhibitor MK2206 or the mTOR inhibitor rapamycin to examine cell proliferation, migration, and differentiation into myofibroblasts. The involvement of the Akt/mTOR pathway in PMT in subretinal fibrosis was further investigated in vivo. Intraocular TGF-β2 overexpression induced GFP-positive pericyte infiltration and PMT in subretinal fibrosis, which was mimicked in vitro. Knockdown of Smad2/3 or inhibition of Akt/mTOR decreased cell proliferation, PMT and migration in primary mouse pericytes. Combined inhibition of Smad2/3 and mTOR showed synergistic effects on attenuating α-smooth muscle actin (α-SMA) expression and cell proliferation. In mice with laser-induced CNV, the administration of the Akt/mTOR inhibitors suppressed pericyte proliferation and alleviated the severity of subretinal fibrosis. Our results showed that PMT plays a pivotal role in subretinal fibrosis, which was induced by TGF-β2 through the Smad2/3 and Akt/mTOR pathways. Thus, inhibiting PMT may be a novel strategy for the treatment of subretinal fibrosis. The identification of a new cell type that plays a crucial role in causing fibrosis under the retina could improve treatment of eye disease. Effective treatments exist for diseases that cause impairment and loss of vision in elderly people, but success can be limited by the development of subretinal fibrosis. Jingfa Zhang at Shanghai Jiao Tong University, China, and co-workers used mice with laser-induced retinal damage to explore how subretinal fibrosis may result from transition of pericytes, multi-functional cells in the capillaries, into myofibroblasts, cells associated with fibrosis. The overexpression of a growth factor called TGF-β2 induced pericytes to infiltrate the subretinal area and pericyte-myofibroblast transition via two signalling pathways. Inhibiting these pathways may help to treat subretinal fibrosis, and one option is the use of inhibitors of AKT/mTOR which may slow the ageing process.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yumeng Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shigatse People's Hospital, Xizang, China
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China. .,National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
8
|
Intravenous route to choroidal neovascularization by macrophage-disguised nanocarriers for mTOR modulation. Acta Pharm Sin B 2022; 12:2506-2521. [PMID: 35646523 PMCID: PMC9136612 DOI: 10.1016/j.apsb.2021.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022] Open
Abstract
Retinal pigment epithelial (RPE) is primarily impaired in age-related macular degeneration (AMD), leading to progressive loss of photoreceptors and sometimes choroidal neovascularization (CNV). mTOR has been proposed as a promising therapeutic target, while the usage of its specific inhibitor, rapamycin, was greatly limited. To mediate the mTOR pathway in the retina by a noninvasive approach, we developed novel biomimetic nanocomplexes where rapamycin-loaded nanoparticles were coated with cell membrane derived from macrophages (termed as MRaNPs). Taking advantage of the macrophage-inherited property, intravenous injection of MRaNPs exhibited significantly enhanced accumulation in the CNV lesions, thereby increasing the local concentration of rapamycin. Consequently, MRaNPs effectively downregulated the mTOR pathway and attenuate angiogenesis in the eye. Particularly, MRaNPs also efficiently activated autophagy in the RPE, which was acknowledged to rescue RPE in response to deleterious stimuli. Overall, we design and prepare macrophage-disguised rapamycin nanocarriers and demonstrate the therapeutic advantages of employing biomimetic cell membrane materials for treatment of AMD.
Collapse
|
9
|
Lee SH, Han JW, Yang JY, Jun HO, Bang JH, Shin H, Choi JH, Lee J, Madrakhimov SB, Chung KH, Chang HS, Lyu J, Park TK. Role of mTORC1 activity during early retinal development and lamination in human-induced pluripotent stem cell-derived retinal organoids. Cell Death Dis 2022; 8:56. [PMID: 35136019 PMCID: PMC8826382 DOI: 10.1038/s41420-022-00837-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 11/09/2022]
Abstract
Retinal organoids derived from human-induced pluripotent stem cells (hiPSC) are powerful tools for studying retinal development as they model spatial and temporal differentiation of retinal cell types. Vertebrate retinal development involves a delicate and coordinated process of retinal progenitor cell (RPC) differentiation, and the mammalian target of rapamycin complex 1 (mTORC1) has been reported to play a significant role in this complex process. Herein, using hiPSC-derived retinal organoids, we identify the time-dependent role of mTORC1 in retinal development, specifically in retinal ganglion cell (RGC) differentiation and the retinal lamination process, during the early stages of retinal organoid (RO) development. mTORC1 activity in ROs was the highest at 40 days of differentiation. MHY1485-induced hyperactivation of mTORC1 during this period resulted in a significant increase in the overall size of ROs compared to the untreated controls and rapamycin-treated Ros; there was also a marked increase in proliferative activity within the inner and outer layers of ROs. Moreover, the MHY1485-treated ROs showed a significant increase in the number of ectopic RGCs in the outer layers (indicating disruption of retinal laminar structure), with robust expression of HuC/D-binding proteins in the inner layers. These results demonstrate that mTORC1 plays a critical role in the development of hiPSC-derived ROs, especially during the early stages of differentiation.
Collapse
Affiliation(s)
- Si Hyung Lee
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.,Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon, Republic of Korea
| | - Jung Woo Han
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon, Republic of Korea.,Laboratory of Molecular Therapy for Retinal Degeneration, Hyangseol Medical Research Institute, Soonchunhyang University Hospital Bucheon, Bucheon, Republic of Korea
| | - Jin Young Yang
- Laboratory of Molecular Therapy for Retinal Degeneration, Hyangseol Medical Research Institute, Soonchunhyang University Hospital Bucheon, Bucheon, Republic of Korea.,Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang University, Graduate School, Bucheon Hospital, Bucheon, Republic of Korea
| | - Hyoung Oh Jun
- Laboratory of Molecular Therapy for Retinal Degeneration, Hyangseol Medical Research Institute, Soonchunhyang University Hospital Bucheon, Bucheon, Republic of Korea
| | - Ji Hong Bang
- Laboratory of Molecular Therapy for Retinal Degeneration, Hyangseol Medical Research Institute, Soonchunhyang University Hospital Bucheon, Bucheon, Republic of Korea.,Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang University, Graduate School, Bucheon Hospital, Bucheon, Republic of Korea
| | - Heejeong Shin
- Laboratory of Molecular Therapy for Retinal Degeneration, Hyangseol Medical Research Institute, Soonchunhyang University Hospital Bucheon, Bucheon, Republic of Korea.,Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang University, Graduate School, Bucheon Hospital, Bucheon, Republic of Korea
| | - Ji Hye Choi
- Laboratory of Molecular Therapy for Retinal Degeneration, Hyangseol Medical Research Institute, Soonchunhyang University Hospital Bucheon, Bucheon, Republic of Korea
| | - Jongwoo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | | | - Kyung Hwun Chung
- Laboratory of Molecular Therapy for Retinal Degeneration, Hyangseol Medical Research Institute, Soonchunhyang University Hospital Bucheon, Bucheon, Republic of Korea
| | - Hun Soo Chang
- Department of Anatomy and BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jungmook Lyu
- Department of Medical Science, Konyang University, Daejun, Republic of Korea
| | - Tae Kwann Park
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea. .,Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon, Republic of Korea. .,Laboratory of Molecular Therapy for Retinal Degeneration, Hyangseol Medical Research Institute, Soonchunhyang University Hospital Bucheon, Bucheon, Republic of Korea. .,Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang University, Graduate School, Bucheon Hospital, Bucheon, Republic of Korea. .,Ex Lumina Therapeutics and Technologies, Inc, Bucheon, Republic of Korea.
| |
Collapse
|
10
|
Cha S, Seo WI, Woo HN, Kim HJ, Lee SHS, Kim J, Choi JS, Park K, Lee JY, Lee BJ, Lee H. AAV expressing an mTOR-inhibiting siRNA exhibits therapeutic potential in retinal vascular disorders by preserving endothelial integrity. FEBS Open Bio 2021; 12:71-81. [PMID: 34431239 PMCID: PMC8727948 DOI: 10.1002/2211-5463.13281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/18/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Expanding on previous demonstrations of the therapeutic effects of adeno‐associated virus (AAV) carrying small‐hairpin RNA (shRNA) in downregulating the mechanistic target of rapamycin (mTOR) in in vivo retinal vascular disorders, vascular endothelial growth factor (VEGF)‐stimulated endothelial cells were treated with AAV2‐shmTOR to examine the role of mTOR inhibition in retinal angiogenesis. AAV2‐shmTOR exposure significantly reduced mTOR expression in human umbilical vein endothelial cells (HUVECs) and decreased downstream signaling cascades of mTOR complex 1 (mTORC1) and mTORC2 under VEGF treatment. Moreover, the angiogenic potential of VEGF was significantly inhibited by AAV2‐shmTOR, which preserved endothelial integrity by maintaining tight junctions between HUVECs. These data thus support previous in vivo studies and provide evidence that AAV2‐shmTOR induces therapeutic effects by inhibiting the neovascularization of endothelial cells.
Collapse
Affiliation(s)
- Seho Cha
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Won-Il Seo
- Department of Veterinary Medicine: College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Ha-Na Woo
- Department of Microbiology, College of Medicine, University of Ulsan, Seoul, Korea.,Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul, Korea
| | - Hee Jong Kim
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Steven Hyun Seung Lee
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea.,Department of Microbiology, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Kim
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Jun-Sub Choi
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Keerang Park
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Joo Yong Lee
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Beom Jun Lee
- Department of Veterinary Medicine: College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Heuiran Lee
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Xu T, Liu J, Li XR, Yu Y, Luo X, Zheng X, Cheng Y, Yu PQ, Liu Y. The mTOR/NF-κB Pathway Mediates Neuroinflammation and Synaptic Plasticity in Diabetic Encephalopathy. Mol Neurobiol 2021; 58:3848-3862. [PMID: 33860440 DOI: 10.1007/s12035-021-02390-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Diabetic encephalopathy, a severe complication of diabetes mellitus, is characterized by neuroinflammation and aberrant synaptogenesis in the hippocampus leading to cognitive decline. Mammalian target of rapamycin (mTOR) is associated with cognition impairment. Nuclear factor-κB (NF-κB) is a transcription factor of proinflammatory cytokines. Although mTOR has been ever implicated in processes occurring in neuroinflammation, the role of this enzyme on NF-κB signaling pathway remains unclear in diabetic encephalopathy. In the present study, we investigated whether mTOR regulates the NF-κB signaling pathway to modulate inflammatory cytokines and synaptic plasticity in hippocampal neurons. In vitro model was constructed in mouse HT-22 hippocampal neuronal cells exposed to high glucose. With the inhibition of mTOR or NF-κB by either chemical inhibitor or short-hairpin RNA (shRNA)-expressing lentivirus-vector, we examined the effects of mTOR/NF-κB signaling on proinflammatory cytokines and synaptic proteins. The diabetic mouse model induced by a high-fat diet combined with streptozotocin injection was administrated with rapamycin (mTOR inhibitor) and PDTC (NF-κB inhibitor), respectively. High glucose significantly increased mTOR phosphorylation in HT-22 cells. While inhibiting mTOR by rapamycin or shmTOR significantly suppressed high glucose-induced activation of NF-κB and its regulators IKKβ and IκBα, suggesting mTOR is the upstream regulator of NF-κB. Furthermore, inhibiting NF-κB by PDTC and shNF-κB decreased proinflammatory cytokines expression (IL-6, IL-1β, and TNF-α) and increased brain-derived neurotrophic factor (BDNF) and synaptic proteins (synaptophysin and PSD-95) in HT-22 cells under high glucose conditions. Besides, the mTOR and NF-κB inhibitors improved cognitive decline in diabetic mice. The inhibition of mTOR and NF-κB suppressed mTOR/NF-κB signaling pathway, increased synaptic proteins, and improved ultrastructural synaptic plasticity in the hippocampus of diabetic mice. Activating mTOR/NF-κB signaling pathway regulates the pathogenesis of diabetic encephalopathy, such as neuroinflammation, synaptic proteins loss, and synaptic ultrastructure impairment. The findings provide the implication that mTOR/NF-κB is potential new drug targets to treat diabetic encephalopathy.
Collapse
Affiliation(s)
- Ting Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jiao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xin-Rui Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Xuan Luo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xian Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yuan Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Pei-Quan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China. .,Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China. .,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
12
|
Koponen S, Kokki E, Kinnunen K, Ylä-Herttuala S. Viral-Vector-Delivered Anti-Angiogenic Therapies to the Eye. Pharmaceutics 2021; 13:pharmaceutics13020219. [PMID: 33562561 PMCID: PMC7915489 DOI: 10.3390/pharmaceutics13020219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022] Open
Abstract
Pathological vessel growth harms vision and may finally lead to vision loss. Anti-angiogenic gene therapy with viral vectors for ocular neovascularization has shown great promise in preclinical studies. Most of the studies have been conducted with different adeno-associated serotype vectors. In addition, adeno- and lentivirus vectors have been used. Therapy has been targeted towards blocking vascular endothelial growth factors or other pro-angiogenic factors. Clinical trials of intraocular gene therapy for neovascularization have shown the treatment to be safe without severe adverse events or systemic effects. Nevertheless, clinical studies have not proceeded further than Phase 2 trials.
Collapse
Affiliation(s)
- Sanna Koponen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (S.K.); (E.K.)
| | - Emmi Kokki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (S.K.); (E.K.)
| | - Kati Kinnunen
- Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland;
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (S.K.); (E.K.)
- Gene Therapy Unit, Kuopio University Hospital, 70211 Kuopio, Finland
- Correspondence: ; Tel./Fax: +358-403-552-075
| |
Collapse
|
13
|
Yao A, Wijngaarden P. Metabolic pathways in context:
mTOR
signalling in the retina and optic nerve ‐ A review. Clin Exp Ophthalmol 2020; 48:1072-1084. [DOI: 10.1111/ceo.13819] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Anthony Yao
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital East Melbourne, Victoria Australia
| | - Peter Wijngaarden
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital East Melbourne, Victoria Australia
- Ophthalmology, Department of Surgery University of Melbourne Melbourne, Victoria Australia
| |
Collapse
|
14
|
A Re-Appraisal of Pathogenic Mechanisms Bridging Wet and Dry Age-Related Macular Degeneration Leads to Reconsider a Role for Phytochemicals. Int J Mol Sci 2020; 21:ijms21155563. [PMID: 32756487 PMCID: PMC7432893 DOI: 10.3390/ijms21155563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
Which pathogenic mechanisms underlie age-related macular degeneration (AMD)? Are they different for dry and wet variants, or do they stem from common metabolic alterations? Where shall we look for altered metabolism? Is it the inner choroid, or is it rather the choroid–retinal border? Again, since cell-clearing pathways are crucial to degrade altered proteins, which metabolic system is likely to be the most implicated, and in which cell type? Here we describe the unique clearing activity of the retinal pigment epithelium (RPE) and the relevant role of its autophagy machinery in removing altered debris, thus centering the RPE in the pathogenesis of AMD. The cell-clearing systems within the RPE may act as a kernel to regulate the redox homeostasis and the traffic of multiple proteins and organelles toward either the choroid border or the outer segments of photoreceptors. This is expected to cope with the polarity of various domains within RPE cells, with each one owning a specific metabolic activity. A defective clearance machinery may trigger unconventional solutions to avoid intracellular substrates’ accumulation through unconventional secretions. These components may be deposited between the RPE and Bruch’s membrane, thus generating the drusen, which remains the classic hallmark of AMD. These deposits may rather represent a witness of an abnormal RPE metabolism than a real pathogenic component. The empowerment of cell clearance, antioxidant, anti-inflammatory, and anti-angiogenic activity of the RPE by specific phytochemicals is here discussed.
Collapse
|
15
|
Cheng KJ, Hsieh CM, Nepali K, Liou JP. Ocular Disease Therapeutics: Design and Delivery of Drugs for Diseases of the Eye. J Med Chem 2020; 63:10533-10593. [PMID: 32482069 DOI: 10.1021/acs.jmedchem.9b01033] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ocular drug discovery field has evidenced significant advancement in the past decade. The FDA approvals of Rhopressa, Vyzulta, and Roclatan for glaucoma, Brolucizumab for wet age-related macular degeneration (wet AMD), Luxturna for retinitis pigmentosa, Dextenza (0.4 mg dexamethasone intracanalicular insert) for ocular inflammation, ReSure sealant to seal corneal incisions, and Lifitegrast for dry eye represent some of the major developments in the field of ocular therapeutics. A literature survey also indicates that gene therapy, stem cell therapy, and target discovery through genomic research represent significant promise as potential strategies to achieve tissue repair or regeneration and to attain therapeutic benefits in ocular diseases. Overall, the emergence of new technologies coupled with first-in-class entries in ophthalmology are highly anticipated to restructure and boost the future trends in the field of ophthalmic drug discovery. This perspective focuses on various aspects of ocular drug discovery and the recent advances therein. Recent medicinal chemistry campaigns along with a brief overview of the structure-activity relationships of the diverse chemical classes and developments in ocular drug delivery (ODD) are presented.
Collapse
Affiliation(s)
- Kuei-Ju Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan.,Department of Pharmacy, Taipei Municipal Wanfang Hospital, Taipei Medical University, No. 111, Section 3, Xing-Long Road, Taipei 11696, Taiwan
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
16
|
Lee SHS, Chang H, Kim JH, Kim HJ, Choi JS, Chung S, Woo HN, Lee KJ, Park K, Lee JY, Lee H. Inhibition of mTOR via an AAV-Delivered shRNA Tested in a Rat OIR Model as a Potential Antiangiogenic Gene Therapy. Invest Ophthalmol Vis Sci 2020; 61:45. [PMID: 32106292 PMCID: PMC7329967 DOI: 10.1167/iovs.61.2.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Recent studies have shown that inhibitors of the mechanistic target of rapamycin (mTOR) play important roles in proliferating endothelial cells within the retinal vasculature. Here we explore the effects of inhibiting mTOR as a potential gene therapeutic against pathological retinal angiogenesis in a rat model of oxygen-induced retinopathy (OIR). Methods Sprague-Dawley pups were used to generate the OIR model, with a recombinant adeno-associated virus expressing an shRNA (rAAV2-shmTOR-GFP) being administered via intravitreal injection on returning the rats to normoxia, with appropriate controls. Immunohistochemistry and TUNEL assays, as well as fluorescein angiography, were performed on transverse retinal sections and flat mounts, respectively, to determine the in vivo effects of mTOR inhibition. Results Compared with normal control rats, as well as OIR model animals that were either untreated (20.95 ± 6.85), mock-treated (14.50 ± 2.47), or injected with a control short hairpin RNA (shRNA)-containing virus vector (16.64 ± 4.92), rAAV2-shmTOR-GFP (4.28 ± 2.86, P = 0.00103) treatment resulted in dramatically reduced neovascularization as a percentage of total retinal area. These results mirrored quantifications of retinal avascular area and vessel tortuosity, with rAAV2-shmTOR-GFP exhibiting significantly greater therapeutic efficacy than the other treatments. The virus vector was additionally shown to reduce inflammatory cell infiltration into retinal tissue and possess antiapoptotic properties, both these processes having been implicated in the pathophysiology of angiogenic retinal disorders. Conclusions Taken together, these results demonstrate the strong promise of rAAV2-shmTOR-GFP as an effective and convenient gene therapy for the treatment of neovascular retinal diseases.
Collapse
|
17
|
Wang C, Ma J, Xu M, Gao J, Zhao W, Yao Y, Shang Q. mTORC1 signaling pathway regulates macrophages in choroidal neovascularization. Mol Immunol 2020; 121:72-80. [PMID: 32172027 DOI: 10.1016/j.molimm.2020.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Macrophages are involved in choroidal neovascularization (CNV). The mechanistic target of rapamycin complex 1 (mTORC1) is a central cell regulator, but mTORC1 function in macrophages in CNV is not fully understood. We explored the effect of mTORC1 pathway regulation on macrophages in CNV. A laser-induced murine CNV model was performed. Expression of phospho-S6 and F4/80 in CNV lesions was analyzed by immunofluorescence. Macrophages in CNV lesions were found at 1 day after laser treatment, reached a peak at 5 days, and decreased at 7 and 14 days. mTORC1 activity of cells in CNV lesions was increased from 3 to 7 days, and deceased at 14 days. Most infiltrating macrophages in CNV lesions had strong mTORC1 activity at 3 and 5 days that subsequently decreased. In vitro, THP-1 macrophages were polarized to M1 or M2 with rapamycin or siRNA treatment. The human retinal pigment epithelium (RPE) cell line ARPE-19 was co-cultured with macrophages. Cytokine expression of macrophages and ARPE-19 cells was detected by quantitative PCR. Inhibiting mTORC1 activity of macrophages reduced M1 and strengthened M2, which was reversed by mTORC1 hyperactivation. Both M1 and M2 macrophages induced RPE cells to express less PEDF and more MMP9, IL-1β and MCP-1. Inhibiting or enhancing mTORC1 activity of macrophages changed cytokine expression of RPE cells. Together, we demonstrated that macrophage functions in CNV were regulated partly by the mTORC1 pathway, and mTORC1 activity of macrophages influenced the expression of cytokines that are associated with CNV development in RPE cells. This study provides more understanding about the regulatory mechanism of macrophages in CNV.
Collapse
Affiliation(s)
- Caixia Wang
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jingxue Ma
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Man Xu
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jian Gao
- Department of Biotechnology Drug, North China Pharmaceutical Group New Drug R&D Co., Ltd., Shijiazhuang, 052260, Hebei, China
| | - Wei Zhao
- Department of Biotechnology Drug, North China Pharmaceutical Group New Drug R&D Co., Ltd., Shijiazhuang, 052260, Hebei, China
| | - Yimin Yao
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Qingli Shang
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
18
|
Lee SH, Sim KS, Kim CY, Park TK. Transduction Pattern of AAVs in the Trabecular Meshwork and Anterior-Segment Structures in a Rat Model of Ocular Hypertension. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:197-205. [PMID: 31406700 PMCID: PMC6685643 DOI: 10.1016/j.omtm.2019.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
Adeno-associated viruses (AAVs) are the vector of choice for gene therapy in the eye, and self-complementary AAVs (scAAVs), which do not require second-strand DNA synthesis, can be transduced into cells of the trabecular meshwork (TM). The scAAV transduction patterns in the anterior segment of normotensive eyes have been investigated previously, but those in ocular hypertensive (OHT) eyes have not. We assessed the transduction efficiencies of AAV serotypes 2, 5, and 8 in the anterior-segment structures of the eyes of Sprague-Dawley rats with OHT by circumlimbal suturing, followed 3 days later by intracameral injection of scAAV serotype 2 (scAAV2), scAAV5, or scAAV8 packaged with EGFP. The transduction of scAAV2 and scAAV5 in the TM of OHT rats was markedly enhanced after 1 month, and transduction of scAAV5 was more efficient than that of scAAV2; transduction of scAAV8 into the TM did not occur. The transduction of scAAV2, scAAV5, and scAAV8 was enhanced in the ciliary body, iris, and corneal endothelium of the OHT eyes for 3 months. The expression levels of receptors for scAAV2 and scAAV5 were significantly increased in the OHT compared with control eyes. The results demonstrated that scAAV2 and scAAV5 target the ciliary body and TM in OHT eyes, and that the OHT-related changes in anterior-segment structures enhance scAAV transduction.
Collapse
Affiliation(s)
- Si Hyung Lee
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea.,Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea
| | - Kyeong Sun Sim
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea.,Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea
| | - Chan Yun Kim
- Institute of Vision Research, Department of Ophthalmology, Severance Hospital, Yonsei University, College of Medicine, Seoul 03722, Korea
| | - Tae Kwann Park
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea.,Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea
| |
Collapse
|
19
|
Lee SHS, Chang H, Kim HJ, Choi JS, Kim J, Kim JH, Woo HN, Nah SK, Jung SJ, Lee JY, Park K, Park TK, Lee H. Effects of Stuffer DNA on the Suppression of Choroidal Neovascularization by a rAAV Expressing a mTOR-Inhibiting shRNA. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:171-179. [PMID: 31380463 PMCID: PMC6661460 DOI: 10.1016/j.omtm.2019.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/21/2019] [Indexed: 11/19/2022]
Abstract
Choroidal neovascularization (CNV) is the defining characteristic of the wet subtype of age-related macular degeneration (AMD), which is a rapidly growing global health problem. Previously, we had demonstrated the therapeutic potential of gene therapy against CNV using short hairpin RNA (shRNA) delivered via recombinant adeno-associated virus (rAAV), which abrogates mammalian-to-mechanistic (mTOR) activity in a novel manner by simultaneously inhibiting both mTOR complexes. Both the target and use of gene therapy represent a novel treatment modality against AMD. Here, the xenogeneic GFP gene used as a reporter in previous studies was removed from the virus vector to further develop the therapeutic for clinical trials. Instead, a stuffer DNA derived from the 3′ UTR of the human UBE3A gene was used to ensure optimal viral genome size for efficient rAAV assembly. The virus vector containing the stuffer DNA, rAAV2-shmTOR-SD, positively compares to one encoding the shRNA and a GFP expression cassette in terms of reducing CNV in a laser-induced mouse model, as determined by fundus fluorescein angiography. These results were confirmed via immunohistochemistry using anti-CD31, while a TUNEL assay showed that rAAV2-shmTOR-SD possesses anti-apoptotic properties as well. The qualities exhibited by rAAV2-shmTOR-SD demonstrate its potential as a human gene therapeutic for the treatment of wet AMD.
Collapse
Affiliation(s)
- Steven Hyun Seung Lee
- Department of Microbiology, College of Medicine, University of Ulsan, Seoul 05505, Korea
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul 05505, Korea
| | - HeeSoon Chang
- CuroGene Life Sciences Co., Ltd., Cheongju 28578, Korea
| | - Hee Jong Kim
- CuroGene Life Sciences Co., Ltd., Cheongju 28578, Korea
| | - Jun-Sub Choi
- CuroGene Life Sciences Co., Ltd., Cheongju 28578, Korea
| | - Jin Kim
- CuroGene Life Sciences Co., Ltd., Cheongju 28578, Korea
| | - Ji Hyun Kim
- Department of Microbiology, College of Medicine, University of Ulsan, Seoul 05505, Korea
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul 05505, Korea
| | - Ha-Na Woo
- Department of Microbiology, College of Medicine, University of Ulsan, Seoul 05505, Korea
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul 05505, Korea
| | - Seung Kwan Nah
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Korea
| | - Sang Joon Jung
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Korea
| | - Joo Yong Lee
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul 05505, Korea
- Department of Ophthalmology, University of Ulsan, College of Medicine, Seoul 05505, Korea
- Asan Medical Center, University of Ulsan, College of Medicine, Seoul 05505, Korea
| | - Keerang Park
- Department of Biopharmacy, Chungbuk Health & Science University, Cheongju 28150, Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Korea
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- Corresponding author: Tae Kwann Park, MD, PhD, Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, 170, Jomaru-ro, Wonmi-gu, Bucheon 14584, Korea.
| | - Heuiran Lee
- Department of Microbiology, College of Medicine, University of Ulsan, Seoul 05505, Korea
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul 05505, Korea
- Corresponding author: Heuiran Lee, PhD, Department of Microbiology and Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, 88 Olympic-ro 43-gil Songpa-gu, Seoul 05505, Korea.
| |
Collapse
|
20
|
Yang JY, Madrakhimov SB, Ahn DH, Chang HS, Jung SJ, Nah SK, Park HY, Park TK. mTORC1 and mTORC2 are differentially engaged in the development of laser-induced CNV. Cell Commun Signal 2019; 17:64. [PMID: 31200728 PMCID: PMC6570852 DOI: 10.1186/s12964-019-0380-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
Background The mechanistic target of rapamycin (mTOR) pathway is a potential target to inhibit pathologic processes in choroidal neovascularization. However, the exact role of mTOR signaling in the development of CNV remains obscure. In this study, we assessed the role of mTORC1 and mTORC2 as well as the effect of rapamycin (sirolimus) on choroidal neovascularization (CNV) in a laser-induced mouse model. Methods In experiment A, we observed the natural course of CNV development and the dynamics of mTOR-related proteins during the 12 days after the laser injury. The expression of mTOR-related proteins was evaluated using Western blot (WB). Cryosections of CNV-induced mice were immunostained for the visualization of the vascular and extravascular components of the CNV. Experiment B was performed to confirm the critical period of mTOR signaling in the development of laser-induced CNV, we administered rapamycin before and/or during the active period of mTOR complexes. WB and immunofluorescence staining was performed to evaluate the mode of action and the effect of mTOR inhibition on CNV development. Results In experiment A, we detected high levels of p-mTOR S2448 and p-mTOR S2481 from the 5th to 12th day of laser injury. Immunofluorescence imaging of cryosections of mice sacrificed on day 7 revealed greater co-immunoreactivity of p-mTOR S2448 positive cells with CD11b and F4/80, while p-mTOR S2481 positive cells showed colocalization with CD31, α-SMA, and cytokeratin. In experiment B, rapamycin injection during the active period of mTOR signaling demonstrated near-complete inhibition of CNV lesion as well as significant induction of autophagy. Conclusion Our study suggests the mTOR as a critical player during CNV development in laser-induced mouse model through differentially acting with the mTORC1 and mTORC2. mTORC1 activity was high predominantly in inflammatory cells in CNV lesion, while mTORC2 activity was higher in vascular components and the RPE. Electronic supplementary material The online version of this article (10.1186/s12964-019-0380-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Young Yang
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Bucheon Hospital, Bucheon, South Korea.,Laboratory for Translational Research on Retinal and Macular Degeneration, Soonchunhyang University Hospital Bucheon, Bucheon, South Korea
| | - Sanjar Batirovich Madrakhimov
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Bucheon Hospital, Bucheon, South Korea.,Laboratory for Translational Research on Retinal and Macular Degeneration, Soonchunhyang University Hospital Bucheon, Bucheon, South Korea
| | - Dong Hyuck Ahn
- Laboratory for Translational Research on Retinal and Macular Degeneration, Soonchunhyang University Hospital Bucheon, Bucheon, South Korea
| | - Hun Soo Chang
- Department of Medical Bioscience, Graduated School, Soonchunhyang University, Bucheon, South Korea
| | - Sang Joon Jung
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan, Choongchungnam-do, South Korea
| | - Seung Kwan Nah
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan, Choongchungnam-do, South Korea
| | - Ha Yan Park
- Laboratory for Translational Research on Retinal and Macular Degeneration, Soonchunhyang University Hospital Bucheon, Bucheon, South Korea
| | - Tae Kwann Park
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Bucheon Hospital, Bucheon, South Korea. .,Laboratory for Translational Research on Retinal and Macular Degeneration, Soonchunhyang University Hospital Bucheon, Bucheon, South Korea. .,Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, #170, Jomaru-ro, Wonmi-gu, Bucheon, 14584, South Korea. .,Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan, Choongchungnam-do, South Korea. .,Department of Ophthalmology, College of Medicine, Soonchunhyang University, Bucheon Hospital, Bucheon, South Korea.
| |
Collapse
|
21
|
Cai J, Zhang H, Zhang YF, Zhou Z, Wu S. MicroRNA-29 enhances autophagy and cleanses exogenous mutant αB-crystallin in retinal pigment epithelial cells. Exp Cell Res 2018; 374:231-248. [PMID: 30513336 DOI: 10.1016/j.yexcr.2018.11.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023]
Abstract
Retinal pigment epithelial cells (RPEs), a pigmented cell layer in the outer retina, are constantly exposed to photo-oxidative stress. Autophagy relieves the stress by removing oxidative protein adducts, protein aggregates, and damaged mitochondria. We previously found that miR-29 is downregulated in choroid/RPE tissue in a model of exudative age-related macular degeneration (AMD), suggesting that miR-29 deficiency may contribute to autophagy inhibition and AMD progression. Here we wanted to test whether overexpression of miR-29 in RPEs could enhance autophagy, thereby facilitating removal of drusen components. Indeed, overexpression of miR-29 in the RPEs increased autophagy, assessed by decreased protein levels of p62, increased lipid form of microtubule-associated protein light chain (LC3-II), and elevated autophagy flux. Furthermore, overexpression of miR-29 mitigated the formation of mutant αB-crystallin (R120G) protein aggregates. In probing the mechanism, we demonstrated that miR-29 post-transcriptionally repressed LAMPTOR1/p18 via targeting its 3'-UTRs of messenger RNA. MiR-29 overexpression and knockdown of LAMPTOR1/p18 led to limited mTORC1 recruitment to lysosomes and inhibition of mTORC1 activity. Altogether, miR-29 enhances autophagy which aids in removal of protein aggregates. These findings reveal a novel role of miR-29, which has the potential of being a therapeutic strategy for rescuing RPE degeneration in ocular disorders.
Collapse
Affiliation(s)
- Jingjing Cai
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, 325027, PR China.
| | - He Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, 325027, PR China
| | - Yun-Feng Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, 325027, PR China
| | - Zhonglou Zhou
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, 325027, PR China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, 325027, PR China.
| |
Collapse
|
22
|
Essential Role of mTOR Signaling in Human Retinal Pigment Epithelial Cell Regeneration After Laser Photocoagulation. Lasers Med Sci 2018; 34:1019-1029. [PMID: 30499005 DOI: 10.1007/s10103-018-2692-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
This study assessed the role of mechanistic target of rapamycin (mTOR) pathway in the human adult retinal pigment epithelial (ARPE) cell response after laser photocoagulation (LP). The effect of mTOR inhibition on ARPE-19 cell was investigated by rapamycin treatment after LP. Cell viability and proliferation were explored using MTT and EdU assays, respectively. The expression of mTOR-related proteins and epithelial-mesenchymal transition (EMT) markers was verified by Western blot. Rapamycin retarded the LP area recovery in a dose-dependent manner by the 120 h, while LP+DMSO vehicle-treated cells completely restored the lesion zone (P ≤ 0.01). ARPE-19 cell viability is significantly lower in LP + rapamycin 80 and 160 ng/ml treated cultures compared to LP control at 120 h (P ≤ 0.001). LP control group demonstrated significantly more proliferative cells compared to untreated cells at the 72 and 120 h, whereas EdU-positive cell numbers in cultures treated with rapamycin at concentrations of 80 and 160 ng/ml were similar to baseline values (P ≤ 0.01). mTOR pathway activation is essential for regulation of the RPE cell migration and proliferation after LP. mTOR inhibition with rapamycin effectively blocks the migration and proliferation of the RPE cells. Our results demonstrate that mTOR has an important role in ARPE-19 cell as a regulator of cell behavior under stress conditions, suggesting that mTOR could be a promising therapeutic target for numerous retinal diseases.
Collapse
|
23
|
Lee SH, Yang JY, Madrakhimov S, Park HY, Park K, Park TK. Adeno-Associated Viral Vector 2 and 9 Transduction Is Enhanced in Streptozotocin-Induced Diabetic Mouse Retina. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 13:55-66. [PMID: 30666309 PMCID: PMC6330514 DOI: 10.1016/j.omtm.2018.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/25/2018] [Indexed: 12/19/2022]
Abstract
Adeno-associated viruses (AAVs) are currently the most popular vector platform technology for ocular gene therapy. While transduction efficiency and tropism of intravitreally administered AAV has been fairly well established in various retinal conditions, its transduction pattern in diabetic retinas has not previously been characterized. Here, we describe the transduction efficiencies of four different AAV serotypes, AAV2, 5, 8, and 9, in streptozotocin (STZ)-induced diabetic mouse retinas after intravitreal injections, which differed according to the duration of diabetic induction. STZ was intraperitoneally injected into C57/B6 diabetic mice subjected to unilateral intravitreal injection of AAV2, AAV5, AAV8, and AAV9 packaged with EGFP. Significantly enhanced AAV2 and AAV9 transduction was observed in 2-month-old diabetic mouse retinas compared to the 2-week-old diabetic mouse retinas and nondiabetic, vector uninjected or injected retinas. Intravitreal injection of AAV5 or AAV8 serotype in 2-month- and 2-week-old diabetic mouse retinas did not show any significant vector transduction enhancement compared to the nondiabetic control retinas. The tropism of AAV2 and AAV9 in diabetic mouse retinas differed. AAV2 was transduced into various retinal cells, including Müller cells, microglia, retinal ganglion cells (RGCs), bipolar cells, horizontal cells, and amacrine cells, whereas AAV9 was effectively transduced only into RGC and horizontal cells. The expression levels of receptors and co-receptors for AAV2 and AAV9 were significantly increased in 2-month-old diabetic mouse retinas. The results of our study demonstrated that AAV2 and AAV9 may be the vector of choice in treating diabetic retinopathy (DR) with gene therapy, and DR-related retinal changes may improve AAV vector transduction efficiency.
Collapse
Affiliation(s)
- Si Hyung Lee
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea.,Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea
| | - Jin Young Yang
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea.,Department of Biomedical Science, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sanjar Madrakhimov
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea.,Department of Biomedical Science, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Ha Yan Park
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea
| | - Keerang Park
- Department of Biopharmacy, Chungbuk Health & Science University, Cheongju, Chungbuk 28150, Republic of Korea
| | - Tae Kwann Park
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea.,Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon 14584, Republic of Korea
| |
Collapse
|
24
|
Lee SHS, Kim HJ, Shin OK, Choi JS, Kim J, Cho YH, Ha J, Park TK, Lee JY, Park K, Lee H. Intravitreal Injection of AAV Expressing Soluble VEGF Receptor-1 Variant Induces Anti-VEGF Activity and Suppresses Choroidal Neovascularization. ACTA ACUST UNITED AC 2018; 59:5398-5407. [DOI: 10.1167/iovs.18-24926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Steven Hyun Seung Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee Jong Kim
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Oh Kyu Shin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Jun-Sub Choi
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Jin Kim
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Young-Hwa Cho
- Department of Biopharmacy, Chungbuk Health & Science University, Cheongju, Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon, Korea
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Joo Yong Lee
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul, Korea
- Asan Medical Center, Seoul, Korea
| | - Keerang Park
- Department of Biopharmacy, Chungbuk Health & Science University, Cheongju, Korea
| | - Heuiran Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Transduction Patterns of Adeno-associated Viral Vectors in a Laser-Induced Choroidal Neovascularization Mouse Model. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:90-98. [PMID: 29766021 PMCID: PMC5948198 DOI: 10.1016/j.omtm.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/16/2018] [Indexed: 12/17/2022]
Abstract
Adeno-associated virus (AAV) vector is a promising platform technology for ocular gene therapy. Recently clinical successes to treat choroidal neovascularization (CNV) in wet type age-related macular degeneration have been reported. However, because pathologic conditions of the retina may alter the tropism of viral vectors, it is necessary to evaluate the transduction efficiency of different serotypes of AAV vectors in the retinas with CNVs. Here, we show the patterns and efficacy of transduction of AAV2, -5, and -8 vectors in a laser-induced CNV mouse model. C57BL/6J mice were subjected to unilateral laser photocoagulation on the right eye to induce CNV 5 days prior to intravitreal injection of AAV2, -5, and -8 capsids expressing EGFP. Transduction was increased around CNV lesions for all AAV capsid types, and AAV2 resulted in the highest transduction efficiency. In the absence of CNV, the AAV2 vector transduced ganglion and inner nuclear layer (INL) cells, and AAV5 and AAV8 transduced only a small proportion of cells in the retinal ganglion cell layer. CNV increased AAV2 vector expression throughout the retina and in and around CNVs; the transduced cells included retinal ganglion cells, Müller cells, cells from the INL and outer nuclear layer (ONL), photoreceptors, and retinal pigment epithelium (RPE) cells. Inflammatory cells and endothelial cells in CNVs were also transduced by AAV2. AAV5 and AAV8 were transduced in retinal ganglion, Müller, INL, ONL, and RPE cells in a localized pattern, and only endothelial cells at the surface of CNV lesions showed EGFP expression. Taken together, CNV formation resulted in enhanced transduction of AAV2, -5, and -8, and AAV2 exhibited the highest transduction efficiency in cells in CNV lesions.
Collapse
|