1
|
Huynh NT, Zhang E, Francies O, Kuklis F, Allen T, Zhu J, Abeyakoon O, Lucka F, Betcke M, Jaros J, Arridge S, Cox B, Plumb AA, Beard P. A fast all-optical 3D photoacoustic scanner for clinical vascular imaging. Nat Biomed Eng 2024:10.1038/s41551-024-01247-x. [PMID: 39349585 DOI: 10.1038/s41551-024-01247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/28/2024] [Indexed: 10/25/2024]
Abstract
The clinical assessment of microvascular pathologies (in diabetes and in inflammatory skin diseases, for example) requires the visualization of superficial vascular anatomy. Photoacoustic tomography (PAT) scanners based on an all-optical Fabry-Perot ultrasound sensor can provide highly detailed 3D microvascular images, but minutes-long acquisition times have precluded their clinical use. Here we show that scan times can be reduced to a few seconds and even hundreds of milliseconds by parallelizing the optical architecture of the sensor readout, by using excitation lasers with high pulse-repetition frequencies and by exploiting compressed sensing. A PAT scanner with such fast acquisition minimizes motion-related artefacts and allows for the volumetric visualization of individual arterioles, venules, venous valves and millimetre-scale arteries and veins to depths approaching 15 mm, as well as for dynamic 3D images of time-varying tissue perfusion and other haemodynamic events. In exploratory case studies, we used the scanner to visualize and quantify microvascular changes associated with peripheral vascular disease, skin inflammation and rheumatoid arthritis. Fast all-optical PAT may prove useful in cardiovascular medicine, oncology, dermatology and rheumatology.
Collapse
Affiliation(s)
- N T Huynh
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - E Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - O Francies
- University College London Hospital NHS Foundation Trust, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - F Kuklis
- Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - T Allen
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - J Zhu
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - O Abeyakoon
- University College London Hospital NHS Foundation Trust, London, UK
| | - F Lucka
- Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
| | - M Betcke
- Department of Computer Science, University College London, London, UK
| | - J Jaros
- Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - S Arridge
- Department of Computer Science, University College London, London, UK
| | - B Cox
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - A A Plumb
- University College London Hospital NHS Foundation Trust, London, UK
| | - P Beard
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK.
| |
Collapse
|
2
|
Shi Y, Zhou M, Chang C, Jiang P, Wei K, Zhao J, Shan Y, Zheng Y, Zhao F, Lv X, Guo S, Wang F, He D. Advancing precision rheumatology: applications of machine learning for rheumatoid arthritis management. Front Immunol 2024; 15:1409555. [PMID: 38915408 PMCID: PMC11194317 DOI: 10.3389/fimmu.2024.1409555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease causing progressive joint damage. Early diagnosis and treatment is critical, but remains challenging due to RA complexity and heterogeneity. Machine learning (ML) techniques may enhance RA management by identifying patterns within multidimensional biomedical data to improve classification, diagnosis, and treatment predictions. In this review, we summarize the applications of ML for RA management. Emerging studies or applications have developed diagnostic and predictive models for RA that utilize a variety of data modalities, including electronic health records, imaging, and multi-omics data. High-performance supervised learning models have demonstrated an Area Under the Curve (AUC) exceeding 0.85, which is used for identifying RA patients and predicting treatment responses. Unsupervised learning has revealed potential RA subtypes. Ongoing research is integrating multimodal data with deep learning to further improve performance. However, key challenges remain regarding model overfitting, generalizability, validation in clinical settings, and interpretability. Small sample sizes and lack of diverse population testing risks overestimating model performance. Prospective studies evaluating real-world clinical utility are lacking. Enhancing model interpretability is critical for clinician acceptance. In summary, while ML shows promise for transforming RA management through earlier diagnosis and optimized treatment, larger scale multisite data, prospective clinical validation of interpretable models, and testing across diverse populations is still needed. As these gaps are addressed, ML may pave the way towards precision medicine in RA.
Collapse
Affiliation(s)
- Yiming Shi
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Mi Zhou
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Fuyu Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xinliang Lv
- Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region, China
| | - Shicheng Guo
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fubo Wang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Ivankovic I, Lin HA, Özbek A, Orive A, Deán‐Ben XL, Razansky D. Multispectral Optoacoustic Tomography Enables In Vivo Anatomical and Functional Assessment of Human Tendons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308336. [PMID: 38445972 PMCID: PMC11095142 DOI: 10.1002/advs.202308336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Indexed: 03/07/2024]
Abstract
Tendon injuries resulting from accidents and aging are increasing globally. However, key tendon functional parameters such as microvascularity and oxygen perfusion remain inaccessible via the currently available clinical diagnostic tools, resulting in disagreements on optimal treatment options. Here, a new noninvasive method for anatomical and functional characterization of human tendons based on multispectral optoacoustic tomography (MSOT) is reported. Healthy subjects are investigated using a hand-held scanner delivering real-time volumetric images. Tendons in the wrist, ankle, and lower leg are imaged in the near-infrared optical spectrum to utilize endogenous contrast from Type I collagen. Morphology of the flexor carpi ulnaris, carpi radialis, palmaris longus, and Achilles tendons are reconstructed in full. The functional roles of the flexor digitorium longus, hallicus longus, and the tibialis posterior tendons have been visualized by dynamic tracking during toe extension-flexion motion. Furthermore, major vessels and microvasculature near the Achilles tendon are localized, and the global increase in oxygen saturation in response to targeted exercise is confirmed by perfusion studies. MSOT is shown to be a versatile tool capable of anatomical and functional tendon assessments. Future studies including abnormal subjects can validate the method as a viable noninvasive clinical tool for tendinopathy management and healing monitoring.
Collapse
Affiliation(s)
- Ivana Ivankovic
- Faculty of MedicineInstitute for Biomedical Engineering and Institute of Pharmacology and ToxicologyUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Department of Information Technology and Electrical EngineeringInstitute for Biomedical EngineeringETH Zurich, Wolfgang‐Pauli‐Str. 27ZurichCH‐8093Switzerland
| | - Hsiao‐Chun Amy Lin
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityNo.101, Sec.2, Kuang‐Fu RdHsinchu300044Taiwan
| | - Ali Özbek
- Faculty of MedicineInstitute for Biomedical Engineering and Institute of Pharmacology and ToxicologyUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Department of Information Technology and Electrical EngineeringInstitute for Biomedical EngineeringETH Zurich, Wolfgang‐Pauli‐Str. 27ZurichCH‐8093Switzerland
| | - Ana Orive
- Faculty of MedicineInstitute for Biomedical Engineering and Institute of Pharmacology and ToxicologyUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Department of Information Technology and Electrical EngineeringInstitute for Biomedical EngineeringETH Zurich, Wolfgang‐Pauli‐Str. 27ZurichCH‐8093Switzerland
| | - Xosé Luís Deán‐Ben
- Faculty of MedicineInstitute for Biomedical Engineering and Institute of Pharmacology and ToxicologyUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Department of Information Technology and Electrical EngineeringInstitute for Biomedical EngineeringETH Zurich, Wolfgang‐Pauli‐Str. 27ZurichCH‐8093Switzerland
| | - Daniel Razansky
- Faculty of MedicineInstitute for Biomedical Engineering and Institute of Pharmacology and ToxicologyUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Department of Information Technology and Electrical EngineeringInstitute for Biomedical EngineeringETH Zurich, Wolfgang‐Pauli‐Str. 27ZurichCH‐8093Switzerland
| |
Collapse
|
4
|
Liu S, Zhang C, Zhang J, Liu X, Zhu B, Tian C. Sub-Nyquist sampling-based high-frequency photoacoustic computed tomography. OPTICS LETTERS 2024; 49:1648-1651. [PMID: 38560827 DOI: 10.1364/ol.515650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/03/2024] [Indexed: 04/04/2024]
Abstract
High-frequency (greater than 30 MHz) photoacoustic computed tomography (PACT) provides the opportunity to reveal finer details of biological tissues with high spatial resolution. To record photoacoustic signals above 30 MHz, sampling rates higher than 60 MHz are required according to the Nyquist sampling criterion. However, the highest sampling rates supported by existing PACT systems are typically within the range of 40-60 MHz. Herein, we propose a novel PACT imaging method based on sub-Nyquist sampling. The results of numerical simulation, phantom experiment, and in vivo experiment demonstrate that the proposed imaging method can achieve high-frequency PACT imaging with a relatively low sampling rate. An axial resolution of 22 μm is achieved with a 30-MHz transducer and a 41.67-MHz sampling rate. To the best of our knowledge, this is the highest axial resolution ever achieved in PACT based on a sampling rate of not greater than 60 MHz. This work is expected to provide a practical way for high-frequency PACT imaging with limited sampling rates.
Collapse
|
5
|
Wang Z, Chen Y, Pan S, Zhang W, Guo Z, Wang Y, Yang S. Quantitative classification of melasma with photoacoustic microscopy: a pilot study. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11504. [PMID: 37927370 PMCID: PMC10624224 DOI: 10.1117/1.jbo.29.s1.s11504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Significance The classification of melasma is critical for correct clinical diagnosis, treatment selection, and postoperative measures. However, preoperative quantitative determination of melasma type remains challenging using conventional Wood's lamp and optical dermoscopy techniques. Aim Using photoacoustic microscopy (PAM) to simultaneously obtain the two diagnostic indicators of melanin and blood vessels for melasma classification and perform quantitative analysis to finally achieve accurate classification, rather than relying solely on physicians' experience. Approach First, the patients were classified by experienced dermatologists with Wood's lamp and optical dermoscopy. Next, the patients were examined in vivo using the PAM imaging system. Further, the horizontal section images (X - Y plane) of epidermal melanin and dermal vascular involvement were extracted from the 3D photoacoustic imaging results, which are important basis for PAM to quantitatively classify melasma. Results PAM can quantitatively reveal epidermal thickness and dermal vascular morphology in each case and obtain the quantitative diagnostic indicators of melanin and blood vessels. The mean vascular diameter in lesional skin (223.2 μ m ) of epidermal M+V-type was much larger than that in non-lesional skin (131.6 μ m ), and the mean vascular density in lesional skin was more than three times that in non-lesional skin. Importantly, vascular diameter and density are important parameters for distinguishing M type from M+V type. Conclusions PAM can obtain the data of epidermal thickness, pigment depth, subcutaneous vascular diameter, and vascular density, and realize the dual standard quantitative melasma classification by combining the parameters of melanin and blood vessels. In addition, PAM can provide new diagnostic information for uncertain melasma types and further refine the typing.
Collapse
Affiliation(s)
- Zhiyang Wang
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
| | - Yuying Chen
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
| | - Shu Pan
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
| | - Wuyu Zhang
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
- Guangdong Photoacoustic Technology Co., Ltd., Foshan, China
| | - Ziwei Guo
- Zhujiang Hospital of Southern Medical University, Department of Plastic Surgery, Guangzhou, China
| | - Yuzhi Wang
- General Hospital of Southern Theater Command, Department of Burns and Plastic Surgery, Guangzhou, China
| | - Sihua Yang
- South China Normal University, Institute of Laser Life Science, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
- South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
| |
Collapse
|
6
|
Sridharan B, Lim HG. Advances in photoacoustic imaging aided by nano contrast agents: special focus on role of lymphatic system imaging for cancer theranostics. J Nanobiotechnology 2023; 21:437. [PMID: 37986071 PMCID: PMC10662568 DOI: 10.1186/s12951-023-02192-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Photoacoustic imaging (PAI) is a successful clinical imaging platform for management of cancer and other health conditions that has seen significant progress in the past decade. However, clinical translation of PAI based methods are still under scrutiny as the imaging quality and clinical information derived from PA images are not on par with other imaging methods. Hence, to improve PAI, exogenous contrast agents, in the form of nanomaterials, are being used to achieve better image with less side effects, lower accumulation, and improved target specificity. Nanomedicine has become inevitable in cancer management, as it contributes at every stage from diagnosis to therapy, surgery, and even in the postoperative care and surveillance for recurrence. Nanocontrast agents for PAI have been developed and are being explored for early and improved cancer diagnosis. The systemic stability and target specificity of the nanomaterials to render its theranostic property depends on various influencing factors such as the administration route and physico-chemical responsiveness. The recent focus in PAI is on targeting the lymphatic system and nodes for cancer diagnosis, as they play a vital role in cancer progression and metastasis. This review aims to discuss the clinical advancements of PAI using nanoparticles as exogenous contrast agents for cancer theranostics with emphasis on PAI of lymphatic system for diagnosis, cancer progression, metastasis, PAI guided tumor resection, and finally PAI guided drug delivery.
Collapse
Affiliation(s)
- Badrinathan Sridharan
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
7
|
Tanniche I, Behkam B. Engineered live bacteria as disease detection and diagnosis tools. J Biol Eng 2023; 17:65. [PMID: 37875910 PMCID: PMC10598922 DOI: 10.1186/s13036-023-00379-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
Sensitive and minimally invasive medical diagnostics are essential to the early detection of diseases, monitoring their progression and response to treatment. Engineered bacteria as live sensors are being developed as a new class of biosensors for sensitive, robust, noninvasive, and in situ detection of disease onset at low cost. Akin to microrobotic systems, a combination of simple genetic rules, basic logic gates, and complex synthetic bioengineering principles are used to program bacterial vectors as living machines for detecting biomarkers of diseases, some of which cannot be detected with other sensing technologies. Bacterial whole-cell biosensors (BWCBs) can have wide-ranging functions from detection only, to detection and recording, to closed-loop detection-regulated treatment. In this review article, we first summarize the unique benefits of bacteria as living sensors. We then describe the different bacteria-based diagnosis approaches and provide examples of diagnosing various diseases and disorders. We also discuss the use of bacteria as imaging vectors for disease detection and image-guided surgery. We conclude by highlighting current challenges and opportunities for further exploration toward clinical translation of these bacteria-based systems.
Collapse
Affiliation(s)
- Imen Tanniche
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
- School of Biomedical Engineered and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
- Center for Engineered Health, Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
8
|
Fernandes GS, Uliana JH, Bachmann L, Carneiro AA, Lediju Bell MA, Pavan TZ. Mitigating skin tone bias in linear array in vivo photoacoustic imaging with short-lag spatial coherence beamforming. PHOTOACOUSTICS 2023; 33:100555. [PMID: 38021286 PMCID: PMC10658615 DOI: 10.1016/j.pacs.2023.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 12/01/2023]
Abstract
Photoacoustic (PA) imaging has the potential to deliver non-invasive diagnostic information. However, skin tone differences bias PA target visualization, as the elevated optical absorption of melanated skin decreases optical fluence within the imaging plane and increases the presence of acoustic clutter. This paper demonstrates that short-lag spatial coherence (SLSC) beamforming mitigates this bias. PA data from the forearm of 18 volunteers were acquired with 750-, 810-, and 870-nm wavelengths. Skin tones ranging from light to dark were objectively quantified using the individual typology angle (ITA° ). The signal-to-noise ratio (SNR) of the radial artery (RA) and surrounding clutter were measured. Clutter was minimal (e.g., -16 dB relative to the RA) with lighter skin tones and increased to -8 dB with darker tones, which compromised RA visualization in conventional PA images. SLSC beamforming achieved a median SNR improvement of 3.8 dB, resulting in better RA visualization for all skin tones.
Collapse
Affiliation(s)
- Guilherme S.P. Fernandes
- Department of Physics, FFCLRP, University of Sao Paulo, Brazil
- Department of Electrical and Computer Engineering, Johns Hopkins University, USA
| | - João H. Uliana
- Department of Physics, FFCLRP, University of Sao Paulo, Brazil
| | | | | | - Muyinatu A. Lediju Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, USA
- Department of Biomedical Engineering, Johns Hopkins University, USA
- Department of Computer Science, Johns Hopkins University, USA
| | - Theo Z. Pavan
- Department of Physics, FFCLRP, University of Sao Paulo, Brazil
| |
Collapse
|
9
|
Cano C, Mohammadian Rad N, Gholampour A, van Sambeek M, Pluim J, Lopata R, Wu M. Deep learning assisted classification of spectral photoacoustic imaging of carotid plaques. PHOTOACOUSTICS 2023; 33:100544. [PMID: 37671317 PMCID: PMC10475504 DOI: 10.1016/j.pacs.2023.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023]
Abstract
Spectral photoacoustic imaging (sPAI) is an emerging modality that allows real-time, non-invasive, and radiation-free assessment of tissue, benefiting from their optical contrast. sPAI is ideal for morphology assessment in arterial plaques, where plaque composition provides relevant information on plaque progression and its vulnerability. However, since sPAI is affected by spectral coloring, general spectroscopy unmixing techniques cannot provide reliable identification of such complicated sample composition. In this study, we employ a convolutional neural network (CNN) for the classification of plaque composition using sPAI. For this study, nine carotid endarterectomy plaques were imaged and were then annotated and validated using multiple histological staining. Our results show that a CNN can effectively differentiate constituent regions within plaques without requiring fluence or spectra correction, with the potential to eventually support vulnerability assessment in plaques.
Collapse
Affiliation(s)
- Camilo Cano
- Department of Biomedical Engineering, Eindhoven University of Technology, De Rondom 70, Eindhoven, the Netherlands
| | - Nastaran Mohammadian Rad
- Department of Biomedical Engineering, Eindhoven University of Technology, De Rondom 70, Eindhoven, the Netherlands
- Department of Precision Medicine, Maastricht University, Minderbroedersberg 4-6, Maastricht, the Netherlands
| | - Amir Gholampour
- Department of Biomedical Engineering, Eindhoven University of Technology, De Rondom 70, Eindhoven, the Netherlands
| | - Marc van Sambeek
- Department of Biomedical Engineering, Eindhoven University of Technology, De Rondom 70, Eindhoven, the Netherlands
- Department of Vascular Surgery, Catharina Ziekenhuis Eindhoven, Michelangelolaan 2, State Two, the Netherlands
| | - Josien Pluim
- Department of Biomedical Engineering, Eindhoven University of Technology, De Rondom 70, Eindhoven, the Netherlands
| | - Richard Lopata
- Department of Biomedical Engineering, Eindhoven University of Technology, De Rondom 70, Eindhoven, the Netherlands
| | - Min Wu
- Department of Biomedical Engineering, Eindhoven University of Technology, De Rondom 70, Eindhoven, the Netherlands
| |
Collapse
|
10
|
Gonzalez EA, Bell MAL. Photoacoustic Imaging and Characterization of Bone in Medicine: Overview, Applications, and Outlook. Annu Rev Biomed Eng 2023; 25:207-232. [PMID: 37000966 DOI: 10.1146/annurev-bioeng-081622-025405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Photoacoustic techniques have shown promise in identifying molecular changes in bone tissue and visualizing tissue microstructure. This capability represents significant advantages over gold standards (i.e., dual-energy X-ray absorptiometry) for bone evaluation without requiring ionizing radiation. Instead, photoacoustic imaging uses light to penetrate through bone, followed by acoustic pressure generation, resulting in highly sensitive optical absorption contrast in deep biological tissues. This review covers multiple bone-related photoacoustic imaging contributions to clinical applications, spanning bone cancer, joint pathologies, spinal disorders, osteoporosis, bone-related surgical guidance, consolidation monitoring, and transsphenoidal and transcranial imaging. We also present a summary of photoacoustic-based techniques for characterizing biomechanical properties of bone, including temperature, guided waves, spectral parameters, and spectroscopy. We conclude with a future outlook based on the current state of technological developments, recent achievements, and possible new directions.
Collapse
Affiliation(s)
- Eduardo A Gonzalez
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Muyinatu A Lediju Bell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Electrical and Computer Engineering and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA;
| |
Collapse
|
11
|
Jo J, Mills D, Dentinger A, Chamberland D, Abdulaziz NM, Wang X, Schiopu E, Gandikota G. Photoacoustic Imaging of COVID-19 Vaccine Site Inflammation of Autoimmune Disease Patients. SENSORS (BASEL, SWITZERLAND) 2023; 23:2789. [PMID: 36904999 PMCID: PMC10006996 DOI: 10.3390/s23052789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Based on the observations made in rheumatology clinics, autoimmune disease (AD) patients on immunosuppressive (IS) medications have variable vaccine site inflammation responses, whose study may help predict the long-term efficacy of the vaccine in this at-risk population. However, the quantitative assessment of the inflammation of the vaccine site is technically challenging. In this study analyzing AD patients on IS medications and normal control subjects, we imaged the inflammation of the vaccine site 24 h after mRNA COVID-19 vaccinations were administered using both the emerging photoacoustic imaging (PAI) method and the established Doppler ultrasound (US) method. A total of 15 subjects were involved, including 6 AD patients on IS and 9 normal control subjects, and the results from the two groups were compared. Compared to the results obtained from the control subjects, the AD patients on IS medications showed statistically significant reductions in vaccine site inflammation, indicating that immunosuppressed AD patients also experience local inflammation after mRNA vaccination but not in as clinically apparent of a manner when compared to non-immunosuppressed non-AD individuals. Both PAI and Doppler US were able to detect mRNA COVID-19 vaccine-induced local inflammation. PAI, based on the optical absorption contrast, shows better sensitivity in assessing and quantifying the spatially distributed inflammation in soft tissues at the vaccine site.
Collapse
Affiliation(s)
- Janggun Jo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Mills
- General Electric Research, Niskayuna, NY 12309, USA
| | | | - David Chamberland
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nada M. Abdulaziz
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Elena Schiopu
- Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Girish Gandikota
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Wang Z, Tong Z, Chen H, Nie G, Hu J, Liu W, Wang E, Yuan B, Wang Z, Hu J. Photoacoustic/ultrasonic dual-mode imaging for monitoring angiogenesis and synovial erosion in rheumatoid arthritis. PHOTOACOUSTICS 2023; 29:100458. [PMID: 36816882 PMCID: PMC9929594 DOI: 10.1016/j.pacs.2023.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the formation of new vessels, synovial proliferation and destruction of articular cartilage. However, characteristic early diagnostic and therapeutic monitoring methods are still lacking. We report a study using a photoacoustic/ultrasound (PA/US) dual-mode imaging for RA disease. By establishing a collagen-induced (CIA) RA mouse model to classify disease states based on a subjective grading system, PA/US imaging allows real-time assessment of synovial erosion and vascular opacification within the knee joint in different disease states at high spatial resolution. The system also quantitatively monitors subcutaneous vascular physiology and morphology in the hind paw of mice, measuring the area and photoacoustic signal intensity of vascular proliferation and showing a positive correlation with disease grading. Compared to traditional subjective scoring of arthritis severity, the PA/US imaging is more sensitive i.e., vascular signals and synovial erosion can be observed early in the course of arthritis.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China
- Orthopaedic Medical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China
| | - Zhuangzhuang Tong
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, PR China
| | - Hongjiang Chen
- Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China
- Orthopaedic Medical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China
| | - Guangshuai Nie
- Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China
- Orthopaedic Medical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China
| | - Jia Hu
- Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China
- Orthopaedic Medical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China
| | - Weiyang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China
- Orthopaedic Medical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China
| | - Erqi Wang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, PR China
| | - Bo Yuan
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, PR China
| | - Zhiyang Wang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, PR China
- Corresponding author.
| | - Jun Hu
- Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China
- Orthopaedic Medical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China
- Correspondence to: Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, PR China.
| |
Collapse
|
13
|
Yang M, Zhao C, Wang M, Wang Q, Zhang R, Bai W, Liu J, Zhang S, Xu D, Liu S, Li X, Qi Z, Yang F, Zhu L, He X, Tian X, Zeng X, Li J, Jiang Y. Synovial Oxygenation at Photoacoustic Imaging to Assess Rheumatoid Arthritis Disease Activity. Radiology 2023; 306:220-228. [PMID: 35997608 DOI: 10.1148/radiol.212257] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Synovial hypoxia is a hallmark of rheumatoid arthritis (RA). Photoacoustic (PA) imaging, based on the use of laser-generated US, can detect the oxygenation status of tissue in individuals with RA. However, large studies are lacking, with few investigating the correlation between oxygenation status and disease activity. Purpose To measure synovial oxygenation status in participants with RA by using a multimodal PA US imaging system and to determine the correlation between PA imaging-measured oxygen saturation (SO2) and disease activity. Materials and Methods In this prospective observational cohort study, multimodal PA US imaging examinations were performed on small joints of consecutive participants with RA, who were treated at two outpatient rheumatology clinics from 2019 to 2021, and healthy controls. The SO2 values of the synovium were measured with dual-wavelength PA imaging and classified into three categories-hyperoxia, intermediate oxygenation status, or hypoxia-based on the signal coloration and clustering analysis of the SO2 values. The correlations of oxygenation status with power Doppler US (PDUS) scoring and clinical disease activity index were evaluated with one-way analysis of variance and the Kruskal-Wallis test with Bonferroni correction. Results A total of 118 participants with RA (median age, 55 years [IQR, 41-62 years]; 92 women) and 15 healthy control participants (median age, 37 years [IQR, 33-41 years]; 11 women) were included. The wrist synovium was categorized as hyperoxic in 36 participants with RA, of intermediate oxygenation status in 48 participants, and hypoxic in 34 participants. All control participants had hyperoxic synovial tissues. For participants with RA, hyperoxic synovium had more affluent Doppler US-depicted vasculature than those with hypoxia and intermediate oxygenation status (mean PDUS grade: hyperoxia, 2.7 ± 0.6 [SD]; intermediate, 1.3 ± 0.7; hypoxia, 1.1 ± 0.8; P < .001). Participants with intermediate status synovium had a lower clinical disease activity index than those with hypoxia (intermediate, 11.0 [IQR, 5.0-21.5] vs hypoxia, 26.0 [IQR, 18.0-39.0]; P = .001). Conclusion Photoacoustic imaging-detected hypoxia in thickened synovium correlated with less vascularization and higher disease activity in participants with rheumatoid arthritis. Clinical trial registration no. NCT04297475 © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Meng Yang
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| | - Chenyang Zhao
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| | - Ming Wang
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| | - Qian Wang
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| | - Rui Zhang
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| | - Wei Bai
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| | - Jian Liu
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| | - Shangzhu Zhang
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| | - Dong Xu
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| | - Sirui Liu
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| | - Xuelan Li
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| | - Zhenhong Qi
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| | - Fang Yang
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| | - Lei Zhu
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| | - Xujin He
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| | - Xinping Tian
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| | - Xiaofeng Zeng
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| | - Jianchu Li
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| | - Yuxin Jiang
- From the Departments of Ultrasound (M.Y., C.Z., M.W., R.Z., S.L., X.L., Z.Q., J. Li, Y.J.) and Rheumatology and Clinical Immunology (Q.W., W.B., S.Z., D.X., X.T., X.Z.), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China (Q.W., W.B., S.Z., D.X., X.T., X.Z.,); Department of Rheumatology, Aero Space Central Hospital, Beijing, China (J. Liu); and Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen, China (F.Y., L.Z., X.H.)
| |
Collapse
|
14
|
Barbosa RCS, Mendes PM. A Comprehensive Review on Photoacoustic-Based Devices for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:9541. [PMID: 36502258 PMCID: PMC9736954 DOI: 10.3390/s22239541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The photoacoustic effect is an emerging technology that has sparked significant interest in the research field since an acoustic wave can be produced simply by the incidence of light on a material or tissue. This phenomenon has been extensively investigated, not only to perform photoacoustic imaging but also to develop highly miniaturized ultrasound probes that can provide biologically meaningful information. Therefore, this review aims to outline the materials and their fabrication process that can be employed as photoacoustic targets, both biological and non-biological, and report the main components' features to achieve a certain performance. When designing a device, it is of utmost importance to model it at an early stage for a deeper understanding and to ease the optimization process. As such, throughout this article, the different methods already implemented to model the photoacoustic effect are introduced, as well as the advantages and drawbacks inherent in each approach. However, some remaining challenges are still faced when developing such a system regarding its fabrication, modeling, and characterization, which are also discussed.
Collapse
|
15
|
Biswas D, Roy S, Vasudevan S. Biomedical Application of Photoacoustics: A Plethora of Opportunities. MICROMACHINES 2022; 13:1900. [PMID: 36363921 PMCID: PMC9692656 DOI: 10.3390/mi13111900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
The photoacoustic (PA) technique is a non-invasive, non-ionizing hybrid technique that exploits laser irradiation for sample excitation and acquires an ultrasound signal generated due to thermoelastic expansion of the sample. Being a hybrid technique, PA possesses the inherent advantages of conventional optical (high resolution) and ultrasonic (high depth of penetration in biological tissue) techniques and eliminates some of the major limitations of these conventional techniques. Hence, PA has been employed for different biomedical applications. In this review, we first discuss the basic physics of PA. Then, we discuss different aspects of PA techniques, which includes PA imaging and also PA frequency spectral analysis. The theory of PA signal generation, detection and analysis is also detailed in this work. Later, we also discuss the major biomedical application area of PA technique.
Collapse
Affiliation(s)
- Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, HP, India
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, HP, India
| | - Srivathsan Vasudevan
- Discipline of Electrical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol 453552, MP, India
| |
Collapse
|
16
|
Wen Y, Guo D, Zhang J, Liu X, Liu T, Li L, Jiang S, Wu D, Jiang H. Clinical photoacoustic/ultrasound dual-modal imaging: Current status and future trends. Front Physiol 2022; 13:1036621. [PMID: 36388111 PMCID: PMC9651137 DOI: 10.3389/fphys.2022.1036621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/05/2022] [Indexed: 08/24/2023] Open
Abstract
Photoacoustic tomography (PAT) is an emerging biomedical imaging modality that combines optical and ultrasonic imaging, providing overlapping fields of view. This hybrid approach allows for a natural integration of PAT and ultrasound (US) imaging in a single platform. Due to the similarities in signal acquisition and processing, the combination of PAT and US imaging creates a new hybrid imaging for novel clinical applications. Over the recent years, particular attention is paid to the development of PAT/US dual-modal systems highlighting mutual benefits in clinical cases, with an aim of substantially improving the specificity and sensitivity for diagnosis of diseases. The demonstrated feasibility and accuracy in these efforts open an avenue of translating PAT/US imaging to practical clinical applications. In this review, the current PAT/US dual-modal imaging systems are discussed in detail, and their promising clinical applications are presented and compared systematically. Finally, this review describes the potential impacts of these combined systems in the coming future.
Collapse
Affiliation(s)
- Yanting Wen
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dan Guo
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Jing Zhang
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xiaotian Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Ting Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Lu Li
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Shixie Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Dan Wu
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
| |
Collapse
|
17
|
Zeng Y, Dou T, Ma L, Ma J. Biomedical Photoacoustic Imaging for Molecular Detection and Disease Diagnosis: "Always-On" and "Turn-On" Probes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202384. [PMID: 35773244 PMCID: PMC9443455 DOI: 10.1002/advs.202202384] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Indexed: 05/05/2023]
Abstract
Photoacoustic (PA) imaging is a nonionizing, noninvasive imaging technique that combines optical and ultrasonic imaging modalities to provide images with excellent contrast, spatial resolution, and penetration depth. Exogenous PA contrast agents are created to increase the sensitivity and specificity of PA imaging and to offer diagnostic information for illnesses. The existing PA contrast agents are categorized into two groups in this review: "always-on" and "turn-on," based on their ability to be triggered by target molecules. The present state of these probes, their merits and limitations, and their future development, is explored.
Collapse
Affiliation(s)
- Yun Zeng
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi Province, 710126, P. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi Province, 7100126, P. R. China
| | - Taotao Dou
- Neurosurgery Department, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| | - Lei Ma
- Vascular Intervention Department, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| | - Jingwen Ma
- Radiology Department, CT and MRI Room, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| |
Collapse
|
18
|
Kirchner T, Jaeger M, Frenz M. Machine learning enabled multiple illumination quantitative optoacoustic oximetry imaging in humans. BIOMEDICAL OPTICS EXPRESS 2022; 13:2655-2667. [PMID: 35774340 PMCID: PMC9203099 DOI: 10.1364/boe.455514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 06/15/2023]
Abstract
Optoacoustic (OA) imaging is a promising modality for quantifying blood oxygen saturation (sO2) in various biomedical applications - in diagnosis, monitoring of organ function, or even tumor treatment planning. We present an accurate and practically feasible real-time capable method for quantitative imaging of sO2 based on combining multispectral (MS) and multiple illumination (MI) OA imaging with learned spectral decoloring (LSD). For this purpose we developed a hybrid real-time MI MS OA imaging setup with ultrasound (US) imaging capability; we trained gradient boosting machines on MI spectrally colored absorbed energy spectra generated by generic Monte Carlo simulations and used the trained models to estimate sO2 on real OA measurements. We validated MI-LSD in silico and on in vivo image sequences of radial arteries and accompanying veins of five healthy human volunteers. We compared the performance of the method to prior LSD work and conventional linear unmixing. MI-LSD provided highly accurate results in silico and consistently plausible results in vivo. This preliminary study shows a potentially high applicability of quantitative OA oximetry imaging, using our method.
Collapse
Affiliation(s)
- Thomas Kirchner
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- Biomedical Photonics, Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Michael Jaeger
- Biomedical Photonics, Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Martin Frenz
- Biomedical Photonics, Institute of Applied Physics, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Castro NJ, Babakhanova G, Hu J, Athanasiou K. Nondestructive testing of native and tissue-engineered medical products: adding numbers to pictures. Trends Biotechnol 2022; 40:194-209. [PMID: 34315621 PMCID: PMC8772387 DOI: 10.1016/j.tibtech.2021.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/03/2023]
Abstract
Traditional destructive tests are used for quality assurance and control within manufacturing workflows. Their applicability to biomanufacturing is limited due to inherent constraints of the biomanufacturing process. To address this, photo- and acoustic-based nondestructive testing has risen in prominence to interrogate not only structure and function, but also to integrate quantitative measurements of biochemical composition to cross-correlate structural, compositional, and functional variances. We survey relevant literature related to single-mode and multimodal nondestructive testing of soft tissues, which adds numbers (quantitative measurements) to pictures (qualitative data). Native and tissue-engineered articular cartilage is highlighted because active biomanufacturing processes are being developed. Included are recent efforts and prominent trends focused on technologies for clinical and in-process biomanufacturing applications.
Collapse
Affiliation(s)
- Nathan J. Castro
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92617, USA
| | - Greta Babakhanova
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Jerry Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92617, USA
| | - K.A. Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92617, USA,Correspondence:
| |
Collapse
|
20
|
Ma D, Hou S, Bae C, Pham TC, Lee S, Zhou X. Aza-BODIPY based probe for photoacoustic imaging of ONOO− in vivo. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Cheng Z, Wu L, Qiu T, Duan Y, Qin H, Hu J, Yang S. An Excitation-Reception Collinear Probe for Ultrasonic, Photoacoustic, and Thermoacoustic Tri-Modal Volumetric Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3498-3506. [PMID: 34125673 DOI: 10.1109/tmi.2021.3089243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Imaging systems that integrate multiple modalities can reveal complementary anatomic and functional information as they exploit different contrast mechanisms, which have shown great application potential and advantages in preclinical studies. A portable and easy-to-use imaging probe will be more conducive to transfer to clinical practice. Here, we present a tri-modal ultrasonic (US), photoacoustic (PA), and thermoacoustic (TA) imaging system with an excitation-reception collinear probe. The acoustic field, light field, and electric field of the probe were designed to be coaxial, realizing homogeneous illumination and high-sensitivity detection at the same detection position. US images can provide detailed information about structures, PA images can delineate the morphology of blood vessels in tissues, and TA images can reveal dielectric properties of the tissues. Moreover, phantoms and in vivo human finger experiments were performed by the tri-modal imaging system to demonstrate its performance. The results show that the tri-modal imaging system with the proposed probe has the ability to detect small breast tumors with a radius of only 2.5 mm and visualize the anatomical structure of the finger in three dimensions. Our work confirms that the tri-modal imaging system equipped with a collinear probe can be applied to a variety of different scenarios, which lays a solid foundation for the application of the tri-modality system in clinical trials.
Collapse
|
22
|
Luo X, Cai Y, Chen Z, Shan H, Sun X, Lin Q, Ma J, Wang B. Stack-Layer Dual-Element Ultrasonic Transducer for Broadband Functional Photoacoustic Tomography. Front Bioeng Biotechnol 2021; 9:786376. [PMID: 34778242 PMCID: PMC8581210 DOI: 10.3389/fbioe.2021.786376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Current Photoacoustic tomography (PAT) approaches are based on a single-element transducer that exhibits compromised performance in clinical imaging applications. For example, vascular, tumors are likely to have complicated shapes and optical absorptions, covering relatively wide spectra in acoustic signals. The wide ultrasonic spectra make it difficult to set the detection bandwidth optimally in advance. In this work, we propose a stack-layer dual-element ultrasonic transducer for PAT. The central frequencies of the two piezoelectric elements are 3.06 MHz (99.3% bandwidth at -6 dB) and 11.07 MHz (85.2% bandwidth at -6 dB), respectively. This transducer bridges the sensitivity capability of ultrasound and the high contrast of optical methods in functional photoacoustic tomography. The dual-element transducer enabled multiscale analysis of the vascular network in rat brains. Using a multi-wavelength imaging scheme, the blood oxygen saturation was also detected. The preliminary results showed the great potential of broad-bandwidth functional PAT on vascular network visualization. The method can also be extended to whole-body imaging of small animals, breast cancer detection, and finger joint imaging.
Collapse
Affiliation(s)
- Xiaofei Luo
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Yiqi Cai
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
| | - Zeyu Chen
- School of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Han Shan
- School of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Xin Sun
- School of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Qibo Lin
- School of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Jianguo Ma
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Bo Wang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
23
|
A TME-activated in situ nanogenerator for magnetic resonance/fluorescence/photoacoustic imaging. Methods Enzymol 2021; 657:145-156. [PMID: 34353485 DOI: 10.1016/bs.mie.2021.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With the rapid development of biomedical imaging, non-invasive imaging method particularly has been widely used in clinical diagnosis. Different imaging methods have their own advantages, such as higher resolution of optical imaging, deeper penetration of acoustic imaging, high resolution photoacoustic imaging (PAI), and multi-parameter guidance of magnetic resonance imaging (MRI). Recent years, multimodal MRI, fluorescence imaging, PAI and others have been verified to play an important role in the field of molecular imaging and provided detail information for accurate in vivo diagnosis. Therefore, the design of multimodal probe that can integrate the above advantages to carry out combined imaging will be more accurate to assist diagnosis and treatment. While tumor microenvironment (TME) is highly critical in validating and optimizing current therapeutic strategies. Herein, we highlight the TME-triggered supramolecular system as an in situ nano-generator for multimodal imaging-guided treatment. The experimental protocols on the PAI/fluorescence imaging/MRI-based diagnosis are described in this chapter.
Collapse
|
24
|
Chen Q, Qin W, Qi W, Xi L. Progress of clinical translation of handheld and semi-handheld photoacoustic imaging. PHOTOACOUSTICS 2021; 22:100264. [PMID: 33868921 PMCID: PMC8040335 DOI: 10.1016/j.pacs.2021.100264] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 05/05/2023]
Abstract
Photoacoustic imaging (PAI), featuring rich contrast, high spatial/temporal resolution and deep penetration, is one of the fastest-growing biomedical imaging technology over the last decade. To date, numbers of handheld and semi-handheld photoacoustic imaging devices have been reported with corresponding potential clinical applications. Here, we summarize emerged handheld and semi-handheld systems in terms of photoacoustic computed tomography (PACT), optoacoustic mesoscopy (OAMes), and photoacoustic microscopy (PAM). We will discuss each modality in three aspects: laser delivery, scanning protocol, and acoustic detection. Besides new technical developments, we also review the associated clinical studies, and the advantages/disadvantages of these new techniques. In the end, we propose the challenges and perspectives of miniaturized PAI in the future.
Collapse
Affiliation(s)
- Qian Chen
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wei Qin
- School of Physics, University of Electronics Science and Technology of China, Chengdu, 610054, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
25
|
Yang G, Amidi E, Zhu Q. Photoacoustic tomography reconstruction using lag-based delay multiply and sum with a coherence factor improves in vivo ovarian cancer diagnosis. BIOMEDICAL OPTICS EXPRESS 2021; 12:2250-2263. [PMID: 33996227 PMCID: PMC8086484 DOI: 10.1364/boe.417525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 05/03/2023]
Abstract
Ovarian cancer is the fifth most common cause of death due to cancer, and it is the deadliest of all gynecological cancers. Diagnosing ovarian cancer via conventional photoacoustic delay-and-sum beamforming (DAS) presents several challenges, such as poor image resolution and low lesion to background tissue contrast. To address these concerns, we propose an improved beamformer named lag-based delay multiply and sum combined with coherence factor (DMAS-LAG-CF). Simulations and phantom experiments demonstrate that compared with the conventional DAS, the proposed algorithm can provide 1.39 times better resolution and 10.77 dB higher contrast. For patient data, similar performance on contrast ratios has been observed. However, since the diagnostic accuracy between cancer and benign/normal groups is a significant measure, we have extracted photoacoustic histogram features of mean, kurtosis and skewness. DMAS-LAG-CF can improve cancer diagnosis with an AUC of 0.91 for distinguishing malignant vs. benign ovarian lesions when mean and skewness are used as features.
Collapse
Affiliation(s)
- Guang Yang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Eghbal Amidi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Quing Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
26
|
Hosseinikhah SM, Barani M, Rahdar A, Madry H, Arshad R, Mohammadzadeh V, Cucchiarini M. Nanomaterials for the Diagnosis and Treatment of Inflammatory Arthritis. Int J Mol Sci 2021; 22:3092. [PMID: 33803502 PMCID: PMC8002885 DOI: 10.3390/ijms22063092] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials have received increasing attention due to their unique chemical and physical properties for the treatment of rheumatoid arthritis (RA), the most common complex multifactorial joint-associated autoimmune inflammatory disorder. RA is characterized by an inflammation of the synovium with increased production of proinflammatory cytokines (IL-1, IL-6, IL-8, and IL-10) and by the destruction of the articular cartilage and bone, and it is associated with the development of cardiovascular disorders such as heart attack and stroke. While a number of imaging tools allow for the monitoring and diagnosis of inflammatory arthritis, and despite ongoing work to enhance their sensitivity and precision, the proper assessment of RA remains difficult particularly in the early stages of the disease. Our goal here is to describe the benefits of applying various nanomaterials as next-generation RA imaging and detection tools using contrast agents and nanosensors and as improved drug delivery systems for the effective treatment of the disease.
Collapse
Affiliation(s)
- Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 761691411, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-9861, Iran
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 91886-17871, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| |
Collapse
|
27
|
Li L, Wu H, Hu S, Yu Y, Chen Z, Wang P, Zhou L, Li R, Yao L, Yue S. Clear cell renal cell carcinoma detection by multimodal photoacoustic tomography. PHOTOACOUSTICS 2021; 21:100221. [PMID: 33251109 PMCID: PMC7683266 DOI: 10.1016/j.pacs.2020.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
There is a need for accurate and rapid detection of renal cancer in clinic. Here, we integrated photoacoustic tomography (PAT) with ultrasound imaging in a single system, which achieved tissue imaging depth about 3 mm and imaging speed about 3.5 cm2/min. We used the wavelength at 1197 nm to map lipid distribution in normal renal tissues and clear cell renal cell carcinoma (ccRCC) tissues collected from 19 patients undergone nephrectomy. Our results indicated that the photoacoustic signal from lipids was significantly higher in ccRCC tissues than that in normal tissues. Moreover, based on the quantification of lipid area ratio, we were able to differentiate normal and ccRCC with 100 % sensitivity, 80 % specificity, and area under receiver operating characteristic curve of 0.95. Our findings demonstrate that multimodal PAT can differentiate normal and ccRCC by integrating the morphologic information from ultrasound and lipid amount information from vibrational PAT.
Collapse
Affiliation(s)
- Lin Li
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Hanbo Wu
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Shuai Hu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Yanfei Yu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Zhicong Chen
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Pu Wang
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Vibronix Inc., West Lafayette, IN, USA
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Rui Li
- Vibronix Inc., West Lafayette, IN, USA
| | - Lin Yao
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Shuhua Yue
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
28
|
Tian C, Zhang C, Zhang H, Xie D, Jin Y. Spatial resolution in photoacoustic computed tomography. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:036701. [PMID: 33434890 DOI: 10.1088/1361-6633/abdab9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Photoacoustic computed tomography (PACT) is a novel biomedical imaging modality and has experienced fast developments in the past two decades. Spatial resolution is an important criterion to measure the imaging performance of a PACT system. Here we survey state-of-the-art literature on the spatial resolution of PACT and analyze resolution degradation models from signal generation, propagation, reception, to image reconstruction. Particularly, the impacts of laser pulse duration, acoustic attenuation, acoustic heterogeneity, detector bandwidth, detector aperture, detector view angle, signal sampling, and image reconstruction algorithms are reviewed and discussed. Analytical expressions of point spread functions related to these impacting factors are summarized based on rigorous mathematical formulas. State-of-the-art approaches devoted to enhancing spatial resolution are also reviewed. This work is expected to elucidate the concept of spatial resolution in PACT and inspire novel image quality enhancement techniques.
Collapse
Affiliation(s)
- Chao Tian
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chenxi Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Haoran Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Dan Xie
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yi Jin
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
29
|
Chandramoorthi S, Thittai AK. Extending Imaging Depth in PLD-Based Photoacoustic Imaging: Moving Beyond Averaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:549-557. [PMID: 32784132 DOI: 10.1109/tuffc.2020.3015130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pulsed laser diodes (PLDs) promise to be an attractive alternative to solid-state laser sources in photoacoustic tomography (PAT) due to their portability, high-pulse repetition frequency (PRF), and cost effectiveness. However, due to their lower energy per pulse, which, in turn, results in lower fluence required per photoacoustic signal generation, PLD-based photoacoustic systems generally have maximum imaging depth that is lower in comparison to solid-state lasers. Averaging of multiple frames is usually employed as a common practice in high PRF PLD systems to improve the signal-to-noise ratio of the PAT images. In this work, we demonstrate that by combining the recently described approach of subpitch translation on the receive-side ultrasound transducer alongside averaging of multiple frames, it is feasible to increase the depth sensitivity in a PLD-based PAT imaging system. Here, experiments on phantom containing diluted India ink targets were performed at two different laser energy level settings, that is, 21 and [Formula: see text]. Results obtained showed that the imaging depth improves by ~38.5% from 9.1 to 12.6 mm for 21- [Formula: see text] energy level setting and by ~33.3% from 10.8 to 14.4 mm for 27- [Formula: see text] energy level setting by using λ /4-pitch translation and average of 128 frames in comparison to λ -pitch data acquired with the average of 128 frames. However, the achievable frame rate is reduced by a factor of 2 and 4 for λ /2 and λ /4 subpitch translation, respectively.
Collapse
|
30
|
Notohamiprodjo S, Varasteh Z, Beer AJ, Niu G, Chen X(S, Weber W, Schwaiger M. Tumor Vasculature. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
31
|
Multimodal photoacoustic/ultrasonic imaging system: a promising imaging method for the evaluation of disease activity in rheumatoid arthritis. Eur Radiol 2020; 31:3542-3552. [PMID: 33180165 PMCID: PMC8043900 DOI: 10.1007/s00330-020-07353-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/16/2020] [Accepted: 09/24/2020] [Indexed: 11/02/2022]
Abstract
OBJECTIVES We aimed to assess the clinical value of multimodal photoacoustic/ultrasound (PA/US) articular imaging scores, a novel imaging method which can reflect the micro-vessels and oxygenation level of inflamed joints of rheumatoid arthritis (RA). METHODS Seven small joints were examined by the PA/US imaging system. A 0-3 scoring system was used to semi-quantify the PA and power-Doppler (PD) signals, and the sums of PA and PD scores (PA-sum and PD-sum scores) of the seven joints were calculated. The relative oxygen saturation (SO2) values of the inflamed joints were measured and classified into 3 PA+SO2 patterns. The correlations between the PA/US imaging scores and the disease activity scores were assessed. RESULTS Thirty-one patients of RA and a total of 217 joints were examined using the PA/US system. The PA-sum had high positive correlations with the standard clinical scores of RA (DAS28 [ESR] ρ = 0.754, DAS28 [CRP] ρ = 0.796, SDAI ρ = 0.836, CDAI ρ = 0.837, p < 0.001), which were superior to the PD-sum (DAS28 [ESR] ρ = 0.651, DAS28 [CRP] ρ = 0.676, SDAI ρ = 0.716, CDAI ρ = 0.709, p < 0.001). For the patients with high PA-sum scores, significant differences between hypoxia and hyperoxia were identified in pain visual analog score (p = 0.020) and patient's global assessment (p = 0.026). The PA+SO2 patterns presented moderate and high correlation with PGA (ρ = 0.477, p = 0.0077) and VAS pain score (ρ = 0.717, p < 0.001). CONCLUSION The PA scores have significant correlations with standard clinical scores for RA, and the PA+SO2 patterns are also related with clinical scores that reflect pain severity. PA may have clinical potential in evaluating RA. KEY POINTS • Multimodal photoacoustic/ultrasound imaging is a novel method to assess micro-vessels and oxygenation of local lesions. • Significant correlations between multimodal imaging parameters and clinical scores of RA patients were verified. • The multimodal PA/US system can provide objective imaging parameters, including PA scores of micro-vessels and relative SO2 value, as a supplementary to disease activity evaluation.
Collapse
|
32
|
|
33
|
Multiangle Long-Axis Lateral Illumination Photoacoustic Imaging Using Linear Array Transducer. SENSORS 2020; 20:s20144052. [PMID: 32708170 PMCID: PMC7411732 DOI: 10.3390/s20144052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 12/23/2022]
Abstract
Photoacoustic imaging (PAI) combines optical contrast with ultrasound spatial resolution and can be obtained up to a depth of a few centimeters. Hand-held PAI systems using linear array usually operate in reflection mode using a dark-field illumination scheme, where the optical fiber output is attached to both sides of the elevation plane (short-axis) of the transducer. More recently, bright-field strategies where the optical illumination is coaxial with acoustic detection have been proposed to overcome some limitations of the standard dark-field approach. In this paper, a novel multiangle long-axis lateral illumination is proposed. Monte Carlo simulations were conducted to evaluate light delivery for three different illumination schemes: bright-field, standard dark-field, and long-axis lateral illumination. Long-axis lateral illumination showed remarkable improvement in light delivery for targets with a width smaller than the transducer lateral dimension. A prototype was developed to experimentally demonstrate the feasibility of the proposed approach. In this device, the fiber bundle terminal ends are attached to both sides of the transducer’s long-axis and the illumination angle of each fiber bundle can be independently controlled. The final PA image is obtained by the coherent sum of subframes acquired using different angles. The prototype was experimentally evaluated by taking images from a phantom, a mouse abdomen, forearm, and index finger of a volunteer. The system provided light delivery enhancement taking advantage of the geometry of the target, achieving sufficient signal-to-noise ratio at clinically relevant depths.
Collapse
|
34
|
Photoacoustic laser effects in live mouse blastocysts: pilot safety studies of DNA damage from photoacoustic imaging doses. ACTA ACUST UNITED AC 2020; 1:53-58. [PMID: 33089221 DOI: 10.1016/j.xfss.2020.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Objectives To investigate the laser safety of photoacoustic imaging. In photoacoustic imaging, a pulsed laser of several nanoseconds is used to illuminate biological tissue, and photoacoustic waves generated by optical absorption are used to form images of the tissue. Photoacoustic imaging is emerging in clinical applications; however, its potential use in reproductive medicine has yet to be reported. Design Assessment of photoacoustic laser safety before its adoption by clinical reproductive medicine. Setting Academic medical center. Animals Blastocyst-stage mouse embryos. Interventions Potential DNA damage of photoacoustic laser exposure on preimplantation mouse blastocyst stage embryos was examined. Different embryos groups were exposed to either 5- or 10-minute 15-Hz laser doses (typical clinical doses) and 1-minute 1-kHz laser dose (significantly higher dose), respectively. Main Outcome Measures A terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was used to identify the rate of DNA damage in the laser-exposed blastocysts. Results The negative control blastocyst group (no laser exposure) had a mean of 10.7 TUNEL-positive nuclei. The 5- and 10-minute 15-Hz laser-exposed groups had a mean of 11.25 and 12.89 TUNEL-positive nuclei, respectively. The embryos exposed to the 1-kHz laser for 1 minute had an average mean of 12.0 TUNEL-positive nuclei. Conclusion We demonstrated that typical lasers and exposure times used for photoacoustic imaging do not induce increased cell death in mouse blastocysts.
Collapse
|
35
|
Diveky ME, Roy S, David G, Cremer JW, Signorell R. Fundamental investigation of photoacoustic signal generation from single aerosol particles at varying relative humidity. PHOTOACOUSTICS 2020; 18:100170. [PMID: 32211293 PMCID: PMC7082628 DOI: 10.1016/j.pacs.2020.100170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/03/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Photoacoustic (PA) spectroscopy enjoys widespread applications across atmospheric sciences. However, experimental biases and limitations originating from environmental conditions and particle size distributions are not fully understood. Here, we combine single-particle photoacoustics with modulated Mie scattering to unravel the fundamental physical processes occurring during PA measurements on aerosols. We perform measurements on optically trapped droplets of varying sizes at different relative humidity. Our recently developed technique - photothermal single-particle spectroscopy (PSPS) - enables fundamental investigations of the interplay between the heat flux and mass flux from single aerosol particles. We find that the PA phase is more sensitive to water uptake by aerosol particles than the PA amplitude. We present results from a model of the PA phase, which sheds further light onto the dependence of the PA phase on the mass flux phenomena. The presented work provides fundamental insights into photoacoustic signal generation of aerosol particles.
Collapse
|
36
|
Tracking Osteoarthritis Progress through Cationic Nanoprobe-Enhanced Photoacoustic Imaging of Cartilage. Acta Biomater 2020; 109:153-162. [PMID: 32339712 DOI: 10.1016/j.actbio.2020.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/21/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
A major obstacle in osteoarthritis (OA) theranostics is the lack of a timely and accurate monitoring method. It is hypothesized that the loss of anionic glycosaminoglycans (GAGs) in articular cartilage reflects the progression of OA. Thus, this study investigated the feasibility of photoacoustic imaging (PAI) applied for monitoring the in vivo course of OA progression via GAG-targeted cationic nanoprobes. The nanoprobes were synthesized through electrostatic attraction between poly-l-Lysine and melanin (PLL-MNPs). Cartilage explants with different concentrations of GAGs incubated with PLL-MNPs to test the relationship between GAGs content and PA signal intensity. GAG activity was then evaluated in vivo in destabilization of the medial meniscus (DMM) surgically-induced mouse model. To track OA progression over time, mice were imaged consistently for 10 weeks after OA-inducing surgery. X-ray was used to verify the superiority of PAI in detecting OA. The correlation between PAI data and histologic results was also analyzed. In vitro study demonstrated the ability of PLL-MNPs in sensitively detecting different GAGs concentrations. In vivo PAI exhibited significantly lower signal intensity from OA knees compared to normal knees. More importantly, PA signal intensity showed serial reduction over the course of OA, while X-ray showed visible joint destruction until 6 weeks. A decrease in GAGs content was confirmed by histologic examinations; moreover, histologic findings were well correlated with PAI results. Therefore, using cationic nanoprobe-enhanced PAI to detect the changes in GAG contents provides sensitive and consistent visualization of OA development. This approach will further facilitate OA theranostics and clinical translation. STATEMENT OF SIGNIFICANCE: The study of in vivo monitoring osteoarthritis (OA) is of high significance to tracking the trajectory of OA development and therapeutic monitoring. Here, we developed a cartilage-targeted cationic nanoprobe, poly-l-Lysine-melanin nanoparticles (PLL-MNPs), enhancing photoacoustic imaging (PAI) to monitor the progression of OA. The in vitro study demonstrated the ability of PLL-MNPs to detect different concentrations of GAGs with high sensitivity. We found that the contents of GAGs in vivo steadily decreased from the development of OA initial-stage to the end-point of our investigation via PAI; it reflected the course of OA in living subjects with high sensitivity. These results allow for further development in various aspects of OA research. It has potential for clinical translation and has a great impact on personalized medicine.
Collapse
|
37
|
Jun Z, Xinmeng J, Yue L, Zhi W, Yan Z, Tieyi Y, Jiangan T. Jumonji domain containing-3 (JMJD3) inhibition attenuates IL-1β-induced chondrocytes damage in vitro and protects osteoarthritis cartilage in vivo. Inflamm Res 2020; 69:657-666. [PMID: 32394143 DOI: 10.1007/s00011-020-01356-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES This study aimed to explore the effects and relative mechanism of JMJD3 on knee osteoarthritis (OA). METHODS In this study, we first analyzed the expression of JMJD3 in OA cartilage using western blot and immunohistochemistry. In an in vitro study, the effects of GSK-J4, JMJD3 inhibitor, on ATDC-5 chondrocytes were evaluated by CCK-8 assay. Real-time PCR and western blot were used to examine the inhibitory effect of GSK-J4 on the inflammation and ECM degradation of chondrocytes. NF-κB p65 phosphorylation and nuclear translocation were measured by western blot and immunofluorescence. In the animal study, twenty mice were randomized into four experimental groups: sham group, DMM-induced OA + DMSO group, OA + low-dose GSK-J4 group, and OA + high-dose GSK-J4 group. After the treatment, hematoxylin-eosin and safranin O/fast green staining were used to evaluate cartilage degradation of knee joint, with OARSI scores for quantitative assessment of cartilage damage. RESULTS Our results revealed that JMJD3 was overexpressed in OA cartilage and GSK-J4 could suppress the IL-1β-induced production of pro-inflammatory cytokines and catabolic enzymes, including IL-6, IL-8, MMP-9 and ADAMTS-5. Consistent with these findings, GSK-J4 could inhibit IL-1β-induced degradation of collagen II and aggrecan. Mechanistically, GSK-J4 dramatically suppressed IL-1β-stimulated NF-κB signal pathway activation. In vivo, GSK-J4 prevented cartilage damage in mouse DMM-induced OA model. CONCLUSIONS This study elucidates the important role of JMJD3 in cartilage degeneration in OA, and our results indicate that JDJM3 may become a novel therapeutic target in OA therapy.
Collapse
Affiliation(s)
- Zhou Jun
- Department of Orthopaedics, Gongli Hospital, The Second Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Jin Xinmeng
- Department of Orthopaedics, Gongli Hospital, The Second Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Liu Yue
- Department of Orthopaedics, Gongli Hospital, The Second Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Wang Zhi
- Department of Orthopaedics, Gongli Hospital, The Second Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Zhang Yan
- Department of Orthopaedics, Gongli Hospital, The Second Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Yang Tieyi
- Department of Orthopaedics, Gongli Hospital, The Second Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China
| | - Tang Jiangan
- Department of Orthopaedics, Gongli Hospital, The Second Military Medical University, No. 219, Miaopu Road, Pudong New Area, Shanghai, 200135, People's Republic of China.
| |
Collapse
|
38
|
Seong M, Chen SL. Recent advances toward clinical applications of photoacoustic microscopy: a review. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1798-1812. [DOI: 10.1007/s11427-019-1628-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
39
|
Sun A, Guo H, Gan Q, Yang L, Liu Q, Xi L. Evaluation of visible NIR-I and NIR-II light penetration for photoacoustic imaging in rat organs. OPTICS EXPRESS 2020; 28:9002-9013. [PMID: 32225514 DOI: 10.1364/oe.389714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this study, we evaluate the penetration capability of light in visible, near-infrared-I (NIR-I) and near-infrared-II (NIR-II) optical windows for photoacoustic macroscale imaging inside 9 biological tissues with three typical penetration depths. An acoustic resolution photoacoustic microscopy is designed to guarantee the consistent experiment conditions except excitation wavelength. Experimental results show that short NIR-II (1000-1150 nm) shows the best performance inside kidney, spleen and liver tissues at all depths, while NIR-I (700-1000 nm) works better for muscle, stomach, heart and brain tissues, especially in deep imaging. This study proposes the optimal selection of illumination wavelengths for photoacoustic macroscale imaging in rat organs, which enables the best signal-to-noise ratio (SNR) of the observed target.
Collapse
|
40
|
Shrestha B, DeLuna F, Anastasio MA, Yong Ye J, Brey EM. Photoacoustic Imaging in Tissue Engineering and Regenerative Medicine. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:79-102. [PMID: 31854242 PMCID: PMC7041335 DOI: 10.1089/ten.teb.2019.0296] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022]
Abstract
Several imaging modalities are available for investigation of the morphological, functional, and molecular features of engineered tissues in small animal models. While research in tissue engineering and regenerative medicine (TERM) would benefit from a comprehensive longitudinal analysis of new strategies, researchers have not always applied the most advanced methods. Photoacoustic imaging (PAI) is a rapidly emerging modality that has received significant attention due to its ability to exploit the strong endogenous contrast of optical methods with the high spatial resolution of ultrasound methods. Exogenous contrast agents can also be used in PAI for targeted imaging. Applications of PAI relevant to TERM include stem cell tracking, longitudinal monitoring of scaffolds in vivo, and evaluation of vascularization. In addition, the emerging capabilities of PAI applied to the detection and monitoring of cancer and other inflammatory diseases could be exploited by tissue engineers. This article provides an overview of the operating principles of PAI and its broad potential for application in TERM. Impact statement Photoacoustic imaging, a new hybrid imaging technique, has demonstrated high potential in the clinical diagnostic applications. The optical and acoustic aspect of the photoacoustic imaging system works in harmony to provide better resolution at greater tissue depth. Label-free imaging of vasculature with this imaging can be used to track and monitor disease, as well as the therapeutic progression of treatment. Photoacoustic imaging has been utilized in tissue engineering to some extent; however, the full benefit of this technique is yet to be explored. The increasing availability of commercial photoacoustic systems will make application as an imaging tool for tissue engineering application more feasible. This review first provides a brief description of photoacoustic imaging and summarizes its current and potential application in tissue engineering.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Frank DeLuna
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Mark A. Anastasio
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jing Yong Ye
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Eric M. Brey
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
41
|
Attia ABE, Balasundaram G, Moothanchery M, Dinish U, Bi R, Ntziachristos V, Olivo M. A review of clinical photoacoustic imaging: Current and future trends. PHOTOACOUSTICS 2019; 16:100144. [PMID: 31871888 PMCID: PMC6911900 DOI: 10.1016/j.pacs.2019.100144] [Citation(s) in RCA: 397] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/05/2019] [Accepted: 08/21/2019] [Indexed: 05/02/2023]
Abstract
Photoacoustic imaging (or optoacoustic imaging) is an upcoming biomedical imaging modality availing the benefits of optical resolution and acoustic depth of penetration. With its capacity to offer structural, functional, molecular and kinetic information making use of either endogenous contrast agents like hemoglobin, lipid, melanin and water or a variety of exogenous contrast agents or both, PAI has demonstrated promising potential in a wide range of preclinical and clinical applications. This review provides an overview of the rapidly expanding clinical applications of photoacoustic imaging including breast imaging, dermatologic imaging, vascular imaging, carotid artery imaging, musculoskeletal imaging, gastrointestinal imaging and adipose tissue imaging and the future directives utilizing different configurations of photoacoustic imaging. Particular emphasis is placed on investigations performed on human or human specimens.
Collapse
Key Words
- AR-PAM, acoustic resolution-photoacoustic microscopy
- Clinical applications
- DAQ, data acquisition
- FOV, field-of-view
- Hb, deoxy-hemoglobin
- HbO2, oxy-hemoglobin
- LED, light emitting diode
- MAP, maximum amplitude projection
- MEMS, microelectromechanical systems
- MRI, magnetic resonance imaging
- MSOT, multispectral optoacoustic tomography
- OCT, optical coherence tomography
- OR-PAM, optical resolution-photoacoustic microscopy
- Optoacoustic mesoscopy
- Optoacoustic tomography
- PA, photoacoustic
- PAI, photoacoustic imaging
- PAM, photoacoustic microscopy
- PAT, photoacoustic tomography
- Photoacoustic imaging
- Photoacoustic microscopy
- RSOM, raster-scanning optoacoustic mesoscopy
- SBH-PACT, single breath hold photoacoustic computed tomography system
- US, ultrasound
- sO2, saturation
Collapse
Affiliation(s)
| | | | - Mohesh Moothanchery
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - U.S. Dinish
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Renzhe Bi
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Malini Olivo
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| |
Collapse
|
42
|
Wang H, Liu S, Wang T, Zhang C, Feng T, Tian C. Three-dimensional interventional photoacoustic imaging for biopsy needle guidance with a linear array transducer. JOURNAL OF BIOPHOTONICS 2019; 12:e201900212. [PMID: 31407486 DOI: 10.1002/jbio.201900212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/24/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Needle placement is important for many clinical interventions, such as tissue biopsy, regional anesthesia and drug delivery. It is essential to visualize the spatial position of the needle and the target tissue during the interventions using appropriate imaging techniques. Based on the contrast of optical absorption, photoacoustic imaging is well suited for the guidance of interventional procedures. However, conventional photoacoustic imaging typically provides two-dimensional (2D) slices of the region of interest and could only visualize the needle and the target when they are within the imaging plane of the probe at the same time. This requires great alignment skill and effort. To ease this problem, we developed a 3D interventional photoacoustic imaging technique by fast scanning a linear array ultrasound probe and stitching acquired image slices. in vivo sentinel lymph node biopsy experiment shows that the technique could precisely locate a needle and a sentinel lymph node in a tissue volume while a perfusion experiment demonstrates that the technique could visualize the 3D distribution of injected methylene blue dye underneath the skin at high temporal and spatial resolution. The proposed technique provides a practical way for photoacoustic image-guided interventions.
Collapse
Affiliation(s)
- Hang Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, China
| | - Songde Liu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, China
| | - Tong Wang
- Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Chenxi Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, China
| | - Ting Feng
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Chao Tian
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
43
|
Liu S, Wang H, Zhang C, Dong J, Liu S, Xu R, Tian C. In Vivo Photoacoustic Sentinel Lymph Node Imaging Using Clinically-Approved Carbon Nanoparticles. IEEE Trans Biomed Eng 2019; 67:2033-2042. [PMID: 31751215 DOI: 10.1109/tbme.2019.2953743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
OBJECTIVE Breast cancer is the most common type of invasive cancer and one of the leading causes of cancer death in women worldwide. Correct staging of breast cancer is critical to the survival rate of the patients. Sentinel lymph node (SLN) biopsy (SLNB), currently the gold standard technique for breast cancer staging, requires preoperative and intraoperative image guidance for noninvasive SLN identification and minimal surgical invasion. However, existing image guidance techniques suffer from a variety of limitations, such as ionizing radiation, high cost, and poor imaging depth. To address the clinical challenges, new methodology has to be developed. METHODS We developed a photoacoustic (PA) imaging procedure for noninvasive and nonradioactive SLN identification and biopsy guidance enhanced with a clinically-approved lymphatic tracer, i.e., carbon nanoparticles (CNPs) suspension injection. RESULTS In vivo experiments show that the proposed procedure could sensitively identify the SLN and provide high-contrast image guidance for fine-needle aspiration simulation. In addition, we demonstrated that CNPs have significantly better performance than other commonly-used contrast agents, such as methylene blue and indocyanine green. CONCLUSION PA imaging technique using clinically-approved CNPs as the contrast agent is capable for noninvasive and nonradioactive SLN identification and high-contrast biopsy guidance, and should be considered as a new tool for assisting SLNB in breast cancer staging. SIGNIFICANCE The proposed CNPs-enhanced PA imaging technique provides a practical way for SLN identification and biopsy guidance for breast cancer patients and paves the way for clinical translation of PA SLN imaging.
Collapse
|
44
|
Moore C, Bai Y, Hariri A, Sanchez JB, Lin CY, Koka S, Sedghizadeh P, Chen C, Jokerst JV. Photoacoustic imaging for monitoring periodontal health: A first human study. PHOTOACOUSTICS 2018; 12:67-74. [PMID: 30450281 PMCID: PMC6226559 DOI: 10.1016/j.pacs.2018.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 05/02/2023]
Abstract
The gold-standard periodontal probe is an aging tool that can detect periodontitis and monitor gingival health but is highly error-prone, does not fully characterize the periodontal pocket, and causes pain. Photoacoustic imaging is a noninvasive technique that can address these limitations. Here, a range of ultrasound frequencies between 16-40 MHz were used to image the periodontium and a contrast medium based on cuttlefish ink was used to label the pockets. A 40 MHz ultrasound frequency could spatially resolve the periodontal anatomy, including tooth, gum, gingival margin, and gingival thickness of tooth numbers 7-10 and 22-27. The photoacoustic-ultrasound measurements were more precise (0.01 mm) than those taken with physical probes by a dental hygienist. Furthermore, the full geometry of the pockets could be visualized with relative standard deviations of 10% (n = 5). This study shows the potential for non-invasive monitoring of periodontal health with photoacoustic-ultrasound imaging in the dental clinic.
Collapse
Affiliation(s)
- Colman Moore
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive. La Jolla, CA, 92092, USA
| | - Yuting Bai
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive. La Jolla, CA, 92092, USA
| | - Ali Hariri
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive. La Jolla, CA, 92092, USA
| | - Joan B. Sanchez
- Herman Ostrow School of Dentistry, University of Southern California, 925 West 34th Street, Los Angeles, CA, 90089, USA
| | - Ching-Yu Lin
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive. La Jolla, CA, 92092, USA
| | - Sreenivas Koka
- School of Dentistry, University of California, Los Angeles, 714 Tiverton Ave, Los Angeles, CA, 90024, USA
- Koka Dental Clinic, 8031 Linda Vista Rd, San Diego, CA, 92111, USA
| | - Parish Sedghizadeh
- Herman Ostrow School of Dentistry, University of Southern California, 925 West 34th Street, Los Angeles, CA, 90089, USA
| | - Casey Chen
- Herman Ostrow School of Dentistry, University of Southern California, 925 West 34th Street, Los Angeles, CA, 90089, USA
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive. La Jolla, CA, 92092, USA
- Materials Science Program, University of California, San Diego, 9500 Gilman Drive. La Jolla, CA, 92092, USA
- Department of Radiology, University of California, San Diego, 9500 Gilman Drive. La Jolla, CA, 92092, USA
| |
Collapse
|
45
|
A Novel Dictionary-Based Image Reconstruction for Photoacoustic Computed Tomography. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091570] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the major concerns in photoacoustic computed tomography (PACT) is obtaining a high-quality image using the minimum number of ultrasound transducers/view angles. This issue is of importance when a cost-effective PACT system is needed. On the other hand, analytical reconstruction algorithms such as back projection (BP) and time reversal, when a limited number of view angles is used, cause artifacts in the reconstructed image. Iterative algorithms provide a higher image quality, compared to BP, due to a model used for image reconstruction. The performance of the model can be further improved using the sparsity concept. In this paper, we propose using a novel sparse dictionary to capture important features of the photoacoustic signal and eliminate the artifacts while few transducers is used. Our dictionary is an optimum combination of Wavelet Transform (WT), Discrete Cosine Transform (DCT), and Total Variation (TV). We utilize two quality assessment metrics including peak signal-to-noise ratio and edge preservation index to quantitatively evaluate the reconstructed images. The results show that the proposed method can generate high-quality images having fewer artifacts and preserved edges, when fewer view angles are used for reconstruction in PACT.
Collapse
|