1
|
Kim DW, Wrede P, Estrada H, Yildiz E, Lazovic J, Bhargava A, Razansky D, Sitti M. Hierarchical Nanostructures as Acoustically Manipulatable Multifunctional Agents in Dynamic Fluid Flow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404514. [PMID: 39400967 PMCID: PMC11636169 DOI: 10.1002/adma.202404514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Acoustic waves provide a biocompatible and deep-tissue-penetrating tool suitable for contactless manipulation in in vivo environments. Despite the prevalence of dynamic fluids within the body, previous studies have primarily focused on static fluids, and manipulatable agents in dynamic fluids are limited to gaseous core-shell particles. However, these gas-filled particles face challenges in fast-flow manipulation, complex setups, design versatility, and practical medical imaging, underscoring the need for effective alternatives. In this study, flower-like hierarchical nanostructures (HNS) into microparticles (MPs) are incorporated, and demonstrated that various materials fabricated as HNS-MPs exhibit effective and reproducible acoustic trapping within high-velocity fluid flows. Through simulations, it is validated that the HNS-MPs are drawn to the focal point by acoustic streaming and form a trap through secondary acoustic streaming at the tips of the nanosheets comprising the HNS-MPs. Furthermore, the wide range of materials and modification options for HNS, combined with their high surface area and biocompatibility, enable them to serve as acoustically manipulatable multimodal imaging contrast agents and microrobots. They can perform intravascular multi-trap maneuvering with real-time imaging, purification of wastewater flow, and highly-loaded drug delivery. Given the diverse HNS materials developed to date, this study extends their applications to acoustofluidic and biomedical fields.
Collapse
Affiliation(s)
- Dong Wook Kim
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Paul Wrede
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringUniversity of ZürichZürich8057Switzerland
- Institute for Biomedical EngineeringETH ZürichZürich8093Switzerland
| | - Hector Estrada
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringUniversity of ZürichZürich8057Switzerland
- Institute for Biomedical EngineeringETH ZürichZürich8093Switzerland
| | - Erdost Yildiz
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Jelena Lazovic
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Aarushi Bhargava
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringUniversity of ZürichZürich8057Switzerland
- Institute for Biomedical EngineeringETH ZürichZürich8093Switzerland
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH ZürichZürich8093Switzerland
- School of Medicine and College of EngineeringKoç UniversityIstanbul34450Turkey
| |
Collapse
|
2
|
Buehler A, Brown EL, Nedoschill E, Eckstein M, Ludwig P, Wachter F, Mandelbaum H, Raming R, Oraiopoulou M, Paulus L, Rother U, Friedrich O, Neurath MF, Woelfle J, Waldner MJ, Knieling F, Bohndiek SE, Regensburger AP. In Vivo Assessment of Deep Vascular Patterns in Murine Colitis Using Optoacoustic Mesoscopic Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404618. [PMID: 39439243 PMCID: PMC11615813 DOI: 10.1002/advs.202404618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Indexed: 10/25/2024]
Abstract
The analysis of vascular morphology and functionality enables the assessment of disease activity and therapeutic effects in various pathologies. Raster-scanning optoacoustic mesoscopy (RSOM) is an imaging modality that enables the visualization of superficial vascular networks in vivo. In murine models of colitis, deep vascular networks in the colon wall can be visualized by transrectal absorber guide raster-scanning optoacoustic mesoscopy (TAG-RSOM). In order to accelerate the implementation of this technology in translational studies of inflammatory bowel disease, an image-processing pipeline for TAG-RSOM data has been developed. Using optoacoustic data from a murine model of chemically-induced colitis, different image segmentation methods are compared for visualization and quantification of deep vascular patterns in terms of vascular network length and complexity, blood volume, and vessel diameter. The presented image-processing pipeline for TAG-RSOM enables label-free in vivo assessment of changes in the vascular network in murine colitis with broad applications for inflammatory bowel disease research.
Collapse
Affiliation(s)
- Adrian Buehler
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Emma L. Brown
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCB2 0RECambridgeUnited Kingdom
| | - Emmanuel Nedoschill
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Markus Eckstein
- Institute of PathologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Petra Ludwig
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Felix Wachter
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Henriette Mandelbaum
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Roman Raming
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | | | - Lars‐Philip Paulus
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Ulrich Rother
- Department of Vascular SurgeryUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Oliver Friedrich
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Markus F. Neurath
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Maximilian J. Waldner
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Sarah E. Bohndiek
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCB2 0RECambridgeUnited Kingdom
| | - Adrian P. Regensburger
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| |
Collapse
|
3
|
Stiel AC, Ntziachristos V. Controlling the sound of light: photoswitching optoacoustic imaging. Nat Methods 2024; 21:1996-2007. [PMID: 39322752 DOI: 10.1038/s41592-024-02396-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/29/2024] [Indexed: 09/27/2024]
Abstract
Optoacoustic (photoacoustic) imaging advances allow high-resolution optical imaging much deeper than optical microscopy. However, while label-free optoacoustics have already entered clinical application, biological imaging is in need of ubiquitous optoacoustic labels for use in ways that are similar to how fluorescent proteins propelled optical microscopy. We review photoswitching advances that shine a new light or, in analogy, 'bring a new sound' to biological optoacoustic imaging. Based on engineered labels and novel devices, switching uses light or other energy forms and enables signal modulation and synchronous detection for maximizing contrast and detection sensitivity over other optoacoustic labels. Herein, we explain contrast enhancement in the spectral versus temporal domains and review labels and key concepts of switching and their properties to modulate optoacoustic signals. We further outline systems and applications and discuss how switching can enable optoacoustic imaging of cellular or molecular contrast at depths and resolutions beyond those of other optical methods.
Collapse
Affiliation(s)
- Andre C Stiel
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
- Protein Engineering for Superresolution Microscopy Lab, University of Regensburg, Regensburg, Germany.
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
4
|
Huynh NT, Zhang E, Francies O, Kuklis F, Allen T, Zhu J, Abeyakoon O, Lucka F, Betcke M, Jaros J, Arridge S, Cox B, Plumb AA, Beard P. A fast all-optical 3D photoacoustic scanner for clinical vascular imaging. Nat Biomed Eng 2024:10.1038/s41551-024-01247-x. [PMID: 39349585 DOI: 10.1038/s41551-024-01247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/28/2024] [Indexed: 10/25/2024]
Abstract
The clinical assessment of microvascular pathologies (in diabetes and in inflammatory skin diseases, for example) requires the visualization of superficial vascular anatomy. Photoacoustic tomography (PAT) scanners based on an all-optical Fabry-Perot ultrasound sensor can provide highly detailed 3D microvascular images, but minutes-long acquisition times have precluded their clinical use. Here we show that scan times can be reduced to a few seconds and even hundreds of milliseconds by parallelizing the optical architecture of the sensor readout, by using excitation lasers with high pulse-repetition frequencies and by exploiting compressed sensing. A PAT scanner with such fast acquisition minimizes motion-related artefacts and allows for the volumetric visualization of individual arterioles, venules, venous valves and millimetre-scale arteries and veins to depths approaching 15 mm, as well as for dynamic 3D images of time-varying tissue perfusion and other haemodynamic events. In exploratory case studies, we used the scanner to visualize and quantify microvascular changes associated with peripheral vascular disease, skin inflammation and rheumatoid arthritis. Fast all-optical PAT may prove useful in cardiovascular medicine, oncology, dermatology and rheumatology.
Collapse
Affiliation(s)
- N T Huynh
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - E Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - O Francies
- University College London Hospital NHS Foundation Trust, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - F Kuklis
- Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - T Allen
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - J Zhu
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - O Abeyakoon
- University College London Hospital NHS Foundation Trust, London, UK
| | - F Lucka
- Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
| | - M Betcke
- Department of Computer Science, University College London, London, UK
| | - J Jaros
- Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - S Arridge
- Department of Computer Science, University College London, London, UK
| | - B Cox
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - A A Plumb
- University College London Hospital NHS Foundation Trust, London, UK
| | - P Beard
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK.
| |
Collapse
|
5
|
Phoon CK, Aristizábal O, Farhoud M, Turnbull DH, Wadghiri YZ. Mouse Cardiovascular Imaging. Curr Protoc 2024; 4:e1116. [PMID: 39222027 PMCID: PMC11371386 DOI: 10.1002/cpz1.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging, with brief overviews of other imaging modalities. In this update, we also emphasize the importance of rigor and reproducibility in imaging approaches, experimental design, and documentation. Finally, we briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Colin K.L. Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY
| | - Orlando Aristizábal
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| | | | - Daniel H. Turnbull
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Youssef Z. Wadghiri
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
6
|
Kovalenko A, Eliseeva SV, Collet G, El Abdellaoui S, Natkunarajah S, Lerondel S, Guénée L, Besnard C, Petoud S. A Dual-Mode Near-Infrared Optical and Photoacoustic Imaging Agent Based on a Low Energy Absorbing Ytterbium Complex. J Am Chem Soc 2024; 146:12913-12918. [PMID: 38701376 DOI: 10.1021/jacs.4c03406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Near-infrared (NIR) luminescence and photoacoustic (PA) imaging have attracted increasing attention for the real-time monitoring of biological samples due to high sensitivity, resolution, and pronounced signal detection depth, respectively. For improved contrast, both techniques require imaging agents possessing high absorption in the red-NIR range. Herein, we took advantage of a ternary complex formed with the anionic ytterbium(III) tetrakis(2-thenoyltrifluoroacetonate) ([Yb(tta)4]-) and the cationic NIR-absorbing chromophore, 1,1'-diethyl-2,2'-dicarbocyanine (Cy+), to evaluate its potential to act as a dual-mode NIR luminescence and PA imaging agent. We demonstrated that, upon excitation with red-NIR light, Cy[Yb(tta)4] encapsulated into polystyrene nanoparticles is able to generate both NIR Yb3+ emission and a PA signal in an imaging experiment performed in a tissue-mimicking phantom.
Collapse
Affiliation(s)
- Anton Kovalenko
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Svetlana V Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Guillaume Collet
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans Cedex 2, France
- Le Studium Loire Valley Institute for Advanced Studies, 1 rue Dupanloup, 45000 Orléans, France
| | - Saïda El Abdellaoui
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Sharuja Natkunarajah
- TAAM Imagerie in Vivo, CNRS UAR44, 3B rue de la Férollerie, 45071 Orléans Cedex 2, France
| | - Stéphanie Lerondel
- TAAM Imagerie in Vivo, CNRS UAR44, 3B rue de la Férollerie, 45071 Orléans Cedex 2, France
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, 24 quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans Cedex 2, France
| |
Collapse
|
7
|
Regensburger AP, Eckstein M, Wetzl M, Raming R, Paulus LP, Buehler A, Nedoschill E, Danko V, Jüngert J, Wagner AL, Schnell A, Rückel A, Rother U, Rompel O, Uder M, Hartmann A, Neurath MF, Woelfle J, Waldner MJ, Hoerning A, Knieling F. Multispectral optoacoustic tomography enables assessment of disease activity in paediatric inflammatory bowel disease. PHOTOACOUSTICS 2024; 35:100578. [PMID: 38144890 PMCID: PMC10746560 DOI: 10.1016/j.pacs.2023.100578] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023]
Abstract
Multispectral optoacoustic tomography (MSOT) allows non-invasive molecular disease activity assessment in adults with inflammatory bowel disease (IBD). In this prospective pilot-study, we investigated, whether increased levels of MSOT haemoglobin parameters corresponded to inflammatory activity in paediatric IBD patients, too. 23 children with suspected IBD underwent MSOT of the terminal ileum and sigmoid colon with standard validation (e.g. endoscopy). In Crohn`s disease (CD) and ulcerative colitis (UC) patients with endoscopically confirmed disease activity, MSOT total haemoglobin (HbT) signals were increased in the terminal ileum of CD (72.1 ± 13.0 a.u. vs. 32.9 ± 15.4 a.u., p = 0.0049) and in the sigmoid colon of UC patients (62.9 ± 13.8 a.u. vs. 35.1 ± 16.3 a.u., p = 0.0311) as compared to controls, respectively. Furthermore, MSOT haemoglobin parameters correlated well with standard disease activity assessment (e.g. SES-CD and MSOT HbT (rs =0.69, p = 0.0075). Summarizing, MSOT is a novel technology for non-invasive molecular disease activity assessment in paediatric patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Adrian P. Regensburger
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Paediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Paediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Wetzl
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Roman Raming
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Paediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Paediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Lars-Philip Paulus
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Paediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Paediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Adrian Buehler
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Paediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Paediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Emmanuel Nedoschill
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Paediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Paediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Vera Danko
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Paediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Paediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg Jüngert
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra L. Wagner
- Paediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Paediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Schnell
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Aline Rückel
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrich Rother
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Rompel
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Uder
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1 and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Joachim Woelfle
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian J. Waldner
- Department of Medicine 1 and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - André Hoerning
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ferdinand Knieling
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Paediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Paediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Träger AP, Günther JS, Raming R, Paulus LP, Lang W, Meyer A, Kempf J, Caranovic M, Li Y, Wagner AL, Tan L, Danko V, Trollmann R, Woelfle J, Klett D, Neurath MF, Regensburger AP, Eckstein M, Uter W, Uder M, Herrmann Y, Waldner MJ, Knieling F, Rother U. Hybrid ultrasound and single wavelength optoacoustic imaging reveals muscle degeneration in peripheral artery disease. PHOTOACOUSTICS 2024; 35:100579. [PMID: 38312805 PMCID: PMC10835356 DOI: 10.1016/j.pacs.2023.100579] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 11/29/2023] [Indexed: 02/06/2024]
Abstract
Peripheral arterial disease (PAD) leads to chronic vascular occlusion and results in end organ damage in critically perfused limbs. There are currently no clinical methods available to determine the muscular damage induced by chronic mal-perfusion. This monocentric prospective cross-sectional study investigated n = 193 adults, healthy to severe PAD, in order to quantify the degree of calf muscle degeneration caused by PAD using a non-invasive hybrid ultrasound and single wavelength optoacoustic imaging (US/SWL-OAI) approach. While US provides morphologic information, SWL-OAI visualizes the absorption of pulsed laser light and the resulting sound waves from molecules undergoing thermoelastic expansion. US/SWL-OAI was compared to multispectral data, clinical disease severity, angiographic findings, phantom experiments, and histological examinations from calf muscle biopsies. We were able to show that synergistic use of US/SWL-OAI is most likely to map clinical degeneration of the muscle and progressive PAD.
Collapse
Affiliation(s)
- Anna P. Träger
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
| | - Josefine S. Günther
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
| | - Roman Raming
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Lars-Philip Paulus
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Werner Lang
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
| | - Alexander Meyer
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
| | - Julius Kempf
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
| | - Milenko Caranovic
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
| | - Yi Li
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
| | - Alexandra L. Wagner
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Lina Tan
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Vera Danko
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Regina Trollmann
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Daniel Klett
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, D-91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, D-91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), University Hospital Erlangen, Ulmenweg 18, D-91054 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 6, D-91052 Erlangen, Germany
| | - Adrian P. Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Markus Eckstein
- Department of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstrasse 8-10, D-91054 Erlangen, Germany
| | - Wolfgang Uter
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürrnberg (FAU), Waldstraße 6, D-91054 Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander, Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 1, D-91054 Erlangen, Germany
| | - Yvonne Herrmann
- Department of Pediatric Cardiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Maximilian J. Waldner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, D-91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), University Hospital Erlangen, Ulmenweg 18, D-91054 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 6, D-91052 Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Ulrich Rother
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
| |
Collapse
|
9
|
Hoerning A, Jüngert J, Siebenlist G, Knieling F, Regensburger AP. Ultrasound in Pediatric Inflammatory Bowel Disease-A Review of the State of the Art and Future Perspectives. CHILDREN (BASEL, SWITZERLAND) 2024; 11:156. [PMID: 38397268 PMCID: PMC10887069 DOI: 10.3390/children11020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Inflammatory bowel disease (IBD) comprises a group of relapsing, chronic diseases of the gastrointestinal tract that, in addition to adults, can affect children and adolescents. To detect relapses of inflammation, these patients require close observation, frequent follow-up, and therapeutic adjustments. While reference standard diagnostics include anamnestic factors, laboratory and stool sample assessment, performing specific imaging in children and adolescents is much more challenging than in adults. Endoscopic and classic cross-sectional imaging modalities may be invasive and often require sedation for younger patients. For this reason, intestinal ultrasound (IUS) is becoming increasingly important for the non-invasive assessment of the intestine and its inflammatory affection. In this review, we would like to shed light on the current state of the art and provide an outlook on developments in this field that could potentially spare these patients more invasive follow-up procedures.
Collapse
Affiliation(s)
- André Hoerning
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jörg Jüngert
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Gregor Siebenlist
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Adrian P Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
10
|
Karlas A, Katsouli N, Fasoula NA, Bariotakis M, Chlis NK, Omar M, He H, Iakovakis D, Schäffer C, Kallmayer M, Füchtenbusch M, Ziegler A, Eckstein HH, Hadjileontiadis L, Ntziachristos V. Dermal features derived from optoacoustic tomograms via machine learning correlate microangiopathy phenotypes with diabetes stage. Nat Biomed Eng 2023; 7:1667-1682. [PMID: 38049470 PMCID: PMC10727986 DOI: 10.1038/s41551-023-01151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/24/2023] [Indexed: 12/06/2023]
Abstract
Skin microangiopathy has been associated with diabetes. Here we show that skin-microangiopathy phenotypes in humans can be correlated with diabetes stage via morphophysiological cutaneous features extracted from raster-scan optoacoustic mesoscopy (RSOM) images of skin on the leg. We obtained 199 RSOM images from 115 participants (40 healthy and 75 with diabetes), and used machine learning to segment skin layers and microvasculature to identify clinically explainable features pertaining to different depths and scales of detail that provided the highest predictive power. Features in the dermal layer at the scale of detail of 0.1-1 mm (such as the number of junction-to-junction branches) were highly sensitive to diabetes stage. A 'microangiopathy score' compiling the 32 most-relevant features predicted the presence of diabetes with an area under the receiver operating characteristic curve of 0.84. The analysis of morphophysiological cutaneous features via RSOM may allow for the discovery of diabetes biomarkers in the skin and for the monitoring of diabetes status.
Collapse
Affiliation(s)
- Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Nikoletta Katsouli
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Nikolina-Alexia Fasoula
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Michail Bariotakis
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Nikolaos-Kosmas Chlis
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Murad Omar
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Hailong He
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Dimitrios Iakovakis
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christoph Schäffer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Michael Kallmayer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | | | - Annette Ziegler
- Forschergruppe Diabetes e.V., Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany.
| |
Collapse
|
11
|
Karlas A, Fasoula NA, Kallmayer M, Schäffer C, Angelis G, Katsouli N, Reidl M, Duelmer F, Al Adem K, Hadjileontiadis L, Eckstein HH, Ntziachristos V. Optoacoustic biomarkers of lipids, hemorrhage and inflammation in carotid atherosclerosis. Front Cardiovasc Med 2023; 10:1210032. [PMID: 38028502 PMCID: PMC10666780 DOI: 10.3389/fcvm.2023.1210032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Imaging plays a critical role in exploring the pathophysiology and enabling the diagnostics and therapy assessment in carotid artery disease. Ultrasonography, computed tomography, magnetic resonance imaging and nuclear medicine techniques have been used to extract of known characteristics of plaque vulnerability, such as inflammation, intraplaque hemorrhage and high lipid content. Despite the plethora of available techniques, there is still a need for new modalities to better characterize the plaque and provide novel biomarkers that might help to detect the vulnerable plaque early enough and before a stroke occurs. Optoacoustics, by providing a multiscale characterization of the morphology and pathophysiology of the plaque could offer such an option. By visualizing endogenous (e.g., hemoglobin, lipids) and exogenous (e.g., injected dyes) chromophores, optoacoustic technologies have shown great capability in imaging lipids, hemoglobin and inflammation in different applications and settings. Herein, we provide an overview of the main optoacoustic systems and scales of detail that enable imaging of carotid plaques in vitro, in small animals and humans. Finally, we discuss the limitations of this novel set of techniques while investigating their potential to enable a deeper understanding of carotid plaque pathophysiology and possibly improve the diagnostics in future patients with carotid artery disease.
Collapse
Affiliation(s)
- Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University of Munich (TUM), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Nikolina-Alexia Fasoula
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Michael Kallmayer
- Department for Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Christoph Schäffer
- Department for Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Georgios Angelis
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Nikoletta Katsouli
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Mario Reidl
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Felix Duelmer
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Chair for Computer Aided Medical Procedures and Augmented Reality, Department of Informatics, Technical University of Munich, Munich, Germany
| | - Kenana Al Adem
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Vorobev V, Weidmann D, Agdarov S, Beiderman Y, Shabairou N, Benyamin M, Klämpfl F, Schmidt M, Gorin D, Zalevsky Z. Full-optical photoacoustic imaging using speckle analysis and resolution enhancement by orthogonal pump patterns projection. Sci Rep 2023; 13:18081. [PMID: 37872441 PMCID: PMC10593755 DOI: 10.1038/s41598-023-45490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023] Open
Abstract
This paper presents an approach for achieving full optical photoacoustic imaging with enhanced resolution utilizing speckle pattern analysis. The proposed technique involves projecting patterns derived from binary masks corresponding to orthogonal functions onto the target to elicit a photoacoustic signal. The resulting signal is then recorded using a high-speed camera and analyzed using correlation analysis of the speckle motion. Our results demonstrate the feasibility of this optical approach to achieve imaging with enhanced resolution without the need for physical contact with the target, opening up new possibilities for non-invasive medical imaging and other applications.
Collapse
Affiliation(s)
- Viktor Vorobev
- Center for Photonic Science and Engineering, Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Moscow, Russia, 143026.
| | - David Weidmann
- Faculty of Engineering, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | - Sergey Agdarov
- Faculty of Engineering, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | - Yafim Beiderman
- Faculty of Engineering, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | - Nadav Shabairou
- Faculty of Engineering, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | - Matan Benyamin
- Faculty of Engineering, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | - Florian Klämpfl
- Lehrstuhl für Photonische Technologien, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Michael Schmidt
- Lehrstuhl für Photonische Technologien, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Dmitry Gorin
- Center for Photonic Science and Engineering, Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Moscow, Russia, 143026
| | - Zeev Zalevsky
- Faculty of Engineering, Bar-Ilan University, 52900, Ramat-Gan, Israel.
- Lehrstuhl für Photonische Technologien, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052, Erlangen, Germany.
| |
Collapse
|
13
|
Fasoula NA, Xie Y, Katsouli N, Reidl M, Kallmayer MA, Eckstein HH, Ntziachristos V, Hadjileontiadis L, Avgerinos DV, Briasoulis A, Siasos G, Hosseini K, Doulamis I, Kampaktsis PN, Karlas A. Clinical and Translational Imaging and Sensing of Diabetic Microangiopathy: A Narrative Review. J Cardiovasc Dev Dis 2023; 10:383. [PMID: 37754812 PMCID: PMC10531807 DOI: 10.3390/jcdd10090383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Microvascular changes in diabetes affect the function of several critical organs, such as the kidneys, heart, brain, eye, and skin, among others. The possibility of detecting such changes early enough in order to take appropriate actions renders the development of appropriate tools and techniques an imperative need. To this end, several sensing and imaging techniques have been developed or employed in the assessment of microangiopathy in patients with diabetes. Herein, we present such techniques; we provide insights into their principles of operation while discussing the characteristics that make them appropriate for such use. Finally, apart from already established techniques, we present novel ones with great translational potential, such as optoacoustic technologies, which are expected to enter clinical practice in the foreseeable future.
Collapse
Affiliation(s)
- Nikolina-Alexia Fasoula
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Yi Xie
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Nikoletta Katsouli
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Mario Reidl
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Michael A. Kallmayer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.A.K.); (H.-H.E.)
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.A.K.); (H.-H.E.)
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Alexandros Briasoulis
- Aleksandra Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Gerasimos Siasos
- Sotiria Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Kaveh Hosseini
- Cardiac Primary Prevention Research Center, Cardiovascular Disease Research Institute, Tehran University of Medical Sciences, Tehran 1411713138, Iran;
| | - Ilias Doulamis
- Department of Surgery, The Johns Hopkins Hospital, School of Medicine, Baltimore, MD 21287, USA;
| | | | - Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.A.K.); (H.-H.E.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
14
|
Song Z, Miao J, Miao M, Cheng B, Li S, Liu Y, Miao Q, Li Q, Gao M. Cathepsin K-Activated Probe for Fluoro-Photoacoustic Imaging of Early Osteolytic Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300217. [PMID: 37341286 PMCID: PMC10460880 DOI: 10.1002/advs.202300217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/01/2023] [Indexed: 06/22/2023]
Abstract
Precise detection of early osteolytic metastases is crucial for their treatment but remains challenging in the clinic because of the limited sensitivity and specificity of traditional imaging techniques. Although fluorescence imaging offers attractive features for the diagnosis of osteolytic metastases, it is hampered by limited penetration depth. To address this issue, a fluoro-photoacoustic dual-modality imaging probe comprising a near-infrared dye caged by a cathepsin K (CTSK)-cleavable peptide sequence on one side and functionalized with osteophilic alendronate through a polyethylene glycol linker on the other side is reported. Through systematic in vitro and in vivo experiments, it is demonstrated that in response to CTSK, the probe generated both near-infrared fluorescent and photoacoustic signals from bone metastatic regions, thus offering a potential strategy for detecting deep-seated early osteolytic metastases.
Collapse
Affiliation(s)
- Zhuorun Song
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Jia Miao
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Minqian Miao
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Baoliang Cheng
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Shenhua Li
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Yinghua Liu
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Qingqing Miao
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Qing Li
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| | - Mingyuan Gao
- Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
| |
Collapse
|
15
|
Buehler A, Brown E, Paulus L, Eckstein M, Thoma O, Oraiopoulou M, Rother U, Hoerning A, Hartmann A, Neurath MF, Woelfle J, Friedrich O, Waldner MJ, Knieling F, Bohndiek SE, Regensburger AP. Transrectal Absorber Guide Raster-Scanning Optoacoustic Mesoscopy for Label-Free In Vivo Assessment of Colitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300564. [PMID: 37083262 PMCID: PMC10288266 DOI: 10.1002/advs.202300564] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Optoacoustic imaging (OAI) enables microscale imaging of endogenous chromophores such as hemoglobin at significantly higher penetration depths compared to other optical imaging technologies. Raster-scanning optoacoustic mesoscopy (RSOM) has recently been shown to identify superficial microvascular changes associated with human skin pathologies. In animal models, the imaging depth afforded by RSOM can enable entirely new capabilities for noninvasive imaging of vascular structures in the gastrointestinal tract, but exact localization of intra-abdominal organs is still elusive. Herein the development and application of a novel transrectal absorber guide for RSOM (TAG-RSOM) is presented to enable accurate transabdominal localization and assessment of colonic vascular networks in vivo. The potential of TAG-RSOM is demonstrated through application during mild and severe acute colitis in mice. TAG-RSOM enables visualization of transmural vascular networks, with changes in colon wall thickness, blood volume, and OAI signal intensities corresponding to colitis-associated inflammatory changes. These findings suggest TAG-RSOM can provide a novel monitoring tool in preclinical IBD models, refining animal procedures and underlines the capabilities of such technologies to address inflammatory bowel diseases in humans.
Collapse
Affiliation(s)
- Adrian Buehler
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Emma Brown
- Department of Physics and Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeCB2 0REUK
| | - Lars‐Philip Paulus
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Markus Eckstein
- Institute of PathologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Oana‐Maria Thoma
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Mariam‐Eleni Oraiopoulou
- Department of Physics and Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeCB2 0REUK
| | - Ulrich Rother
- Department of Vascular SurgeryUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - André Hoerning
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Arndt Hartmann
- Institute of PathologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Markus F. Neurath
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Oliver Friedrich
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Maximilian J. Waldner
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Sarah E. Bohndiek
- Department of Physics and Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeCB2 0REUK
| | - Adrian P. Regensburger
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| |
Collapse
|
16
|
Nagli M, Koch J, Hazan Y, Levi A, Ternyak O, Overmeyer L, Rosenthal A. High-resolution silicon photonics focused ultrasound transducer with a sub-millimeter aperture. OPTICS LETTERS 2023; 48:2668-2671. [PMID: 37186736 DOI: 10.1364/ol.486567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We present an all-optical focused ultrasound transducer with a sub-millimeter aperture and demonstrate its capability for high-resolution imaging of tissue ex vivo. The transducer is composed of a wideband silicon photonics ultrasound detector and a miniature acoustic lens coated with a thin optically absorbing metallic layer used to produce laser-generated ultrasound. The demonstrated device achieves axial resolution and lateral resolutions of 12 μm and 60 μm, respectively, well below typical values achieved by conventional piezoelectric intravascular ultrasound. The size and resolution of the developed transducer may enable its use for intravascular imaging of thin fibrous cap atheroma.
Collapse
|
17
|
Karlas A, Fasoula NA, Katsouli N, Kallmayer M, Sieber S, Schmidt S, Liapis E, Halle M, Eckstein HH, Ntziachristos V. Skeletal muscle optoacoustics reveals patterns of circulatory function and oxygen metabolism during exercise. PHOTOACOUSTICS 2023; 30:100468. [PMID: 36950518 PMCID: PMC10025091 DOI: 10.1016/j.pacs.2023.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Imaging skeletal muscle function and metabolism, as reported by local hemodynamics and oxygen kinetics, can elucidate muscle performance, severity of an underlying disease or outcome of a treatment. Herein, we used multispectral optoacoustic tomography (MSOT) to image hemodynamics and oxygen kinetics within muscle during exercise. Four healthy volunteers underwent three different hand-grip exercise challenges (60s isometric, 120s intermittent isometric and 60s isotonic). During isometric contraction, MSOT showed a decrease of HbO2, Hb and total blood volume (TBV), followed by a prominent increase after the end of contraction. Corresponding hemodynamic behaviors were recorded during the intermittent isometric and isotonic exercises. A more detailed analysis of MSOT readouts revealed insights into arteriovenous oxygen differences and muscle oxygen consumption during all exercise schemes. These results demonstrate an excellent capability of visualizing both circulatory function and oxygen metabolism within skeletal muscle under exercise, with great potential implications for muscle research, including relevant disease diagnostics.
Collapse
Affiliation(s)
- Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Nikolina-Alexia Fasoula
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Nikoletta Katsouli
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Michael Kallmayer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sabine Sieber
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sebastian Schmidt
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Evangelos Liapis
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Halle
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Department of Prevention and Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
18
|
Fasoula NA, Karlas A, Prokopchuk O, Katsouli N, Bariotakis M, Liapis E, Goetz A, Kallmayer M, Reber J, Novotny A, Friess H, Ringelhan M, Schmid R, Eckstein HH, Hofmann S, Ntziachristos V. Non-invasive multispectral optoacoustic tomography resolves intrahepatic lipids in patients with hepatic steatosis. PHOTOACOUSTICS 2023; 29:100454. [PMID: 36794122 PMCID: PMC9922962 DOI: 10.1016/j.pacs.2023.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Hepatic steatosis is characterized by intrahepatic lipid accumulation and may lead to irreversible liver damage if untreated. Here, we investigate whether multispectral optoacoustic tomography (MSOT) can offer label-free detection of liver lipid content to enable non-invasive characterization of hepatic steatosis by analyzing the spectral region around 930 nm, where lipids characteristically absorb. In a pilot study, we apply MSOT to measure liver and surrounding tissues in five patients with liver steatosis and five healthy volunteers, revealing significantly higher absorptions at 930 nm in the patients, while no significant difference was observed in the subcutaneous adipose tissue of the two groups. We further corroborated the human observations with corresponding MSOT measurements in high fat diet (HFD) - and regular chow diet (CD)-fed mice. This study introduces MSOT as a potential non-invasive and portable technique for detecting/monitoring hepatic steatosis in clinical settings, providing justification for larger studies.
Collapse
Affiliation(s)
- Nikolina-Alexia Fasoula
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Angelos Karlas
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner Site Munich Heart Alliance, Munich, Germany
| | - Olga Prokopchuk
- Department of Visceral Surgery, Klinikum rechts der Isar, Munich, Germany
| | - Nikoletta Katsouli
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michail Bariotakis
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Evangelos Liapis
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anna Goetz
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Kallmayer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Josefine Reber
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Alexander Novotny
- Department of Visceral Surgery, Klinikum rechts der Isar, Munich, Germany
| | - Helmut Friess
- Department of Visceral Surgery, Klinikum rechts der Isar, Munich, Germany
| | - Marc Ringelhan
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland Schmid
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner Site Munich Heart Alliance, Munich, Germany
| | - Susanna Hofmann
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Internal Medicine IV, Klinikum der Ludwig Maximilian University of Munich, Munich, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
19
|
Ferraro B, Giustetto P, Schengel O, Weckbach LT, Maegdefessel L, Soehnlein O. Longitudinal In Vivo Monitoring of Atheroprogression in Hypercholesterolemic Mice Using Photoacoustic Imaging. Thromb Haemost 2023; 123:545-554. [PMID: 36596447 PMCID: PMC10113035 DOI: 10.1055/a-2005-8784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIM The ability to recognize and monitor atherosclerotic lesion development using noninvasive imaging is crucial in preventive cardiology. The aim of the present study was to establish a protocol for longitudinal monitoring of plaque lipid, collagen, and macrophage burden as well as of endothelial permeability. METHODS AND RESULTS Photoacoustic signals derived from endogenous or exogenous dyes assessed in vivo, in plaques of albino Apoe-/- mice, correlated with lesion characteristics obtained after histomorphometric and immunofluorescence analyses, thus supporting the validity of our protocol. Using models of atheroprogression and regression, we could apply our imaging protocol to the longitudinal observation of atherosclerotic lesion characteristics in mice. CONCLUSIONS The present study shows an innovative approach to assess arterial inflammation in a non-invasive fashion, applicable to longitudinal analyses of changes of atherosclerotic lesion composition. Such approach could prove important in the preclinical testing of therapeutic interventions in mice carrying pre-established lesions.
Collapse
Affiliation(s)
- Bartolo Ferraro
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany.,DZHK, Partner Site Munich Heart Alliance, Munich, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig- Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Pierangela Giustetto
- Fujifilm VisualSonics Consultant, Amsterdam, The Netherlands.,Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Olga Schengel
- Institute for Experimental Pathology (ExPat), Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Ludwig T Weckbach
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig- Maximilians-University Munich, Planegg-Martinsried, Germany.,Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-University Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, University Hospital, Planegg-Martinsried, Germany
| | - Lars Maegdefessel
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany.,Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany.,Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany.,DZHK, Partner Site Munich Heart Alliance, Munich, Germany.,Institute for Experimental Pathology (ExPat), Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.,Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Omidali M, Mardanshahi A, Särestöniemi M, Zhao Z, Myllylä T. Acousto-Optics: Recent Studies and Medical Applications. BIOSENSORS 2023; 13:186. [PMID: 36831952 PMCID: PMC9953934 DOI: 10.3390/bios13020186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 05/31/2023]
Abstract
Development of acousto-optic (AO) techniques has made progress in recent years across a range of medical application fields, especially in improving resolution, detection speed, and imaging depth. This paper presents a comprehensive overview of recent advancements in AO-based techniques that have been presented after the previously published review in 2017. The survey covers a description of theoretical modeling strategies and numerical simulation methods as well as recent applications in medical fields. It also provides a comparison between different techniques in terms of complexity, achieved depth in tissue, and resolution. In addition, a comparison between different numerical simulation methods will be outlined. Additionally, a number of challenges faced by AO techniques are considered, particularly in the context of realistic in vivo imaging. Finally, the paper discusses prospects of AO-based medical diagnosis methods.
Collapse
Affiliation(s)
- Mohammadreza Omidali
- Optoelectronics and Measurement Techniques Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, 90570 Oulu, Finland
| | - Ali Mardanshahi
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Mariella Särestöniemi
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
- Center for Wireless Communications, University of Oulu, 90570 Oulu, Finland
| | - Zuomin Zhao
- Optoelectronics and Measurement Techniques Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, 90570 Oulu, Finland
| | - Teemu Myllylä
- Optoelectronics and Measurement Techniques Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, 90570 Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| |
Collapse
|
21
|
Danko V, Jüngert J, Schuessler S, Buehler A, Klett D, Federle A, Roos A, Lochmüller H, Neurath MF, Woelfle J, Trollmann R, Waldner MJ, Knieling F, Regensburger AP, Wagner AL. Hybrid reflected-ultrasound computed tomography versus B-mode-ultrasound for muscle scoring in spinal muscular atrophy. J Neuroimaging 2023; 33:393-403. [PMID: 36627228 DOI: 10.1111/jon.13081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Novel light- and sound-based technologies like multispectral optoacoustic tomography (MSOT) with co-registered reflected-ultrasound computed tomography (RUCT) could add additional value to conventional ultrasound (US) for disease phenotyping in pediatric spinal muscular atrophy (SMA). The aim of this study was to investigate the quality of RUCT compared to US for qualitative and quantitative assessment of imaging neuromuscular disorders. METHODS Subanalyzing the MSOT SMA study, 288 RUCT and 276 US images from 10 SMA patients (mean age 9.0 ± 3.7) and 10 gender- and age-matched healthy volunteers (HV; mean age 8.7 ± 4.3) were analyzed for quantitative (grayscale levels [GSLs]) and qualitative (echogenicity, distribution pattern, Heckmatt scale, and muscle texture) muscle changes. RUCT and US measures were further correlated with clinical standard motor outcomes. RESULTS Quantitative agreement using GSLs revealed significantly higher GSLs in muscles of SMA patients compared to healthy muscles in both techniques (US mean GSL [SD] SMA vs. HV: 110.70 [27.8] vs. 68.85 [19.2], p < .0001; RUCT mean GSL [SD] SMA vs. HV: 91.81 [21.8] vs. 59.86 [8.2], p < .0001) with good correlation with motor outcome tests, respectively. Qualitative agreement between methods for muscle composition was excellent for differentiation of pathological versus healthy muscles, echogenicity, and distribution pattern, moderate for Heckmatt scale, and poor for muscle texture. CONCLUSIONS The data suggest that RUCT may allow the assessment of basic qualitative and quantitative measures for muscular diseases with comparable results to conventional US.
Collapse
Affiliation(s)
- Vera Danko
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Pediatric Experimental and Translational Imaging Laboratory (PETI-Lab), University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg Jüngert
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Stephanie Schuessler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Adrian Buehler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Pediatric Experimental and Translational Imaging Laboratory (PETI-Lab), University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Klett
- Medical Department 1, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,German Center Immunotherapy, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Federle
- Medical Department 1, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,German Center Immunotherapy, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Duisburg-Essen, Essen, Germany.,Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada.,Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Markus F Neurath
- Medical Department 1, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,German Center Immunotherapy, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Trollmann
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian J Waldner
- Medical Department 1, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,German Center Immunotherapy, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Pediatric Experimental and Translational Imaging Laboratory (PETI-Lab), University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Adrian P Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Pediatric Experimental and Translational Imaging Laboratory (PETI-Lab), University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra L Wagner
- Pediatric Experimental and Translational Imaging Laboratory (PETI-Lab), University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
22
|
Szymaszek P, Tomal W, Świergosz T, Kamińska-Borek I, Popielarz R, Ortyl J. Review of quantitative and qualitative methods for monitoring photopolymerization reactions. Polym Chem 2023. [DOI: 10.1039/d2py01538b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Authomatic in-situ monitoring and characterization of photopolymerization.
Collapse
|
23
|
Günther JS, Knieling F, Träger AP, Lang W, Meyer A, Regensburger AP, Wagner AL, Trollmann R, Woelfle J, Klett D, Uter W, Uder M, Neurath MF, Waldner MJ, Rother U. Targeting Muscular Hemoglobin Content for Classification of Peripheral Arterial Disease by Noninvasive Multispectral Optoacoustic Tomography. JACC. CARDIOVASCULAR IMAGING 2022; 16:719-721. [PMID: 36752442 DOI: 10.1016/j.jcmg.2022.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/12/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023]
|
24
|
Compressed Sensing Photoacoustic Imaging Reconstruction Using Elastic Net Approach. Mol Imaging 2022; 2022:7877049. [PMID: 36721731 PMCID: PMC9881674 DOI: 10.1155/2022/7877049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/04/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Photoacoustic imaging involves reconstructing an estimation of the absorbed energy density distribution from measured ultrasound data. The reconstruction task based on incomplete and noisy experimental data is usually an ill-posed problem that requires regularization to obtain meaningful solutions. The purpose of the work is to propose an elastic network (EN) model to improve the quality of reconstructed photoacoustic images. To evaluate the performance of the proposed method, a series of numerical simulations and tissue-mimicking phantom experiments are performed. The experiment results indicate that, compared with the L 1-norm and L 2-normbased regularization methods with different numerical phantoms, Gaussian noise of 10-50 dB, and different regularization parameters, the EN method with α = 0.5 has better image quality, calculation speed, and antinoise ability.
Collapse
|
25
|
Barbosa RCS, Mendes PM. A Comprehensive Review on Photoacoustic-Based Devices for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:9541. [PMID: 36502258 PMCID: PMC9736954 DOI: 10.3390/s22239541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The photoacoustic effect is an emerging technology that has sparked significant interest in the research field since an acoustic wave can be produced simply by the incidence of light on a material or tissue. This phenomenon has been extensively investigated, not only to perform photoacoustic imaging but also to develop highly miniaturized ultrasound probes that can provide biologically meaningful information. Therefore, this review aims to outline the materials and their fabrication process that can be employed as photoacoustic targets, both biological and non-biological, and report the main components' features to achieve a certain performance. When designing a device, it is of utmost importance to model it at an early stage for a deeper understanding and to ease the optimization process. As such, throughout this article, the different methods already implemented to model the photoacoustic effect are introduced, as well as the advantages and drawbacks inherent in each approach. However, some remaining challenges are still faced when developing such a system regarding its fabrication, modeling, and characterization, which are also discussed.
Collapse
|
26
|
Nagli M, Koch J, Hazan Y, Volodarsky O, Ravi Kumar R, Levi A, Hahamovich E, Ternyak O, Overmeyer L, Rosenthal A. Silicon-photonics focused ultrasound detector for minimally invasive optoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2022; 13:6229-6244. [PMID: 36589589 PMCID: PMC9774880 DOI: 10.1364/boe.470295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 05/28/2023]
Abstract
One of the main challenges in miniaturizing optoacoustic technology is the low sensitivity of sub-millimeter piezoelectric ultrasound transducers, which is often insufficient for detecting weak optoacoustic signals. Optical detectors of ultrasound can achieve significantly higher sensitivities than their piezoelectric counterparts for a given sensing area but generally lack acoustic focusing, which is essential in many minimally invasive imaging configurations. In this work, we develop a focused sub-millimeter ultrasound detector composed of a silicon-photonics optical resonator and a micro-machined acoustic lens. The acoustic lens provides acoustic focusing, which, in addition to increasing the lateral resolution, also enhances the signal. The developed detector has a wide bandwidth of 84 MHz, a focal width smaller than 50 µm, and noise-equivalent pressure of 37 mPa/Hz1/2 - an order of magnitude improvement over conventional intravascular ultrasound. We show the feasibility of the approach and the detector's imaging capabilities by performing high-resolution optoacoustic microscopy of optical phantoms with complex geometries.
Collapse
Affiliation(s)
- Michael Nagli
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Jürgen Koch
- Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Yoav Hazan
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Oleg Volodarsky
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Resmi Ravi Kumar
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Ahiad Levi
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Evgeny Hahamovich
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Orna Ternyak
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
- Micro & Nano Fabrication Unit (MNFU), Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| | - Ludger Overmeyer
- Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Amir Rosenthal
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa, Israel
| |
Collapse
|
27
|
Dimaridis I, Sridharan P, Ntziachristos V, Karlas A, Hadjileontiadis L. Image Quality Improvement Techniques and Assessment Adequacy in Clinical Optoacoustic Imaging: A Systematic Review. BIOSENSORS 2022; 12:901. [PMID: 36291038 PMCID: PMC9599915 DOI: 10.3390/bios12100901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Optoacoustic imaging relies on the detection of optically induced acoustic waves to offer new possibilities in morphological and functional imaging. As the modality matures towards clinical application, research efforts aim to address multifactorial limitations that negatively impact the resulting image quality. In an endeavor to obtain a clear view on the limitations and their effects, as well as the status of this progressive refinement process, we conduct an extensive search for optoacoustic image quality improvement approaches that have been evaluated with humans in vivo, thus focusing on clinically relevant outcomes. We query six databases (PubMed, Scopus, Web of Science, IEEE Xplore, ACM Digital Library, and Google Scholar) for articles published from 1 January 2010 to 31 October 2021, and identify 45 relevant research works through a systematic screening process. We review the identified approaches, describing their primary objectives, targeted limitations, and key technical implementation details. Moreover, considering comprehensive and objective quality assessment as an essential prerequisite for the adoption of such approaches in clinical practice, we subject 36 of the 45 papers to a further in-depth analysis of the reported quality evaluation procedures, and elicit a set of criteria with the intent to capture key evaluation aspects. Through a comparative criteria-wise rating process, we seek research efforts that exhibit excellence in quality assessment of their proposed methods, and discuss features that distinguish them from works with similar objectives. Additionally, informed by the rating results, we highlight areas with improvement potential, and extract recommendations for designing quality assessment pipelines capable of providing rich evidence.
Collapse
Affiliation(s)
- Ioannis Dimaridis
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Patmaa Sridharan
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, 80992 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany
| | - Angelos Karlas
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany
- Clinic for Vascular and Endovascular Surgery, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Signal Processing and Biomedical Technology Unit, Telecommunications Laboratory, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
28
|
Sun Z, Sun H. Image reconstruction for endoscopic photoacoustic tomography including effects of detector responses. Exp Biol Med (Maywood) 2022; 247:881-897. [PMID: 35232296 DOI: 10.1177/15353702221079570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In photoacoustic tomography (PAT), conventional image reconstruction methods are generally based on the assumption of an ideal point-like ultrasonic detector. This assumption is appropriate when the receiving surface of the detector is sufficiently small and/or the distance between the imaged object and the detector is large enough. However, it does not hold in endoscopic applications of PAT. In this study, we propose a model-based image reconstruction method for endoscopic photoacoustic tomography (EPAT), considering the effect of detector responses on image quality. We construct a forward model to physically describe the imaging process of EPAT, including the generation of the initial pressure due to optical absorption and thermoelastic expansion, the propagation of photoacoustic waves in tissues, and the acoustic measurement. The model outputs the theoretical sampling voltage signal, which is the response of the ultrasonic detector to the acoustic pressure reaching its receiving surface. The images representing the distribution map of the optical absorption energy density on cross-sections of the imaged luminal structures are reconstructed from the sampling voltage signals output by the detector through iterative inversion of the forward model. Compared with the conventional approaches based on back-projection and other imaging models, our method improved the quality and spatial resolution of the resulting images.
Collapse
Affiliation(s)
- Zheng Sun
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, China.,Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding 071003, China
| | - Huifeng Sun
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, China.,Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding 071003, China
| |
Collapse
|
29
|
Regensburger AP, Wagner AL, Danko V, Jüngert J, Federle A, Klett D, Schuessler S, Buehler A, Neurath MF, Roos A, Lochmüller H, Woelfle J, Trollmann R, Waldner MJ, Knieling F. Multispectral optoacoustic tomography for non-invasive disease phenotyping in pediatric spinal muscular atrophy patients. PHOTOACOUSTICS 2022; 25:100315. [PMID: 34849338 PMCID: PMC8607197 DOI: 10.1016/j.pacs.2021.100315] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 05/19/2023]
Abstract
Proximal spinal muscular atrophy (SMA) is a rare progressive, life limiting genetic motor neuron disease. While promising causal therapies are available, meaningful prognostic biomarkers for therapeutic monitoring are missing. We demonstrate handheld Multispectral Optoacoustic Tomography (MSOT) as a novel non-invasive imaging approach to visualize and quantify muscle wasting in pediatric SMA. While MSOT signals were distributed homogeneously in muscles of healthy volunteers (HVs), SMA patients showed moth-eaten optoacoustic signal patterns. Further signal quantification revealed greatest differences between groups at the isosbestic point for hemoglobin (SWL 800 nm). The SWL 800 nm signal intensities further correlated with clinical phenotype tested by standard motor outcome measures. Therefore, handheld MSOT could enable non-invasive assessment of disease burden in SMA patients.
Collapse
Affiliation(s)
- Adrian P. Regensburger
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Alexandra L. Wagner
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Vera Danko
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg Jüngert
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Anna Federle
- Medical Department 1, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Daniel Klett
- Medical Department 1, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Stephanie Schuessler
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Adrian Buehler
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Markus F. Neurath
- Medical Department 1, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Duisburg-Essen, Essen, Germany
| | - Hanns Lochmüller
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Regina Trollmann
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Maximilian J. Waldner
- Medical Department 1, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
- Correspondence to: Pediatric Experimental and Translational Imaging Laboratory (PETI-Lab) Department of Pediatrics and Adolescent Medicine Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Loschgestraße 15, 91054 Erlangen, Germany.
| |
Collapse
|
30
|
Ultrasonic microrheology for ex vivo skin explants monitoring: A proof of concept. Biosens Bioelectron 2022; 198:113831. [PMID: 34864245 DOI: 10.1016/j.bios.2021.113831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/13/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022]
Abstract
As an answer to alternative non-animal testing, biosensors dedicated to the ex vivo skin explants monitoring are a challenge to study physiological-like behavior and optimize new topical products. Because of the skin viscoelastic behavior, mechanical tests are commonly based on macroscopic measurement and give global descriptors of its state. Other techniques, including photoacoustic ones, are more focused on the molecular scale. There is a gap to fill in the mesoscopic range to get information about the microstructure of the skin. This article presents the proof-of-concept of a biosensor coupling a thickness shear-mode transducer with human skin explants kept in life-like state for a week. Thanks to a multifrequency analysis of the transducer impedance, this biosensor is able to monitor the viscoelastic properties of the skin. To extract the complex shear modulus and the microstructural evolutions, a mechanical model based on fractional calculus is used. As a preliminary results, the sensitivity of the sensor to probe the skin viscoelasticity in lifelike state and the impact of its culture medium are presented. A suitable microstructural coefficient is also extracted in order to identify mechanical breaches in the skin barrier after the application of peeling products.
Collapse
|
31
|
Li J, Shang C, Rong Y, Sun J, Cheng Y, He B, Wang Z, Li M, Ma J, Fu B, Ji X. Review on Laser Technology in Intravascular Imaging and Treatment. Aging Dis 2022; 13:246-266. [PMID: 35111372 PMCID: PMC8782552 DOI: 10.14336/ad.2021.0711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022] Open
Abstract
Blood vessels are one of the most essential organs, which nourish all tissues in our body. Once there are intravascular plaques or vascular occlusion, other organs and circulatory systems will not work properly. Therefore, it is necessary to detect abnormal blood vessels by intravascular imaging technologies for subsequent vascular treatment. The emergence of lasers and fiber optics promotes the development of intravascular imaging and treatment. Laser imaging techniques can obtain deep vascular images owing to light scattering and absorption properties. Moreover, photothermal and photomechanical effects of laser make it possible to treat vascular diseases accurately. In this review, we present the research progress and applications of laser techniques in intravascular imaging and treatment. Firstly, we introduce intravascular optical coherent tomography and intravascular photoacoustic imaging, which can obtain various information of plaques. Multimodal intravascular imaging techniques provide more information about intravascular plaques, which have an essential influence on intravascular imaging. Secondly, two laser techniques including laser angioplasty and endovenous laser ablation are discussed for the treatment of arterial and venous diseases, respectively. Finally, the outlook of laser techniques in blood vessels, as well as the integration of laser imaging and treatment are prospected in the section of discussions.
Collapse
Affiliation(s)
- Jing Li
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Ce Shang
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Yao Rong
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
- Medical Engineering Devices of Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jingxuan Sun
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Yuan Cheng
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Boqu He
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Zihao Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Ming Li
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jianguo Ma
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Bo Fu
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
- Key Laboratory of Big Data-Based Precision Medicine Ministry of Industry and Information Technology, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China.
| | - Xunming Ji
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Neurosurgery Department of Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
32
|
Wu M, Awasthi N, Rad NM, Pluim JPW, Lopata RGP. Advanced Ultrasound and Photoacoustic Imaging in Cardiology. SENSORS (BASEL, SWITZERLAND) 2021; 21:7947. [PMID: 34883951 PMCID: PMC8659598 DOI: 10.3390/s21237947] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. An effective management and treatment of CVDs highly relies on accurate diagnosis of the disease. As the most common imaging technique for clinical diagnosis of the CVDs, US imaging has been intensively explored. Especially with the introduction of deep learning (DL) techniques, US imaging has advanced tremendously in recent years. Photoacoustic imaging (PAI) is one of the most promising new imaging methods in addition to the existing clinical imaging methods. It can characterize different tissue compositions based on optical absorption contrast and thus can assess the functionality of the tissue. This paper reviews some major technological developments in both US (combined with deep learning techniques) and PA imaging in the application of diagnosis of CVDs.
Collapse
Affiliation(s)
- Min Wu
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (N.M.R.); (R.G.P.L.)
| | - Navchetan Awasthi
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (N.M.R.); (R.G.P.L.)
- Medical Image Analysis Group (IMAG/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands;
| | - Nastaran Mohammadian Rad
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (N.M.R.); (R.G.P.L.)
- Medical Image Analysis Group (IMAG/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands;
| | - Josien P. W. Pluim
- Medical Image Analysis Group (IMAG/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands;
| | - Richard G. P. Lopata
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (N.M.R.); (R.G.P.L.)
| |
Collapse
|
33
|
Müllenbroich MC, Kelly A, Acker C, Bub G, Bruegmann T, Di Bona A, Entcheva E, Ferrantini C, Kohl P, Lehnart SE, Mongillo M, Parmeggiani C, Richter C, Sasse P, Zaglia T, Sacconi L, Smith GL. Novel Optics-Based Approaches for Cardiac Electrophysiology: A Review. Front Physiol 2021; 12:769586. [PMID: 34867476 PMCID: PMC8637189 DOI: 10.3389/fphys.2021.769586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Optical techniques for recording and manipulating cellular electrophysiology have advanced rapidly in just a few decades. These developments allow for the analysis of cardiac cellular dynamics at multiple scales while largely overcoming the drawbacks associated with the use of electrodes. The recent advent of optogenetics opens up new possibilities for regional and tissue-level electrophysiological control and hold promise for future novel clinical applications. This article, which emerged from the international NOTICE workshop in 2018, reviews the state-of-the-art optical techniques used for cardiac electrophysiological research and the underlying biophysics. The design and performance of optical reporters and optogenetic actuators are reviewed along with limitations of current probes. The physics of light interaction with cardiac tissue is detailed and associated challenges with the use of optical sensors and actuators are presented. Case studies include the use of fluorescence recovery after photobleaching and super-resolution microscopy to explore the micro-structure of cardiac cells and a review of two photon and light sheet technologies applied to cardiac tissue. The emergence of cardiac optogenetics is reviewed and the current work exploring the potential clinical use of optogenetics is also described. Approaches which combine optogenetic manipulation and optical voltage measurement are discussed, in terms of platforms that allow real-time manipulation of whole heart electrophysiology in open and closed-loop systems to study optimal ways to terminate spiral arrhythmias. The design and operation of optics-based approaches that allow high-throughput cardiac electrophysiological assays is presented. Finally, emerging techniques of photo-acoustic imaging and stress sensors are described along with strategies for future development and establishment of these techniques in mainstream electrophysiological research.
Collapse
Affiliation(s)
| | - Allen Kelly
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Corey Acker
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, United States
| | - Gil Bub
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Tobias Bruegmann
- Institute for Cardiovascular Physiology, University Medical Center Goettingen, Goettingen, Germany
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | | | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Stephan E. Lehnart
- Heart Research Center Göttingen, University Medical Center Göttingen, Göttingen, Germany
- Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | | | - Claudia Richter
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Leonardo Sacconi
- European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
- National Institute of Optics, National Research Council, Florence, Italy
| | - Godfrey L. Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
34
|
Multi-Aspect Optoacoustic Imaging of Breast Tumors under Chemotherapy with Exogenous and Endogenous Contrasts: Focus on Apoptosis and Hypoxia. Biomedicines 2021; 9:biomedicines9111696. [PMID: 34829925 PMCID: PMC8615838 DOI: 10.3390/biomedicines9111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022] Open
Abstract
Breast cancer is a complex tumor type involving many biological processes. Most chemotherapeutic agents exert their antitumoral effects by rapid induction of apoptosis. Another main feature of breast cancer is hypoxia, which may drive malignant progression and confer resistance to various forms of therapy. Thus, multi-aspect imaging of both tumor apoptosis and oxygenation in vivo would be of enormous value for the effective evaluation of therapy response. Herein, we demonstrate the capability of a hybrid imaging modality known as multispectral optoacoustic tomography (MSOT) to provide high-resolution, simultaneous imaging of tumor apoptosis and oxygenation, based on both the exogenous contrast of an apoptosis-targeting dye and the endogenous contrast of hemoglobin. MSOT imaging was applied on mice bearing orthotopic 4T1 breast tumors before and following treatment with doxorubicin. Apoptosis was monitored over time by imaging the distribution of xPLORE-APOFL750©, a highly sensitive poly-caspase binding apoptotic probe, within the tumors. Oxygenation was monitored by tracking the distribution of oxy- and deoxygenated hemoglobin within the same tumor areas. Doxorubicin treatment induced an increase in apoptosis-depending optoacoustic signal of xPLORE-APOFL750© at 24 h after treatment. Furthermore, our results showed spatial correspondence between xPLORE-APO750© and deoxygenated hemoglobin. In vivo apoptotic status of the tumor tissue was independently verified by ex vivo fluorescence analysis. Overall, our results provide a rationale for the use of MSOT as an effective tool for simultaneously investigating various aspects of tumor pathophysiology and potential effects of therapeutic regimes based on both endogenous and exogenous molecular contrasts.
Collapse
|
35
|
Recent Technical Progression in Photoacoustic Imaging—Towards Using Contrast Agents and Multimodal Techniques. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11219804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For combining optical and ultrasonic imaging methodologies, photoacoustic imaging (PAI) is the most important and successful hybrid technique, which has greatly contributed to biomedical research and applications. Its theoretical background is based on the photoacoustic effect, whereby a modulated or pulsed light is emitted into tissue, which selectively absorbs the optical energy of the light at optical wavelengths. This energy produces a fast thermal expansion in the illuminated tissue, generating pressure waves (or photoacoustic waves) that can be detected by ultrasonic transducers. Research has shown that optical absorption spectroscopy offers high optical sensitivity and contrast for ingredient determination, for example, while ultrasound has demonstrated good spatial resolution in biomedical imaging. Photoacoustic imaging combines these advantages, i.e., high contrast through optical absorption and high spatial resolution due to the low scattering of ultrasound in tissue. In this review, we focus on advances made in PAI in the last five years and present categories and key devices used in PAI techniques. In particular, we highlight the continuously increasing imaging depth achieved by PAI, particularly when using exogenous reagents. Finally, we discuss the potential of combining PAI with other imaging techniques.
Collapse
|
36
|
Sugiura T, Okumura K, Matsumoto J, Sakaguchi M, Komori T, Ogi T, Inoue D, Koda W, Kobayashi S, Gabata T. Predicting intestinal viability by consecutive photoacoustic monitoring of oxygenation recovery after reperfusion in acute mesenteric ischemia in rats. Sci Rep 2021; 11:19474. [PMID: 34593923 PMCID: PMC8484661 DOI: 10.1038/s41598-021-98904-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
The purpose was to assess whether consecutive monitoring of oxygenation by photoacoustic imaging (PAI) can objectively predict intestinal viability during surgery for acute mesenteric ischemia (AMI). PAI uses laser light to detect relative amounts of oxygenated and deoxygenated hemoglobin in intestinal tissue. In 30 rats, AMI was induced by clamping the mesenteric and marginal vessels of the ileum for 0 min in the control group, 30 min in the mild group, and 180 min in the severe group (10 rats per group). After 60 min of reperfusion, intestinal damage was evaluated pathologically. Oxygenation of the intestine was monitored throughout the procedure in real time by a commercially available PAI system and compared among the groups. All rats showed irreversible (i.e. transmucosal or transmural infarction) damage in the severe group. After reperfusion, the oxygenation in the mild group recovered immediately and was significantly higher than in the severe group at 1, 5, 10, 30, and 60 min (P = .011, 002, < .001, 001, and 001, respectively). Oxygenation showed a significant strong negative correlation with pathological severity (rs = − 0.7783, − 0.7806, − 0.7422, − 0.7728, and − 0.7704, respectively). In conclusion, PAI could objectively predict irreversible ischemic damage immediately after reperfusion, which potentially prevents inadequate surgery.
Collapse
Affiliation(s)
- Takumi Sugiura
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kenichiro Okumura
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Junichi Matsumoto
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Maki Sakaguchi
- Department of Diagnostic Pathology, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Takahiro Komori
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Takahiro Ogi
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Dai Inoue
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Wataru Koda
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Satoshi Kobayashi
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.,Department of Quantum Medical Technology, Kanazawa University Graduate School of Medical Sciences, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan
| | - Toshifumi Gabata
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
37
|
Yang X, Chen YH, Xia F, Sawan M. Photoacoustic imaging for monitoring of stroke diseases: A review. PHOTOACOUSTICS 2021; 23:100287. [PMID: 34401324 PMCID: PMC8353507 DOI: 10.1016/j.pacs.2021.100287] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 05/14/2023]
Abstract
Stroke is the leading cause of death and disability after ischemic heart disease. However, there is lacking a non-invasive long-time monitoring technique for stroke diagnosis and therapy. The photoacoustic imaging approach reconstructs images of an object based on the energy excitation by optical absorption and its conversion to acoustic waves, due to corresponding thermoelastic expansion, which has optical resolution and acoustic propagation. This emerging functional imaging method is a non-invasive technique. Due to its precision, this method is particularly attractive for stroke monitoring purpose. In this paper, we review the achievements of this technology and its applications on stroke, as well as the development status in both animal and human applications. Also, various photoacoustic systems and multi-modality photoacoustic imaging are introduced as for potential clinical applications. Finally, the challenges of photoacoustic imaging for monitoring stroke are discussed.
Collapse
Affiliation(s)
- Xi Yang
- Zhejiang University, Hangzhou, 310024, Zhejiang, China
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Yun-Hsuan Chen
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Fen Xia
- Zhejiang University, Hangzhou, 310024, Zhejiang, China
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Mohamad Sawan
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
- Corresponding author at: CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
38
|
Gellini C, Feis A. Optothermal properties of plasmonic inorganic nanoparticles for photoacoustic applications. PHOTOACOUSTICS 2021; 23:100281. [PMID: 34194975 PMCID: PMC8233228 DOI: 10.1016/j.pacs.2021.100281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/05/2021] [Accepted: 06/10/2021] [Indexed: 05/08/2023]
Abstract
Plasmonic systems are becoming a favourable alternative to dye molecules in the generation of photoacoustic signals for spectroscopy and imaging. In particular, inorganic nanoparticles are appealing because of their versatility. In fact, as the shape, size and chemical composition of nanoparticles are directly correlated with their plasmonic properties, the excitation wavelength can be tuned to their plasmon resonance by adjusting such traits. This feature enables an extensive spectral range to be covered. In addition, surface chemical modifications can be performed to provide the nanoparticles with designed functionalities, e.g., selective affinity for specific macromolecules. The efficiency of the conversion of absorbed photon energy into heat, which is the physical basis of the photoacoustic signal, can be accurately determined by photoacoustic methods. This review contrasts studies that evaluate photoconversion in various kinds of nanomaterials by different methods, with the objective of facilitating the researchers' choice of suitable plasmonic nanoparticles for photoacoustic applications.
Collapse
Affiliation(s)
- Cristina Gellini
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Alessandro Feis
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
39
|
Karlas A, Kallmayer M, Bariotakis M, Fasoula NA, Liapis E, Hyafil F, Pelisek J, Wildgruber M, Eckstein HH, Ntziachristos V. Multispectral optoacoustic tomography of lipid and hemoglobin contrast in human carotid atherosclerosis. PHOTOACOUSTICS 2021; 23:100283. [PMID: 34381689 PMCID: PMC8340302 DOI: 10.1016/j.pacs.2021.100283] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 05/09/2023]
Abstract
Several imaging techniques aim at identifying features of carotid plaque instability but come with limitations, such as the use of contrast agents, long examination times and poor portability. Multispectral optoacoustic tomography (MSOT) employs light and sound to resolve lipid and hemoglobin content, both features associated with plaque instability, in a label-free, fast and highly portable way. Herein, 5 patients with carotid atherosclerosis, 5 healthy volunteers and 2 excised plaques, were scanned with handheld MSOT. Spectral unmixing allowed visualization of lipid and hemoglobin content within three ROIs: whole arterial cross-section, plaque and arterial lumen. Calculation of the fat-blood-ratio (FBR) value within the ROIs enabled the differentiation between patients and healthy volunteers (P = 0.001) and between plaque and lumen in patients (P = 0.04). Our results introduce MSOT as a tool for molecular imaging of human carotid atherosclerosis and open new possibilities for research and clinical assessment of carotid plaques.
Collapse
Affiliation(s)
- Angelos Karlas
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
- Clinic for Vascular and Endovascular Surgery, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Michael Kallmayer
- Clinic for Vascular and Endovascular Surgery, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Michael Bariotakis
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Nikolina-Alexia Fasoula
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Evangelos Liapis
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Fabien Hyafil
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), DHU FIRE, University de Paris, Paris, France
- Department of Nuclear Medicine, Bichat University Hospital, Assistance-Publique-Hôpitaux de Paris, Paris, France
| | - Jaroslav Pelisek
- Clinic for Vascular and Endovascular Surgery, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
- Department of Vascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Hans-Henning Eckstein
- Clinic for Vascular and Endovascular Surgery, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Corresponding author at: Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany.
| |
Collapse
|
40
|
Liu N, Chen X, Kimm MA, Stechele M, Chen X, Zhang Z, Wildgruber M, Ma X. In vivo optical molecular imaging of inflammation and immunity. J Mol Med (Berl) 2021; 99:1385-1398. [PMID: 34272967 DOI: 10.1007/s00109-021-02115-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022]
Abstract
Inflammation is the phenotypic form of various diseases. Recent development in molecular imaging provides new insights into the diagnostic and therapeutic evaluation of different inflammatory diseases as well as diseases involving inflammation such as cancer. While conventional imaging techniques used in the clinical setting provide only indirect measures of inflammation such as increased perfusion and altered endothelial permeability, optical imaging is able to report molecular information on diseased tissue and cells. Optical imaging is a quick, noninvasive, nonionizing, and easy-to-use diagnostic technology which has been successfully applied for preclinical research. Further development of optical imaging technology such as optoacoustic imaging overcomes the limitations of mere fluorescence imaging, thereby enabling pilot clinical applications in humans. By means of endogenous and exogenous contrast agents, sites of inflammation can be accurately visualized in vivo. This allows for early disease detection and specific disease characterization, enabling more rapid and targeted therapeutic interventions. In this review, we summarize currently available optical imaging techniques used to detect inflammation, including optical coherence tomography (OCT), bioluminescence, fluorescence, optoacoustics, and Raman spectroscopy. We discuss advantages and disadvantages of the different in vivo imaging applications with a special focus on targeting inflammation including immune cell tracking.
Collapse
Affiliation(s)
- Nian Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
- Department of Chemistry, Technical University of Munich, 85747, Garching, Germany
| | - Xiao Chen
- Klinik und Poliklinik IV, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Melanie A Kimm
- Department of Radiology, University Hospital, LMU Munich, 81337, Munich, Germany
| | - Matthias Stechele
- Department of Radiology, University Hospital, LMU Munich, 81337, Munich, Germany
| | - Xueli Chen
- School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Zhimin Zhang
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, 81337, Munich, Germany
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China.
| |
Collapse
|
41
|
Fluoro-photoacoustic polymeric renal reporter for real-time dual imaging of acute kidney injury. Methods Enzymol 2021; 657:271-300. [PMID: 34353491 DOI: 10.1016/bs.mie.2021.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this chapter, we introduced a diagnostic approach for acute kidney injury (AKI) via photoacoustic imaging. We provided detailed synthetic procedures of a biomarker-activatable photoacoustic agent (FPRR) with high renal clearance efficiency. We also provided protocols for in vitro characterization, live-cell imaging, and in vivo imaging in a drug-induced AKI mice model. Compared to near-infrared fluorescence imaging, photoacoustic imaging is more sensitive with higher signal-to-background ratio. As such, our approach serves as a general guideline in the development of photoacoustic agents for diagnosis of urological diseases. With this tool in hand, researchers in the field of optical imaging may be inspired to develop other photoacoustic agents for early stage disease diagnosis.
Collapse
|
42
|
Borges GSM, Lages EB, Sicard P, Ferreira LAM, Richard S. Nanomedicine in Oncocardiology: Contribution and Perspectives of Preclinical Studies. Front Cardiovasc Med 2021; 8:690533. [PMID: 34277738 PMCID: PMC8277942 DOI: 10.3389/fcvm.2021.690533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer and cardiovascular diseases are the leading causes of death and morbidity worldwide. Strikingly, cardiovascular disorders are more common and more severe in cancer patients than in the general population, increasing incidence rates. In this context, it is vital to consider the anticancer efficacy of a treatment and the devastating heart complications it could potentially cause. Oncocardiology has emerged as a promising medical and scientific field addressing these aspects from different angles. Interestingly, nanomedicine appears to have great promise in reducing the cardiotoxicity of anticancer drugs, maintaining or even enhancing their efficacy. Several studies have shown the benefits of nanocarriers, although with some flaws when considering the concept of oncocardiology. Herein, we discuss how preclinical studies should be designed as closely as possible to clinical protocols, considering various parameters intrinsic to the animal models used and the experimental protocols. The sex and age of the animals, the size and location of the tumors, the doses of the nanoformulations administered, and the acute vs. the long-term effects of treatments are essential aspects. We also discuss the perspectives offered by non-invasive imaging techniques to simultaneously assess both the anticancer effects of treatment and its potential impact on the heart. The overall objective is to accelerate the development and validation of nanoformulations through high-quality preclinical studies reproducing the clinical conditions.
Collapse
Affiliation(s)
- Gabriel Silva Marques Borges
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Eduardo Burgarelli Lages
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Pierre Sicard
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France.,IPAM, BioCampus, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Lucas Antônio Miranda Ferreira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sylvain Richard
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France.,IPAM, BioCampus, CNRS, INSERM, Université de Montpellier, Montpellier, France
| |
Collapse
|
43
|
Minhas AS, Sharkey J, Randtke EA, Murray P, Wilm B, Pagel MD, Poptani H. Measuring Kidney Perfusion, pH, and Renal Clearance Consecutively Using MRI and Multispectral Optoacoustic Tomography. Mol Imaging Biol 2021; 22:494-503. [PMID: 31529408 PMCID: PMC7250811 DOI: 10.1007/s11307-019-01429-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Purpose: To establish multi-modal imaging for the assessment of kidney pH, perfusion, and clearance rate using magnetic resonance imaging (MRI) and multispectral optoacoustic tomography (MSOT) in healthy mice. Kidney pH and perfusion values were measured on a pixel-by-pixel basis using the MRI acidoCEST and FAIR-EPI methods. Kidney filtration rate was measured by analyzing the renal clearance rate of IRdye 800 using MSOT. To test the effect of one imaging method on the other, a set of 3 animals were imaged with MSOT followed by MRI, and a second set of 3 animals were imaged with MRI followed by MSOT. In a subsequent study, the reproducibility of pH, perfusion, and renal clearance measurements were tested by imaging 4 animals twice, separated by 4 days. The contrast agents used for acidoCEST based pH measurements influenced the results of MSOT. Specifically, the exponential decay time from the kidney cortex, as measured by MSOT, was significantly altered when MRI was performed prior to MSOT. However, no significant difference in the cortex to pelvis area under the curve (AUC) was noted. When the order of experiments was reversed, no significant differences were noted in the pH or perfusion values. Reproducibility measurements demonstrated similar pH and cortex to pelvis AUC; however, perfusion values were significantly different with the cortex values being higher and the pelvic values being lower in the second imaging time. We demonstrate that using a combination of MRI and MSOT, physiological measurements of pH, blood flow, and clearance rates can be measured in the mouse kidney in the same imaging session.
Collapse
Affiliation(s)
- Atul S Minhas
- Center for Pre-Clinical Imaging, Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool, Merseyside, UK.,School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Jack Sharkey
- Center for Pre-Clinical Imaging, Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool, Merseyside, UK
| | - Edward A Randtke
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Patricia Murray
- Center for Pre-Clinical Imaging, Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool, Merseyside, UK
| | - Bettina Wilm
- Center for Pre-Clinical Imaging, Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool, Merseyside, UK
| | | | - Harish Poptani
- Center for Pre-Clinical Imaging, Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool, Merseyside, UK.
| |
Collapse
|
44
|
Karlas A, Pleitez MA, Aguirre J, Ntziachristos V. Optoacoustic imaging in endocrinology and metabolism. Nat Rev Endocrinol 2021; 17:323-335. [PMID: 33875856 DOI: 10.1038/s41574-021-00482-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 02/02/2023]
Abstract
Imaging is an essential tool in research, diagnostics and the management of endocrine disorders. Ultrasonography, nuclear medicine techniques, MRI, CT and optical methods are already used for applications in endocrinology. Optoacoustic imaging, also termed photoacoustic imaging, is emerging as a method for visualizing endocrine physiology and disease at different scales of detail: microscopic, mesoscopic and macroscopic. Optoacoustic contrast arises from endogenous light absorbers, such as oxygenated and deoxygenated haemoglobin, lipids and water, or exogenous contrast agents, and reveals tissue vasculature, perfusion, oxygenation, metabolic activity and inflammation. The development of high-performance optoacoustic scanners for use in humans has given rise to a variety of clinical investigations, which complement the use of the technology in preclinical research. Here, we review key progress with optoacoustic imaging technology as it relates to applications in endocrinology; for example, to visualize thyroid morphology and function, and the microvasculature in diabetes mellitus or adipose tissue metabolism, with particular focus on multispectral optoacoustic tomography and raster-scan optoacoustic mesoscopy. We explain the merits of optoacoustic microscopy and focus on mid-infrared optoacoustic microscopy, which enables label-free imaging of metabolites in cells and tissues. We showcase current optoacoustic applications within endocrinology and discuss the potential of these technologies to advance research and clinical practice.
Collapse
Affiliation(s)
- Angelos Karlas
- Chair of Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Partner Site, German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Miguel A Pleitez
- Chair of Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Juan Aguirre
- Chair of Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany.
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
45
|
Fasoula NA, Karlas A, Kallmayer M, Milik AB, Pelisek J, Eckstein HH, Klingenspor M, Ntziachristos V. Multicompartmental non-invasive sensing of postprandial lipemia in humans with multispectral optoacoustic tomography. Mol Metab 2021; 47:101184. [PMID: 33549846 PMCID: PMC7918675 DOI: 10.1016/j.molmet.2021.101184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Postprandial lipid profiling (PLP), a risk indicator of cardiometabolic disease, is based on frequent blood sampling over several hours after a meal, an approach that is invasive and inconvenient. Non-invasive PLP may offer an alternative for disseminated human monitoring. Herein, we investigate the use of clinical multispectral optoacoustic tomography (MSOT) for non-invasive, label-free PLP via direct lipid-sensing in human vasculature and soft tissues. METHODS Four (n = 4) subjects (3 females and 1 male, age: 28 ± 7 years) were enrolled in the current pilot study. We longitudinally measured the lipid signals in arteries, veins, skeletal muscles, and adipose tissues of all participants at 30-min intervals for 6 h after the oral consumption of a high-fat meal. RESULTS Optoacoustic lipid-signal analysis showed on average a 63.4% intra-arterial increase at ~ 4 h postprandially, an 83.9% intra-venous increase at ~ 3 h, a 120.8% intra-muscular increase at ~ 3 h, and a 32.8% subcutaneous fat increase at ~ 4 h. CONCLUSION MSOT provides the potential to study lipid metabolism that could lead to novel diagnostics and prevention strategies by label-free, non-invasive detection of tissue biomarkers implicated in cardiometabolic diseases.
Collapse
Affiliation(s)
- Nikolina-Alexia Fasoula
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Germany; Helmholtz Zentrum München, Neuherberg, Institute of Biological and Medical Imaging, Germany
| | - Angelos Karlas
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Germany; Helmholtz Zentrum München, Neuherberg, Institute of Biological and Medical Imaging, Germany; Clinic of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Munich, Germany
| | - Michael Kallmayer
- Clinic of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Munich, Germany
| | - Anamaria Beatrice Milik
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Germany; Helmholtz Zentrum München, Neuherberg, Institute of Biological and Medical Imaging, Germany
| | - Jaroslav Pelisek
- Clinic of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Munich, Germany; Department of Vascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Hans-Henning Eckstein
- Clinic of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Munich, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany; EKFZ-Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL-Institute for Food &Health, Technical University of Munich, Freising, Germany
| | - Vasilis Ntziachristos
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Germany; Helmholtz Zentrum München, Neuherberg, Institute of Biological and Medical Imaging, Germany.
| |
Collapse
|
46
|
Towards Transabdominal Functional Photoacoustic Imaging of the Placenta: Improvement in Imaging Depth Through Optimization of Light Delivery. Ann Biomed Eng 2021; 49:1861-1873. [PMID: 33909192 PMCID: PMC8373763 DOI: 10.1007/s10439-021-02777-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Functional photoacoustic imaging of the placenta could provide an innovative tool to diagnose preeclampsia, monitor fetal growth restriction, and determine the developmental impacts of gestational diabetes. However, transabdominal photoacoustic imaging is limited in imaging depth due to the tissue's scattering and absorption of light. The aim of this paper was to investigate the impact of geometry and wavelength on transabdominal light delivery. Our methods included the development of a multilayer model of the abdominal tissue and simulation of the light propagation using Monte Carlo methods. A bifurcated light source with varying incident angle of light, distance between light beams, and beam area was simulated to analyze the effect of light delivery geometry on the fluence distribution at depth. The impact of wavelength and the effects of variable thicknesses of adipose tissue and muscle were also studied. Our results showed that the beam area plays a major role in improving the delivery of light to deep tissue, in comparison to light incidence angle or distance between the bifurcated fibers. Longer wavelengths, with incident fluence at the maximum permissible exposure limit, also increases fluence within deeper tissue. We validated our simulations using a commercially available light delivery system and ex vivo human placental tissue. Additionally, we compared our optimized light delivery to a commercially available light delivery system, and conclude that our optimized geometry could improve imaging depth more than 1.6×, bringing the imaging depth to within the needed range for transabdominal imaging of the human placenta.
Collapse
|
47
|
Regensburger AP, Brown E, Krönke G, Waldner MJ, Knieling F. Optoacoustic Imaging in Inflammation. Biomedicines 2021; 9:483. [PMID: 33924983 PMCID: PMC8145174 DOI: 10.3390/biomedicines9050483] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Optoacoustic or photoacoustic imaging (OAI/PAI) is a technology which enables non-invasive visualization of laser-illuminated tissue by the detection of acoustic signals. The combination of "light in" and "sound out" offers unprecedented scalability with a high penetration depth and resolution. The wide range of biomedical applications makes this technology a versatile tool for preclinical and clinical research. Particularly when imaging inflammation, the technology offers advantages over current clinical methods to diagnose, stage, and monitor physiological and pathophysiological processes. This review discusses the clinical perspective of using OAI in the context of imaging inflammation as well as in current and emerging translational applications.
Collapse
Affiliation(s)
- Adrian P. Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Loschgestr. 15, D-91054 Erlangen, Germany;
| | - Emma Brown
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Gerhard Krönke
- Department of Medicine 3, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Ulmenweg 18, D-91054 Erlangen, Germany;
| | - Maximilian J. Waldner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Ulmenweg 18, D-91054 Erlangen, Germany;
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Loschgestr. 15, D-91054 Erlangen, Germany;
| |
Collapse
|
48
|
Hallasch S, Giese N, Stoffels I, Klode J, Sondermann W. Multispectral optoacoustic tomography might be a helpful tool for noninvasive early diagnosis of psoriatic arthritis. PHOTOACOUSTICS 2021; 21:100225. [PMID: 34258221 PMCID: PMC8253851 DOI: 10.1016/j.pacs.2020.100225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/02/2020] [Accepted: 11/16/2020] [Indexed: 06/13/2023]
Abstract
Currently used imaging methods for diagnosis of psoriatic arthritis (PsA) frequently come along with exposure to radiation and can often only show long-term effects of the disease. The aim of the study was to check the feasibility of a new optoacoustic imaging method to identify PsA. 22 psoriasis patients and 19 healthy volunteers underwent examination using multispectral optoacoustic tomography (MSOT). The presence of arthritis was assessed via quantification of optoacoustic signal intensity of the endogenous chromophores oxy- and deoxyhemoglobin. We conducted high-resolution real-time ultrasound images of the finger joints. The semi quantitative analysis of the optoacoustic signals for both hemoglobin species showed a significant higher blood content and oxygenation in PsA patients compared to healthy controls. Our results indicate that MSOT might allow detection of inflammation in an early stage. If the data is further confirmed, this technique might be a suitable tool to avoid delay of diagnosis of PsA.
Collapse
|
49
|
Wagner AL, Danko V, Federle A, Klett D, Simon D, Heiss R, Jüngert J, Uder M, Schett G, Neurath MF, Woelfle J, Waldner MJ, Trollmann R, Regensburger AP, Knieling F. Precision of handheld multispectral optoacoustic tomography for muscle imaging. PHOTOACOUSTICS 2021; 21:100220. [PMID: 33318928 PMCID: PMC7723806 DOI: 10.1016/j.pacs.2020.100220] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 05/05/2023]
Abstract
Photo-or optoacoustic imaging (OAI) allows quantitative imaging of target tissues. Using multi-wavelength illumination with subsequent ultrasound detection, it may visualize a variety of different chromophores at centimeter depth. Despite its non-invasive, label-free advantages, the precision of repeated measurements for clinical applications is still elusive. We present a multilayer analysis of n = 1920 imaging datasets obtained from a prospective clinical trial (NCT03979157) in n = 10 healthy adult volunteers. All datasets were analyzed for 13 single wavelengths (SWL) between 660 nm-1210 nm and five MSOT-parameters (deoxygenated/oxygenated/total hemoglobin, collagen and lipid) by a semi-automated batch mode software. Intraclass correlation coefficients (ICC) were good to excellent for intrarater (SWL: 0.82-0.92; MSOT-parameter: 0.72-0.92) and interrater reproducibility (SWL: 0.79-0.87; MSOT-parameter: 0.78-0.86), with the exception for MSOT-parameter lipid (interrater ICC: 0.56). Results were stable over time, but exercise-related effects as well as inter-and intramuscular variability were observed. The findings of this study provide a framework for further clinical OAI implementation.
Collapse
Affiliation(s)
- Alexandra L. Wagner
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Vera Danko
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Federle
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Klett
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - David Simon
- Department of Medicine 3, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Rafael Heiss
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg Jüngert
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Georg Schett
- Department of Medicine 3, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian J. Waldner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Trollmann
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Adrian P. Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Corresponding author at: Pediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Loschgestraße 15, 91054, Erlangen, Germany.
| |
Collapse
|
50
|
Jeng GS, Li ML, Kim M, Yoon SJ, Pitre JJ, Li DS, Pelivanov I, O’Donnell M. Real-time interleaved spectroscopic photoacoustic and ultrasound (PAUS) scanning with simultaneous fluence compensation and motion correction. Nat Commun 2021; 12:716. [PMID: 33514737 PMCID: PMC7846772 DOI: 10.1038/s41467-021-20947-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
For over two decades photoacoustic imaging has been tested clinically, but successful human trials have been limited. To enable quantitative clinical spectroscopy, the fundamental issues of wavelength-dependent fluence variations and inter-wavelength motion must be overcome. Here we propose a real-time, spectroscopic photoacoustic/ultrasound (PAUS) imaging approach using a compact, 1-kHz rate wavelength-tunable laser. Instead of illuminating tissue over a large area, the fiber-optic delivery system surrounding an US array sequentially scans a narrow laser beam, with partial PA image reconstruction for each laser pulse. The final image is then formed by coherently summing partial images. This scheme enables (i) automatic compensation for wavelength-dependent fluence variations in spectroscopic PA imaging and (ii) motion correction of spectroscopic PA frames using US speckle tracking in real-time systems. The 50-Hz video rate PAUS system is demonstrated in vivo using a murine model of labelled drug delivery.
Collapse
Affiliation(s)
- Geng-Shi Jeng
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA ,grid.260539.b0000 0001 2059 7017Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan
| | - Meng-Lin Li
- grid.38348.340000 0004 0532 0580Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan ,grid.38348.340000 0004 0532 0580Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan
| | - MinWoo Kim
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Soon Joon Yoon
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| | - John J. Pitre
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| | - David S. Li
- grid.34477.330000000122986657Department of Chemical Engineering, University of Washington, Seattle, WA USA
| | - Ivan Pelivanov
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Matthew O’Donnell
- grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA USA
| |
Collapse
|