1
|
Smith NJ, Reddin I, Policelli P, Oh S, Zainal N, Howes E, Jenkins B, Tracy I, Edmond M, Sharpe B, Amendra D, Zheng K, Egawa N, Doorbar J, Rao A, Mahadevan S, Carpenter MA, Harris RS, Ali S, Hanley C, Buisson R, King E, Thomas GJ, Fenton TR. Differentiation signals induce APOBEC3A expression via GRHL3 in squamous epithelia and squamous cell carcinoma. EMBO J 2024:10.1038/s44318-024-00298-9. [PMID: 39548236 DOI: 10.1038/s44318-024-00298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Two APOBEC DNA cytosine deaminase enzymes, APOBEC3A and APOBEC3B, generate somatic mutations in cancer, thereby driving tumour development and drug resistance. Here, we used single-cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell-cycle stage associated with APOBEC-mediated mutagenesis. In contrast, in squamous cell carcinoma we find that, there is expansion of GRHL3expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings suggest that APOBEC3A may play a functional role during keratinocyte differentiation, and offer a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.
Collapse
Affiliation(s)
- Nicola J Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Biosciences, University of Kent, Canterbury, UK
| | - Ian Reddin
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Bio-R Bioinformatics Research Facility, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paige Policelli
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Cell, Gene and RNA Therapies, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nur Zainal
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Emma Howes
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Jenkins
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ian Tracy
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark Edmond
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Sharpe
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Damian Amendra
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Anjali Rao
- Gilead Sciences, Research Department, 324 Lakeside Dr, Foster City, CA, 94404, USA
| | - Sangeetha Mahadevan
- Gilead Sciences, Research Department, 324 Lakeside Dr, Foster City, CA, 94404, USA
| | - Michael A Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Christopher Hanley
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Emma King
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gareth J Thomas
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Tim R Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
2
|
Al Assaad M, Safa H, Mercinelli C, Spiess PE, Necchi A, Chahoud J. Immune-based Therapies for Penile Cancer. Urol Clin North Am 2024; 51:355-365. [PMID: 38925738 DOI: 10.1016/j.ucl.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
This article reviews penile squamous cell carcinoma (PSCC), a rare genitourinary cancer that has been increasing in prevalence. It discusses emerging therapies, focusing on immunotherapy, vaccine therapy, and cell-based treatments, especially in the context of human papillomavirus-related PSCC. Factors influencing these therapies are discussed. These include the immune microenvironment, programmed cell death ligand-1 expression, and tumor immune cell infiltration. This article also highlights immune checkpoint inhibitors and related clinical trials. This review supports the use of personalized medicine in treating PSCC. It stresses the need for collaborative studies and data sharing to create specific treatment plans and achieve better outcomes.
Collapse
Affiliation(s)
- Majd Al Assaad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 413 East 69th Street, Belfer Research Building, New York, NY 10021, USA.
| | - Houssein Safa
- Department of Hematology/Oncology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chiara Mercinelli
- Department of Medical Oncology, IRCCS San Raffaele Hospital; Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria Pisana, Via Olgettina 60, Milan 20132, Italy
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive office 12538, Tampa, FL 33612, USA
| | - Andrea Necchi
- Department of Medical Oncology, IRCCS San Raffaele Hospital; Vita-Salute San Raffaele University, Via Olgettina 60, Milan 20132, Italy
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive office 12538, Tampa, FL 33612, USA.
| |
Collapse
|
3
|
Zamuner FT, Gunti S, Starrett GJ, Faraji F, Toni T, Saraswathula A, Vu K, Gupta A, Zhang Y, Faden DL, Bryan ME, Guo T, Rowan NR, Ramanathan M, Lane AP, Fakhry C, Gallia GL, Allen CT, Rooper LM, London NR. Molecular patterns and mechanisms of tumorigenesis in HPV-associated and HPV-independent sinonasal squamous cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.598514. [PMID: 38979305 PMCID: PMC11230460 DOI: 10.1101/2024.06.17.598514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mechanisms of tumorigenesis in sinonasal squamous cell carcinoma (SNSCC) remain poorly described due to its rare nature. A subset of SNSCC are associated with the human papillomavirus (HPV); however, it is unknown whether HPV is a driver of HPV-associated SNSCC tumorigenesis or merely a neutral bystander. We hypothesized that performing the first large high-throughput sequencing study of SNSCC would reveal molecular mechanisms of tumorigenesis driving HPV-associated and HPV-independent SNSCC and identify targetable pathways. High-throughput sequencing was performed on 64 patients with HPV-associated and HPV-independent sinonasal carcinomas. Mutation annotation, viral integration, copy number, and pathway-based analyses were performed. Analysis of HPV-associated SNSCC revealed similar mutational patterns observed in HPV-associated cervical and head and neck squamous cell carcinoma, including lack of TP53 mutations and the presence of known hotspot mutations in PI3K and FGFR3. Further similarities included enrichment of APOBEC mutational signature, viral integration at known hotspot locations, and frequent mutations in epigenetic regulators. HPV-associated SNSCC-specific recurrent mutations were also identified including KMT2C , UBXN11 , AP3S1 , MT-ND4 , and MT-ND5 . Mutations in KMT2D and FGFR3 were associated with decreased overall survival. We developed the first known HPV-associated SNSCC cell line and combinatorial small molecule inhibition of YAP/TAZ and PI3K pathways synergistically inhibited tumor cell clonogenicity. In conclusion, HPV-associated SNSCC and HPV-independent SNSCC are driven by molecularly distinct mechanisms of tumorigenesis. Combinatorial blockade of YAP/TAZ and vertical inhibition of the PI3K pathway may be useful in targeting HPV-associated SNSCC whereas targeting MYC and horizontal inhibition of RAS/PI3K pathways for HPV-independent SNSCC. One Sentence Summary This study solidifies HPV as a driver of HPV-associated SNSCC tumorigenesis, identifies molecular mechanisms distinguishing HPV-associated and HPV-independent SNSCC, and elucidates YAP/TAZ and PI3K blockade as key targets for HPV-associated SNSCC.
Collapse
|
4
|
Eberly HW, Sciscent BY, Lorenz FJ, Rettig EM, Goyal N. Current and Emerging Diagnostic, Prognostic, and Predictive Biomarkers in Head and Neck Cancer. Biomedicines 2024; 12:415. [PMID: 38398017 PMCID: PMC10886579 DOI: 10.3390/biomedicines12020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Head and neck cancers (HNC) are a biologically diverse set of cancers that are responsible for over 660,000 new diagnoses each year. Current therapies for HNC require a comprehensive, multimodal approach encompassing resection, radiation therapy, and systemic therapy. With an increased understanding of the mechanisms behind HNC, there has been growing interest in more accurate prognostic indicators of disease, effective post-treatment surveillance, and individualized treatments. This chapter will highlight the commonly used and studied biomarkers in head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Hänel W. Eberly
- Department of Otolaryngology Head and Neck Surgery, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA; (H.W.E.); (F.J.L.)
| | - Bao Y. Sciscent
- Department of Otolaryngology Head and Neck Surgery, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA; (H.W.E.); (F.J.L.)
| | - F. Jeffrey Lorenz
- Department of Otolaryngology Head and Neck Surgery, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA; (H.W.E.); (F.J.L.)
| | - Eleni M. Rettig
- Department of Otolaryngology Head and Neck Surgery, Brigham and Women’s Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02108, USA
| | - Neerav Goyal
- Department of Otolaryngology Head and Neck Surgery, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA; (H.W.E.); (F.J.L.)
| |
Collapse
|
5
|
Deneuve S, Fervers B, Senkin S, Bouaoun L, Pérol O, Chavanel B, Lu L, Coste I, Renno T, Zavadil J, Virard F. Molecular landscapes of oral cancers of unknown etiology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.15.23299866. [PMID: 38168303 PMCID: PMC10760302 DOI: 10.1101/2023.12.15.23299866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The incidence of the mobile tongue cancer in young patients has been rising. This oral cancer (OC) type has no identified risk factors (NIRF), no established molecular markers and is not yet recognized as a distinct clinical entity. To understand this emerging malignancy, we innovatively analyzed the public head and neck cancer multi-omics data. We identified mutational signatures that successfully stratified 307 OC and 109 laryngeal cancer cases according to their clinico-pathological characteristics. The NIRF OCs exhibited significantly increased activities of endogenous clock-like and APOBEC-associated mutagenesis, alongside specific cancer driver gene mutations, distinct methylome patterns and prominent antimicrobial transcriptomic responses. Furthermore, we show that mutational signature SBS16 in OCs reflects the combined effects of alcohol drinking and tobacco smoking. Our study characterizes the unique disease histories and molecular programs of the NIRF OCs revealing that this emerging cancer subtype is likely driven by increased endogenous mutagenesis correlated with responses to microbial insults.
Collapse
|
6
|
Carpenter MA, Temiz NA, Ibrahim MA, Jarvis MC, Brown MR, Argyris PP, Brown WL, Starrett GJ, Yee D, Harris RS. Mutational impact of APOBEC3A and APOBEC3B in a human cell line and comparisons to breast cancer. PLoS Genet 2023; 19:e1011043. [PMID: 38033156 PMCID: PMC10715669 DOI: 10.1371/journal.pgen.1011043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/12/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
A prominent source of mutation in cancer is single-stranded DNA cytosine deamination by cellular APOBEC3 enzymes, which results in signature C-to-T and C-to-G mutations in TCA and TCT motifs. Although multiple enzymes have been implicated, reports conflict and it is unclear which protein(s) are responsible. Here we report the development of a selectable system to quantify genome mutation and demonstrate its utility by comparing the mutagenic activities of three leading candidates-APOBEC3A, APOBEC3B, and APOBEC3H. The human cell line, HAP1, is engineered to express the thymidine kinase (TK) gene of HSV-1, which confers sensitivity to ganciclovir. Expression of APOBEC3A and APOBEC3B, but not catalytic mutant controls or APOBEC3H, triggers increased frequencies of TK mutation and similar TC-biased cytosine mutation profiles in the selectable TK reporter gene. Whole genome sequences from independent clones enabled an analysis of thousands of single base substitution mutations and extraction of local sequence preferences with APOBEC3A preferring YTCW motifs 70% of the time and APOBEC3B 50% of the time (Y = C/T; W = A/T). Signature comparisons with breast tumor whole genome sequences indicate that most malignancies manifest intermediate percentages of APOBEC3 signature mutations in YTCW motifs, mostly between 50 and 70%, suggesting that both enzymes contribute in a combinatorial manner to the overall mutation landscape. Although the vast majority of APOBEC3A- and APOBEC3B-induced single base substitution mutations occur outside of predicted chromosomal DNA hairpin structures, whole genome sequence analyses and supporting biochemical studies also indicate that both enzymes are capable of deaminating the single-stranded loop regions of DNA hairpins at elevated rates. These studies combine to help resolve a long-standing etiologic debate on the source of APOBEC3 signature mutations in cancer and indicate that future diagnostic and therapeutic efforts should focus on both APOBEC3A and APOBEC3B.
Collapse
Affiliation(s)
- Michael A. Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Nuri A. Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mahmoud A. Ibrahim
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Matthew C. Jarvis
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Margaret R. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prokopios P. Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gabriel J. Starrett
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
7
|
Kleszcz R. Advantages of the Combinatorial Molecular Targeted Therapy of Head and Neck Cancer-A Step before Anakoinosis-Based Personalized Treatment. Cancers (Basel) 2023; 15:4247. [PMID: 37686523 PMCID: PMC10486994 DOI: 10.3390/cancers15174247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The molecular initiators of Head and Heck Squamous Cell Carcinoma (HNSCC) are complex. Human Papillomavirus (HPV) infection is linked to an increasing number of HNSCC cases, but HPV-positive tumors generally have a good prognosis. External factors that promote the development of HPV-negative HNSCC include tobacco use, excessive alcohol consumption, and proinflammatory poor oral hygiene. On a molecular level, several events, including the well-known overexpression of epidermal growth factor receptors (EGFR) and related downstream signaling pathways, contribute to the development of HNSCC. Conventional chemotherapy is insufficient for many patients. Thus, molecular-based therapy for HNSCC offers patients a better chance at a cure. The first molecular target for therapy of HNSCC was EGFR, inhibited by monoclonal antibody cetuximab, but its use in monotherapy is insufficient and induces resistance. This article describes attempts at combinatorial molecular targeted therapy of HNSCC based on several molecular targets and exemplary drugs/drug candidates. The new concept of anakoinosis-based therapy, which means treatment that targets the intercellular and intracellular communication of cancer cells, is thought to be the way to improve the clinical outcome for HNSCC patients. The identification of a link between molecular targeted therapy and anakoinosis raises the potential for further progress in HPV-negative HNSCC therapy.
Collapse
Affiliation(s)
- Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Str., 60-781 Poznan, Poland
| |
Collapse
|
8
|
Luo LZ, Li S, Wei C, Ma J, Qian LM, Chen YX, Wang SX, Zhao Q. Unveiling the interplay between mutational signatures and tumor microenvironment: a pan-cancer analysis. Front Immunol 2023; 14:1186357. [PMID: 37283742 PMCID: PMC10239828 DOI: 10.3389/fimmu.2023.1186357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Background While recent studies have separately explored mutational signatures and the tumor microenvironment (TME), there is limited research on the associations of both factors in a pan-cancer context. Materials and methods We performed a pan-cancer analysis of over 8,000 tumor samples from The Cancer Genome Atlas (TCGA) project. Machine learning methods were employed to systematically explore the relationship between mutational signatures and TME and develop a risk score based on TME-associated mutational signatures to predict patient survival outcomes. We also constructed an interaction model to explore how mutational signatures and TME interact and influence cancer prognosis. Results Our analysis revealed a varied association between mutational signatures and TME, with the Clock-like signature showing the most widespread influence. Risk scores based on mutational signatures mainly induced by Clock-like and AID/APOBEC activity exhibited strong pan-cancer survival stratification ability. We also propose a novel approach to predict transcriptome decomposed infiltration levels using genome-derived mutational signatures as an alternative approach for exploring TME cell types when transcriptome data are unavailable. Our comprehensive analysis revealed that certain mutational signatures and their interaction with immune cells significantly impact clinical outcomes in particular cancer types. For instance, T cell infiltration levels only served as a prognostic biomarker in melanoma patients with high ultraviolet radiation exposure, breast cancer patients with high homologous recombination deficiency signature, and lung adenocarcinoma patients with high tobacco-associated mutational signature. Conclusion Our study comprehensively explains the complex interplay between mutational signatures and immune infiltration in cancer. The results highlight the importance of considering both mutational signatures and immune phenotypes in cancer research and their significant implications for developing personalized cancer treatments and more effective immunotherapy.
Collapse
Affiliation(s)
- Li-Zhi Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Sheng Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Chen Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Jiao Ma
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Li-Mei Qian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yan-Xing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Shi-Xiang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
9
|
Argyris PP, Naumann J, Jarvis MC, Wilkinson PE, Ho DP, Islam MN, Bhattacharyya I, Gopalakrishnan R, Li F, Koutlas IG, Giubellino A, Harris RS. Primary mucosal melanomas of the head and neck are characterised by overexpression of the DNA mutating enzyme APOBEC3B. Histopathology 2023; 82:608-621. [PMID: 36416305 PMCID: PMC10107945 DOI: 10.1111/his.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022]
Abstract
AIMS Primary head/neck mucosal melanomas (MMs) are rare and exhibit aggressive biologic behaviour and elevated mutational loads. The molecular mechanisms responsible for high genomic instability observed in head/neck MMs remain elusive. The DNA cytosine deaminase APOBEC3B (A3B) constitutes a major endogenous source of mutation in human cancer. A3B-related mutations are identified through C-to-T/-G base substitutions in 5'-TCA/T motifs. Herein, we present immunohistochemical and genomic data supportive of a role for A3B in head/neck MMs. METHODS AND RESULTS A3B protein levels were assessed in oral (n = 13) and sinonasal (n = 13) melanomas, and oral melanocytic nevi (n = 13) by immunohistochemistry using a custom rabbit α-A3B mAb (5210-87-13). Heterogeneous, selective-to-diffuse, nuclear only, A3B immunopositivity was observed in 12 of 13 (92.3%) oral melanomas (H-score range = 9-72, median = 40) and 8 of 13 (62%) sinonasal melanomas (H-score range = 1-110, median = 24). Two cases negative for A3B showed prominent cytoplasmic staining consistent with A3G. A3B protein levels were significantly higher in oral and sinonasal MMs than intraoral melanocytic nevi (P < 0.0001 and P = 0.0022, respectively), which were A3B-negative (H-score range = 1-8, median = 4). A3B levels, however, did not differ significantly between oral and sinonasal tumours (P > 0.99). NGS performed in 10 sinonasal MMs revealed missense NRAS mutations in 50% of the studied cases and one each KIT and HRAS mutations. Publicly available whole-genome sequencing (WGS) data disclosed that the number of C-to-T mutations and APOBEC3 enrichment score were markedly elevated in head/neck MMs (n = 2). CONCLUSION The above data strongly indicate a possible role for the mutagenic enzyme A3B in head/neck melanomagenesis, but not benign melanocytic neoplasms.
Collapse
Affiliation(s)
- Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
- Howard Hughes Medical InstituteUniversity of MinnesotaMinneapolisMNUSA
- Division of Oral and Maxillofacial PathologySchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Jordan Naumann
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Matthew C Jarvis
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Peter E Wilkinson
- Department of Diagnostic and Biological SciencesSchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Dan P Ho
- Department of Diagnostic and Biological SciencesSchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Mohammed N Islam
- Department of Oral and Maxillofacial Diagnostic SciencesUniversity of Florida College of DentistryGainesvilleFLUSA
| | - Indraneel Bhattacharyya
- Department of Oral and Maxillofacial Diagnostic SciencesUniversity of Florida College of DentistryGainesvilleFLUSA
| | - Rajaram Gopalakrishnan
- Division of Oral and Maxillofacial PathologySchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Faqian Li
- Department of Laboratory Medicine and PathologyMedical School, University of MinnesotaMinneapolisMNUSA
| | - Ioannis G Koutlas
- Division of Oral and Maxillofacial PathologySchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Alessio Giubellino
- Department of Laboratory Medicine and PathologyMedical School, University of MinnesotaMinneapolisMNUSA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
- Howard Hughes Medical InstituteUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
10
|
Fanourakis G, Kyrodimos E, Papanikolaou V, Chrysovergis A, Kafiri G, Papanikolaou N, Verykokakis M, Tosios K, Vastardis H. APOBEC3B Is Co-Expressed with PKCα/NF-κB in Oral and Oropharyngeal Squamous Cell Carcinomas. Diagnostics (Basel) 2023; 13:diagnostics13030569. [PMID: 36766673 PMCID: PMC9914863 DOI: 10.3390/diagnostics13030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The enzymatic activity of APOBEC3B (A3B) has been implicated as a prime source of mutagenesis in head and neck squamous cell carcinoma (HNSCC). The expression of Protein Kinase C α (PKCα) and Nuclear Factor-κΒ p65 (NF-κΒ p65) has been linked to the activation of the classical and the non-canonical NF-κB signaling pathways, respectively, both of which have been shown to lead to the upregulation of A3B. Accordingly, the aim of the present study was to evaluate the expression of PKCα, NF-κΒ p65 and A3B in non-HPV related oral and oropharyngeal squamous cell carcinomas (SCC), by means of immunohistochemistry and in silico methods. PKCα was expressed in 29/36 (80%) cases of oral and oropharyngeal SCCs, with 25 (69%) cases showing a PKCα+/A3B+ phenotype and only 6/36 (17%) cases showing a PKCα-/A3B+ phenotype. Εxpression of NF-κB p65 was seen in 33/35 (94%) cases of oral and oropharyngeal SCCs, with 30/35 (86%) cases showing an NF-κB p65+/A3B+ phenotype and only 2/35 (6%) cases showing an NF-κB p65-/A3B+ phenotype. In addition, mRNA expression analysis, using the UALCAN database, revealed strong expression of all three genes. These findings indicate that the expression of A3B is associated with PKCα/NF-κB p65 expression and suggest a potential role for the PKC/NF-κB signaling pathway in the development of oral and oropharyngeal cancer.
Collapse
Affiliation(s)
- Galinos Fanourakis
- Department of Oral Biology, School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str., 11527 Athens, Greece
- Correspondence:
| | - Efthymios Kyrodimos
- 1st ENT Department, Hippokration Hospital, School of Medicine, National and Kapodistrian University of Athens, 114 Vasilissis Sophias Ave., 11527 Athens, Greece
| | - Vasileios Papanikolaou
- 1st ENT Department, Hippokration Hospital, School of Medicine, National and Kapodistrian University of Athens, 114 Vasilissis Sophias Ave., 11527 Athens, Greece
| | - Aristeidis Chrysovergis
- 1st ENT Department, Hippokration Hospital, School of Medicine, National and Kapodistrian University of Athens, 114 Vasilissis Sophias Ave., 11527 Athens, Greece
| | - Georgia Kafiri
- Department of Pathology, Hippokration Hospital, 114 Vasilissis Sophias Ave., 11527 Athens, Greece
| | - Nikolaos Papanikolaou
- EnzyQuest PC, Science and Technology Park of Crete, 100 Nikolaou Plastira Str., Vassilika Vouton, 70013 Heraklion, Greece
| | - Mihalis Verykokakis
- Institute for Fundamental Biomedical Research, BSRC Alexander Fleming, 34 Fleming Str., 16672 Vari, Greece
| | - Konstantinos Tosios
- Department of Oral Pathology, Medicine and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str., 11527 Athens, Greece
| | - Heleni Vastardis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str., 11527 Athens, Greece
| |
Collapse
|
11
|
Research on the influence of APOBEC family on the occurrence, diagnosis, and treatment of various tumors. J Cancer Res Clin Oncol 2023; 149:357-366. [PMID: 36222899 DOI: 10.1007/s00432-022-04395-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/05/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Apolipoprotein B mRNA-editing catalytic polypeptide (APOBEC) is a family of highly efficient cytidine deaminase enzymes. APOBECs have been proven to deaminate cytidine on single-stranded DNA or RNA. Inducing the deamination of cytosine on the target gene into uracil, which exerts a variety of physiological functions, plays an important role in innate immunity, adaptive immunity, and antiviral. As the research progresses, APOBECs have been confirmed to be highly expressed in a variety of tumors, causing abnormal mutations in host genes, leading to inactivation of tumor suppressor genes or activation of proto-oncogenes, and their role in tumor development and as diagnostic and treatment markers gradually be found. CONCLUSION This article will review the mechanism of APOBECs and their impact on tumor occurrence, development, diagnosis, and treatment, and provide a theoretical basis for future tumor treatment.
Collapse
|
12
|
Lin M, Sade-Feldman M, Wirth L, Lawrence MS, Faden DL. Single-cell transcriptomic profiling for inferring tumor origin and mechanisms of therapeutic resistance. NPJ Precis Oncol 2022; 6:71. [PMID: 36210388 PMCID: PMC9548500 DOI: 10.1038/s41698-022-00314-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/23/2022] [Indexed: 02/02/2023] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is an aggressive epithelial cancer with poor overall response rates to checkpoint inhibitor therapy (CPI) despite CPI being the recommended treatment for recurrent or metastatic HNSCC. Mechanisms of resistance to CPI in HNSCC are poorly understood. To identify drivers of response and resistance to CPI in a unique patient who was believed to have developed three separate HNSCCs, we performed single-cell RNA-seq (scRNA-seq) profiling of two responding lesions and one progressive lesion that developed during CPI. Our results not only suggest interferon-induced APOBEC3-mediated acquired resistance as a mechanism of CPI resistance in the progressing lesion but further, that the lesion in question was actually a metastasis as opposed to a new primary tumor, highlighting the immense power of scRNA-seq as a clinical tool for inferring tumor origin and mechanisms of therapeutic resistance.
Collapse
Affiliation(s)
- Maoxuan Lin
- grid.39479.300000 0000 8800 3003Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02118 USA ,grid.32224.350000 0004 0386 9924Massachusetts General Hospital Cancer Center, Boston, MA 02118 USA
| | - Moshe Sade-Feldman
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital Cancer Center, Boston, MA 02118 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA 02115 USA
| | - Lori Wirth
- grid.32224.350000 0004 0386 9924Department of Medicine, Massachusetts General Hospital, Boston, MA 02118 USA
| | - Michael S. Lawrence
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital Cancer Center, Boston, MA 02118 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA 02115 USA
| | - Daniel L. Faden
- grid.39479.300000 0000 8800 3003Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02118 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
13
|
Liang J, Wang Y, Cai L, Liu J, Yan J, Chen X, Wu X, Chen Q. Comparative Genomic Analysis Reveals Genetic Variations in Multiple Primary Esophageal Squamous Cell Carcinoma of Chinese Population. Front Oncol 2022; 12:868301. [PMID: 35515115 PMCID: PMC9065449 DOI: 10.3389/fonc.2022.868301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common and lethal malignant tumors. The incidence of malignant transformation of esophageal mucosa increases greatly due to long-term exposure to factors such as smoking, drinking, and poor eating habits. Furthermore, multiple primary tumors could occur synchronously or asynchronously in the upper aerodigestive tract, especially in the esophagus, adding difficulty to the treatment of ESCC. Genetic mutations are important during the malignant transformation from normal mucosa to esophageal cancer, but the underlying mechanism has not been fully elucidated. In this study, we used whole-exome sequencing (WES) to profile genetic variations in physiologically normal mucosa (PNM) and ESCC tumors, as well as PNM of non-ESCC subjects. We found significant differences in mutation frequencies of NOTCH1 and NOTCH2, copy number variations (CNVs) at both gene and chromosomal arm levels, and cancer-related HIPPO, WNT, and NRF2 signaling pathways between ESCC tumors and normal mucosa. Our analysis of both primary tumors and paired PNM in bifocal ESCC revealed three different primary tumor evolution modes, and the most common mode exhibited a complete genomic divergence in all the samples from the same patient. Furthermore, the mutation frequency of TP53 was significantly higher in ESCC cases than that in non-ESCC cases. Overall, our results provide important evidence for further elucidating the mechanisms of genetic mutations underlying the cause of ESCC.
Collapse
Affiliation(s)
- Jinxiao Liang
- Department of Oncological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yinjie Wang
- Department of Oncological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Lei Cai
- Department of Oncological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jinshi Liu
- Department of Oncological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Junrong Yan
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Xin Chen
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Xiaoying Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Qixun Chen
- Department of Oncological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
14
|
Crane J, Shi Q, Xi Y, Lai J, Pham K, Wang H. Emerging Trends in the Pathological Research of Human Papillomavirus-positive Oropharyngeal Squamous Cell Carcinoma. JOURNAL OF CLINICAL AND TRANSLATIONAL PATHOLOGY 2022; 2:31-36. [PMID: 36275841 PMCID: PMC9585478 DOI: 10.14218/jctp.2022.00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oropharyngeal squamous cell carcinomas (OPSCCs) have shown an alarming rate of increase in incidence over the past several decades, markedly in men. In the United States, transcriptionally-active human papillomavirus (HPV), particularly HPV 16, has become the highest contributive agent of OPSCCs, affecting approximately 16,000 people a year. Compared to patients with HPV-negative OPSCCs, patients with HPV-positive OPSCCs exhibit better health responses to chemoradiotherapy and an overall increase in long-term survival. Despite promising treatment options, many OPSCCs are discovered at an advanced stage, and ~20% of cases will recur after definitive treatment. Therefore, extensive research is ongoing to identify new targets for precision treatment and to stratify tumor prognosis. The aim of this review is to capture the most updated research on HPV-positive OPSCCs, emphasizing their relevance as potential new targets for precision medicine and survival prognosis.
Collapse
Affiliation(s)
- Joshua Crane
- Department of Laboratory Medicine and Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Yibo Xi
- Department of Laboratory Medicine and Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Kien Pham
- Department of Laboratory Medicine and Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - He Wang
- Department of Laboratory Medicine and Pathology, Yale University School of Medicine, New Haven, CT, USA
- Correspondence to: He Wang, Department of Laboratory Medicine and Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510, USA. Tel: +1-203-214-2786, Fax: +1-203-214-2764,
| |
Collapse
|
15
|
Neoadjuvant immunotherapy with nivolumab and ipilimumab induces major pathological responses in patients with head and neck squamous cell carcinoma. Nat Commun 2021; 12:7348. [PMID: 34937871 PMCID: PMC8695578 DOI: 10.1038/s41467-021-26472-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/04/2021] [Indexed: 01/29/2023] Open
Abstract
Surgery for locoregionally advanced head and neck squamous cell carcinoma (HNSCC) results in 30‒50% five-year overall survival. In IMCISION (NCT03003637), a non-randomized phase Ib/IIa trial, 32 HNSCC patients are treated with 2 doses (in weeks 1 and 3) of immune checkpoint blockade (ICB) using nivolumab (NIVO MONO, n = 6, phase Ib arm A) or nivolumab plus a single dose of ipilimumab (COMBO, n = 26, 6 in phase Ib arm B, and 20 in phase IIa) prior to surgery. Primary endpoints are feasibility to resect no later than week 6 (phase Ib) and primary tumor pathological response (phase IIa). Surgery is not delayed or suspended for any patient in phase Ib, meeting the primary endpoint. Grade 3‒4 immune-related adverse events are seen in 2 of 6 (33%) NIVO MONO and 10 of 26 (38%) total COMBO patients. Pathological response, defined as the %-change in primary tumor viable tumor cell percentage from baseline biopsy to on-treatment resection, is evaluable in 17/20 phase IIa patients and 29/32 total trial patients (6/6 NIVO MONO, 23/26 COMBO). We observe a major pathological response (MPR, 90‒100% response) in 35% of patients after COMBO ICB, both in phase IIa (6/17) and in the whole trial (8/23), meeting the phase IIa primary endpoint threshold of 10%. NIVO MONO’s MPR rate is 17% (1/6). None of the MPR patients develop recurrent HSNCC during 24.0 months median postsurgical follow-up. FDG-PET-based total lesion glycolysis identifies MPR patients prior to surgery. A baseline AID/APOBEC-associated mutational profile and an on-treatment decrease in hypoxia RNA signature are observed in MPR patients. Our data indicate that neoadjuvant COMBO ICB is feasible and encouragingly efficacious in HNSCC. Immune checkpoint blockade has become standard care for patients with recurrent metastatic head and neck squamous cell carcinoma (HNSCC). Here the authors present the results of a non-randomized phase Ib/IIa trial, reporting safety and efficacy of neoadjuvant nivolumab monotherapy and nivolumab plus ipilimumab prior to standard-of-care surgery in patients with HNSCC. .
Collapse
|
16
|
APOBEC Mutagenesis Is Concordant between Tumor and Viral Genomes in HPV-Positive Head and Neck Squamous Cell Carcinoma. Viruses 2021; 13:v13081666. [PMID: 34452530 PMCID: PMC8402723 DOI: 10.3390/v13081666] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
APOBEC is a mutagenic source in human papillomavirus (HPV)-mediated malignancies, including HPV+ oropharyngeal squamous cell carcinoma (HPV + OPSCC), and in HPV genomes. It is unknown why APOBEC mutations predominate in HPV + OPSCC, or if the APOBEC-induced mutations observed in both human cancers and HPV genomes are directly linked. We performed sequencing of host somatic exomes, transcriptomes, and HPV16 genomes from 79 HPV + OPSCC samples, quantifying APOBEC mutational burden and activity in both host and virus. APOBEC was the dominant mutational signature in somatic exomes. In viral genomes, there was a mean of five (range 0-29) mutations per genome. The mean of APOBEC mutations in viral genomes was one (range 0-5). Viral APOBEC mutations, compared to non-APOBEC mutations, were more likely to be low-variant allele fraction mutations, suggesting that APOBEC mutagenesis actively occurrs in viral genomes during infection. HPV16 APOBEC-induced mutation patterns in OPSCC were similar to those previously observed in cervical samples. Paired host and viral analyses revealed that APOBEC-enriched tumor samples had higher viral APOBEC mutation rates (p = 0.028), and APOBEC-associated RNA editing (p = 0.008), supporting the concept that APOBEC mutagenesis in host and viral genomes is directly linked and occurrs during infection. Using paired sequencing of host somatic exomes, transcriptomes, and viral genomes, we demonstrated for the first-time definitive evidence of concordance between tumor and viral APOBEC mutagenesis. This finding provides a missing link connecting APOBEC mutagenesis in host and virus and supports a common mechanism driving APOBEC dysregulation.
Collapse
|
17
|
Law EK, Levin-Klein R, Jarvis MC, Kim H, Argyris PP, Carpenter MA, Starrett GJ, Temiz NA, Larson LK, Durfee C, Burns MB, Vogel RI, Stavrou S, Aguilera AN, Wagner S, Largaespada DA, Starr TK, Ross SR, Harris RS. APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. J Exp Med 2021; 217:152061. [PMID: 32870257 PMCID: PMC7953736 DOI: 10.1084/jem.20200261] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
The APOBEC3 family of antiviral DNA cytosine deaminases is implicated as the second largest source of mutation in cancer. This mutational process may be a causal driver or inconsequential passenger to the overall tumor phenotype. We show that human APOBEC3A expression in murine colon and liver tissues increases tumorigenesis. All other APOBEC3 family members, including APOBEC3B, fail to promote liver tumor formation. Tumor DNA sequences from APOBEC3A-expressing animals display hallmark APOBEC signature mutations in TCA/T motifs. Bioinformatic comparisons of the observed APOBEC3A mutation signature in murine tumors, previously reported APOBEC3A and APOBEC3B mutation signatures in yeast, and reanalyzed APOBEC mutation signatures in human tumor datasets support cause-and-effect relationships for APOBEC3A-catalyzed deamination and mutagenesis in driving multiple human cancers.
Collapse
Affiliation(s)
- Emily K Law
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Rena Levin-Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Matthew C Jarvis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Hyoung Kim
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Prokopios P Argyris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Michael A Carpenter
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Gabriel J Starrett
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Health Informatics, University of Minnesota, Minneapolis, MN
| | - Lindsay K Larson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Cameron Durfee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Michael B Burns
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Department of Biology, Loyola University, Chicago, IL
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN
| | - Spyridon Stavrou
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Alexya N Aguilera
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Sandra Wagner
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Timothy K Starr
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN
| | - Susan R Ross
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| |
Collapse
|
18
|
Lin M, Malik FK, Guo JT. A comparative study of protein-ssDNA interactions. NAR Genom Bioinform 2021; 3:lqab006. [PMID: 33655206 PMCID: PMC7902235 DOI: 10.1093/nargab/lqab006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2020] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play crucial roles in DNA replication, recombination and repair, and serve as key players in the maintenance of genomic stability. While a number of SSBs bind single-stranded DNA (ssDNA) non-specifically, the others recognize and bind specific ssDNA sequences. The mechanisms underlying this binding discrepancy, however, are largely unknown. Here, we present a comparative study of protein-ssDNA interactions by annotating specific and non-specific SSBs and comparing structural features such as DNA-binding propensities and secondary structure types of residues in SSB-ssDNA interactions, protein-ssDNA hydrogen bonding and π-π interactions between specific and non-specific SSBs. Our results suggest that protein side chain-DNA base hydrogen bonds are the major contributors to protein-ssDNA binding specificity, while π-π interactions may mainly contribute to binding affinity. We also found the enrichment of aspartate in the specific SSBs, a key feature in specific protein-double-stranded DNA (dsDNA) interactions as reported in our previous study. In addition, no significant differences between specific and non-specific groups with respect of conformational changes upon ssDNA binding were found, suggesting that the flexibility of SSBs plays a lesser role than that of dsDNA-binding proteins in conferring binding specificity.
Collapse
Affiliation(s)
- Maoxuan Lin
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Fareeha K Malik
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Research Center of Modeling and Simulation, National University of Science and Technology, Islamabad, 44000, Pakistan
| | - Jun-tao Guo
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
19
|
Endogenous APOBEC3B overexpression characterizes HPV-positive and HPV-negative oral epithelial dysplasias and head and neck cancers. Mod Pathol 2021; 34:280-290. [PMID: 32632179 PMCID: PMC8261524 DOI: 10.1038/s41379-020-0617-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
The DNA cytosine deaminase APOBEC3B (A3B) is a newly recognized endogenous source of mutations in a range of human tumors, including head/neck cancer. A3B inflicts C-to-T and C-to-G base substitutions in 5'-TCA/T trinucleotide motifs, contributes to accelerated rates of tumor development, and affects clinical outcomes in a variety of cancer types. High-risk human papillomavirus (HPV) infection causes A3B overexpression, and HPV-positive cervical and head/neck cancers are among tumor types with the highest degree of APOBEC signature mutations. A3B overexpression in HPV-positive tumor types is caused by the viral E6/E7 oncoproteins and may be an early off-to-on switch in tumorigenesis. In comparison, less is known about the molecular mechanisms responsible for A3B overexpression in HPV-negative head/neck cancers. Here, we utilize an immunohistochemical approach to determine whether A3B is turned from off-to-on or if it undergoes a more gradual transition to overexpression in HPV-negative head/neck cancers. As positive controls, almost all HPV-positive oral epithelial dysplasias and oropharyngeal cancers showed high levels of nuclear A3B staining regardless of diagnosis. As negative controls, A3B levels were low in phenotypically normal epithelium adjacent to cancer and oral epithelial hyperplasias. Interestingly, HPV-negative and low-grade oral epithelial dysplasias showed intermediate A3B levels, while high-grade oral dysplasias showed high A3B levels similar to oral squamous cell carcinomas. A3B levels were highest in grade 2 and grade 3 oral squamous cell carcinomas. In addition, a strong positive association was found between nuclear A3B and Ki67 scores suggesting a linkage to the cell cycle. Overall, these results support a model in which gradual activation of A3B expression occurs during HPV-negative tumor development and suggest that A3B overexpression may provide a marker for advanced grade oral dysplasia and cancer.
Collapse
|
20
|
Riva G, Albano C, Gugliesi F, Pasquero S, Pacheco SFC, Pecorari G, Landolfo S, Biolatti M, Dell’Oste V. HPV Meets APOBEC: New Players in Head and Neck Cancer. Int J Mol Sci 2021; 22:1402. [PMID: 33573337 PMCID: PMC7866819 DOI: 10.3390/ijms22031402] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Besides smoking and alcohol, human papillomavirus (HPV) is a factor promoting head and neck squamous cell carcinoma (HNSCC). In some human tumors, including HNSCC, a number of mutations are caused by aberrantly activated DNA-modifying enzymes, such as the apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC) family of cytidine deaminases. As the enzymatic activity of APOBEC proteins contributes to the innate immune response to viruses, including HPV, the role of APOBEC proteins in HPV-driven head and neck carcinogenesis has recently gained increasing attention. Ongoing research efforts take the cue from two key observations: (1) APOBEC expression depends on HPV infection status in HNSCC; and (2) APOBEC activity plays a major role in HPV-positive HNSCC mutagenesis. This review focuses on recent advances on the role of APOBEC proteins in HPV-positive vs. HPV-negative HNSCC.
Collapse
Affiliation(s)
- Giuseppe Riva
- Otorhinolaryngology Division, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (G.P.)
| | - Camilla Albano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Sergio Fernando Castillo Pacheco
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Giancarlo Pecorari
- Otorhinolaryngology Division, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (G.P.)
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| |
Collapse
|
21
|
Human Papillomavirus in Sinonasal Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2020; 13:cancers13010045. [PMID: 33561073 PMCID: PMC7796014 DOI: 10.3390/cancers13010045] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The causative role of human papillomavirus (HPV) in sinonasal squamous cell carcinoma (SNSCC) remains unclear and is hindered by small studies using variable HPV detection techniques. This meta-analysis aims to provide an updated overview of HPV prevalence in SNSCC stratified by detection method, anatomic subsite, and geographic region. From 60 eligible studies, an overall HPV prevalence was estimated at 26%. When stratified by detection method, HPV prevalence was lower when using multiple substrate testing compared to single substrate testing. Anatomic subsite HPV prevalence was higher in subsites with high exposure to secretion flow compared to low exposure subsites. HPV prevalence in SNSCC followed the global distribution of HPV+ oropharyngeal squamous cell carcinoma. Taken together, this meta-analysis further supports a role for HPV in a subset of SNSCCs. Abstract Human papillomavirus (HPV) drives tumorigenesis in a subset of oropharyngeal squamous cell carcinomas (OPSCC) and is increasing in prevalence across the world. Mounting evidence suggests HPV is also involved in a subset of sinonasal squamous cell carcinomas (SNSCC), yet small sample sizes and variability of HPV detection techniques in existing literature hinder definitive conclusions. A systematic review was performed by searching literature through March 29th 2020 using PubMed, Embase, and Web of Science Core Collection databases. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed by two authors independently. A meta-analysis was performed using the random-effects model. Sixty studies (n = 1449) were eligible for statistical analysis estimating an overall HPV prevalence of 25.5% (95% CI 20.7–31.0). When stratified by HPV detection method, prevalence with multiple substrate testing (20.5%, 95% CI 14.5–28.2) was lower than with single substrate testing (31.7%, 95% CI 23.6–41.1), highest in high-exposure anatomic subsites (nasal cavity and ethmoids) (37.6%, 95% CI 26.5–50.2) vs. low-exposure (15.1%, 95% CI 7.3–28.6) and highest in high HPV+ OPSCC prevalence geographic regions (North America) (30.9%, 95% CI 21.9–41.5) vs. low (Africa) (13.1, 95% CI 6.5–24.5)). While small sample sizes and variability in data cloud firm conclusions, here, we provide a new reference point prevalence for HPV in SNSCC along with orthogonal data supporting a causative role for virally driven tumorigenesis, including that HPV is more commonly found in sinonasal subsites with increased exposure to refluxed oropharyngeal secretions and in geographic regions where HPV+ OPSCC is more prevalent.
Collapse
|
22
|
Wijetunga NA, Yu Y, Morris LG, Lee N, Riaz N. The head and neck cancer genome in the era of immunotherapy. Oral Oncol 2020; 112:105040. [PMID: 33197752 DOI: 10.1016/j.oraloncology.2020.105040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022]
Abstract
The recent success of immunotherapy in head and neck squamous cell carcinoma (HNSCC) has necessitated a new perspective on the cancer genome. Here we review recent advances in the carcinogenesis and molecular genetics of HNSCC with an eye on their implications for cancer immunity. Newer sequencing technologies have recently facilitated dissection of the complex interaction between the HPV virus, tumor, host factors, and the tumor microenvironment (TME) that help shed light on how the immune system interacts with head and neck malignancies.
Collapse
Affiliation(s)
- N Ari Wijetunga
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yao Yu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luc G Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
23
|
Faden DL, Langenbucher A, Kuhs K, Lewis JS, Mirabello L, Yeager M, Boland JF, Bass S, Steinberg M, Cullen M, Lawrence MS, Ferris RL. HPV+ oropharyngeal squamous cell carcinomas from patients with two tumors display synchrony of viral genomes yet discordant mutational profiles and signatures. Carcinogenesis 2020; 42:14-20. [PMID: 33075810 PMCID: PMC8014522 DOI: 10.1093/carcin/bgaa111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022] Open
Abstract
Human papillomavirus (HPV) positive oropharyngeal squamous cell carcinoma (HPV + OPSCC) is increasing in prevalence in the USA, as are cases of patients with multiple HPV + OPSCCs (mHPV + OPSCC). mHPV + OPSCCs present a unique opportunity to examine HPV + OPSCC mutation acquisition and evolution. We performed sequencing of the viral genome, somatic exome and somatic transcriptome from 8 patients each with 2 spatially distinct HPV + OPSCCs, and 37 'traditional' HPV + OPSCCs to first address if paired tumors are caused by the same viral isolate and next, if acquired alterations, and the underlying processes driving mutagenesis, are shared within pairs. All tumor pairs contained viral genomes from the same HPV type 16 sublineage and differed by 0-2 clonal single nucleotide polymorphisms (SNPs), suggesting infection with the same viral isolate. Despite this, there was significant discordance in expression profiles, mutational burden and mutational profiles between tumors in a pair, with only two pairs sharing any overlapping mutations (3/3343 variants). Within tumor pairs there was a striking discrepancy of mutational signatures, exemplified by no paired tumors sharing high APOBEC mutational burden. Here, leveraging mHPV + OPSCCs as a model system to study mutation acquisition in virally mediated tumors, in which the germline, environmental exposures, immune surveillance and tissue/organ type were internally controlled, we demonstrate that despite infection by the same viral isolate, paired mHPV + OPSCCs develop drastically different somatic alterations and even more strikingly, appear to be driven by disparate underlying mutational processes. Thus, despite a common starting point, HPV + OPSCCs evolve through variable mutational processes with resultant stochastic mutational profiles.
Collapse
Affiliation(s)
- Daniel L Faden
- Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA,Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA,To whom correspondence should be addressed. 243 Charles Street, Boston, MA 02114, USA. Tel: +1 617 807 7882; Fax: +1 587 206 7220;
| | | | - Krystle Kuhs
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James S Lewis
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Joseph F Boland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Sara Bass
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Mia Steinberg
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Michael Cullen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Michael S Lawrence
- Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Wang HC, Yeh TJ, Chan LP, Hsu CM, Cho SF. Exploration of Feasible Immune Biomarkers for Immune Checkpoint Inhibitors in Head and Neck Squamous Cell Carcinoma Treatment in Real World Clinical Practice. Int J Mol Sci 2020; 21:E7621. [PMID: 33076306 PMCID: PMC7589088 DOI: 10.3390/ijms21207621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Recurrent locally advanced or metastatic head and neck squamous cell carcinoma (HNSCC) is associated with dismal prognosis because of its highly invasive behavior and resistance to conventional intensive chemotherapy. The combination of targeted therapy and conventional chemotherapy has significantly improved clinical outcomes. In recent years, the development of immunotherapies, such as immune checkpoint inhibitors (ICIs), has further increased treatment responses and prolonged survival. However, the limited response rate, risk of immunotherapy-related adverse effects and high cost of immunotherapy make the identification of predictive markers to optimize treatment efficacy a critical issue. Biomarkers are biological molecules that have been widely utilized to predict treatment response to certain treatments and clinical outcomes or to detect disease. An ideal biomarker should exhibit good predictive ability, which can guide healthcare professionals to achieve optimal treatment goals and bring clinical benefit to patients. In this review, we summarized the results of recent and important studies focused on HNSCC ICI immunotherapy and discussed potential biomarkers including their strengths and limitations, aiming to gain more insight into HNSCC immunotherapy in real world clinical practice.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (T.-J.Y.); (L.-P.C.)
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tsung-Jang Yeh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (T.-J.Y.); (L.-P.C.)
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Leong-Perng Chan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (T.-J.Y.); (L.-P.C.)
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chin-Mu Hsu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shih-Feng Cho
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
25
|
[Mutation signatures in head and neck squamous cell carcinoma : Pathogenesis and therapeutic potential]. HNO 2020; 68:922-926. [PMID: 33044581 DOI: 10.1007/s00106-020-00954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The pathogenesis of head and neck squamous cell carcinoma (HNSCC) is a complex and multistage process which results from the interaction of exogenous and endogenous cellular processes. Each of these processes leaves a characteristic pattern of mutations on the tumor genome, a so-called mutational signature. STATE OF THE ART The subject of current studies is to decipher specific signatures of mutational processes operating during HNSCC pathogenesis and to address their prognostic value. Computational analysis of genomic sequencing data by The Cancer Genome Atlas (TCGA) revealed mutational signatures 1, 2, 4, 5, 7, and 13 as the main players in HNSCC pathogenesis. Signature 16 was first discovered in human papillomavirus (HPV)-negative oral and oropharyngeal tumors. In many studies, an association of signature 16 with alcohol and tobacco consumption as well as with an unfavorable prognosis was described.
Collapse
|
26
|
Plath M, Gass J, Hlevnjak M, Li Q, Feng B, Hostench XP, Bieg M, Schroeder L, Holzinger D, Zapatka M, Freier K, Weichert W, Hess J, Zaoui K. Unraveling most abundant mutational signatures in head and neck cancer. Int J Cancer 2020; 148:115-127. [PMID: 32930393 DOI: 10.1002/ijc.33297] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Genomic alterations are a driving force in the multistep process of head and neck cancer (HNC) and result from the interaction of exogenous environmental exposures and endogenous cellular processes. Each of these processes leaves a characteristic pattern of mutations on the tumor genome providing the unique opportunity to decipher specific signatures of mutational processes operative during HNC pathogenesis and to address their prognostic value. Computational analysis of whole exome sequencing data of the HIPO-HNC (Heidelberg Center for Personalized Oncology-head and neck cancer) (n = 83) and TCGA-HNSC (The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma) (n = 506) cohorts revealed five common mutational signatures (Catalogue of Somatic Mutations in Cancer [COSMIC] Signatures 1, 2, 3, 13 and 16) and demonstrated their significant association with etiological risk factors (tobacco, alcohol and HPV16). Unsupervised hierarchical clustering identified four clusters (A, B, C1 and C2) of which Subcluster C2 was enriched for cases with a higher frequency of signature 16 mutations. Tumors of Subcluster C2 had significantly lower p16INK4A expression accompanied by homozygous CDKN2A deletion in almost one half of cases. Survival analysis revealed an unfavorable prognosis for patients with tumors characterized by a higher mutation burden attributed to signature 16 as well as cases in Subcluster C2. Finally, a LASSO-Cox regression model was applied to prioritize clinically relevant signatures and to establish a prognostic risk score for head and neck squamous cell carcinoma patients. In conclusion, our study provides a proof of concept that computational analysis of somatic mutational signatures is not only a powerful tool to decipher environmental and intrinsic processes in the pathogenesis of HNC, but could also pave the way to establish reliable prognostic patterns.
Collapse
Affiliation(s)
- Michaela Plath
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Johanna Gass
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Mario Hlevnjak
- Division Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Qiaoli Li
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Bohai Feng
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Xavier Pastor Hostench
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Center for Personalized Oncology, DKFZ-HIPO, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Bieg
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Center for Personalized Oncology, DKFZ-HIPO, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lea Schroeder
- Division of Molecular Diagnostics of Oncogenic Infections, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dana Holzinger
- Division of Molecular Diagnostics of Oncogenic Infections, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Zapatka
- Division Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kolja Freier
- Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Jochen Hess
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karim Zaoui
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
27
|
Shi MJ, Meng XY, Fontugne J, Chen CL, Radvanyi F, Bernard-Pierrot I. Identification of new driver and passenger mutations within APOBEC-induced hotspot mutations in bladder cancer. Genome Med 2020; 12:85. [PMID: 32988402 PMCID: PMC7646471 DOI: 10.1186/s13073-020-00781-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND APOBEC-driven mutagenesis and functional positive selection of mutated genes may synergistically drive the higher frequency of some hotspot driver mutations compared to other mutations within the same gene, as we reported for FGFR3 S249C. Only a few APOBEC-associated driver hotspot mutations have been identified in bladder cancer (BCa). Here, we systematically looked for and characterised APOBEC-associated hotspots in BCa. METHODS We analysed 602 published exome-sequenced BCas, for part of which gene expression data were also available. APOBEC-associated hotspots were identified by motif-mapping, mutation signature fitting and APOBEC-mediated mutagenesis comparison. Joint analysis of DNA hairpin stability and gene expression was performed to predict driver or passenger hotspots. Aryl hydrocarbon receptor (AhR) activity was calculated based on its target genes expression. Effects of AhR knockout/inhibition on BCa cell viability were analysed. RESULTS We established a panel of 44 APOBEC-associated hotspot mutations in BCa, which accounted for about half of the hotspot mutations. Fourteen of them overlapped with the hotspots found in other cancer types with high APOBEC activity. They mostly occurred in the DNA lagging-strand templates and the loop of DNA hairpins. APOBEC-associated hotspots presented systematically a higher prevalence than the other mutations within each APOBEC-target gene, independently of their functional impact. A combined analysis of DNA loop stability and gene expression allowed to distinguish known passenger from known driver hotspot mutations in BCa, including loss-of-function mutations affecting tumour suppressor genes, and to predict new candidate drivers, such as AHR Q383H. We further characterised AHR Q383H as an activating driver mutation associated with high AhR activity in luminal tumours. High AhR activity was also found in tumours presenting amplifications of AHR and its co-receptor ARNT. We finally showed that BCa cells presenting those different genetic alterations were sensitive to AhR inhibition. CONCLUSIONS Our study identified novel potential drivers within APOBEC-associated hotspot mutations in BCa reinforcing the importance of APOBEC mutagenesis in BCa. It could allow a better understanding of BCa biology and aetiology and have clinical implications such as AhR as a potential therapeutic target. Our results also challenge the dogma that all hotspot mutations are drivers and mostly gain-of-function mutations affecting oncogenes.
Collapse
Affiliation(s)
- Ming-Jun Shi
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Institut Curie, CNRS, UMR144, Molecular Oncology team, PSL Research University, 26 Rue d'Ulm, 75005, Paris, France
- Paris-Saclay University, Paris, France
| | - Xiang-Yu Meng
- Institut Curie, CNRS, UMR144, Molecular Oncology team, PSL Research University, 26 Rue d'Ulm, 75005, Paris, France.
- Paris-Saclay University, Paris, France.
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Jacqueline Fontugne
- Institut Curie, CNRS, UMR144, Molecular Oncology team, PSL Research University, 26 Rue d'Ulm, 75005, Paris, France
- Paris-Saclay University, Paris, France
| | - Chun-Long Chen
- Institut Curie, CNRS, UMR3244, PSL Research University, Paris, France
- Sorbonne Université, Paris, France
| | - François Radvanyi
- Institut Curie, CNRS, UMR144, Molecular Oncology team, PSL Research University, 26 Rue d'Ulm, 75005, Paris, France
| | - Isabelle Bernard-Pierrot
- Institut Curie, CNRS, UMR144, Molecular Oncology team, PSL Research University, 26 Rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
28
|
Roelofs PA, Goh CY, Chua BH, Jarvis MC, Stewart TA, McCann JL, McDougle RM, Carpenter MA, Martens JW, Span PN, Kappei D, Harris RS. Characterization of the mechanism by which the RB/E2F pathway controls expression of the cancer genomic DNA deaminase APOBEC3B. eLife 2020; 9:61287. [PMID: 32985974 PMCID: PMC7553775 DOI: 10.7554/elife.61287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
APOBEC3B (A3B)-catalyzed DNA cytosine deamination contributes to the overall mutational landscape in breast cancer. Molecular mechanisms responsible for A3B upregulation in cancer are poorly understood. Here we show that a single E2F cis-element mediates repression in normal cells and that expression is activated by its mutational disruption in a reporter construct or the endogenous A3B gene. The same E2F site is required for A3B induction by polyomavirus T antigen indicating a shared molecular mechanism. Proteomic and biochemical experiments demonstrate the binding of wildtype but not mutant E2F promoters by repressive PRC1.6/E2F6 and DREAM/E2F4 complexes. Knockdown and overexpression studies confirm the involvement of these repressive complexes in regulating A3B expression. Altogether, these studies demonstrate that A3B expression is suppressed in normal cells by repressive E2F complexes and that viral or mutational disruption of this regulatory network triggers overexpression in breast cancer and provides fuel for tumor evolution.
Collapse
Affiliation(s)
- Pieter A Roelofs
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Chai Yeen Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Haow Chua
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthew C Jarvis
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States
| | - Teneale A Stewart
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Mater Research Institute, The University of Queensland, Faculty of Medicine, Brisbane, Australia
| | - Jennifer L McCann
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, United States
| | - Rebecca M McDougle
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Hennepin Healthcare, Minneapolis, United States
| | - Michael A Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, United States
| | - John Wm Martens
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Paul N Span
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, United States
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize the current knowledge on the genomic characterization of squamous cell carcinomas of the head and neck (HNSCC) and discusses how these abnormalities could be incorporated into a therapeutic approach. RECENT FINDINGS Tobacco and HPV infection, the two main risk factors of HNSCC, allow the definition of two groups with distinct anatomoclinical and genetic features. As tobacco and HPV infection are not exclusive, exposure to both risk factors is associated with an intermediate prognostic. HPV-positive, nontobacco-related HNSCCs are associated with a better prognosis, a rather more simple genomic profile, frequent activating mutations of genes involved in pi3kinase pathway, and the very low incidence of mutations of tumor suppressor genes. HPV-negative, tobacco-related HNSCC are genetically more complex. HPV-negative HNSCC are characterized by almost mandatory inactivating mutations/deletions of tumor suppressor genes (especially TP53 and CDKN2A) and the occurrence, though less frequent, of activating mutations or amplifications of some oncogenes that encode for cell cycle proteins or receptors with tyrosine kinase activity. Despite many efforts to improve therapeutic targeting in RM HNSCC, Cetuximab, a monoclonal antibody targeting REGF, remains the sole approved targeted treatment in RM HNSCC. SUMMARY Despite the increasingly precise genomic characterization of HNSCCs, precision medicine is struggling to find its place in the management of HNSCCs. Inclusion of enriched populations in dedicated trials is likely to help implement precision medicine in the management of HNSCCs.
Collapse
|
30
|
Gavrielatou N, Doumas S, Economopoulou P, Foukas PG, Psyrri A. Biomarkers for immunotherapy response in head and neck cancer. Cancer Treat Rev 2020; 84:101977. [PMID: 32018128 DOI: 10.1016/j.ctrv.2020.101977] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 12/24/2022]
Abstract
Preclinical data suggest that head and neck squamous cell carcinoma (HNSCC) is a profoundly immunosuppressive disease, characterized by abnormal secretion of proinflammatory cytokines and dysfunction of immune effector cells. Based on landmark phase III trials, two anti-Programmed Cell Death-1 (PD-1) antibodies, pembrolizumab and nivolumab have been approved for HNSCC by FDA and EMEA in the recurrent/metastatic setting; in addition, pembrolizumab has recently received FDA and EMEA approval as first line treatment. In clinical practice, only a minority of patients with HNSCC derive benefit from immunotherapy and the need for the discovery of novel biomarkers to optimize treatment strategies is becoming increasingly more relevant. Although currently only PD-L1 is widely used as a predictive biomarker for response to immune checkpoint inhibitors in HNSCC, there are many ongoing trials focusing on the identification of new biomarkers. This review will summarize current data on emerging biomarkers for response to immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Niki Gavrielatou
- Section of Medical Oncology, 2(nd) Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Stergios Doumas
- Maxillofacial Unit, Brighton and Sussex University Hospitals NHS, UK
| | - Panagiota Economopoulou
- Section of Medical Oncology, 2(nd) Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Periklis G Foukas
- 2nd Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Amanda Psyrri
- Section of Medical Oncology, 2(nd) Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece.
| |
Collapse
|
31
|
Kok VC. Current Understanding of the Mechanisms Underlying Immune Evasion From PD-1/PD-L1 Immune Checkpoint Blockade in Head and Neck Cancer. Front Oncol 2020; 10:268. [PMID: 32185135 PMCID: PMC7058818 DOI: 10.3389/fonc.2020.00268] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/17/2020] [Indexed: 02/05/2023] Open
Abstract
Starting in 2014, large phase III clinical trials began to disclose the study results of using programmed death (PD)-1 immune checkpoint inhibitors (ICIs) (pembrolizumab, nivolumab) and PD-ligand (L)1 (atezolizumab, durvalumab, avelumab) ICIs immunotherapy in patients with advanced head and neck squamous cell carcinoma (HNSCC). In the recurrent and metastatic (R/M), cisplatin-refractory setting, nivolumab achieved a 2.2-fold increase of the median 1-year overall survival as compared with investigators' choice of salvage chemotherapy (36.0 vs. 16.6%). A paradigm shift to the winning regimen, pembrolizumab combined with platinum and infusional fluorouracil, has outperformed the past gold standard of cetuximab-based platinum and fluorouracil combination in terms of overall survival (median, 13.6 vs. 10.1 mo) when administered as the first-line treatment for R/M HNSCC. Nevertheless, many patients still did not respond to the PD-1/PD-L1 checkpoint inhibitor treatment, indicating innate, adapted, or quickly acquired resistance to the immunotherapy. The mechanisms of resistance to ICIs targeting the PD-1/PD-L1 signaling pathway in the context of HNSCC are the focus of this review. The past 5 years have seen improved understanding of the mechanisms underlying checkpoint inhibition resistance in tumor cells, such as: tumor cell adaption with malfunction of the antigen-presenting machinery via class I human leukocyte antigen (HLA), reintroduction of cyclin D-cyclin-dependent kinase (CDK) 4 complex to cell cycles, enrichment of CD44+ cancer stem-like cells, or development of inactivating mutation in IKZF1 gene; impairment of T-cell functions and proliferation through mutations in the interferon-γ-regulating genes, suppression of the stimulator of interferon genes (STING) pathway, or resulted from constitutional nutritional iron deficiency state; metabolic reprogramming by cancer cells with changes in metabolites such as GTP cyclohydrolase 1, tetrahydrobiopterin, kynurenine, indoleamine 2,3-dioxygenase, and arginase 1; defective dendritic cells, CD-69 sufficient state; and the upregulation or activation of the alternative immune checkpoints, including lymphocyte activation gene-3 (LAG3), T-cell immunoglobulin and ITIM domain (TIGIT)/CD155 pathway, T-cell immunoglobulin mucin-3 (TIM-3), and V domain-containing Ig suppressor of T-cell activation (VISTA). Several potential biomarkers or biosignatures, which could predict the response or resistance to the PD-1/PD-L1 checkpoint immunotherapy, are also discussed.
Collapse
Affiliation(s)
- Victor C. Kok
- Department of Medical Oncology, Kuang Tien General Hospital Cancer Center, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University Taiwan, Taichung, Taiwan
- *Correspondence: Victor C. Kok
| |
Collapse
|
32
|
Strober W, Shishido S, Wood B, Lewis JS, Kuhs K, Ferris RL, Faden DL. Two for the price of one: Prevalence, demographics and treatment implications of multiple HPV mediated Head and Neck Cancers. Oral Oncol 2020; 100:104475. [PMID: 31765835 PMCID: PMC7017724 DOI: 10.1016/j.oraloncology.2019.104475] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES HPV mediated head and neck squamous cell carcinoma (HPVmHNSCC) is increasing in prevalence in the United States, as are reports of patients with multiple HPVmHNSCCs. The prevalence, demographics, and treatment implications of this emerging clinical entity are poorly understood. MATERIALS AND METHODS We performed a multitiered assessment of patients with multiple HPVmHNSCC including: 1. systematic review of the literature, 2. query of the 2017 Surveillance, Epidemiology and End Results (SEER) database and 3. institutional level reporting at two high volume academic centers. RESULTS Systematic literature review: 13 articles met inclusion criteria (48 patients with multiple HPVmHNSCC). Pooled prevalence rate of multiple HPVmHNSCC was 2.64%. SEER database: 60(0.95%) patients with HPVmHNSCC had two tumors. Patients with multiple HPVmHNSCC were more likely to be younger and present with a lower T and N stage (p < 0.025 for all). The second identified tumor was more likely to be contralateral, found synchronously, of smaller size, and to occur in the tonsil (p < 0.05 for all). Institutional reporting: 17(1.69%) patients with HPVmHNSCC had two primary tumors. Similar to the SEER database, patients with multiple HPVmHNSCC were more likely to present with a low T stage and tonsil location (p < 0.007 for both). CONCLUSION Multiple HPVmHNSCCs occur in a subset of HPVmHNSCC cases with distinct characteristics. Thorough interrogation of all oropharyngeal subsites should be performed as part of the initial workup for HPVmHNSCC, with consideration given to contralateral tonsillectomy at the time of surgical resection for HPV mediated tonsil cancers due to the prevalence of contralateral tonsil primaries.
Collapse
Affiliation(s)
- William Strober
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
| | | | - Burton Wood
- Vanderbilt University Medical Center, Nashville, TN, United States
| | - James S Lewis
- Vanderbilt University Medical Center, Nashville, TN, United States
| | - Krystle Kuhs
- Vanderbilt University Medical Center, Nashville, TN, United States
| | - Robert L Ferris
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
| | - Daniel L Faden
- Massachusetts Eye and Ear, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
33
|
South AP, den Breems NY, Richa T, Nwagu U, Zhan T, Poojan S, Martinez-Outschoorn U, Johnson JM, Luginbuhl AJ, Curry JM. Mutation signature analysis identifies increased mutation caused by tobacco smoke associated DNA adducts in larynx squamous cell carcinoma compared with oral cavity and oropharynx. Sci Rep 2019; 9:19256. [PMID: 31848367 PMCID: PMC6917707 DOI: 10.1038/s41598-019-55352-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Squamous cell carcinomas of the head and neck (HNSCC) arise from mucosal keratinocytes of the upper aero-digestive tract. Despite a common cell of origin and similar driver-gene mutations which divert cell fate from differentiation to proliferation, HNSCC are considered a heterogeneous group of tumors categorized by site of origin within the aero-digestive mucosa, and the presence or absence of HPV infection. Tobacco use is a major driver of carcinogenesis in HNSCC and is a poor prognosticator that has previously been associated with poor immune cell infiltration and higher mutation numbers. Here, we study patterns of mutations in HNSCC that are derived from the specific nucleotide changes and their surrounding nucleotide context (also known as mutation signatures). We identify that mutations linked to DNA adducts associated with tobacco smoke exposure are predominantly found in the larynx. Presence of this class of mutation, termed COSMIC signature 4, is responsible for the increased burden of mutation in this anatomical sub-site. In addition, we show that another mutation pattern, COSMIC signature 5, is positively associated with age in HNSCC from non-smokers and that larynx SCC from non-smokers have a greater number of signature 5 mutations compared with other HNSCC sub-sites. Immunohistochemistry demonstrates a significantly lower Ki-67 proliferation index in size matched larynx SCC compared with oral cavity SCC and oropharynx SCC. Collectively, these observations support a model where larynx SCC are characterized by slower growth and increased susceptibility to mutations from tobacco carcinogen DNA adducts.
Collapse
Affiliation(s)
- Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, Pennsylvania, PA, 19107, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Nicoline Y den Breems
- Center for Advanced Computing (C-fACS), Lincoln University, Lincoln, 7647, New Zealand
| | - Tony Richa
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Uche Nwagu
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Tingting Zhan
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Shiv Poojan
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ubaldo Martinez-Outschoorn
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Department of Oncology, Thomas Jefferson University Philadelphia, Philadelphia, PA, 19107, USA
| | - Jennifer M Johnson
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Department of Oncology, Thomas Jefferson University Philadelphia, Philadelphia, PA, 19107, USA
| | - Adam J Luginbuhl
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Joseph M Curry
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
34
|
Chatfield-Reed K, Gui S, O'Neill WQ, Teknos TN, Pan Q. HPV33+ HNSCC is associated with poor prognosis and has unique genomic and immunologic landscapes. Oral Oncol 2019; 100:104488. [PMID: 31835137 DOI: 10.1016/j.oraloncology.2019.104488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To determine the influence of high-risk HPV genotype on outcomes in HNSCC patients. MATERIALS AND METHODS This is a retrospective analysis of The Cancer Genome Atlas HNSCC cohort. RESULTS Using multivariate Cox regression analysis, we revealed that HPV33+ HNSCC patients have inferior overall survival compared to HPV16+ HNSCC patients independent of anatomical site (HR 3.59, 95% CI 1.58-8.12; p = 0.002). A host anti-viral immune response, apolipoprotein B mRNA editing enzyme, and catalytic polypeptide-like mutational signature, was under represented and, aneuploidy and 3p loss were more frequent in HPV33+ tumors. A deconvolution RNA-Seq algorithm to infer immune cell fractions revealed that CD8+ cytotoxic T-cell infiltration was reduced in HPV33+ compared to HPV16+ tumors (1.3% vs. 2.7%, p = 0.007). TGFB1, a negative modulator of T-cell infiltration and function, showed expression and pathway enrichment in HPV33+ tumors. CONCLUSIONS Our work reveals that HPV genotype, in particular HPV33, has a powerful impact on HNSCC patient survival. We argue that p16 immunohistochemistry as a surrogate biomarker for HPV+ status will lead to sub-optimal risk stratification and advocate HPV genotype testing as standard of care.
Collapse
Affiliation(s)
- Kate Chatfield-Reed
- Seidman Cancer Center, University Hospitals, Cleveland, OH 44106, United States; Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, United States
| | - Shanying Gui
- Seidman Cancer Center, University Hospitals, Cleveland, OH 44106, United States; Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, United States
| | - Wendi Q O'Neill
- Seidman Cancer Center, University Hospitals, Cleveland, OH 44106, United States; Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, United States
| | - Theodoros N Teknos
- Seidman Cancer Center, University Hospitals, Cleveland, OH 44106, United States; Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, United States; Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, United States
| | - Quintin Pan
- Seidman Cancer Center, University Hospitals, Cleveland, OH 44106, United States; Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, United States; Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, United States.
| |
Collapse
|
35
|
Ladányi A, Tímár J. Immunologic and immunogenomic aspects of tumor progression. Semin Cancer Biol 2019; 60:249-261. [PMID: 31419526 DOI: 10.1016/j.semcancer.2019.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022]
Abstract
Tumor progression to metastatic disease is characterized by continuous genetic alterations due to instability of the genome. Immune sensitivity was found to be linked to tumor mutational burden (TMB) and the resulting amount of neoantigens. However, APOBEC activity resulting in increase in TMB causes immune evasion. On the other hand, clonal or acquired genetic loss of HLA class I also hampers immune sensitivity of tumors. Rare amplification of the PD-L1 gene in cancers may render them sensitive to immune checkpoint inhibitors but involvement of broader regions of chromosome 9p may ultimately lead again to immune evasion due to inactivation of the IFN-γ signaling pathway. Such genetic changes may occur not only in the primary tumor but at any phase of progression: in lymphatic as well as in visceral metastases. Accordingly, it is rational to monitor these changes continuously during disease progression similar to target therapies. Moreover, beside temporal variability, genomic features of tumors such as mutation profiles, as well as the tumor immune microenvironment also show considerable inter- and intratumoral spatial heterogeneity, suggesting the necessity of multiple sampling in biomarker studies.
Collapse
Affiliation(s)
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
36
|
Faden DL, Ding F, Lin Y, Zhai S, Kuo F, Chan TA, Morris LG, Ferris RL. APOBEC mutagenesis is tightly linked to the immune landscape and immunotherapy biomarkers in head and neck squamous cell carcinoma. Oral Oncol 2019; 96:140-147. [PMID: 31422205 DOI: 10.1016/j.oraloncology.2019.07.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/12/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
HNSCC is an immunologically active tumor with high levels of immune cell infiltration, high mutational burden and a subset of patients who respond to immunotherapy. One of the primary sources of mutations in HNSCC is the cytidine deaminase APOBEC3, which is a known participant in innate immunity. Why particular HNSCCs have higher rates of APOBEC mutations and how these mutations relate to the immune microenvironment remains unknown. Utilizing whole exome and RNA-Seq datasets from TCGA HNSCCs we annotated APOBEC mutations, immune cell populations, activating and end effectors of immunity and neoantigens in order to interrogate the relationship between APOBEC mutations and the immune landscape. Immune cell populations and composite scores of immune activation were tightly associated with APOBEC mutational burden (p = 0.04-1.17e-5). HNSCC had the highest levels of IFNy across cancer types with high APOBEC mutational burden, with the highest IFNy scores in HPV mediated HNSCC. Tumor specific neoantigens were significantly correlated with APOBEC mutational burden while other sources of neoantigens were not (0.53 [0.24, 0.76] p = 8e-5). The presence of a germline APOBEC polymorphism was more prevalent in non-white, non-black patients and within this group, patients with the polymorphism had higher APOBEC mutational burden (p = 0.002). APOBEC mutations are tightly linked to immune activation and infiltration in HNSCC. Multiple mechanisms may exist within HNSCC leading to APOBEC mutations including immune upregulation in response to neoantigens and viral infection, via induction of IFNy. These mechanisms may be additive and not mutually exclusive, which could explain higher levels of APOBEC mutations in HPV mediated HNSCC.
Collapse
Affiliation(s)
- Daniel L Faden
- Head and Neck Surgical Oncology, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Broad Institute of MIT and Harvard, Cambridge, MA, United States.
| | - Fei Ding
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Yan Lin
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, United States
| | - Shuyan Zhai
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Fengshen Kuo
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Timothy A Chan
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Luc G Morris
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Robert L Ferris
- Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States; Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
37
|
Trevino V. Integrative genomic analysis identifies associations of molecular alterations to APOBEC and BRCA1/2 mutational signatures in breast cancer. Mol Genet Genomic Med 2019; 7:e810. [PMID: 31294536 PMCID: PMC6687632 DOI: 10.1002/mgg3.810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The observed mutations in cancer are the result of ~30 mutational processes, which stamp particular mutational signatures (MS). Nevertheless, it is still not clear which genomic alterations correlate to several MS. Here, a method to analyze associations of genomic data with MS is presented and applied to The Cancer Genome Atlas breast cancer data revealing promising associations. METHODS The MS were discretized into clusters whose extremes were statistically associated with mutations, copy number, and gene expression data. RESULTS Known associations for apolipoprotein B editing complex (APOBEC) and for BRCA1 and BRCA2 support the proposal. For BRCA1/2, mutations in ARAP3, three focal deletions, and one amplification were detected. Around 50 mutated genes for the two APOBEC signatures were identified including three kinesins (KIF13A, KIF1B, KIF4A), three ubiquitins (USP45, UBR4, UBR1), and two demethylases (KDM5B, KDM5C) among other genes also connected to DNA damage pathways. The results suggest novel roles for other genes currently not involved in DNA repair. The altered expression program was very high for the BRCA1/2 signature, high for APOBEC signature 13 clearly associated to immune response, and low for APOBEC signature 2. The remaining signatures show scarce associations. CONCLUSION Specific genetic alterations can be associated with particular MS.
Collapse
Affiliation(s)
- Victor Trevino
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, México
| |
Collapse
|
38
|
Riva G, Pecorari G, Biolatti M, Pautasso S, Lo Cigno I, Garzaro M, Dell'Oste V, Landolfo S. PYHIN genes as potential biomarkers for prognosis of human papillomavirus-positive or -negative head and neck squamous cell carcinomas. Mol Biol Rep 2019; 46:3333-3347. [PMID: 30980272 DOI: 10.1007/s11033-019-04795-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/03/2019] [Indexed: 01/08/2023]
Abstract
The aim of the present study is to determine the expression levels of PYHIN (IFI16 and AIM2) and APOBEC3 (A3A, A3B, A3C, A3D, A3F, A3G, and A3H) gene family members in a cohort of patients with head and neck squamous cell carcinoma (HNSCC) and assess their potential correlation with human papillomavirus (HPV) infection status, clinical characteristics, and survival. For this purpose, 34 HNSCC tissue specimens along with healthy surrounding mucosa were collected from patients surgically treated for HNSCC. Nucleic acids were isolated to assess the presence of HPV and the expression levels of selected molecular markers. Survival analysis was carried out using the Kaplan-Meier method. In HPV-negative (HPV-) HNSCCs, we detected low mRNA expression levels of IFI16, A3A, and A3B, whereas these genes were upregulated of 2-100 folds in HPV-positive (HPV+) tumors (p < 0.05). Interestingly, AIM2 gene expression levels were predominantly unchanged in HPV+ HNSCCs compared to their HPV- counterparts, in which AIM2 was predominantly upregulated (10% vs. 50% of patients). In HPV- tumors, upregulation of TP53, NOTCH1, PD-L1, and IFI16 correlated with lower occurrence of nodal metastases. On the other hand, the expression of APOBEC family members did not correlate with clinical characteristics. Regarding survival, patients with upregulated A3F gene expression had a worse prognosis, while patients without changes in A3H expression had a lower survival rate. In conclusion, our findings indicate that the innate immune sensors IFI16 and AIM2 and some APOBEC family members could be potentially used as biomarkers for disease outcome in HNSCC patients regardless of HPV presence.
Collapse
Affiliation(s)
- Giuseppe Riva
- Department of Public Health and Pediatric Sciences, University of Turin, Via Santena 9, 10126, Turin, Italy
| | - Giancarlo Pecorari
- Otorhinolaryngology Division, Department of Surgical Sciences, University of Turin, Via Genova 3, 10126, Turin, Italy
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, Via Santena 9, 10126, Turin, Italy
| | - Sara Pautasso
- Department of Public Health and Pediatric Sciences, University of Turin, Via Santena 9, 10126, Turin, Italy
| | - Irene Lo Cigno
- Department of Translational Medicine, University of Eastern Piedmont "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Massimiliano Garzaro
- Otorhinolaryngology Division, Department of Surgery, University of Eastern Piedmont "A. Avogadro", Corso Mazzini 18, Novara, Italy
| | - Valentina Dell'Oste
- Department of Public Health and Pediatric Sciences, University of Turin, Via Santena 9, 10126, Turin, Italy
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin, Via Santena 9, 10126, Turin, Italy.
| |
Collapse
|
39
|
Saada-Bouzid E, Le Tourneau C. Beyond EGFR Targeting in SCCHN: Angiogenesis, PI3K, and Other Molecular Targets. Front Oncol 2019; 9:74. [PMID: 30815390 PMCID: PMC6381014 DOI: 10.3389/fonc.2019.00074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/28/2019] [Indexed: 01/29/2023] Open
Abstract
Although the molecular landscape of squamous cell carcinoma of the head and neck (SCCHN) has been largely deciphered, only one targeted therapy has been approved to date without any molecular selection, namely cetuximab. Cetuximab is a monoclonal antibody targeting EGFR. It has been shown to improve overall survival in the locally advanced setting in combination with radiotherapy and the recurrent and/or metastatic setting in combination with a platinum compound and 5FU. Beside EGFR targeting agents, antiangiogenic agents have been shown to produce antitumor activity but were associated with substantial toxicity. Buparlisib that targets PI3K was also shown to improve survival in combination with paclitaxel in an unselected patient population. Several other targeted therapies have been developed in SCCHN, most of time in all comers, potentially explaining the limited efficacy reported with them. The recent emergence of clinical trials of targeted therapies in enriched patient populations and precision medicine trials such as umbrella trials might boost the clinical development of targeted therapy in SCCHN.
Collapse
Affiliation(s)
- Esma Saada-Bouzid
- Early Phase Unit, Centre Antoine Lacassagne, Nice, France.,Université Côte d'Azur, Nice, France
| | - Christophe Le Tourneau
- Department of Drug Development & Innovation (D3i), Institut Curie, Paris, France.,INSERM U900 Research Unit, Institut Curie, Saint-Cloud, France.,Paris-Saclay University, Saint-Aubin, France
| |
Collapse
|
40
|
Cannataro VL, Gaffney SG, Sasaki T, Issaeva N, Grewal NKS, Grandis JR, Yarbrough WG, Burtness B, Anderson KS, Townsend JP. APOBEC-induced mutations and their cancer effect size in head and neck squamous cell carcinoma. Oncogene 2019; 38:3475-3487. [PMID: 30647454 PMCID: PMC6499643 DOI: 10.1038/s41388-018-0657-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Recent studies have revealed the mutational signatures underlying the somatic evolution of cancer, and the prevalences of associated somatic genetic variants. Here we estimate the intensity of positive selection that drives mutations to high frequency in tumors, yielding higher prevalences than expected on the basis of mutation and neutral drift alone. We apply this approach to a sample of 525 head and neck squamous cell carcinoma exomes, producing a rank-ordered list of gene variants by selection intensity. Our results illustrate the complementarity of calculating the intensity of selection on mutations along with tallying the prevalence of individual substitutions in cancer: while many of the most prevalently-altered genes were heavily selected, their relative importance to the cancer phenotype differs from their prevalence and from their P value, with some infrequent variants exhibiting evidence of strong positive selection. Furthermore, we extend our analysis of effect size by quantifying the degree to which mutational processes (such as APOBEC mutagenesis) contributes mutations that are highly selected, driving head and neck squamous cell carcinoma. We calculate the substitutions caused by APOBEC mutagenesis that make the greatest contribution to cancer phenotype among patients. Lastly, we demonstrate via in vitro biochemical experiments that the APOBEC3B protein can deaminate the cytosine bases at two sites whose mutant states are subject to high net realized selection intensities-PIK3CA E545K and E542K. By quantifying the effects of mutations, we deepen the molecular understanding of carcinogenesis in head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Vincent L Cannataro
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Stephen G Gaffney
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Tomoaki Sasaki
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Natalia Issaeva
- Yale Cancer Center, Yale University, New Haven, CT, USA.,Division of Otolaryngology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Nicholas K S Grewal
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Wendell G Yarbrough
- Yale Cancer Center, Yale University, New Haven, CT, USA.,Division of Otolaryngology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Barbara Burtness
- Yale Cancer Center, Yale University, New Haven, CT, USA.,Department of Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Karen S Anderson
- Department of Pharmacology, Yale University, New Haven, CT, USA.,Yale Cancer Center, Yale University, New Haven, CT, USA.,Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA. .,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. .,Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.
| |
Collapse
|
41
|
Oliva M, Spreafico A, Taberna M, Alemany L, Coburn B, Mesia R, Siu LL. Immune biomarkers of response to immune-checkpoint inhibitors in head and neck squamous cell carcinoma. Ann Oncol 2019; 30:57-67. [PMID: 30462163 PMCID: PMC6336003 DOI: 10.1093/annonc/mdy507] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Anti-programmed cell death protein 1 (PD-1) agents have become the standard of care for platinum-refractory recurrent/metastatic head and neck squamous cell carcinoma (HNSCC) and are currently being evaluated in various disease settings. However, despite the gain in overall survival seen in some of the clinical trials, the majority of patients display primary resistance and do not benefit from these agents. Taking into consideration the potentially severe immune-related toxicities and their high cost, the search for predictive biomarkers of response is crucial. Besides Programmed death ligand-1 (PD-L1) expression, other biomarkers such as immune infiltration, tumor mutational burden or immune-gene expression profiling have been explored, but none of them has been validated in this disease. Among these, the microbiota has recently garnered tremendous interest since it has proven to influence the efficacy of PD-1 blockade in some tumor types. With the accumulating evidence on the effect of the microbiota in HNSCC tumorigenesis and progression, the study of its potential role as a predictive immune biomarker is warranted. This review examines the available evidence on emerging immune predictive biomarkers of response to anti-PD-1/PD-L1 therapy in HNSCC, introducing the microbiota and its potential use as a predictive immune biomarker in this disease.
Collapse
Affiliation(s)
- M Oliva
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto; University of Toronto, Toronto, Canada
| | - A Spreafico
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto; University of Toronto, Toronto, Canada
| | - M Taberna
- Medical Oncology Department, Catalan Institute of Oncology (ICO), ONCOBELL-IDIBELL, L'Hospitalet de Llobregat, Barcelona; Barcelona University, Barcelona
| | - L Alemany
- Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), IDIBELL, L'Hospitalet de Llobregat, Barcelona; CIBER in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - B Coburn
- Division of Infectious Diseases, University Health Network, Toronto; Departments of Medicine and Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - R Mesia
- Medical Oncology Department, B-ARGO Group, Catalan Institute of Oncology (ICO), Badalona, Spain
| | - L L Siu
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto; University of Toronto, Toronto, Canada.
| |
Collapse
|
42
|
Qin T, Zhang Y, Zarins KR, Jones TR, Virani S, Peterson LA, McHugh JB, Chepeha D, Wolf GT, Rozek LS, Sartor MA. Expressed HNSCC variants by HPV-status in a well-characterized Michigan cohort. Sci Rep 2018; 8:11458. [PMID: 30061624 PMCID: PMC6065423 DOI: 10.1038/s41598-018-29599-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022] Open
Abstract
While whole-exome DNA sequencing is the most common technology to study genetic variants in tumors in known exonic regions, RNA-seq is cheaper, covers most of the same exonic regions, and is often more readily available. In this study, we show the utility of mRNA-seq-based variant analysis combined with targeted gene sequencing performed on both tumor and matched blood as an alternative when exome data is unavailable. We use the approach to study expressed variant profiles in the well-characterized University of Michigan (UM) head and neck squamous carcinoma (HNSCC) cohort (n = 36). We found that 441 out of 455 (~97%) identified cancer genes with an expressed variant in the UM cohort also harbor a somatic mutation in TCGA. Fourteen (39%) patients had a germline variant in a cancer-related Fanconi Anemia (FA) pathway gene. HPV-positive patients had more nonsynonymous, rare, and damaging (NRD) variants in those genes than HPV-negative patients. Moreover, the known mutational signatures for DNA mismatch repair and APOBEC activation were attributive to the UM expressed NRD variants, and the APOBEC signature contribution differed by HPV status. Our results provide additional support to certain TCGA findings and suggest an association of expressed variants in FA/DNA repair pathways with HPV-associated HNSCC tumorigenesis. These results will benefit future studies on this and other cohorts by providing the genetic variants of key cancer-related genes.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yanxiao Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Katie R Zarins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Tamara R Jones
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Shama Virani
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Lisa A Peterson
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jonathan B McHugh
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Douglas Chepeha
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Otolaryngology, University of Toronto, Toronto, Ontario, Canada
| | - Gregory T Wolf
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
43
|
Saada-Bouzid E, Milano G, Thariat J. [Genomic characterization of head and neck squamous cell carcinoma: Impact and challenges for therapeutic management]. Bull Cancer 2018; 105:820-829. [PMID: 29937334 DOI: 10.1016/j.bulcan.2018.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 01/22/2023]
Abstract
Squamous cell carcinomas are the most frequent subgroup among head and neck malignant tumors (HNSCC). Tobacco (±alcohol) and HPV infection, the two main risk factors, define two entities with distinct anatomo-clinical and genetic features. HPV-positive, non-tobacco-related HNSCCs are associated with a better prognosis, a rather simple genomic profile, frequent activating mutations of genes involved in pi3kinase-pathway, and the scarcity of mutations of tumor suppressor genes. HPV-negative, tobacco-related HNSCC are genetically more complex, are characterized by almost mandatory inactivating mutations/deletions of tumor suppressor genes (TP53, CDKN2A) and the possible, but less frequent, activating mutations or amplifications of some oncogenes that encode for cell cycle proteins or receptors with tyrosine kinase activity. This review describes the genetic features of HNSCC and discusses how these abnormalities could be incorporated into a therapeutic approach.
Collapse
Affiliation(s)
- Esma Saada-Bouzid
- Centre Antoine-Lacassagne, département d'oncologie médicale, 33, avenue de Valombrose, 06189 Nice, France; Centre Antoine-Lacassagne, laboratoire d'onco-pharmacologie, 33, avenue de Valombrose, 06189 Nice, France.
| | - Gérard Milano
- Centre Antoine-Lacassagne, laboratoire d'onco-pharmacologie, 33, avenue de Valombrose, 06189 Nice, France
| | - Juliette Thariat
- Centre François-Baclesse, département de radiothérapie, 3, avenue Général-Harris, 14076 Caen, France
| |
Collapse
|