1
|
Gluba-Sagr A, Franczyk B, Rysz-Górzyńska A, Olszewski R, Rysz J. The Role of Selected lncRNAs in Lipid Metabolism and Cardiovascular Disease Risk. Int J Mol Sci 2024; 25:9244. [PMID: 39273193 PMCID: PMC11395304 DOI: 10.3390/ijms25179244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/15/2024] Open
Abstract
Lipid disorders increase the risk for the development of cardiometabolic disorders, including type 2 diabetes, atherosclerosis, and cardiovascular disease. Lipids levels, apart from diet, smoking, obesity, alcohol consumption, and lack of exercise, are also influenced by genetic factors. Recent studies suggested the role of long noncoding RNAs (lncRNAs) in the regulation of lipid formation and metabolism. Despite their lack of protein-coding capacity, lncRNAs are crucial regulators of various physiological and pathological processes since they affect the transcription and epigenetic chromatin remodelling. LncRNAs act as molecular signal, scaffold, decoy, enhancer, and guide molecules. This review summarises available data concerning the impact of lncRNAs on lipid levels and metabolism, as well as impact on cardiovascular disease risk. This relationship is significant because altered lipid metabolism is a well-known risk factor for cardiovascular diseases, and lncRNAs may play a crucial regulatory role. Understanding these mechanisms could pave the way for new therapeutic strategies to mitigate cardiovascular disease risk through targeted modulation of lncRNAs. The identification of dysregulated lncRNAs may pose promising candidates for therapeutic interventions, since strategies enabling the restoration of their levels could offer an effective means to impede disease progression without disrupting normal biological functions. LncRNAs may also serve as valuable biomarker candidates for various pathological states, including cardiovascular disease. However, still much remains unknown about the functions of most lncRNAs, thus extensive studies are necessary elucidate their roles in physiology, development, and disease.
Collapse
Affiliation(s)
- Anna Gluba-Sagr
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Aleksandra Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland
| | - Robert Olszewski
- Department of Gerontology, Public Health and Didactics, National Institute of Geriatrics, Rheumatology and Rehabilitation in Warsaw, 02-637 Warsaw, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| |
Collapse
|
2
|
Guo S, Zhang M, Huang Y. Three 'E' challenges for siRNA drug development. Trends Mol Med 2024; 30:13-24. [PMID: 37951790 DOI: 10.1016/j.molmed.2023.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
siRNA therapeutics have gained extensive attention, and to date six siRNAs are approved for clinical use. Despite being investigated for the treatment of metabolic, cardiovascular, infectious, and rare genetic diseases, cancer, and central nervous system (CNS) disorders, there exist several druggability challenges. Here, we provide insightful discussions concerning these challenges, comprising targeted accumulation and cellular uptake ('entry'), endolysosomal escape ('escape'), and in vivo pharmaceutical performance ('efficacy') - the three 'E' challenges - while also shedding light on siRNA drug development. Moreover, we propose several promising strategies that hold great potential in facilitating the clinical translation of siRNA therapeutics, including the exploration of diverse ligand-siRNA conjugates, expansion of potential disease targets, and excavation of novel modification geometries, as well as the development of combination therapies.
Collapse
Affiliation(s)
- Shuai Guo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Mengjie Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyu Huang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China; Rigerna Therapeutics, Suzhou, Jiangsu 215127, China; Rigerna Therapeutics, Beijing 102629, China.
| |
Collapse
|
3
|
Liu S, Jiao B, Zhao H, Liang X, Jin F, Liu X, Hu J. LncRNAs-circRNAs as Rising Epigenetic Binary Superstars in Regulating Lipid Metabolic Reprogramming of Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303570. [PMID: 37939296 PMCID: PMC10767464 DOI: 10.1002/advs.202303570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/28/2023] [Indexed: 11/10/2023]
Abstract
As one of novel hallmarks of cancer, lipid metabolic reprogramming has recently been becoming fascinating and widely studied. Lipid metabolic reprogramming in cancer is shown to support carcinogenesis, progression, distal metastasis, and chemotherapy resistance by generating ATP, biosynthesizing macromolecules, and maintaining appropriate redox status. Notably, increasing evidence confirms that lipid metabolic reprogramming is under the control of dysregulated non-coding RNAs in cancer, especially lncRNAs and circRNAs. This review highlights the present research findings on the aberrantly expressed lncRNAs and circRNAs involved in the lipid metabolic reprogramming of cancer. Emphasis is placed on their regulatory targets in lipid metabolic reprogramming and associated mechanisms, including the clinical relevance in cancer through lipid metabolism modulation. Such insights will be pivotal in identifying new theranostic targets and treatment strategies for cancer patients afflicted with lipid metabolic reprogramming.
Collapse
Affiliation(s)
- Shanshan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationCancer Center, First HospitalJilin UniversityChangchun130021China
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Benzheng Jiao
- NHC Key Laboratory of Radiobiology (Jilin University)School of Public HealthJilin UniversityChangchun130021China
- Nuclear Medicine DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Hongguang Zhao
- Nuclear Medicine DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Xinyue Liang
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Fengyan Jin
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Xiaodong Liu
- NHC Key Laboratory of Radiobiology (Jilin University)School of Public HealthJilin UniversityChangchun130021China
- Radiation Medicine Department, School of Public Health and ManagementWenzhou Medical UniversityWenzhou325035China
| | - Ji‐Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationCancer Center, First HospitalJilin UniversityChangchun130021China
- Palo Alto Veterans Institute for ResearchStanford University Medical SchoolPalo AltoCA94304USA
| |
Collapse
|
4
|
Poller W, Sahoo S, Hajjar R, Landmesser U, Krichevsky AM. Exploration of the Noncoding Genome for Human-Specific Therapeutic Targets-Recent Insights at Molecular and Cellular Level. Cells 2023; 12:2660. [PMID: 37998395 PMCID: PMC10670380 DOI: 10.3390/cells12222660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
While it is well known that 98-99% of the human genome does not encode proteins, but are nevertheless transcriptionally active and give rise to a broad spectrum of noncoding RNAs [ncRNAs] with complex regulatory and structural functions, specific functions have so far been assigned to only a tiny fraction of all known transcripts. On the other hand, the striking observation of an overwhelmingly growing fraction of ncRNAs, in contrast to an only modest increase in the number of protein-coding genes, during evolution from simple organisms to humans, strongly suggests critical but so far essentially unexplored roles of the noncoding genome for human health and disease pathogenesis. Research into the vast realm of the noncoding genome during the past decades thus lead to a profoundly enhanced appreciation of the multi-level complexity of the human genome. Here, we address a few of the many huge remaining knowledge gaps and consider some newly emerging questions and concepts of research. We attempt to provide an up-to-date assessment of recent insights obtained by molecular and cell biological methods, and by the application of systems biology approaches. Specifically, we discuss current data regarding two topics of high current interest: (1) By which mechanisms could evolutionary recent ncRNAs with critical regulatory functions in a broad spectrum of cell types (neural, immune, cardiovascular) constitute novel therapeutic targets in human diseases? (2) Since noncoding genome evolution is causally linked to brain evolution, and given the profound interactions between brain and immune system, could human-specific brain-expressed ncRNAs play a direct or indirect (immune-mediated) role in human diseases? Synergistic with remarkable recent progress regarding delivery, efficacy, and safety of nucleic acid-based therapies, the ongoing large-scale exploration of the noncoding genome for human-specific therapeutic targets is encouraging to proceed with the development and clinical evaluation of novel therapeutic pathways suggested by these research fields.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department for Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum Charité (DHZC), Charité-Universitätsmedizin Berlin, 12200 Berlin, Germany;
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, 10785 Berlin, Germany
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA;
| | - Roger Hajjar
- Gene & Cell Therapy Institute, Mass General Brigham, 65 Landsdowne St, Suite 143, Cambridge, MA 02139, USA;
| | - Ulf Landmesser
- Department for Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum Charité (DHZC), Charité-Universitätsmedizin Berlin, 12200 Berlin, Germany;
- German Center for Cardiovascular Research (DZHK), Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Anna M. Krichevsky
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
5
|
Li M, Ma L, Chen Y, Li J, Wang Y, You W, Yuan H, Tang X, Ouyang H, Pang D. Large-Scale CRISPR Screen of LDLR Pathogenic Variants. RESEARCH (WASHINGTON, D.C.) 2023; 6:0203. [PMID: 37496633 PMCID: PMC10368174 DOI: 10.34133/research.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 07/04/2023] [Indexed: 07/28/2023]
Abstract
Familial hypercholesterolemia (FH) is a frequently occurring genetic disorder that is linked to early-onset cardiovascular disease. If left untreated, patients with this condition can develop severe cardiovascular complications. Unfortunately, many patients remain undiagnosed, and even when diagnosed, the treatment is often not optimal. Although mutations in the LDLR gene are the primary cause of FH, predicting whether novel variants are pathogenic is not a straightforward task. Understanding the functionality of LDLR variants is crucial in uncovering the genetic basis of FH. Our study utilized CRISPR/Cas9 cytosine base editors in pooled screens to establish a novel approach for functionally assessing tens of thousands of LDLR variants on a large scale. A total of more than 100 single guide RNAs (sgRNAs) targeting LDLR pathogenic mutations were successfully screened with relatively high accuracy. Out of these, 5 sgRNAs were further subjected to functional verification studies, including 1 in the promoter, 1 in the antisense RNA, 1 in the exon, and 2 in the intron. Except for the variant caused by the sgRNA located at intron 16, the functionalities of the other LDLR variants were all downregulated. The high similarity of LDLR intron sequences may lead to some false positives. Overall, these results confirm the reliability of the large-scale screening strategy for functional analysis of LDLR variants, and the screened candidate pathogenic mutations could be used as an auxiliary means of clinical gene detection to prevent FH-induced heart disease.
Collapse
Affiliation(s)
- Mengjing Li
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
- The Institute of Translational Medicine,
Tianjin Union Medical Center of Nankai University, Tianjin 300071, China
| | - Lerong Ma
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
- Chongqing Research Institute,
Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| | - Yiwu Chen
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
- Chongqing Research Institute,
Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| | - Jianing Li
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
| | - Yanbing Wang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
| | - Wenni You
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
| | - Hongming Yuan
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
- Chongqing Research Institute,
Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| | - Xiaochun Tang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
- Chongqing Research Institute,
Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| | - Hongsheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
- Chongqing Research Institute,
Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
- Chongqing Research Institute,
Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| |
Collapse
|
6
|
Cecchin R, Troyer Z, Witwer K, Morris KV. Extracellular vesicles: The next generation in gene therapy delivery. Mol Ther 2023; 31:1225-1230. [PMID: 36698310 PMCID: PMC10188631 DOI: 10.1016/j.ymthe.2023.01.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/30/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Extracellular vesicles (EVs) are esteemed as a promising delivery vehicle for various genetic therapeutics. They are relatively inert, non-immunogenic, biodegradable, and biocompatible. At least in rodents, they can even transit challenging bodily hurdles such as the blood-brain barrier. Constitutively shed by all cells and with the potential to interact specifically with neighboring and distant targets, EVs can be engineered to carry and deliver therapeutic molecules such as proteins and RNAs. EVs are thus emerging as an elegant in vivo gene therapy vector. Deeper understanding of basic EV biology-including cellular production, EV loading, systemic distribution, and cell delivery-is still needed for effective harnessing of these endogenous cellular nanoparticles as next-generation nanodelivery tools. However, even a perfect EV product will be challenging to produce at clinical scale. In this regard, we propose that vector transduction technologies can be used to convert cells either ex vivo or directly in vivo into EV factories for stable, safe modulation of gene expression and function. Here, we extrapolate from the current EV state of the art to a bright potential future using EVs to treat genetic diseases that are refractory to current therapeutics.
Collapse
Affiliation(s)
- Riccardo Cecchin
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Zach Troyer
- Departments of Molecular and Comparative Pathobiology and Neurology, and Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ken Witwer
- Departments of Molecular and Comparative Pathobiology and Neurology, and Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Kevin V Morris
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia.
| |
Collapse
|
7
|
Juni RP, ’t Hart KC, Houtkooper RH, Boon R. Long non‐coding RNAs in cardiometabolic disorders. FEBS Lett 2022; 596:1367-1387. [DOI: 10.1002/1873-3468.14370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Rio P. Juni
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
| | - Kelly C. ’t Hart
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
- Laboratory Genetic Metabolic Diseases Amsterdam University Medical Centers; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Science, University of Amsterdam Frankfurt am Main Germany
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases Amsterdam University Medical Centers; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Science, University of Amsterdam Frankfurt am Main Germany
| | - Reinier Boon
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
- Institute for Cardiovascular Regeneration Centre for Molecular Medicine Goethe University Frankfurt am Main Frankfurt am Main Germany
- German Centre for Cardiovascular Research DZHK Partner site Frankfurt Rhein/Main Frankfurt am Main Germany
| |
Collapse
|
8
|
Landmesser U, Poller W, Tsimikas S, Most P, Paneni F, Lüscher TF. From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases. Eur Heart J 2021; 41:3884-3899. [PMID: 32350510 DOI: 10.1093/eurheartj/ehaa229] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/17/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Nucleic acid-based therapeutics are currently developed at large scale for prevention and management of cardiovascular diseases (CVDs), since: (i) genetic studies have highlighted novel therapeutic targets suggested to be causal for CVD; (ii) there is a substantial recent progress in delivery, efficacy, and safety of nucleic acid-based therapies; (iii) they enable effective modulation of therapeutic targets that cannot be sufficiently or optimally addressed using traditional small molecule drugs or antibodies. Nucleic acid-based therapeutics include (i) RNA-targeted therapeutics for gene silencing; (ii) microRNA-modulating and epigenetic therapies; (iii) gene therapies; and (iv) genome-editing approaches (e.g. CRISPR-Cas-based): (i) RNA-targeted therapeutics: several large-scale clinical development programmes, using antisense oligonucleotides (ASO) or short interfering RNA (siRNA) therapeutics for prevention and management of CVD have been initiated. These include ASO and/or siRNA molecules to lower apolipoprotein (a) [apo(a)], proprotein convertase subtilisin/kexin type 9 (PCSK9), apoCIII, ANGPTL3, or transthyretin (TTR) for prevention and treatment of patients with atherosclerotic CVD or TTR amyloidosis. (ii) MicroRNA-modulating and epigenetic therapies: novel potential therapeutic targets are continually arising from human non-coding genome and epigenetic research. First microRNA-based therapeutics or therapies targeting epigenetic regulatory pathways are in clinical studies. (iii) Gene therapies: EMA/FDA have approved gene therapies for non-cardiac monogenic diseases and LDL receptor gene therapy is currently being examined in patients with homozygous hypercholesterolaemia. In experimental studies, gene therapy has significantly improved cardiac function in heart failure animal models. (iv) Genome editing approaches: these technologies, such as using CRISPR-Cas, have proven powerful in stem cells, however, important challenges are remaining, e.g. low rates of homology-directed repair in somatic cells such as cardiomyocytes. In summary, RNA-targeted therapies (e.g. apo(a)-ASO and PCSK9-siRNA) are now in large-scale clinical outcome trials and will most likely become a novel effective and safe therapeutic option for CVD in the near future. MicroRNA-modulating, epigenetic, and gene therapies are tested in early clinical studies for CVD. CRISPR-Cas-mediated genome editing is highly effective in stem cells, but major challenges are remaining in somatic cells, however, this field is rapidly advancing.
Collapse
Affiliation(s)
- Ulf Landmesser
- Department of Cardiology, Campus Benjamin Franklin, CC11 (Cardiovascular Medicine), Charite-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health, Anna-Louisa-Karsch-Strasse 2, 10178 Berlin, Germany
| | - Wolfgang Poller
- Department of Cardiology, Campus Benjamin Franklin, CC11 (Cardiovascular Medicine), Charite-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, 9500 Gilman Drive, BSB 1080, La Jolla, CA 92093-0682, USA
| | - Patrick Most
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,Center for Translational Medicine, Jefferson Medical College, 1020 Locust Street, Philadelphia, PA 19107, USA.,Molecular and Translational Cardiology, Department of Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Rämistrasse 100, MOU2, 8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Research, Education and Development, Royal Brompton and Harefield Hospital Trust and Imperial College London, National Heart and Lung Institute, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
9
|
Villamizar O, Waters SA, Scott T, Grepo N, Jaffe A, Morris KV. Mesenchymal Stem Cell exosome delivered Zinc Finger Protein activation of cystic fibrosis transmembrane conductance regulator. J Extracell Vesicles 2021; 10:e12053. [PMID: 33532041 PMCID: PMC7825549 DOI: 10.1002/jev2.12053] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis is a genetic disorder that results in a multi-organ disease with progressive respiratory decline which leads to premature death. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene disrupts the capacity of the protein to function as a channel, transporting chloride ions and bicarbonate across epithelial cell membranes. Small molecule treatments targeted at potentiating or correcting CFTR have shown clinical benefits, but are only effective for a small percentage of individuals with specific CFTR mutations. To overcome this limitation, we engineered stromal-derived mesenchymal stem cells (MSC) and HEK293 cells to produce exosomes containing a novel CFTR Zinc Finger Protein fusion with transcriptional activation domains VP64, P65 and Rta to target the CFTR promoter (CFZF-VPR) and activate transcription. Treatment with CFZF-VPR results in robust activation of CFTR transcription in patient derived Human Bronchial Epithelial cells (HuBEC). We also find that CFZF-VPR can be packaged into MSC and HEK293 cell exosomes and delivered to HuBEC cells to potently activate CFTR expression. Connexin 43 appeared to be required for functional release of CFZF-VPR from exosomes. The observations presented here demonstrate that MSC derived exosomes can be used to deliver a packaged zinc finger activator to target cells and activate CFTR. The novel approach presented here offers a next-generation genetic therapy that may one day prove effective in treating patients afflicted with Cystic fibrosis.
Collapse
Affiliation(s)
- Olga Villamizar
- Center for Gene Therapy City of Hope-Beckman Research Institute at the City of Hope Duarte California USA
| | - Shafagh A Waters
- Faculty of Medicine School of Women's & Children's Health University of New South Wales (UNSW) Sydney NSW Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC) Faculty of Medicine University of New South Wales Sydney NSW Australia.,Department of Respiratory Medicine Sydney Children's Hospital Sydney NSW Australia
| | - Tristan Scott
- Center for Gene Therapy City of Hope-Beckman Research Institute at the City of Hope Duarte California USA
| | - Nicole Grepo
- Center for Gene Therapy City of Hope-Beckman Research Institute at the City of Hope Duarte California USA
| | - Adam Jaffe
- Faculty of Medicine School of Women's & Children's Health University of New South Wales (UNSW) Sydney NSW Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC) Faculty of Medicine University of New South Wales Sydney NSW Australia.,Department of Respiratory Medicine Sydney Children's Hospital Sydney NSW Australia
| | - Kevin V Morris
- Center for Gene Therapy City of Hope-Beckman Research Institute at the City of Hope Duarte California USA.,School of Medical Science Griffith University, Gold Coast Campus 1 Parklands Dr Southport QLD Australia
| |
Collapse
|
10
|
Lee KH, Hwang HJ, Cho JY. Long Non-Coding RNA Associated with Cholesterol Homeostasis and Its Involvement in Metabolic Diseases. Int J Mol Sci 2020; 21:E8337. [PMID: 33172104 PMCID: PMC7664438 DOI: 10.3390/ijms21218337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Cholesterol is an essential cell component that functions to create and maintain all kinds of cell membranes and lipoprotein particles. It is crucial to maintain the proper amount of cholesterol at both the cellular and systemic level. Recently, the importance of cholesterol has been reported not only in various cell development processes but also in the development of diseases. Furthermore, the involvement of long non-coding RNAs (lncRNAs), which are regarded as important epigenetic regulators in gene expression, has also been reported in cholesterol homeostasis. It is thus necessary to summarize the research on lncRNAs related to cholesterol with increased interest. This review organized the role of lncRNAs according to the major issues in cholesterol homeostasis: efflux, metabolism and synthesis, and disease process.
Collapse
Affiliation(s)
| | | | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (K.-H.L.); (H.-J.H.)
| |
Collapse
|
11
|
Ray RM, Morris KV. Long Non-coding RNAs Mechanisms of Action in HIV-1 Modulation and the Identification of Novel Therapeutic Targets. Noncoding RNA 2020; 6:ncrna6010012. [PMID: 32183241 PMCID: PMC7151623 DOI: 10.3390/ncrna6010012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/01/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
This review aims to highlight the role of long non-coding RNAs in mediating human immunodeficiency virus (HIV-1) viral replication, latency, disease susceptibility and progression. In particular, we focus on identifying possible lncRNA targets and their purported mechanisms of action for future drug design or gene therapeutics.
Collapse
|
12
|
Zhang TN, Wang W, Yang N, Huang XM, Liu CF. Regulation of Glucose and Lipid Metabolism by Long Non-coding RNAs: Facts and Research Progress. Front Endocrinol (Lausanne) 2020; 11:457. [PMID: 32765426 PMCID: PMC7381111 DOI: 10.3389/fendo.2020.00457] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-coding RNA with a length that exceeds 200 nucleotides. Previous studies have shown that lncRNAs play an important role in the pathogenesis of various diseases. Research in both animal models and humans has begun to unravel the profound complexity of lncRNAs and demonstrated that lncRNAs exert direct effects on glucose and lipid metabolism both in vivo and in vitro. Such research has elucidated the regulatory role of lncRNAs in glucose and lipid metabolism in human disease. lncRNAs mediate glucose and lipid metabolism under physiological and pathological conditions and contribute to various metabolism disorders. This review provides an update on our understanding of the regulatory role of lncRNAs in glucose and lipid metabolism in various diseases. As our understanding of the function of lncRNAs improves, the future is promising for the development of new diagnostic biomarkers that utilize lncRNAs and treatments that target lncRNAs to improve clinical outcomes.
Collapse
Affiliation(s)
- Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Tie-Ning Zhang
| | - Wei Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT, United States
- Xin-Mei Huang
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Chun-Feng Liu
| |
Collapse
|