1
|
Colonne CK, Kimble EL, Turtle CJ. Evolving strategies to overcome barriers in CAR-T cell therapy for acute myeloid leukemia. Expert Rev Hematol 2024:1-22. [PMID: 39439295 DOI: 10.1080/17474086.2024.2420614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a complex and heterogeneous disease characterized by an aggressive clinical course and limited efficacious treatment options in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR)-modified T (CAR-T) cell immunotherapy is an investigational treatment strategy for R/R AML that has shown some promise. However, obstacles to successful CAR-T cell immunotherapy for AML remain. AREAS COVERED In analyses of clinical trials of CAR-T cell therapy for R/R AML, complete responses without measurable residual disease have been reported, but the durability of those responses remains unclear. Significant barriers to successful CAR-T cell therapy in AML include the scarcity of suitable tumor-target antigens (TTA), inherent T cell functional deficits, and the immunoinhibitory and hostile tumor microenvironment (TME). This review will focus on these barriers to successful CAR-T cell therapy in AML, and discuss scientific advancements and evolving strategies to overcome them. EXPERT OPINION Achieving durable remissions in R/R AML will likely require a multifaceted approach that integrates advancements in TTA selection, enhancement of the intrinsic quality of CAR-T cells, and development of strategies to overcome inhibitory mechanisms in the AML TME.
Collapse
Affiliation(s)
- Chanukya K Colonne
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erik L Kimble
- Translational Science and Therapeutic Division, Fred Hutchinson Cancer Center, Seattle, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, USA
| | - Cameron J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
2
|
Tharakan S, Tremblay D, Azzi J. Adoptive cell therapy in acute myeloid leukemia: the current landscape and emerging strategies. Leuk Lymphoma 2024:1-14. [PMID: 39453877 DOI: 10.1080/10428194.2024.2414112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/27/2024]
Abstract
Efforts to produce adoptive cell therapies in AML have been largely unfruitful, despite the success seen in lymphoid malignancies. Identifying targetable antigens on leukemic cells that are absent on normal progenitor cells remains a major obstacle, as is the hostile tumor microenvironment created by AML blasts. In this review, we summarize the challenges in the development of adoptive cell therapies such as CAR-T, CAR-NK, and TCR-T cells in AML, discussing both autologous and allogeneic therapies. We also discuss methods to address myelotoxicity associated with these therapies, including rapidly switchable CAR platforms and CRISPR-Cas9 genetic engineering of hematopoietic stem cells. Finally, we present the current clinical landscape in these areas, along with future directions in the field.
Collapse
Affiliation(s)
- Serena Tharakan
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Tremblay
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacques Azzi
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Saito S, Nakazawa Y. CAR-T cell therapy in AML: recent progress and future perspectives. Int J Hematol 2024; 120:455-466. [PMID: 38963636 DOI: 10.1007/s12185-024-03809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Despite several small-molecule drugs that have revolutionized the current treatment strategy for acute myeloid leukemia (AML), hematopoietic stem cell transplantation remains the only curative treatment in most cases to date. Chimeric antigen receptor (CAR)-T cell therapy is one of the most promising next-generation cancer therapies for hematological malignancies and is clinically available for treatment of AML. However, developing AML-targeted CAR-T therapy is challenging because of the heterogeneity of target antigen expression across leukemic cells and patients, the difficulty in excluding on-/off-target tumor effects, and the immunosuppressive tumor microenvironment. To date, various targets, including CD33, NKG2D, CD123, CLL-1, and CD7, have been actively studied for CAR-T cells. Although no CAR-T cell products are close to practical use, several clinical trials have shown promising results, particularly for CAR-T cells targeting CLL-1 or CD123. Meanwhile, research exploring the ideal target for AML-targeted CAR-T therapy continues. Furthermore, as collecting autologous lymphocytes from patients with AML is difficult, development of off-the-shelf CAR-T products is being actively pursued. This review discusses the challenges in AML-targeted CAR-T cell therapy development from the perspectives of target antigen characteristics and AML-specific on-target/off-tumor toxicity. Moreover, it discusses the clinical development and prospects of AML-targeting CAR-T cells.
Collapse
Affiliation(s)
- Shoji Saito
- Department of Pediatrics, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan.
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University, Matsumoto, Japan.
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
- Center for Advanced Research of Gene and Cell Therapy, Shinshu University, Matsumoto, Japan
| |
Collapse
|
4
|
Almotiri A. CAR T-cell therapy in acute myeloid leukemia. Saudi Med J 2024; 45:1007-1019. [PMID: 39379118 PMCID: PMC11463564 DOI: 10.15537/smj.2024.45.10.20240330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive leukemic malignancy that affects myeloid lineage progenitors. Relapsed or refractory AML patients continue to have poor prognoses, necessitating the development of novel therapy alternatives. Adoptive T-cell therapy with chimeric antigen receptors (CARs) is an intriguing possibility in the field of leukemia treatment. Chimeric antigen receptor T-cell therapy is now being tested in clinical trials (mostly in phase I and phase II) using AML targets including CD33, CD123, and CLL-1. Preliminary data showed promising results. However, due to the cellular and molecular heterogeneity of AML and the co-expression of some AML targets on hematopoietic stem cells, these clinical investigations have shown substantial "on-target off-tumor" toxicities, indicating that more research is required. In this review, the latest significant breakthroughs in AML CAR T cell therapy are presented. Furthermore, the limitations of CAR T-cell technology and future directions to overcome these challenges are discussed.
Collapse
Affiliation(s)
- Alhomidi Almotiri
- From the Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, Kingdom of Saudi Arabia.
| |
Collapse
|
5
|
Kheirkhah AH, Habibi S, Yousefi MH, Mehri S, Ma B, Saleh M, Kavianpour M. Finding potential targets in cell-based immunotherapy for handling the challenges of acute myeloid leukemia. Front Immunol 2024; 15:1460437. [PMID: 39411712 PMCID: PMC11474923 DOI: 10.3389/fimmu.2024.1460437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hostile hematological malignancy under great danger of relapse and poor long-term survival rates, despite recent therapeutic advancements. To deal with this unfulfilled clinical necessity, innovative cell-based immunotherapies have surfaced as promising approaches to improve anti-tumor immunity and enhance patient outcomes. In this comprehensive review, we provide a detailed examination of the latest developments in cell-based immunotherapies for AML, including chimeric antigen receptor (CAR) T-cell therapy, T-cell receptor (TCR)-engineered T-cell therapy, and natural killer (NK) cell-based therapies. We critically evaluate the unique mechanisms of action, current challenges, and evolving strategies to improve the efficacy and safety of these modalities. The review emphasizes how promising these cutting-edge immune-based strategies are in overcoming the inherent complexities and heterogeneity of AML. We discuss the identification of optimal target antigens, the importance of mitigating on-target/off-tumor toxicity, and the need to enhance the persistence and functionality of engineered immune effector cells. All things considered, this review offers a thorough overview of the rapidly evolving field of cell-based immunotherapy for AML, underscoring the significant progress made and the ongoing efforts to translate these innovative approaches into more effective and durable treatments for this devastating disease.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Killer Cells, Natural/immunology
- Immunotherapy/methods
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Amir Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sara Mehri
- Department of Biotechnology, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bin Ma
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, United States
| | - Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
6
|
Ali A, DiPersio JF. ReCARving the future: bridging CAR T-cell therapy gaps with synthetic biology, engineering, and economic insights. Front Immunol 2024; 15:1432799. [PMID: 39301026 PMCID: PMC11410633 DOI: 10.3389/fimmu.2024.1432799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of hematologic malignancies, offering remarkable remission rates in otherwise refractory conditions. However, its expansion into broader oncological applications faces significant hurdles, including limited efficacy in solid tumors, safety concerns related to toxicity, and logistical challenges in manufacturing and scalability. This review critically examines the latest advancements aimed at overcoming these obstacles, highlighting innovations in CAR T-cell engineering, novel antigen targeting strategies, and improvements in delivery and persistence within the tumor microenvironment. We also discuss the development of allogeneic CAR T cells as off-the-shelf therapies, strategies to mitigate adverse effects, and the integration of CAR T cells with other therapeutic modalities. This comprehensive analysis underscores the synergistic potential of these strategies to enhance the safety, efficacy, and accessibility of CAR T-cell therapies, providing a forward-looking perspective on their evolutionary trajectory in cancer treatment.
Collapse
Affiliation(s)
- Alaa Ali
- Stem Cell Transplant and Cellular Immunotherapy Program, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - John F DiPersio
- Center for Gene and Cellular Immunotherapy, Washington University in Saint Louis, Saint Louis, MO, United States
| |
Collapse
|
7
|
Anderson GSF, Chapman MA. T cell-redirecting therapies in hematological malignancies: Current developments and novel strategies for improved targeting. Mol Ther 2024; 32:2856-2891. [PMID: 39095991 PMCID: PMC11403239 DOI: 10.1016/j.ymthe.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
T cell-redirecting therapies (TCRTs), such as chimeric antigen receptor (CAR) or T cell receptor (TCR) T cells and T cell engagers, have emerged as a highly effective treatment modality, particularly in the B and plasma cell-malignancy setting. However, many patients fail to achieve deep and durable responses; while the lack of truly unique tumor antigens, and concurrent on-target/off-tumor toxicities, have hindered the development of TCRTs for many other cancers. In this review, we discuss the recent developments in TCRT targets for hematological malignancies, as well as novel targeting strategies that aim to address these, and other, challenges.
Collapse
Affiliation(s)
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
8
|
Saleh HA, Mitwasi N, R Loureiro L, Kegler A, Soto KEG, Hoffmann L, Crespo E, Arndt C, Bergmann R, Bachmann M, Feldmann A. RevCAR-expressing immune effector cells for targeting of Fn14-positive glioblastoma. Cancer Gene Ther 2024; 31:1323-1334. [PMID: 38582787 PMCID: PMC11405279 DOI: 10.1038/s41417-024-00766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
In recent studies, we have established the unique adapter chimeric antigen receptor (CAR) platform RevCAR which uses, as an extracellular CAR domain, a peptide epitope instead of an antibody domain. RevCAR adapters (termed RevCAR target modules, RevTMs) are bispecific antibodies that enable the reversible ON/OFF switch of the RevCAR system, improving the safety compared to conventional CARs. Here, we describe for the first time its use for retargeting of both T and NK-92 cells. In addition, we describe the development and preclinical validation of a novel RevTM for targeting of the fibroblast growth factor-inducible 14 (Fn14) surface receptor which is overexpressed on Glioblastoma (GBM) cells, and therefore serves as a promising target for the treatment of GBM. The novel RevTM efficiently redirects RevCAR modified T and NK-92 cells and leads to the killing of GBM cells both in vitro and in vivo. Tumor cell killing is associated with increased IL-2, TNF-α and/or IFN-γ secretion. Hence, these findings give an insight into the complementary potential of both RevCAR T and NK-92 systems as a safe and specific immunotherapeutic approach against GBM.
Collapse
Affiliation(s)
- Haidy A Saleh
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Nicola Mitwasi
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Liliana R Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Alexandra Kegler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Karla Elizabeth González Soto
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Lydia Hoffmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Eugenia Crespo
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307, Dresden, Germany
| | - Ralf Bergmann
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany.
- National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany.
- National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.
| |
Collapse
|
9
|
Canichella M, de Fabritiis P. Cell-Based Treatment in Acute Myeloid Leukemia Relapsed after Allogeneic Stem Cell Transplantation. Biomedicines 2024; 12:1721. [PMID: 39200186 PMCID: PMC11351713 DOI: 10.3390/biomedicines12081721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Allogeneic stem cell transplant (ASCT) remains the only treatment option for patients with high-risk acute myeloid leukemia (AML). Recurrence of leukemic cells after ASCT represents a dramatic event associated with a dismal outcome, with a 2-year survival rate of around 20%. Adoptive cell therapy (ACT) is a form of cell-based strategy that has emerged as an effective therapy to treat and prevent post-ASCT recurrence. Lymphocytes are the principal cells used in this therapy and can be derived from a hematopoietic stem cell donor, the patient themselves, or healthy donors, after being engineered to express the chimeric antigen receptor (CAR-T and UniCAR-T). In this review, we discuss recent advances in the established strategy of donor lymphocyte infusion (DLI) and the progress and challenges of CAR-T cells.
Collapse
Affiliation(s)
| | - Paolo de Fabritiis
- Hematology Unit, St. Eugenio Hospital, ASL Roma2, 00144 Rome, Italy;
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
10
|
Fredon M, Poussard M, Biichlé S, Bonnefoy F, Mantion CF, Seffar E, Renosi F, Bôle-Richard E, Boidot R, Chevrier S, Anna F, Loustau M, Caumartin J, Gonçalves-Venturelli M, Robinet E, Saas P, Deconinck E, Daguidau E, Roussel X, Godet Y, Adotévi O, Angelot-Delettre F, Galaine J, Garnache-Ottou F. Impact of scFv on Functionality and Safety of Third-Generation CD123 CAR T Cells. Cancer Immunol Res 2024; 12:1090-1107. [PMID: 38819256 DOI: 10.1158/2326-6066.cir-23-0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/01/2023] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Chimeric antigen receptor (CAR) T cells express an extracellular domain consisting of a single-chain fragment variable (scFv) targeting a surface tumor-associated antigen. scFv selection should involve safety profiling with evaluation of the efficacy/toxicity balance, especially when the target antigen also is expressed on healthy cells. Here, to assess differences in terms of efficacy and on-target/off-tumor effects, we generated five different CARs targeting CD123 by substituting only the scFv. In in vitro models, T cells engineered to express three of these five CD123 CARs were effectively cytotoxic on leukemic cells without increasing lysis of monocytes or endothelial cells. Using the IncuCyte system, we confirmed the low cytotoxicity of CD123 CAR T cells on endothelial cells. Hematotoxicity evaluation using progenitor culture and CD34 cell lysis showed that two of the five CD123 CAR T cells were less cytotoxic on hematopoietic stem cells. Using a humanized mouse model, we confirmed that CD123- cells were not eliminated by the CD123 CAR T cells. Two CD123 CAR T cells reduced tumor infiltration and increased the overall survival of mice in three in vivo models of blastic plasmacytoid dendritic cell neoplasm. In an aggressive version of this model, bulk RNA sequencing analysis showed that these CD123 CAR T cells upregulated genes associated with cytotoxicity and activation/exhaustion a few days after the injection. Together, these results emphasize the importance of screening different scFvs for the development of CAR constructs to support selection of cells with the optimal risk-benefit ratio for clinical development.
Collapse
Affiliation(s)
- Maxime Fredon
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | - Margaux Poussard
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | - Sabeha Biichlé
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | - Francis Bonnefoy
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | | | - Evan Seffar
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Medical Oncology Department, CHU, Besançon, France
| | - Florian Renosi
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Molecular Onco-Hematology Laboratory, CHU, Besançon, France
| | | | - Romain Boidot
- Department of Tumor Biology and Pathology, Molecular Biology Unit, Georges-François Leclerc Center, Dijon, France
- ICMUB UMR CNRS 6302, Dijon, France
| | - Sandrine Chevrier
- Department of Tumor Biology and Pathology, Molecular Biology Unit, Georges-François Leclerc Center, Dijon, France
| | - François Anna
- Preclinical Department, Invectys, Paris, France
- Molecular Virology and Vaccinology Unit, Pasteur Institute, Paris, France
| | | | | | - Mathieu Gonçalves-Venturelli
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Lymphobank S.A.S.U, Besançon, France
| | | | - Philippe Saas
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | - Eric Deconinck
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Hematology Department, CHU, Besançon, France
| | - Etienne Daguidau
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Hematology Department, CHU, Besançon, France
| | - Xavier Roussel
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Hematology Department, CHU, Besançon, France
| | - Yann Godet
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | - Olivier Adotévi
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Medical Oncology Department, CHU, Besançon, France
| | | | - Jeanne Galaine
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | - Francine Garnache-Ottou
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Hematology and Cellular Immunology Laboratory, CHU, Besançon, France
| |
Collapse
|
11
|
Naik S, Velasquez MP, Gottschalk S. Chimeric antigen receptor T-cell therapy in childhood acute myeloid leukemia: how far are we from a clinical application? Haematologica 2024; 109:1656-1667. [PMID: 38832421 PMCID: PMC11141645 DOI: 10.3324/haematol.2023.283817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/28/2024] [Indexed: 06/05/2024] Open
Abstract
Recurrent and/or refractory (R/R) pediatric acute myeloid leukemia (AML) remains a recalcitrant disease with poor outcomes. Cell therapy with genetically modified immune effector cells holds the promise to improve outcomes for R/R AML since it relies on cytotoxic mechanisms that are distinct from chemotherapeutic agents. While T cells expressing chimeric antigen receptors (CAR T cells) showed significant anti-AML activity in preclinical models, early phase clinical studies have demonstrated limited activity, irrespective of the targeted AML antigen. Lack of efficacy is most likely multifactorial, including: (i) a limited array of AML-specific targets and target antigen heterogeneity; (ii) the aggressive nature of R/R AML and heavy pretreatment of patients; (iii) T-cell product manufacturing, and (iv) limited expansion and persistence of the CAR T cells, which is in part driven by the immunosuppressive AML microenvironment. Here we review the results of early phase clinical studies with AML-specific CAR T cells, and avenues investigators are exploring to improve their effector function.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Receptors, Chimeric Antigen/immunology
- Immunotherapy, Adoptive/methods
- Child
- Clinical Trials as Topic
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Tumor Microenvironment/immunology
- Animals
Collapse
Affiliation(s)
| | | | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
12
|
Capelli D. FLT3-Mutated Leukemic Stem Cells: Mechanisms of Resistance and New Therapeutic Targets. Cancers (Basel) 2024; 16:1819. [PMID: 38791898 PMCID: PMC11119130 DOI: 10.3390/cancers16101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the availability of target drugs in the first and second line, only 30% of FLT3mut AMLs are cured. Among the multiple mechanisms of resistance, those of FLT3mut LSC are the most difficult to eradicate because of their metabolic and genomic characteristics. Reactivation of glycogen synthesis, inhibition of the RAS/MAPK pathway, and degradation of FLT3 may be potential aids to fight the resistance of LSC to FLT3i. LSC is also characterized by the expression of a CD34+/CD25+/CD123+/CD99+ immunophenotype. The receptor and ligand of FLT3, the natural killer group 2 member D ligand (NKGD2L), and CD123 are some of the targets of chimeric antigen receptor T cells (CAR-T), bispecific T-cell engager molecules (BiTEs), CAR-NK and nanoparticles recently designed and reported here. The combination of these new therapeutic options, hopefully in a minimal residual disease (MRD)-driven approach, could provide the future answer to the challenge of treating FLT3mut AML.
Collapse
Affiliation(s)
- Debora Capelli
- Department of Hematology, Azienda Ospedaliera Universitaria, Ospedali Riuniti di Ancona, Via Conca 71, 60126 Ancona, Italy
| |
Collapse
|
13
|
Guijarro-Albaladejo B, Marrero-Cepeda C, Rodríguez-Arbolí E, Sierro-Martínez B, Pérez-Simón JA, García-Guerrero E. Chimeric antigen receptor (CAR) modified T Cells in acute myeloid leukemia: limitations and expectations. Front Cell Dev Biol 2024; 12:1376554. [PMID: 38694825 PMCID: PMC11061469 DOI: 10.3389/fcell.2024.1376554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with a poor prognosis despite the advent of novel therapies. Consequently, a major need exists for new therapeutic options, particularly for patients with relapsed/refractory (R/R) AML. In recent years, it has been possible to individualize the treatment of a subgroup of patients, particularly with the emergence of multiple targeted therapies. Nonetheless, a considerable number of patients remain without therapeutic options, and overall prognosis remains poor because of a high rate of disease relapse. In this sense, cellular therapies, especially chimeric antigen receptor (CAR)-T cell therapy, have dramatically shifted the therapeutic options for other hematologic malignancies, such as diffuse large B cell lymphoma and acute lymphoblastic leukemia. In contrast, effectively treating AML with CAR-based immunotherapy poses major biological and clinical challenges, most of them derived from the unmet need to identify target antigens with expression restricted to the AML blast without compromising the viability of the normal hematopoietic stem cell counterpart. Although those limitations have hampered CAR-T cell therapy translation to the clinic, there are several clinical trials where target antigens, such as CD123, CLL-1 or CD33 are being used to treat AML patients showing promising results. Moreover, there are continuing efforts to enhance the specificity and efficacy of CAR-T cell therapy in AML. These endeavors encompass the exploration of novel avenues, including the development of dual CAR-T cells and next-generation CAR-T cells, as well as the utilization of gene editing tools to mitigate off-tumor toxicities. In this review, we will summarize the ongoing clinical studies and the early clinical results reported with CAR-T cells in AML, as well as highlight CAR-T cell limitations and the most recent approaches to overcome these barriers. We will also discuss how and when CAR-T cells should be used in the context of AML.
Collapse
Affiliation(s)
- Beatriz Guijarro-Albaladejo
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Servicio de Hematología, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Cristina Marrero-Cepeda
- Unidad de Gestión Clínica de Hematología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Eduardo Rodríguez-Arbolí
- Unidad de Gestión Clínica de Hematología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Belén Sierro-Martínez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Servicio de Hematología, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - José Antonio Pérez-Simón
- Unidad de Gestión Clínica de Hematología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Estefanía García-Guerrero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Servicio de Hematología, Hospital Universitario Virgen del Rocío, Seville, Spain
| |
Collapse
|
14
|
Liu Z, Lei W, Wang H, Liu X, Fu R. Challenges and strategies associated with CAR-T cell therapy in blood malignancies. Exp Hematol Oncol 2024; 13:22. [PMID: 38402232 PMCID: PMC10893672 DOI: 10.1186/s40164-024-00490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Cellular immunotherapy, particularly CAR-T cells, has shown potential in the improvement of outcomes in patients with refractory and recurrent malignancies of the blood. However, achieving sustainable long-term complete remission for blood cancer remains a challenge, with resistance and relapse being expected outcomes for many patients. Although many studies have attempted to clarify the mechanisms of CAR-T cell therapy failure, the mechanism remains unclear. In this article, we discuss and describe the current state of knowledge regarding these factors, which include elements that influence the CAR-T cell, cancer cells as a whole, and the microenvironment surrounding the tumor. In addition, we propose prospective approaches to overcome these obstacles in an effort to decrease recurrence rates and extend patient survival subsequent to CAR-T cell therapy.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| | - Wenhui Lei
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
- Department of Nephrology, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, People's Republic of China
| | - Hao Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| |
Collapse
|
15
|
Lu L, Xie M, Yang B, Zhao WB, Cao J. Enhancing the safety of CAR-T cell therapy: Synthetic genetic switch for spatiotemporal control. SCIENCE ADVANCES 2024; 10:eadj6251. [PMID: 38394207 PMCID: PMC10889354 DOI: 10.1126/sciadv.adj6251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/19/2024] [Indexed: 02/25/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy is a promising and precise targeted therapy for cancer that has demonstrated notable potential in clinical applications. However, severe adverse effects limit the clinical application of this therapy and are mainly caused by uncontrollable activation of CAR-T cells, including excessive immune response activation due to unregulated CAR-T cell action time, as well as toxicity resulting from improper spatial localization. Therefore, to enhance controllability and safety, a control module for CAR-T cells is proposed. Synthetic biology based on genetic engineering techniques is being used to construct artificial cells or organisms for specific purposes. This approach has been explored in recent years as a means of achieving controllability in CAR-T cell therapy. In this review, we summarize the recent advances in synthetic biology methods used to address the major adverse effects of CAR-T cell therapy in both the temporal and spatial dimensions.
Collapse
Affiliation(s)
- Li Lu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Mingqi Xie
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310024, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, China
| | - Wen-bin Zhao
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Strzelec A, Helbig G. Are we ready for personalized CAR-T therapy? Eur J Haematol 2024; 112:174-183. [PMID: 37431655 DOI: 10.1111/ejh.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
The future of chimeric antigen receptor T (CAR-T) therapy remains unclear. New studies are constantly being published confirming the efficacy and favorable safety profile of its innovative enhancements. Currently approved CAR-T drugs are manufactured exclusively for a specific patient from the recipient's own cells. This does not close the door to further modifications with subsequent personalization and better adaptation to the individual needs. Bringing such a drug to market would involve raising the already high costs, so it is necessary to lower the existing ones. On the other hand, so-called universal CAR-T are also getting closer to the patient's bed, but its implementation may struggle with multiple challenges, including development of graft-versus-host disease (GvHD) and alloimmunity. However, that off-the-shelf therapy could prove useful as a quick solution for patients in very poor condition or excluded from current therapy due to manufacturing limitations. The introduction of currently tested solutions may undoubtedly change the current paradigm of treatment.
Collapse
Affiliation(s)
- Anna Strzelec
- Department of Hematology and Bone Marrow Transplantation, Faculty of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Grzegorz Helbig
- Department of Hematology and Bone Marrow Transplantation, Faculty of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
17
|
Zanotta S, Galati D, De Filippi R, Pinto A. Breakthrough in Blastic Plasmacytoid Dendritic Cell Neoplasm Cancer Therapy Owing to Precision Targeting of CD123. Int J Mol Sci 2024; 25:1454. [PMID: 38338733 PMCID: PMC10855071 DOI: 10.3390/ijms25031454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic cancer originating from the malignant transformation of plasmacytoid dendritic cell precursors. This malignancy progresses rapidly, with frequent relapses and a poor overall survival rate, underscoring the urgent need for effective treatments. However, diagnosing and treating BPDCN have historically been challenging due to its rarity and the lack of standardized approaches. The recognition of BPDCN as a distinct disease entity is recent, and standardized treatment protocols are yet to be established. Traditionally, conventional chemotherapy and stem cell transplantation have been the primary methods for treating BPDCN patients. Advances in immunophenotyping and molecular profiling have identified potential therapeutic targets, leading to a shift toward CD123-targeted immunotherapies in both clinical and research settings. Ongoing developments with SL-401, IMGN632, CD123 chimeric antigen receptor (CAR) T-cells, and bispecific antibodies (BsAb) show promising advancements. However, the therapeutic effectiveness of CD123-targeting treatments needs improvement through innovative approaches and combinations of treatments with other anti-leukemic drugs. The exploration of combinations such as CD123-targeted immunotherapies with azacitidine and venetoclax is suggested to enhance antineoplastic responses and improve survival rates in BPDCN patients. In conclusion, this multifaceted approach offers hope for more effective and tailored therapeutic interventions against this challenging hematologic malignancy.
Collapse
Affiliation(s)
- Serena Zanotta
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| | - Domenico Galati
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| | - Rosaria De Filippi
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy;
| | - Antonio Pinto
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| |
Collapse
|
18
|
Chen X, Tan B, Xing H, Zhao X, Ping Y, Zhang Z, Huang J, Shi X, Zhang N, Lin B, Cao W, Li X, Zhang X, Li L, Jiang Z, Zhang M, Li W, Liu M, Du B, Zhang Y. Allogeneic CAR-T cells with of HLA-A/B and TRAC disruption exhibit promising antitumor capacity against B cell malignancies. Cancer Immunol Immunother 2024; 73:13. [PMID: 38231412 PMCID: PMC10794471 DOI: 10.1007/s00262-023-03586-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/03/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Although chimeric antigen receptor T (CAR-T) cells have been proven to be an effective way of treating B cell malignancies, a lot of patients could not benefit from it because of failure in CAR-T cell manufacturing, disease progression, and unaffordable price. The study aimed to explore universal CAR-T cell products to extend the clinical accessibility. METHODS The antitumor activity of CRISPR/Cas9-edited allogeneic anti-CD19 CAR-T (CAR-T19) cells was assessed in vitro, in animal models, and in patients with relapsed/refractory (R/R) acute B cell lymphoblastic leukemia (B-ALL) or diffuse large B cell lymphoma. RESULTS B2M-/TRAC- universal CAR-T19 (U-CAR-T19) cells exhibited powerful anti-leukemia abilities both in vitro and in animal models, as did primary CD19+ leukemia cells from leukemia patients. However, expansion, antitumor efficacy, or graft-versus-host-disease (GvHD) was not observed in six patients with R/R B cell malignancies after U-CAR-T19 cell infusion. Accordingly, significant activation of natural killer (NK) cells by U-CAR-T19 cells was proven both clinically and in vitro. HLA-A-/B-/TRAC- novel CAR-T19 (nU-CAR-T19) cells were constructed with similar tumoricidal capacity but resistance to NK cells in vitro. Surprisingly, robust expansion of nU-CAR-T19 cells, along with rapid eradication of CD19+ abnormal B cells, was observed in the peripheral blood and bone marrow of another three patients with R/R B-ALL. The patients achieved complete remission with no detectable minimal residual disease 14 days after the infusion of nU-CAR-T19 cells. Two of the three patients had grade 2 cytokine release syndrome, which were managed using an IL-6 receptor blocker. Most importantly, GvHD was not observed in any patient, suggesting the safety of TRAC-disrupted CAR-T cells generated using the CRISPR/Cas9 method for clinical application. CONCLUSIONS The nU-CAR-T19 cells showed a strong response in R/R B-ALL. nU-CAR-T19 cells have the potential to be a promising new approach for treating R/R B cell malignancies.
Collapse
Affiliation(s)
- Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Binghe Tan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
- BRL Medicine Inc, Shanghai, 201109, China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xuan Zhao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jianmin Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | | | - Na Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Boxu Lin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xin Li
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xudong Zhang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ling Li
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mingzhi Zhang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wei Li
- BRL Medicine Inc, Shanghai, 201109, China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Bing Du
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450052, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Engineering Key Laboratory for Cell Therapy of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
19
|
Acharya L, Garg A, Rai M, Kshetri R, Grewal US, Dhakal P. Novel chimeric antigen receptor targets and constructs for acute lymphoblastic leukemia: Moving beyond CD19. J Investig Med 2024; 72:32-46. [PMID: 37497999 DOI: 10.1177/10815589231191811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the second most common acute leukemia in adults with a poor prognosis with relapsed or refractory (R/R) B-cell lineage ALL (B-ALL). Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy has shown excellent response rates in RR B-ALL, but most patients relapse due to poor persistence of CAR T-cell therapy or other tumor-associated escape mechanisms. In addition, anti-CD19 CAR T-cell therapy causes several serious side effects such as cytokine release syndrome and neurotoxicity. In this review, we will discuss novel CAR targets, CAR constructs, and various strategies to boost CARs for the treatment of RR B-ALL. In addition, we discuss a few novel strategies developed to reduce the side effects of CAR.
Collapse
Affiliation(s)
- Luna Acharya
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Alpana Garg
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Manoj Rai
- Department of Internal Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Rupesh Kshetri
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Udhayvir S Grewal
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Prajwal Dhakal
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
20
|
Soto KEG, Loureiro LR, Bartsch T, Arndt C, Kegler A, Mitwasi N, Drewitz L, Hoffmann L, Saleh HA, Crespo E, Mehnert M, Daglar C, Abken H, Momburg F, Bachmann M, Feldmann A. Targeting colorectal cancer cells using AND-gated adaptor RevCAR T-cells. Front Immunol 2023; 14:1302354. [PMID: 38169746 PMCID: PMC10758449 DOI: 10.3389/fimmu.2023.1302354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the success of chimeric antigen receptor (CAR) T-cells especially for treating hematological malignancies, critical drawbacks, such as "on-target, off-tumor" toxicities, need to be addressed to improve safety in translating to clinical application. This is especially true, when targeting tumor-associated antigens (TAAs) that are not exclusively expressed by solid tumors but also on hea9lthy tissues. To improve the safety profile, we developed switchable adaptor CAR systems including the RevCAR system. RevCAR T-cells are activated by cross-linking of bifunctional adaptor molecules termed target modules (RevTM). In a further development, we established a Dual-RevCAR system for an AND-gated combinatorial targeting by splitting the stimulatory and co-stimulatory signals of the RevCAR T-cells on two individual CARs. Examples of common markers for colorectal cancer (CRC) are the carcinoembryonic antigen (CEA) and the epithelial cell adhesion molecule (EpCAM), while these antigens are also expressed by healthy cells. Here we describe four novel structurally different RevTMs for targeting of CEA and EpCAM. All anti-CEA and anti-EpCAM RevTMs were validated and the simultaneous targeting of CEA+ and EpCAM+ cancer cells redirected specific in vitro and in vivo killing by Dual-RevCAR T-cells. In summary, we describe the development of CEA and EpCAM specific adaptor RevTMs for monospecific and AND-gated targeting of CRC cells via the RevCAR platform as an improved approach to increase tumor specificity and safety of CAR T-cell therapies.
Collapse
Affiliation(s)
- Karla E. G. Soto
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Liliana R. Loureiro
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Tabea Bartsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Claudia Arndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Alexandra Kegler
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Nicola Mitwasi
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Laura Drewitz
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Lydia Hoffmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Haidy A. Saleh
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Eugenia Crespo
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Maria Mehnert
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Cansu Daglar
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Hinrich Abken
- Department of Gene-Immunotherapy, Leibniz-Institute of Immunotherapy, and University Regensburg, Regensburg, Germany
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital, Heidelberg, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), partner site Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Anja Feldmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), partner site Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| |
Collapse
|
21
|
Pérez-Amill L, Bataller À, Delgado J, Esteve J, Juan M, Klein-González N. Advancing CART therapy for acute myeloid leukemia: recent breakthroughs and strategies for future development. Front Immunol 2023; 14:1260470. [PMID: 38098489 PMCID: PMC10720337 DOI: 10.3389/fimmu.2023.1260470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Chimeric antigen receptor (CAR) T therapies are being developed for acute myeloid leukemia (AML) on the basis of the results obtained for other haematological malignancies and the need of new treatments for relapsed and refractory AML. The biggest challenge of CART therapy for AML is to identify a specific target antigen, since antigens expressed in AML cells are usually shared with healthy haematopoietic stem cells (HSC). The concomitant expression of the target antigen on both tumour and HSC may lead to on-target/off-tumour toxicity. In this review, we guide researchers to design, develop, and translate to the clinic CART therapies for the treatment of AML. Specifically, we describe what issues have to be considered to design these therapies; what in vitro and in vivo assays can be used to prove their efficacy and safety; and what expertise and facilities are needed to treat and manage patients at the hospital.
Collapse
Affiliation(s)
- Lorena Pérez-Amill
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Gyala Therapeutics S.L, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Àlex Bataller
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Julio Delgado
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Jordi Esteve
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Manel Juan
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Hospital Sant Joan de Déu, Universidad de Barcelona, Barcelona, Spain
| | - Nela Klein-González
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Gyala Therapeutics S.L, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Tseng S, Lee ME, Lin PC. A Review of Childhood Acute Myeloid Leukemia: Diagnosis and Novel Treatment. Pharmaceuticals (Basel) 2023; 16:1614. [PMID: 38004478 PMCID: PMC10674205 DOI: 10.3390/ph16111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myeloid leukemia (AML) is the second most common hematologic malignancy in children. The incidence of childhood AML is much lower than acute lymphoblastic leukemia (ALL), which makes childhood AML a rare disease in children. The role of genetic abnormalities in AML classification, management, and prognosis prediction is much more important than before. Disease classifications and risk group classifications, such as the WHO classification, the international consensus classification (ICC), and the European LeukemiaNet (ELN) classification, were revised in 2022. The application of the new information in childhood AML will be upcoming in the next few years. The frequency of each genetic abnormality in adult and childhood AML is different; therefore, in this review, we emphasize well-known genetic subtypes in childhood AML, including core-binding factor AML (CBF AML), KMT2Ar (KMT2A/11q23 rearrangement) AML, normal karyotype AML with somatic mutations, unbalanced cytogenetic abnormalities AML, NUP98 11p15/NUP09 rearrangement AML, and acute promyelocytic leukemia (APL). Current risk group classification, the management algorithm in childhood AML, and novel treatment modalities such as targeted therapy, immune therapy, and chimeric antigen receptor (CAR) T-cell therapy are reviewed. Finally, the indications of hematopoietic stem cell transplantation (HSCT) in AML are discussed.
Collapse
Affiliation(s)
- Serena Tseng
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Mu-En Lee
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
| | - Pei-Chin Lin
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
23
|
Patel SA, Bello E, Wilks A, Gerber JM, Sadagopan N, Cerny J. Harnessing autologous immune effector mechanisms in acute myeloid leukemia: 2023 update of trials and tribulations. Leuk Res 2023; 134:107388. [PMID: 37729719 PMCID: PMC10947503 DOI: 10.1016/j.leukres.2023.107388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Numerous recent advances have been made in therapeutic approaches toward acute myeloid leukemia (AML). Since 2017, we have seen eleven novel Food & Drug Administration (FDA)-approved medications for AML, all of which extend beyond the classical cytarabine-based cytostatic chemotherapy. In the recent two decades, the role of immune surveillance in AML has been intensively investigated. The power of one's own innate and adaptive immunity has been harnessed pharmacologically toward the goal of clearance of AML cells. Specifically, pre-clinical studies have shown great promise for antibodies that disinhibit T cells and macrophages by blocking checkpoint receptors within the immunologic synapse, thereby resulting in the elimination of AML cells. Anti-CD33 CAR-T therapies and anti-CD3/CD123 bispecific antibodies have also exhibited encouraging results in pre-clinical and early clinical studies. However, despite these translational efforts, we currently have no immune-based therapies for AML on the market, with the exception of gemtuzumab ozogamicin. In this focused review, we discuss molecular target validation and the most relevant clinical updates for immune-based experimental therapeutics including anti-CD47 monoclonal antibodies, CAR-T therapies, and bispecific T cell engagers. We highlight barriers to the clinical translation of these therapies in AML, and we propose solutions to optimize the manufacturing and delivery of the most novel immune-based therapies in the pipeline.
Collapse
Affiliation(s)
- Shyam A Patel
- Dept. of Medicine - Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA, USA; Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, MA, USA
| | - Elisa Bello
- UMass Chan Medical School, Worcester, MA, USA
| | - Andrew Wilks
- Dept. of Medicine - Division of Hematology and Medical Oncology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Jonathan M Gerber
- Dept. of Medicine - Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA, USA; Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, MA, USA
| | - Narayanan Sadagopan
- MedStar Health - Georgetown/Washington Hospital Center Hematology and Medical Oncology, Washington, DC, USA
| | - Jan Cerny
- Dept. of Medicine - Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA, USA; Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
24
|
Gao J, Dahiya S, Patel SA. Challenges and solutions to superior chimeric antigen receptor-T design and deployment for B-cell lymphomas. Br J Haematol 2023; 203:161-168. [PMID: 37488074 PMCID: PMC10913150 DOI: 10.1111/bjh.19001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
Chimeric antigen receptor-T (CAR-T) therapies represent a major breakthrough in cancer medicine, given the ex vivo-based technology that harnesses the power of one's own immune system. These therapeutics have demonstrated remarkable success for relapsed/refractory B-cell lymphomas. Although more than a decade has passed since the initial introduction of CAR-T therapeutics for patients with leukaemia and lymphoma, there is still significant debate as to where CAR-T therapeutics fit into the management paradigm, as consensus guidelines are limited. Competing interventions deployed in subsequent lines of therapy for aggressive lymphoma include novel targeted agents, bispecific antibodies, and time-honoured stem cell transplant. In this focused review, we discuss the major obstacles to advancing the therapeutic reach for CAR-T products in early lines of therapy. Such barriers include antigen escape, "cold" tumour microenvironments, host inflammation and CAR-T cell exhaustion. We highlight solutions including point-of-care CAR-T manufacturing and early T lymphopheresis. We review the evidence basis for early CAR-T deployment for B-cell lymphomas in light of the recent Food and Drug Administration (FDA) approval of three first-in-class anti-CD3/CD20 bispecific antibodies-mosunetuzumab, epcoritamab and glofitamab. We propose practical recommendations for 2024.
Collapse
Affiliation(s)
- Jenny Gao
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Saurabh Dahiya
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, California, USA
| | - Shyam A. Patel
- Division of Hematology/Oncology, Department of Medicine, UMass Memorial Medical Center, Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
25
|
Pfeifer Serrahima J, Zhang C, Oberoi P, Bodden M, Röder J, Arndt C, Feldmann A, Kiefer A, Prüfer M, Kühnel I, Tonn T, Bachmann M, Wels WS. Multivalent adaptor proteins specifically target NK cells carrying a universal chimeric antigen receptor to ErbB2 (HER2)-expressing cancers. Cancer Immunol Immunother 2023; 72:2905-2918. [PMID: 36688995 PMCID: PMC10412657 DOI: 10.1007/s00262-023-03374-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023]
Abstract
Chimeric antigen receptor (CAR)-engineered immune effector cells constitute a promising approach for adoptive cancer immunotherapy. Nevertheless, on-target/off-tumor toxicity and immune escape due to antigen loss represent considerable challenges. These may be overcome by adaptor CARs that are selectively triggered by bispecific molecules that crosslink the CAR with a tumor-associated surface antigen. Here, we generated NK cells carrying a first- or second-generation universal CAR (UniCAR) and redirected them to tumor cells with so-called target modules (TMs) which harbor an ErbB2 (HER2)-specific antibody domain for target cell binding and the E5B9 peptide recognized by the UniCAR. To investigate differential effects of the protein design on activity, we developed homodimeric TMs with one, two or three E5B9 peptides per monomer, and binding domains either directly linked or separated by an IgG4 Fc domain. The adaptor molecules were expressed as secreted proteins in Expi293F cells, purified from culture supernatants and their bispecific binding to UniCAR and ErbB2 was confirmed by flow cytometry. In cell killing experiments, all tested TMs redirected NK cell cytotoxicity selectively to ErbB2-positive tumor cells. Nevertheless, we found considerable differences in the extent of specific cell killing depending on TM design and CAR composition, with adaptor proteins carrying two or three E5B9 epitopes being more effective when combined with NK cells expressing the first-generation UniCAR, while the second-generation UniCAR was more active in the presence of TMs with one E5B9 sequence. These results may have important implications for the further development of optimized UniCAR and target module combinations for cancer immunotherapy.
Collapse
Affiliation(s)
- Jordi Pfeifer Serrahima
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
| | - Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
- Partner Site Frankfurt/Mainz, German Cancer Consortium (DKTK), Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pranav Oberoi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
- Partner Site Frankfurt/Mainz, German Cancer Consortium (DKTK), Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Malena Bodden
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
| | - Jasmin Röder
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Claudia Arndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Anja Feldmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Anne Kiefer
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
| | - Maren Prüfer
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
| | - Ines Kühnel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
| | - Torsten Tonn
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Partner Site Dresden, German Cancer Consortium (DKTK), Dresden, Germany
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Partner Site Dresden, German Cancer Consortium (DKTK), Dresden, Germany
- National Center for Tumor Diseases (NCT) and Tumor Immunology, University Cancer Center (UCC) Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany.
- Partner Site Frankfurt/Mainz, German Cancer Consortium (DKTK), Frankfurt, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany.
| |
Collapse
|
26
|
Jin X, Xie D, Sun R, Lu W, Xiao X, Yu Y, Meng J, Zhao M. CAR-T cells dual-target CD123 and NKG2DLs to eradicate AML cells and selectively target immunosuppressive cells. Oncoimmunology 2023; 12:2248826. [PMID: 37645216 PMCID: PMC10461507 DOI: 10.1080/2162402x.2023.2248826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have not made significant progress in the treatment of acute myeloid leukemia (AML) in earlyclinical studies. This lack of progress could be attributed in part to the immunosuppressive microenvironment of AML, such as monocyte-like myeloid-derived suppressor cells (M-MDSCs) and alternatively activated macrophages (M2 cells), which can inhibit the antitumor activity of CAR-T cells. Furthermore, AML cells are usually heterogeneous, and single-target CAR-T cells may not be able to eliminate all AML cells, leading to disease relapse. CD123 and NKG2D ligands (NKG2DLs) are commonly used targets for CAR-T therapy of AML, and M-MDSCs and M2 cells express both antigens. We developed dual-targeted CAR-T (123NL CAR-T) cells targeting CD123 and NKG2DL by various structural optimization screens. Our study reveals that 123NL CAR-T cells eradicate AML cells and selectively target immunosuppressive cells. A highly compact marker/suicide gene, RQR8, which binds targeting epitopes of CD34 and CD20 antigens, was also incorporated in front of the CAR structure. The binding of Rituximab to RQR8 leads to the elimination of 123NL CAR-T cells and cessation of their cytotoxicity. In conclusion, we successfully developed dual effects of 123NL CAR-T cells against tumor cells and immunosuppressive cells, which can avoid target escape and resist the effects of immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Xin Jin
- School of Medicine, Nankai University, Tianjin, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Danni Xie
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Rui Sun
- School of Medicine, Nankai University, Tianjin, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Xia Xiao
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yibing Yu
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Juanxia Meng
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
27
|
Zarychta J, Kowalczyk A, Krawczyk M, Lejman M, Zawitkowska J. CAR-T Cells Immunotherapies for the Treatment of Acute Myeloid Leukemia-Recent Advances. Cancers (Basel) 2023; 15:cancers15112944. [PMID: 37296906 DOI: 10.3390/cancers15112944] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
In order to increase the effectiveness of cancer therapies and extend the long-term survival of patients, more and more often, in addition to standard treatment, oncological patients receive also targeted therapy, i.e., CAR-T cells. These cells express a chimeric receptor (CAR) that specifically binds an antigen present on tumor cells, resulting in tumor cell lysis. The use of CAR-T cells in the therapy of relapsed and refractory B-type acute lymphoblastic leukemia (ALL) resulted in complete remission in many patients, which prompted researchers to conduct tests on the use of CAR-T cells in the treatment of other hematological malignancies, including acute myeloid leukemia (AML). AML is associated with a poorer prognosis compared to ALL due to a higher risk of relapse caused by the development of resistance to standard treatment. The 5-year relative survival rate in AML patients was estimated at 31.7%. The objective of the following review is to present the mechanism of action of CAR-T cells, and discuss the latest findings on the results of anti-CD33, -CD123, -FLT3 and -CLL-1 CAR-T cell therapy, the emerging challenges as well as the prospects for the future.
Collapse
Affiliation(s)
- Julia Zarychta
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| | - Adrian Kowalczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| | - Milena Krawczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University, 20-093 Lublin, Poland
| |
Collapse
|
28
|
Atilla E, Benabdellah K. The Black Hole: CAR T Cell Therapy in AML. Cancers (Basel) 2023; 15:2713. [PMID: 37345050 DOI: 10.3390/cancers15102713] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Despite exhaustive studies, researchers have made little progress in the field of adoptive cellular therapies for relapsed/refractory acute myeloid leukemia (AML), unlike the notable uptake for B cell malignancies. Various single antigen-targeting chimeric antigen receptor (CAR) T cell Phase I trials have been established worldwide and have recruited approximately 100 patients. The high heterogeneity at the genetic and molecular levels within and between AML patients resembles a black hole: a great gravitational field that sucks in everything. One must consider the fact that only around 30% of patients show a response; there are, however, consequential off-tumor effects. It is obvious that a new point of view is needed to achieve more promising results. This review first introduces the unique therapeutic challenges of not only CAR T cells but also other adoptive cellular therapies in AML. Next, recent single-cell sequencing data for AML to assess somatically acquired alterations at the DNA, epigenetic, RNA, and protein levels are discussed to give a perspective on cellular heterogeneity, intercellular hierarchies, and the cellular ecosystem. Finally, promising novel strategies are summarized, including more sophisticated next-generation CAR T, TCR-T, and CAR NK therapies; the approaches with which to tailor the microenvironment and target neoantigens; and allogeneic approaches.
Collapse
Affiliation(s)
- Erden Atilla
- Fred Hutchinson Cancer Research Center, Clinical Research Division, 1100 Fairview Ave N, Seattle, WA 98109, USA
- GENYO Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer/University of Granada/Andalusian Regional Government, Health Sciences Technology Park, 18016 Granada, Spain
| | - Karim Benabdellah
- GENYO Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer/University of Granada/Andalusian Regional Government, Health Sciences Technology Park, 18016 Granada, Spain
| |
Collapse
|
29
|
Celichowski P, Turi M, Charvátová S, Radhakrishnan D, Feizi N, Chyra Z, Šimíček M, Jelínek T, Bago JR, Hájek R, Hrdinka M. Tuning CARs: recent advances in modulating chimeric antigen receptor (CAR) T cell activity for improved safety, efficacy, and flexibility. J Transl Med 2023; 21:197. [PMID: 36922828 PMCID: PMC10015723 DOI: 10.1186/s12967-023-04041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer immunotherapies utilizing genetically engineered T cells have emerged as powerful personalized therapeutic agents showing dramatic preclinical and clinical results, particularly in hematological malignancies. Ectopically expressed chimeric antigen receptors (CARs) reprogram immune cells to target and eliminate cancer. However, CAR T cell therapy's success depends on the balance between effective anti-tumor activity and minimizing harmful side effects. To improve CAR T cell therapy outcomes and mitigate associated toxicities, scientists from different fields are cooperating in developing next-generation products using the latest molecular cell biology and synthetic biology tools and technologies. The immunotherapy field is rapidly evolving, with new approaches and strategies being reported at a fast pace. This comprehensive literature review aims to provide an up-to-date overview of the latest developments in controlling CAR T cell activity for improved safety, efficacy, and flexibility.
Collapse
Affiliation(s)
- Piotr Celichowski
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Marcello Turi
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Sandra Charvátová
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Dhwani Radhakrishnan
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Neda Feizi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Zuzana Chyra
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Michal Šimíček
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Tomáš Jelínek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Juli Rodriguez Bago
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Roman Hájek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Matouš Hrdinka
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
30
|
Köseer AS, Di Gaetano S, Arndt C, Bachmann M, Dubrovska A. Immunotargeting of Cancer Stem Cells. Cancers (Basel) 2023; 15:1608. [PMID: 36900399 PMCID: PMC10001158 DOI: 10.3390/cancers15051608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The generally accepted view is that CSCs hijack the signaling pathways attributed to normal stem cells that regulate the self-renewal and differentiation processes. Therefore, the development of selective targeting strategies for CSC, although clinically meaningful, is associated with significant challenges because CSC and normal stem cells share many important signaling mechanisms for their maintenance and survival. Furthermore, the efficacy of this therapy is opposed by tumor heterogeneity and CSC plasticity. While there have been considerable efforts to target CSC populations by the chemical inhibition of the developmental pathways such as Notch, Hedgehog (Hh), and Wnt/β-catenin, noticeably fewer attempts were focused on the stimulation of the immune response by CSC-specific antigens, including cell-surface targets. Cancer immunotherapies are based on triggering the anti-tumor immune response by specific activation and targeted redirecting of immune cells toward tumor cells. This review is focused on CSC-directed immunotherapeutic approaches such as bispecific antibodies and antibody-drug candidates, CSC-targeted cellular immunotherapies, and immune-based vaccines. We discuss the strategies to improve the safety and efficacy of the different immunotherapeutic approaches and describe the current state of their clinical development.
Collapse
Affiliation(s)
- Ayse Sedef Köseer
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Simona Di Gaetano
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Bachmann
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| |
Collapse
|
31
|
Pelosi E, Castelli G, Testa U. CD123 a Therapeutic Target for Acute Myeloid Leukemia and Blastic Plasmocytoid Dendritic Neoplasm. Int J Mol Sci 2023; 24:2718. [PMID: 36769040 PMCID: PMC9917129 DOI: 10.3390/ijms24032718] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
In spite of consistent progress at the level of basic research and of clinical treatment, acute myeloid leukemia (AML) still represents an unmet clinical need for adult and pediatric patients. To improve the outcomes of these patients, it is necessary to identify new therapeutic targets. IL3RA (CD123, alpha subunit of the interleukin 3 receptor) is a cell membrane protein overexpressed in several hematologic malignancies, including AML blastic plasmocytoid dendritic cell neoplasms (BPDCN). Given the higher expression of CD123 on leukemic cells compared to normal hematopoietic cells and its low/absent expression on normal hematopoietic stem cells, it appears as a suitable and attractive target for therapy. Various drugs targeting CD123 have been developed and evaluated at clinical level: interleukin-3 conjugated with diphtheria toxin; naked neutralizing anti-CD123 antibodies; drug-antibody conjugates; bispecific antibodies targeting both CD123 and CD3; and chimeric antigen receptor (CAR) T cells engineered to target CD123. Some of these agents have shown promising results at the clinical level, including tagraxofusp (CD123 conjugated with diphtheria toxin) for the treatment of BPDCN and IMGN632 (anti-CD123 drug-conjugate), and flotetuzumab (bispecific anti-CD123 and anti-CD3 monoclonal antibody) for the treatment of AML. However, the therapeutic efficacy of CD123-targeting treatments is still unsatisfactory and must be improved through new therapeutic strategies and combined treatments with other antileukemic drugs.
Collapse
Affiliation(s)
| | | | - Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
32
|
Yan T, Zhu L, Chen J. Current advances and challenges in CAR T-Cell therapy for solid tumors: tumor-associated antigens and the tumor microenvironment. Exp Hematol Oncol 2023; 12:14. [PMID: 36707873 PMCID: PMC9883880 DOI: 10.1186/s40164-023-00373-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
The past decade has witnessed ongoing progress in immune therapy to ameliorate human health. As an emerging technique, chimeric antigen receptor (CAR) T-cell therapy has the advantages of specific killing of cancer cells, a high remission rate of cancer-induced symptoms, rapid tumor eradication, and long-lasting tumor immunity, opening a new window for tumor treatment. However, challenges remain in CAR T-cell therapy for solid tumors due to target diversity, tumor heterogeneity, and the complex microenvironment. In this review, we have outlined the development of the CAR T-cell technique, summarized the current advances in tumor-associated antigens (TAAs), and highlighted the importance of tumor-specific antigens (TSAs) or neoantigens for solid tumors. We also addressed the challenge of the TAA binding domain in CARs to overcome off-tumor toxicity. Moreover, we illustrated the dominant tumor microenvironment (TME)-induced challenges and new strategies based on TME-associated antigens (TMAs) for solid tumor CAR T-cell therapy.
Collapse
Affiliation(s)
- Ting Yan
- grid.443397.e0000 0004 0368 7493Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 Hainan China
| | - Lingfeng Zhu
- grid.443397.e0000 0004 0368 7493Department of Urology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 Hainan China
| | - Jin Chen
- grid.443397.e0000 0004 0368 7493Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 Hainan China ,grid.443397.e0000 0004 0368 7493Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311 Hainan China
| |
Collapse
|
33
|
Biederstädt A, Rezvani K. How I treat high-risk acute myeloid leukemia using preemptive adoptive cellular immunotherapy. Blood 2023; 141:22-38. [PMID: 35512203 PMCID: PMC10023741 DOI: 10.1182/blood.2021012411] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/21/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloHSCT) is a potentially curative treatment for patients with high-risk acute leukemias, but unfortunately disease recurrence remains the major cause of death in these patients. Infusion of donor lymphocytes (DLI) has the potential to restore graft-versus-leukemia immunologic surveillance; however, efficacy varies across different hematologic entities. Although relapsed chronic myeloid leukemia, transplanted in chronic phase, has proven remarkably susceptible to DLI, response rates are more modest for relapsed acute myeloid leukemia and acute lymphoblastic leukemia. To prevent impending relapse, a number of groups have explored administering DLI preemptively on detection of measurable residual disease (MRD) or mixed chimerism. Evidence for the effectiveness of this strategy, although encouraging, comes from only a few, mostly single-center retrospective, nonrandomized studies. This article seeks to (1) discuss the available evidence supporting this approach while highlighting some of the inherent challenges of MRD-triggered treatment decisions post-transplant, (2) portray other forms of postremission cellular therapies, including the role of next-generation target-specific immunotherapies, and (3) provide a practical framework to support clinicians in their decision-making process when considering preemptive cellular therapy for this difficult-to-treat patient population.
Collapse
Affiliation(s)
- Alexander Biederstädt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Medicine III: Hematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
34
|
Saleh HA, Mitwasi N, Ullrich M, Kubeil M, Toussaint M, Deuther-Conrad W, Neuber C, Arndt C, R. Loureiro L, Kegler A, González Soto KE, Belter B, Rössig C, Pietzsch J, Frenz M, Bachmann M, Feldmann A. Specific and safe targeting of glioblastoma using switchable and logic-gated RevCAR T cells. Front Immunol 2023; 14:1166169. [PMID: 37122703 PMCID: PMC10145173 DOI: 10.3389/fimmu.2023.1166169] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Glioblastoma (GBM) is still an incurable tumor that is associated with high recurrence rate and poor survival despite the current treatment regimes. With the urgent need for novel therapeutic strategies, immunotherapies, especially chimeric antigen receptor (CAR)-expressing T cells, represent a promising approach for specific and effective targeting of GBM. However, CAR T cells can be associated with serious side effects. To overcome such limitation, we applied our switchable RevCAR system to target both the epidermal growth factor receptor (EGFR) and the disialoganglioside GD2, which are expressed in GBM. The RevCAR system is a modular platform that enables controllability, improves safety, specificity and flexibility. Briefly, it consists of RevCAR T cells having a peptide epitope as extracellular domain, and a bispecific target module (RevTM). The RevTM acts as a switch key that recognizes the RevCAR epitope and the tumor-associated antigen, and thereby activating the RevCAR T cells to kill the tumor cells. However, in the absence of the RevTM, the RevCAR T cells are switched off. In this study, we show that the novel EGFR/GD2-specific RevTMs can selectively activate RevCAR T cells to kill GBM cells. Moreover, we show that gated targeting of GBM is possible with our Dual-RevCAR T cells, which have their internal activation and co-stimulatory domains separated into two receptors. Therefore, a full activation of Dual-RevCAR T cells can only be achieved when both receptors recognize EGFR and GD2 simultaneously via RevTMs, leading to a significant killing of GBM cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Haidy A. Saleh
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Nicola Mitwasi
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Manja Kubeil
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Magali Toussaint
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Mildred Scheel Early Career Center, Technische Universität Dresden, Dresden, Germany
| | - Liliana R. Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Alexandra Kegler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | | | - Birgit Belter
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Claudia Rössig
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, Münster, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Marcus Frenz
- Faculty Informatik and Wirtschaftsinformatik, Provadis School of International Management and Technology AG, Frankfurt, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site, Dresden, Germany
- *Correspondence: Michael Bachmann,
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site, Dresden, Germany
| |
Collapse
|
35
|
Chen Y, Wang J, Zhang F, Liu P. A perspective of immunotherapy for acute myeloid leukemia: Current advances and challenges. Front Pharmacol 2023; 14:1151032. [PMID: 37153761 PMCID: PMC10154606 DOI: 10.3389/fphar.2023.1151032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023] Open
Abstract
During the last decade, the underlying pathogenic mechanisms of acute myeloid leukemia (AML) have been the subject of extensive study which has considerably increased our understanding of the disease. However, both resistance to chemotherapy and disease relapse remain the principal obstacles to successful treatment. Because of acute and chronic undesirable effects frequently associated with conventional cytotoxic chemotherapy, consolidation chemotherapy is not feasible, especially for elderly patients, which has attracted a growing body of research to attempt to tackle this problem. Immunotherapies for acute myeloid leukemia, including immune checkpoint inhibitors, monoclonal antibodies, dendritic cell (DC) vaccines, together with T-cell therapy based on engineered antigen receptor have been developed recently. Our review presents the recent progress in immunotherapy for the treatment of AML and discusses effective therapies that have the most potential and major challenges.
Collapse
Affiliation(s)
- Ying Chen
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
- *Correspondence: Jishi Wang,
| | - Fengqi Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Ping Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| |
Collapse
|
36
|
A Prognostic Model of Seven Immune Genes to Predict Overall Survival in Childhood Acute Myeloid Leukemia. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7724220. [DOI: 10.1155/2022/7724220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 12/12/2022]
Abstract
Background. Acute myeloid leukemia (AML) is one of the most common hematological malignancies and accounts for about 20% of childhood leukemias. Currently, immunotherapy is one of the recommended treatment schemes for recurrent AML patients to improve their survival rates. Nonetheless, low remission and high mortality rates are observed in recurrent AML and challenge the prognosis of AML patients. To address this problem, we aimed to establish and verify a reliable prognostic risk model using immune-related genes to improve the prognostic evaluation and recommendation for personalized treatment of AML. Methods. Transcriptome data and clinical data were acquired from the TARGET database while immune genes were sourced from InnateDB and ImmPort Shared databases. The mRNA expression profile matrix of immune genes from 62 normal samples and 1408 AML cases was extracted from the transcriptome data and subjected to differential expression (DE) analysis. The entire cohort of DE immune genes was randomly divided into the test group and training group. The prognostic model associated with immune genes was constructed using the training group. The test group and entire cohort were employed for model validation. Lastly, we analyzed the potential clinical application of the model and its association with immune cell infiltration. Results. In total, 751 DE immune genes were differentially regulated, including 552 upregulated and 199 downregulated. Based on these DE genes, we developed and validated a prognostic risk model composed of seven immune genes, GDF1, TPM2, IL1R1, PSMD4, IL5RA, DHCR24, and IL12RB2. This model is able to predict the 5-year survival rate more accurately compared with age, gender, and risk stratification. Further analysis showed that CD8+ T-cell contents and neutrophil infiltration decreased but macrophage infiltration increased as the risk score increased. Conclusions. A seven-immune gene model of AML was developed and validated. We propose this model as an independent prognostic variable able to estimate the 5-year survival rate. In addition, the model can also reflect the immune microenvironment of AML patients.
Collapse
|
37
|
Wei W, Yang D, Chen X, Liang D, Zou L, Zhao X. Chimeric antigen receptor T-cell therapy for T-ALL and AML. Front Oncol 2022; 12:967754. [PMID: 36523990 PMCID: PMC9745195 DOI: 10.3389/fonc.2022.967754] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/14/2022] [Indexed: 11/10/2023] Open
Abstract
Non-B-cell acute leukemia is a term that encompasses T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Currently, the therapeutic effectiveness of existing treatments for refractory or relapsed (R/R) non-B-cell acute leukemia is limited. In such situations, chimeric antigen receptor (CAR)-T cell therapy may be a promising approach to treat non-B-cell acute leukemia, given its promising results in B-cell acute lymphoblastic leukemia (B-ALL). Nevertheless, fratricide, malignant contamination, T cell aplasia for T-ALL, and specific antigen selection and complex microenvironment for AML remain significant challenges in the implementation of CAR-T therapy for T-ALL and AML patients in the clinic. Therefore, designs of CAR-T cells targeting CD5 and CD7 for T-ALL and CD123, CD33, and CLL1 for AML show promising efficacy and safety profiles in clinical trials. In this review, we summarize the characteristics of non-B-cell acute leukemia, the development of CARs, the CAR targets, and their efficacy for treating non-B-cell acute leukemia.
Collapse
Affiliation(s)
- Wenwen Wei
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Department of Medical Oncology of Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Dong Yang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Xi Chen
- Department of Radiotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Dandan Liang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Liqun Zou
- Department of Medical Oncology of Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xudong Zhao
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Poussard M, Angelot-Delettre F, Deconinck E. Conventional Therapeutics in BPDCN Patients-Do They Still Have a Place in the Era of Targeted Therapies? Cancers (Basel) 2022; 14:3767. [PMID: 35954431 PMCID: PMC9367503 DOI: 10.3390/cancers14153767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 12/10/2022] Open
Abstract
No benchmark treatment exists for blastic plasmacytoid dendritic cell neoplasm (BPDCN). Since the malignancy is chemo-sensitive, chemotherapy followed by hematopoietic stem cell transplantation remains an effective treatment. However, relapses frequently occur with the development of resistance. New options arising with the development of therapies targeting signaling pathways and epigenetic dysregulation have shown promising results. In this review, we focus on conventional therapies used to treat BPDCN and the novel therapeutic approaches that guide us toward the future management of BPDCN.
Collapse
Affiliation(s)
- Margaux Poussard
- RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, UMR1098, EFS BFC, INSERM, University Bourgogne Franche-Comté, F-25000 Besançon, France; (M.P.); (F.A.-D.)
| | - Fanny Angelot-Delettre
- RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, UMR1098, EFS BFC, INSERM, University Bourgogne Franche-Comté, F-25000 Besançon, France; (M.P.); (F.A.-D.)
- Etablissement Français du Sang Bourgogne Franche-Comté, Laboratoire d’Immuno-Hématologie, F-25000 Besançon, France
| | - Eric Deconinck
- RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, UMR1098, EFS BFC, INSERM, University Bourgogne Franche-Comté, F-25000 Besançon, France; (M.P.); (F.A.-D.)
- Service d’Hématologie, CHRU Besançon, F-25000 Besançon, France
| |
Collapse
|
39
|
Zhang X, Zhu L, Zhang H, Chen S, Xiao Y. CAR-T Cell Therapy in Hematological Malignancies: Current Opportunities and Challenges. Front Immunol 2022; 13:927153. [PMID: 35757715 PMCID: PMC9226391 DOI: 10.3389/fimmu.2022.927153] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy represents a major breakthrough in cancer treatment, and it has achieved unprecedented success in hematological malignancies, especially in relapsed/refractory (R/R) B cell malignancies. At present, CD19 and BCMA are the most common targets in CAR-T cell therapy, and numerous novel therapeutic targets are being explored. However, the adverse events related to CAR-T cell therapy might be serious or even life-threatening, such as cytokine release syndrome (CRS), CAR-T-cell-related encephalopathy syndrome (CRES), infections, cytopenia, and CRS-related coagulopathy. In addition, due to antigen escape, the limited CAR-T cell persistence, and immunosuppressive tumor microenvironment, a considerable proportion of patients relapse after CAR-T cell therapy. Thus, in this review, we focus on the progress and challenges of CAR-T cell therapy in hematological malignancies, such as attractive therapeutic targets, CAR-T related toxicities, and resistance to CAR-T cell therapy, and provide some practical recommendations.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Hematology, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Zhu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Zhang
- School of Medicine, Jishou University, Jishou, China
| | - Shanshan Chen
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yang Xiao
- Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, China
| |
Collapse
|
40
|
Application and Design of Switches Used in CAR. Cells 2022; 11:cells11121910. [PMID: 35741039 PMCID: PMC9221702 DOI: 10.3390/cells11121910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Among the many oncology therapies, few have generated as much excitement as CAR-T. The success of CAR therapy would not have been possible without the many discoveries that preceded it, most notably, the Nobel Prize-winning breakthroughs in cellular immunity. However, despite the fact that CAR-T already offers not only hope for development, but measurable results in the treatment of hematological malignancies, CAR-T still cannot be safely applied to solid tumors. The reason for this is, among other things, the lack of tumor-specific antigens which, in therapy, threatens to cause a lethal attack of lymphocytes on healthy cells. In the case of hematological malignancies, dangerous complications such as cytokine release syndrome may occur. Scientists have responded to these clinical challenges with molecular switches. They make it possible to remotely control CAR lymphocytes after they have already been administered to the patient. Moreover, they offer many additional capabilities. For example, they can be used to switch CAR antigenic specificity, create logic gates, or produce local activation under heat or light. They can also be coupled with costimulatory domains, used for the regulation of interleukin secretion, or to prevent CAR exhaustion. More complex modifications will probably require a combination of reprogramming (iPSc) technology with genome editing (CRISPR) and allogenic (off the shelf) CAR-T production.
Collapse
|
41
|
Perna F, Espinoza-Gutarra MR, Bombaci G, Farag SS, Schwartz JE. Immune-Based Therapeutic Interventions for Acute Myeloid Leukemia. Cancer Treat Res 2022; 183:225-254. [PMID: 35551662 DOI: 10.1007/978-3-030-96376-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive, clonally heterogeneous, myeloid malignancy, with a 5-year overall survival of approximately 27%. It constitutes the most common acute leukemia in adults, with an incidence of 3-5 cases per 100,000 in the United States. Despite great advances in understanding the molecular mechanisms underpinning leukemogenesis, the past several decades had seen little change to the backbone of therapy, comprised of an anthracycline-based induction regimen for those who are fit enough to receive it, followed by risk-stratified post-remission therapy with consolidation cytarabine or allogeneic stem cell transplantation (allo-SCT). Allo-SCT is the most fundamental form of immunotherapy in which donor cytotoxic T and NK cells recognize and eradicate residual AML in the graft-versus-leukemia (GvL) effect. Building on that, several alternative or synergistic approaches to exploit both self and foreign immunity against AML have been developed. Checkpoint inhibitors, for example, CTLA-4 inhibitors, PD-1 inhibitors, and PD-L1 inhibitors block proteins found on T cells or cancer cells that stop the immune system from attacking the cancer cells. They have been used with limited success in both the AML relapsed/refractory (R/R) and post SCT settings. AML tumor mutational burden is low compared to solid tumors and thus, it is less likely to generate neoantigens and respond to antibody-mediated checkpoint blockade that has shown unprecedented results in solid tumors. Therefore, alternative therapeutic strategies that work independently of the T cell receptor (TCR) specificity have been developed. They include bispecific antibodies, which recruit T cells through CD3 engagement, and in AML have shown an overall response rate ranging between 14 and 30% in early phase trials. Chimeric Antigen Receptor (CAR) T cell therapy is a type of treatment in which T cells are genetically engineered to produce a recombinant receptor that redirects the specificity and function of T lymphocytes. However, lack of cell surface targets exclusively expressed on AML cells including Leukemic Stem Cells (LSCs) combined with clonal heterogeneity represents the biggest challenge in developing CAR therapy for AML. Antibody-Drug Conjugates (ADC) constitute the only FDA-approved immunotherapy to treat AML with Gemtuzumab Ozogamicin, a CD33-specific ADC used in CEBPα-mutated AML. The identification of additional cell surface targets is critical for the development of other ADC's potentially useful in the induction and maintenance regimens, given the ease at which these reagents can be generated and managed. Here, we will review those immune-based therapeutic interventions and highlight active areas of research investigations toward fulfillment of the great promise of immunotherapy to AML.
Collapse
Affiliation(s)
- Fabiana Perna
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA.
| | - Manuel R Espinoza-Gutarra
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Giuseppe Bombaci
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Sherif S Farag
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Jennifer E Schwartz
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| |
Collapse
|
42
|
Bôle-Richard E, Pemmaraju N, Caël B, Daguindau E, Lane AA. CD123 and More: How to Target the Cell Surface of Blastic Plasmacytoid Dendritic Cell Neoplasm. Cancers (Basel) 2022; 14:2287. [PMID: 35565416 PMCID: PMC9099711 DOI: 10.3390/cancers14092287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive leukemia derived from plasmacytoid dendritic cells (pDCs). It is associated with a remarkably poor prognosis and unmet need for better therapies. Recently, the first-in-class CD123-targeting therapy, tagraxofusp, was approved for treatment of BPDCN. Other CD123-targeting strategies are in development, including bispecific antibodies and combination approaches with tagraxofusp and other novel agents. In other blood cancers, adoptive T-cell therapy using chimeric antigen receptor (CAR)-modified T cells represents a promising new avenue in immunotherapy, showing durable remissions in some relapsed hematologic malignancies. Here, we report on novel and innovative therapies in development to target surface molecules in BPDCN currently in clinical trials or in preclinical stages. We also discuss new cell surface targets that may have implications for future BPDCN treatment.
Collapse
Affiliation(s)
- Elodie Bôle-Richard
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besancon, France; (B.C.); (E.D.)
| | - Naveen Pemmaraju
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Blandine Caël
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besancon, France; (B.C.); (E.D.)
| | - Etienne Daguindau
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besancon, France; (B.C.); (E.D.)
- Service Hématologie, CHU Besançon, F-25000 Besancon, France
| | - Andrew A. Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
43
|
Drumheller B, Gebre K, Lockhart B, Margolskee E, Obstfeld A, Paessler M, Pillai V. Haematology laboratory parameters to assess efficacy of CD19-, CD22-, CD33-, and CD123-directed chimeric antigen receptor T-cell therapy in haematological malignancies. Int J Lab Hematol 2022; 44:750-758. [PMID: 35419923 DOI: 10.1111/ijlh.13850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/01/2022] [Accepted: 03/27/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T cell products are available to treat relapsed/refractory B-lymphoblastic leukaemia/lymphoma (B-ALL), diffuse large B-cell lymphoma, mantle-cell lymphoma, and myeloma. CAR products vary by their target epitope and constituent molecules. Hence, there are no common laboratory assays to assess CAR T cell expansion in the clinical setting. We investigated the utility of common haematology laboratory parameters to measure CAR T cell expansion and response. METHODS Archived CellaVision images, absolute lymphocyte counts, and Sysmex CPD parameters spanning 1 month after CD19-CAR, UCAR19, CD22-CAR, CD33-CAR, and UCAR123 therapy were compared against donor lymphocyte infused control patients. Additionally, CellaVision images gathered during acute EBV infection were analysed. RESULTS CellaVision images revealed a distinct sequence of three lymphocyte morphologies, common among CD19-CAR, CD22-CAR and UCAR19. This lymphocyte sequence was notably absent in CAR T cell non-responders and stem-cell transplantation controls, but shared some features seen during acute EBV infection. CD19-CAR engraftment kinetics monitored by quantitative PCR show an expansion and persistence phase and mirror CD19-CAR ALC kinetics. We show other novel CAR T cell therapies (UCAR19, CD22-CAR, CD33-CAR and UCAR123) display similar ALC expansion in responders and diminished ALC expansion in non-responders. Furthermore, the CPD parameter LY_WY fluorescence increased within the first week after CD19-CAR infusion, preceding the peak absolute lymphocyte count (ALC) by 3.7 days. CONCLUSION Autologous and allogeneic CAR T cell therapy produce unique changes in common haematology laboratory parameters and could be a useful surrogate to follow CAR T-cell expansion after infusion.
Collapse
Affiliation(s)
- Bradley Drumheller
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kirubel Gebre
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Lockhart
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elizabeth Margolskee
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amrom Obstfeld
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michele Paessler
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
44
|
Marofi F, Achmad H, Bokov D, Abdelbasset WK, Alsadoon Z, Chupradit S, Suksatan W, Shariatzadeh S, Hasanpoor Z, Yazdanifar M, Shomali N, Khiavi FM. Hurdles to breakthrough in CAR T cell therapy of solid tumors. Stem Cell Res Ther 2022; 13:140. [PMID: 35365241 PMCID: PMC8974159 DOI: 10.1186/s13287-022-02819-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Autologous T cells genetically engineered to express chimeric antigen receptor (CAR) have shown promising outcomes and emerged as a new curative option for hematological malignancy, especially malignant neoplasm of B cells. Notably, when T cells are transduced with CAR constructs, composed of the antigen recognition domain of monoclonal antibodies, they retain their cytotoxic properties in a major histocompatibility complex (MHC)-independent manner. Despite its beneficial effect, the current CAR T cell therapy approach faces myriad challenges in solid tumors, including immunosuppressive tumor microenvironment (TME), tumor antigen heterogeneity, stromal impediment, and tumor accessibility, as well as tribulations such as on-target/off-tumor toxicity and cytokine release syndrome (CRS). Herein, we highlight the complications that hamper the effectiveness of CAR T cells in solid tumors and the strategies that have been recommended to overcome these hurdles and improve infused T cell performance.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Zeid Alsadoon
- Dentistry Department, College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hasanpoor
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
45
|
Nguyen-Le TA, Bartsch T, Wodtke R, Brandt F, Arndt C, Feldmann A, Sandoval Bojorquez DI, Roig AP, Ibarlucea B, Lee S, Baek CK, Cuniberti G, Bergmann R, Puentes-Cala E, Soto JA, Kurien BT, Bachmann M, Baraban L. Nanosensors in clinical development of CAR-T cell immunotherapy. Biosens Bioelectron 2022; 206:114124. [PMID: 35272215 DOI: 10.1016/j.bios.2022.114124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
Immunotherapy using CAR-T cells is a new technological paradigm for cancer treatment. To avoid severe side effects and tumor escape variants observed for conventional CAR-T cells approach, adaptor CAR technologies are under development, where intermediate target modules redirect immune cells against cancer. In this work, silicon nanowire field-effect transistors are used to develop target modules for an optimized CAR-T cell operation. Focusing on a library of seven variants of E5B9 peptide that is used as CAR targeting epitope, we performed multiplexed binding tests using nanosensor chips. These peptides had been immobilized onto the sensor to compare the transistor signals upon titration with anti-La 5B9 antibodies. The correlation of binding affinities and sensor sensitivities enabled a selection of candidates for the interaction between CAR and target modules. An extremely low detection limit was observed for the sensor, down to femtomolar concentration, outperforming the current assay of the same purpose. Finally, the CAR T-cells redirection capability of selected peptides in target modules was proven successful in an in-vitro cytotoxicity assay. Our results open the perspective for the nanosensors to go beyond the early diagnostics in clinical cancer research towards developing and monitoring immunotherapeutic treatment, where the quantitative analysis with the standard techniques is limited.
Collapse
Affiliation(s)
- Trang Anh Nguyen-Le
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany
| | - Tabea Bartsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany
| | - Florian Brandt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany; Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Claudia Arndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany; Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Anja Feldmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany
| | - Diana Isabel Sandoval Bojorquez
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany
| | - Arnau Perez Roig
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany
| | - Bergoi Ibarlucea
- Institute for Materials Science, Max Bergmann Center for Biomaterials, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
| | - Seungho Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Chan-Ki Baek
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Gianaurelio Cuniberti
- Institute for Materials Science, Max Bergmann Center for Biomaterials, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
| | - Ralf Bergmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany; Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Edinson Puentes-Cala
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta, 681011, Colombia
| | | | - Biji T Kurien
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany; Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307, Dresden, Germany; National Center for Tumor Diseases (NCT), Dresden, Germany. Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Dresden, Germany.
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), 01328, Dresden, Germany.
| |
Collapse
|
46
|
Koedam J, Wermke M, Ehninger A, Cartellieri M, Ehninger G. Chimeric antigen receptor T-cell therapy in acute myeloid leukemia. Curr Opin Hematol 2022; 29:74-83. [PMID: 35013048 PMCID: PMC8815830 DOI: 10.1097/moh.0000000000000703] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Treatment outcome of relapsed or refractory AML patients remains dismal and new treatment options are needed. Adoptive cell therapy using CAR-T cells is a potentially interesting approach in this. RECENT FINDINGS Several potentially interesting AML targets are being investigated with CAR-T therapy with over 60 clinical trials listed on clinicaltrials.gov. The first clinical data are only just emerging with mixed results, once more proving that further research is needed. SUMMARY Adoptive cell therapy using chimeric antigen receptor T cells is being investigated in AML through many clinical trials. So far, no AML-specific antigen has been identified, requiring additional strategies to mitigate on-target off-tumor toxicity and to increase efficacy. Focus point is to acquire control over the CAR T cells once administered. Strategies to do so include biodegradable CARs, inducible CARs, suicide-switch containing CARs and two-component modular CARs. Limited and mixed results are available, confirming the risk of lasting toxicity for nonswitchable CARs. Initial results of modular CARs suggest toxicity can be mitigated whilst maintaining CAR activity by the use of modular CAR concepts that allows for 'ON' and 'OFF' switching.
Collapse
Affiliation(s)
| | - Martin Wermke
- Division of Hematology, Oncology and Stem Cell Transplantation, Medical Clinic I, Department of Medicine I, University Hospital Carl Gustav Carus
- National Center for Tumor Diseases
| | | | | | | |
Collapse
|
47
|
Zhang X, Ang WX, Du Z, Ng YY, Zha S, Chen C, Xiao L, Ng JY, Chng WJ, Wang S. A CD123-specific chimeric antigen receptor augments anti-acute myeloid leukemia activity of Vγ9Vδ2 T cells. Immunotherapy 2022; 14:321-336. [DOI: 10.2217/imt-2021-0143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To investigate whether anti-CD123 chimeric antigen receptor (CAR)-expressing Vγ9Vδ2 T cells could be an alternative for acute myeloid leukemia (AML) treatment. Materials & methods: Ex vivo expanded Vγ9Vδ2 T cells were electroporated with anti-CD123 CAR-encoding mRNA. The effector function and specificity of the modified Vγ9Vδ2 T cells were examined by in vitro cytotoxicity, degranulation and cytokine release level. The in vivo function was analyzed using the xenograft KG1-luc model with NOD-SCID-γc-/- mice. Results: The modified Vγ9Vδ2 T cells exhibited significantly improved effector activities against both AML cell lines and primary AML cells in vitro. In the xenograft mouse model, the modified Vγ9Vδ2 cells displayed an enhanced tumor control potency. Conclusion: Anti-CD123 CAR-expressing Vγ9Vδ2 T cells may serve as an alternative way to target AML.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Wei Xia Ang
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Zhicheng Du
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Yu Yang Ng
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Shijun Zha
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Can Chen
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Lin Xiao
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Jia Yi Ng
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, 119074, Singapore
| | - Wee Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, 119074, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - Shu Wang
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| |
Collapse
|
48
|
Lejman M, Dziatkiewicz I, Jurek M. Straight to the Point-The Novel Strategies to Cure Pediatric AML. Int J Mol Sci 2022; 23:1968. [PMID: 35216084 PMCID: PMC8878466 DOI: 10.3390/ijms23041968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Although the outcome has improved over the past decades, due to improved supportive care, a better understanding of risk factors, and intensified chemotherapy, pediatric acute myeloid leukemia remains a life-threatening disease, and overall survival (OS) remains near 70%. According to French-American-British (FAB) classification, AML is divided into eight subtypes (M0-M7), and each is characterized by a different pathogenesis and response to treatment. However, the curability of AML is due to the intensification of standard chemotherapy, more precise risk classification, improvements in supportive care, and the use of minimal residual disease to monitor response to therapy. The treatment of childhood AML continues to be based primarily on intensive, conventional chemotherapy. Therefore, it is essential to identify new, more precise molecules that are targeted to the specific abnormalities of each leukemia subtype. Here, we review abnormalities that are potential therapeutic targets for the treatment of AML in the pediatric population.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, II Faculty of Pediatrics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| | - Izabela Dziatkiewicz
- Student Scientific Society, Laboratory of Genetic Diagnostics, II Faculty of Pediatrics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland; (I.D.); (M.J.)
| | - Mateusz Jurek
- Student Scientific Society, Laboratory of Genetic Diagnostics, II Faculty of Pediatrics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland; (I.D.); (M.J.)
| |
Collapse
|
49
|
Challenges and Advances in Chimeric Antigen Receptor Therapy for Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:cancers14030497. [PMID: 35158765 PMCID: PMC8833567 DOI: 10.3390/cancers14030497] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
The advent of chimeric antigen receptor (CAR) T-cell therapy has led to dramatic remission rates in multiple relapsed/refractory hematologic malignancies. While CAR T-cell therapy has been particularly successful as a treatment for B-cell malignancies, effectively treating acute myeloid leukemia (AML) with CARs has posed a larger challenge. AML not only creates an immunosuppressive tumor microenvironment that dampens CAR T-cell responses, but it also lacks many unique tumor-associated antigens, making leukemic-specific targeting difficult. One advantage of CAR T-cell therapy compared to alternative treatment options is the ability to provide prolonged antigen-specific immune effector and surveillance functions. Since many AML CAR targets under investigation including CD33, CD117, and CD123 are also expressed on hematopoietic stem cells, CAR T-cell therapy can lead to severe and potentially lethal myeloablation. Novel strategies to combat these issues include creation of bispecific CARs, CAR T-cell "safety switches", TCR-like CARs, NK CARs, and universal CARs, but all vary in their ability to provide a sustained remission, and consolidation with an allogeneic hematopoietic cell transplantation (allo-HCT) will be necessary in most cases This review highlights the delicate balance between effectively eliminating AML blasts and leukemic stem cells, while preserving the ability for bone marrow to regenerate. The impact of CAR therapy on treatment landscape of AML and changing scope of allo-HCT is discussed. Continued advances in AML CAR therapy would be of great benefit to a disease that still has high morbidity and mortality.
Collapse
|
50
|
Immune-Based Therapeutic Strategies for Acute Myeloid Leukemia. Cancers (Basel) 2021; 14:cancers14010105. [PMID: 35008269 PMCID: PMC8744886 DOI: 10.3390/cancers14010105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary This review summarizes various therapeutic immune approaches representing their targets, the efficacy and toxicity in the treatment of acute myeloid leukemia. In particular, immune checkpoint inhibitors, bispecific T-cell engager antibodies and chimeric antigen receptor-T-cell approaches are highlighted. Abstract The development and design of immune-based strategies have become an increasingly important topic during the last few years in acute myeloid leukemia (AML), based on successful immunotherapies in solid cancer. The spectrum ranges from antibody drug conjugates, immune checkpoint inhibitors blocking programmed cell death protein 1 (PD1), cytotoxic T lymphocyte antigen 4 (CTLA4) or T cell immunoglobulin and mucin domain containing-3 (TIM3), to T-cell based monoclonal and bispecific T-cell engager antibodies, chimeric antigen receptor-T-cell (CAR-T) approaches and leukemia vaccines. Currently, there are many substances in development and multiple phase I/II studies are ongoing. These trials will help us to deepen our understanding of the pathogenesis of AML and facilitate the best immunotherapeutic strategy in AML. We discuss here the mode of action of immune-based therapies and provide an overview of the available data.
Collapse
|