1
|
Lee FS, Nguyen UN, Munns EJ, Wachs RA. Identification of compounds that cause axonal dieback without cytotoxicity in dorsal root ganglia explants and intervertebral disc cells with potential to treat pain via denervation. PLoS One 2024; 19:e0300254. [PMID: 38696450 PMCID: PMC11065314 DOI: 10.1371/journal.pone.0300254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/23/2024] [Indexed: 05/04/2024] Open
Abstract
Low back pain, knee osteoarthritis, and cancer patients suffer from chronic pain. Aberrant nerve growth into intervertebral disc, knee, and tumors, are common pathologies that lead to these chronic pain conditions. Axonal dieback induced by capsaicin (Caps) denervation has been FDA-approved to treat painful neuropathies and knee osteoarthritis but with short-term efficacy and discomfort. Herein, we propose to evaluate pyridoxine (Pyr), vincristine sulfate (Vcr) and ionomycin (Imy) as axonal dieback compounds for denervation with potential to alleviate pain. Previous literature suggests Pyr, Vcr, and Imy can cause undesired axonal degeneration, but no previous work has evaluated axonal dieback and cytotoxicity on adult rat dorsal root ganglia (DRG) explants. Thus, we performed axonal dieback screening using adult rat DRG explants in vitro with Caps as a positive control and assessed cytotoxicity. Imy inhibited axonal outgrowth and slowed axonal dieback, while Pyr and Vcr at high concentrations produced significant reduction in axon length and robust axonal dieback within three days. DRGs treated with Caps, Vcr, or Imy had increased DRG cytotoxicity compared to matched controls, but overall cytotoxicity was minimal and at least 88% lower compared to lysed DRGs. Pyr did not lead to any DRG cytotoxicity. Further, neither Pyr nor Vcr triggered intervertebral disc cell death or affected cellular metabolic activity after three days of incubation in vitro. Overall, our findings suggest Pyr and Vcr are not toxic to DRGs and intervertebral disc cells, and there is potential for repurposing these compounds for axonal dieback compounds to cause local denervation and alleviate pain.
Collapse
Affiliation(s)
- Fei San Lee
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska United States of America
| | - Uyen N. Nguyen
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska United States of America
| | - Eliza J. Munns
- Department of Electrical, Computer, and Biomedical Engineering, Union College, Schenectady, New York, United States of America
| | - Rebecca A. Wachs
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska United States of America
| |
Collapse
|
2
|
Blasko F, Horvathova L. The relationship between the tumor and its innervation: historical, methodical, morphological, and functional assessments - A minireview. Endocr Regul 2024; 58:68-82. [PMID: 38563296 DOI: 10.2478/enr-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The acceptance of the tumor as a non-isolated structure within the organism has opened a space for the study of a wide spectrum of potential direct and indirect interactions, not only between the tumor tissue and its vicinity, but also between the tumor and its macroenvironment, including the nervous system. Although several lines of evidence have implicated the nervous system in tumor growth and progression, for many years, researchers believed that tumors lacked innervation and the notion of indirect neuro-neoplastic interactions via other systems (e.g., immune, or endocrine) predominated. The original idea that tumors are supplied not only by blood and lymphatic vessels, but also autonomic and sensory nerves that may influence cancer progression, is not a recent phenomenon. Although in the past, mainly due to the insufficiently sensitive methodological approaches, opinions regarding the presence of nerves in tumors were inconsistent. However, data from the last decade have shown that tumors are able to stimulate the formation of their own innervation by processes called neo-neurogenesis and neo-axonogenesis. It has also been shown that tumor infiltrating nerves are not a passive, but active components of the tumor microenvironment and their presence in the tumor tissue is associated with an aggressive tumor phenotype and correlates with poor prognosis. The aim of the present review was to 1) summarize the available knowledge regarding the course of tumor innervation, 2) present the potential mechanisms and pathways for the possible induction of new nerve fibers into the tumor microenvironment, and 3) highlight the functional significance/consequences of the nerves infiltrating the tumors.
Collapse
Affiliation(s)
- Filip Blasko
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Lubica Horvathova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3
|
Hansen RB, Sayilekshmy M, Sørensen MS, Jørgensen AH, Kanneworff IB, Bengtsson EKE, Grum-Schwensen TA, Petersen MM, Ejersted C, Andersen TL, Andreasen CM, Heegaard AM. Neuronal Sprouting and Reorganization in Bone Tissue Infiltrated by Human Breast Cancer Cells. FRONTIERS IN PAIN RESEARCH 2022; 3:887747. [PMID: 35712449 PMCID: PMC9197453 DOI: 10.3389/fpain.2022.887747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPain is a common complication for patients with metastatic bone disease. Animal models suggest that the pain, in part, is driven by pathological sprouting and reorganization of the nerve fibers innervating the bone. Here, we investigate how these findings translate to humans.MethodsBone biopsies were collected from healthy volunteers (n = 7) and patients with breast cancer and metastatic bone disease (permissions H-15000679, S-20180057 and S-20110112). Cancer-infiltrated biopsies were from patients without recent anticancer treatment (n = 10), patients with recent anticancer treatment (n = 10), and patients with joint replacement surgery (n = 9). Adjacent bone sections were stained for (1) protein gene product 9.5 and CD34, and (2) cytokeratin 7 and 19. Histomorphometry was used to estimate the area of bone marrow and tumor burden. Nerve profiles were counted, and the nerve profile density calculated. The location of each nerve profile within 25 μm of a vascular structure and/or cancer cells was determined.ResultsCancer-infiltrated bone tissue demonstrated a significantly higher nerve profile density compared to healthy bone tissue. The percentage of nerve profiles found close to vascular structures was significantly lower in cancer-infiltrated bone tissue. No difference was found in the percentage of nerve profiles located close to cancer between the subgroups of cancer-infiltrated bone tissue. Interestingly, no correlation was found between nerve profile density and tumor burden.ConclusionsTogether, the increased nerve profile density and the decreased association of nerve profiles to vasculature strongly suggests that neuronal sprouting and reorganization occurs in human cancer-infiltrated bone tissue.
Collapse
Affiliation(s)
- Rie B. Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Manasi Sayilekshmy
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Michala S. Sørensen
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Astrid H. Jørgensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ida B. Kanneworff
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Emma K. E. Bengtsson
- Clinical Cell Biology Group, Department of Pathology, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Tomas A. Grum-Schwensen
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Michael M. Petersen
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Ejersted
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Thomas L. Andersen
- Clinical Cell Biology Group, Department of Pathology, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christina M. Andreasen
- Clinical Cell Biology Group, Department of Pathology, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Anne-Marie Heegaard
| |
Collapse
|
4
|
Baraldi JH, Martyn GV, Shurin GV, Shurin MR. Tumor Innervation: History, Methodologies, and Significance. Cancers (Basel) 2022; 14:1979. [PMID: 35454883 PMCID: PMC9029781 DOI: 10.3390/cancers14081979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
The role of the nervous system in cancer development and progression has been under experimental and clinical investigation since nineteenth-century observations in solid tumor anatomy and histology. For the first half of the twentieth century, methodological limitations and opaque mechanistic concepts resulted in ambiguous evidence of tumor innervation. Differential spatial distribution of viable or disintegrated nerve tissue colocalized with neoplastic tissue led investigators to conclude that solid tumors either are or are not innervated. Subsequent work in electrophysiology, immunohistochemistry, pathway enrichment analysis, neuroimmunology, and neuroimmunooncology have bolstered the conclusion that solid tumors are innervated. Regulatory mechanisms for cancer-related neurogenesis, as well as specific operational definitions of perineural invasion and axonogenesis, have helped to explain the consensus observation of nerves at the periphery of the tumor signifying a functional role of nerves, neurons, neurites, and glia in tumor development.
Collapse
Affiliation(s)
- James H. Baraldi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - German V. Martyn
- Biomedical Studies Program, Chatham University, Pittsburgh, PA 15232, USA;
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Michael R. Shurin
- Department of Pathology and Immunology, Division of Clinical Immunopathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Ericson ME, Breitschwerdt EB, Reicherter P, Maxwell C, Maggi RG, Melvin RG, Maluki AH, Bradley JM, Miller JC, Simmons GE, Dencklau J, Joppru K, Peterson J, Bae W, Scanlon J, Bemis LT. Bartonella henselae Detected in Malignant Melanoma, a Preliminary Study. Pathogens 2021; 10:326. [PMID: 33802018 PMCID: PMC7998106 DOI: 10.3390/pathogens10030326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Bartonella bacilliformis (B. bacilliformis), Bartonella henselae (B. henselae), and Bartonella quintana (B. quintana) are bacteria known to cause verruga peruana or bacillary angiomatosis, vascular endothelial growth factor (VEGF)-dependent cutaneous lesions in humans. Given the bacteria's association with the dermal niche and clinical suspicion of occult infection by a dermatologist, we determined if patients with melanoma had evidence of Bartonella spp. infection. Within a one-month period, eight patients previously diagnosed with melanoma volunteered to be tested for evidence of Bartonella spp. exposure/infection. Subsequently, confocal immunohistochemistry and PCR for Bartonella spp. were used to study melanoma tissues from two patients. Blood from seven of the eight patients was either seroreactive, PCR positive, or positive by both modalities for Bartonella spp. exposure. Subsequently, Bartonella organisms that co-localized with VEGFC immunoreactivity were visualized using multi-immunostaining confocal microscopy of thick skin sections from two patients. Using a co-culture model, B. henselae was observed to enter melanoma cell cytoplasm and resulted in increased vascular endothelial growth factor C (VEGFC) and interleukin 8 (IL-8) production. Findings from this small number of patients support the need for future investigations to determine the extent to which Bartonella spp. are a component of the melanoma pathobiome.
Collapse
Affiliation(s)
- Marna E. Ericson
- T Lab Inc., 910 Clopper Road, Suite 220S, Gaithersburg, MD 20878, USA;
| | - Edward B. Breitschwerdt
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (E.B.B.); (R.G.M.); (J.M.B.)
| | - Paul Reicherter
- Dermatology Clinic, Truman Medical Center, University of Missouri, Kansas City, MO 64108, USA;
| | - Cole Maxwell
- Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA; (C.M.); (A.H.M.); (J.D.); (J.P.); (W.B.); (J.S.)
| | - Ricardo G. Maggi
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (E.B.B.); (R.G.M.); (J.M.B.)
| | - Richard G. Melvin
- Department of Biomedical Sciences, Duluth Campus, Medical School, University of Minnesota, Duluth, MN 55812, USA; (R.G.M.); (G.E.S.J.); (K.J.)
| | - Azar H. Maluki
- Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA; (C.M.); (A.H.M.); (J.D.); (J.P.); (W.B.); (J.S.)
- Department of Dermatology, College of Medicine, University of Kufa, Kufa 54003, Iraq
| | - Julie M. Bradley
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (E.B.B.); (R.G.M.); (J.M.B.)
| | | | - Glenn E. Simmons
- Department of Biomedical Sciences, Duluth Campus, Medical School, University of Minnesota, Duluth, MN 55812, USA; (R.G.M.); (G.E.S.J.); (K.J.)
| | - Jamie Dencklau
- Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA; (C.M.); (A.H.M.); (J.D.); (J.P.); (W.B.); (J.S.)
| | - Keaton Joppru
- Department of Biomedical Sciences, Duluth Campus, Medical School, University of Minnesota, Duluth, MN 55812, USA; (R.G.M.); (G.E.S.J.); (K.J.)
| | - Jack Peterson
- Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA; (C.M.); (A.H.M.); (J.D.); (J.P.); (W.B.); (J.S.)
| | - Will Bae
- Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA; (C.M.); (A.H.M.); (J.D.); (J.P.); (W.B.); (J.S.)
| | - Janet Scanlon
- Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA; (C.M.); (A.H.M.); (J.D.); (J.P.); (W.B.); (J.S.)
| | - Lynne T. Bemis
- Department of Biomedical Sciences, Duluth Campus, Medical School, University of Minnesota, Duluth, MN 55812, USA; (R.G.M.); (G.E.S.J.); (K.J.)
| |
Collapse
|
6
|
Pineda-Farias JB, Saloman JL, Scheff NN. Animal Models of Cancer-Related Pain: Current Perspectives in Translation. Front Pharmacol 2021; 11:610894. [PMID: 33381048 PMCID: PMC7768910 DOI: 10.3389/fphar.2020.610894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/30/2020] [Indexed: 01/15/2023] Open
Abstract
The incidence of pain in cancer patients during diagnosis and treatment is exceedingly high. Although advances in cancer detection and therapy have improved patient prognosis, cancer and its treatment-associated pain have gained clinical prominence. The biological mechanisms involved in cancer-related pain are multifactorial; different processes for pain may be responsible depending on the type and anatomic location of cancer. Animal models of cancer-related pain have provided mechanistic insights into the development and process of pain under a dynamic molecular environment. However, while cancer-evoked nociceptive responses in animals reflect some of the patients’ symptoms, the current models have failed to address the complexity of interactions within the natural disease state. Although there has been a recent convergence of the investigation of carcinogenesis and pain neurobiology, identification of new targets for novel therapies to treat cancer-related pain requires standardization of methodologies within the cancer pain field as well as across disciplines. Limited success of translation from preclinical studies to the clinic may be due to our poor understanding of the crosstalk between cancer cells and their microenvironment (e.g., sensory neurons, infiltrating immune cells, stromal cells etc.). This relatively new line of inquiry also highlights the broader limitations in translatability and interpretation of basic cancer pain research. The goal of this review is to summarize recent findings in cancer pain based on preclinical animal models, discuss the translational benefit of these discoveries, and propose considerations for future translational models of cancer pain.
Collapse
Affiliation(s)
- Jorge B Pineda-Farias
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jami L Saloman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nicole N Scheff
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Hillman Cancer Center, University of Pittsburgh Medicine Center, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Grünewald TGP, Alonso M, Avnet S, Banito A, Burdach S, Cidre‐Aranaz F, Di Pompo G, Distel M, Dorado‐Garcia H, Garcia‐Castro J, González‐González L, Grigoriadis AE, Kasan M, Koelsche C, Krumbholz M, Lecanda F, Lemma S, Longo DL, Madrigal‐Esquivel C, Morales‐Molina Á, Musa J, Ohmura S, Ory B, Pereira‐Silva M, Perut F, Rodriguez R, Seeling C, Al Shaaili N, Shaabani S, Shiavone K, Sinha S, Tomazou EM, Trautmann M, Vela M, Versleijen‐Jonkers YMH, Visgauss J, Zalacain M, Schober SJ, Lissat A, English WR, Baldini N, Heymann D. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med 2020; 12:e11131. [PMID: 33047515 PMCID: PMC7645378 DOI: 10.15252/emmm.201911131] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.
Collapse
Affiliation(s)
- Thomas GP Grünewald
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Division of Translational Pediatric Sarcoma ResearchGerman Cancer Research Center (DKFZ), Hopp Children's Cancer Center (KiTZ), German Cancer Consortium (DKTK)HeidelbergGermany
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Marta Alonso
- Program in Solid Tumors and BiomarkersFoundation for the Applied Medical ResearchUniversity of Navarra PamplonaPamplonaSpain
| | - Sofia Avnet
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Ana Banito
- Pediatric Soft Tissue Sarcoma Research GroupGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Stefan Burdach
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Florencia Cidre‐Aranaz
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | - Gemma Di Pompo
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | | | | | | | | | | | - Merve Kasan
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | | | - Fernando Lecanda
- Division of OncologyAdhesion and Metastasis LaboratoryCenter for Applied Medical ResearchUniversity of NavarraPamplonaSpain
| | - Silvia Lemma
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Dario L Longo
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | | | | | - Julian Musa
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Shunya Ohmura
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | - Miguel Pereira‐Silva
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Francesca Perut
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Rene Rodriguez
- Instituto de Investigación Sanitaria del Principado de AsturiasOviedoSpain
- CIBER en oncología (CIBERONC)MadridSpain
| | | | - Nada Al Shaaili
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Shabnam Shaabani
- Department of Drug DesignUniversity of GroningenGroningenThe Netherlands
| | - Kristina Shiavone
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Snehadri Sinha
- Department of Oral and Maxillofacial DiseasesUniversity of HelsinkiHelsinkiFinland
| | | | - Marcel Trautmann
- Division of Translational PathologyGerhard‐Domagk‐Institute of PathologyMünster University HospitalMünsterGermany
| | - Maria Vela
- Hospital La Paz Institute for Health Research (IdiPAZ)MadridSpain
| | | | | | - Marta Zalacain
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | - Sebastian J Schober
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Andrej Lissat
- University Children′s Hospital Zurich – Eleonoren FoundationKanton ZürichZürichSwitzerland
| | - William R English
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Nicola Baldini
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Dominique Heymann
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
- Université de NantesInstitut de Cancérologie de l'OuestTumor Heterogeneity and Precision MedicineSaint‐HerblainFrance
| |
Collapse
|
8
|
Zhang Y, Lin C, Wang X, Ji T. Calcitonin gene-related peptide: A promising bridge between cancer development and cancer-associated pain in oral squamous cell carcinoma. Oncol Lett 2020; 20:253. [PMID: 32994816 PMCID: PMC7509602 DOI: 10.3892/ol.2020.12116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/27/2020] [Indexed: 01/23/2023] Open
Abstract
Nerves have been widely demonstrated to exert major effects in tumor-associated microenvironments. Due to the characteristic innervation of the oral cavity and the fact that cancer-associated pain is a distinct feature of oral squamous cell carcinoma (OSCC), the sensory nerves may dominate in the OSCC-nerve microenvironment. As the most abundant neuropeptide in the trigeminal ganglion, the calcitonin gene-related peptide (CGRP) exerts a dual effect on cancer development and cancer-associated pain in various types of cancer. The present review explored the potential molecular mechanisms of the roles of CGRP in cancer development and cancer-associated pain, suggesting that CGRP may be a promising therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Chengzhong Lin
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xu Wang
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Tong Ji
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
9
|
Maluki A, Breitschwerdt E, Bemis L, Greenberg R, Mozayeni BR, Dencklau J, Ericson M. Imaging analysis of Bartonella species in the skin using single-photon and multi-photon (second harmonic generation) laser scanning microscopy. Clin Case Rep 2020; 8:1564-1570. [PMID: 32884796 PMCID: PMC7455430 DOI: 10.1002/ccr3.2939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 01/09/2023] Open
Abstract
We demonstrate Bartonella spp are abundant in skin lesions resembling striae distensae. These striae distensae-like lesions, coincidental with sudden onset of neuropsychiatric symptoms, indicate testing for suspected Bartonella spp. infection.
Collapse
Affiliation(s)
- Azar Maluki
- DermatologyUniversity of Minnesota Medical School ‐ Twin CitiesMinneapolisMinnesotaUSA
- DermatologyCollege of MedicineUniversity of KufaKufaIraq
| | - Edward Breitschwerdt
- Intracellular Pathogens Research LaboratoryCenter for Comparative Medicine and Translational ResearchCollege of Veterinary MedicineNorth Carolina State University(NCSU)RaleighNorth CarolinaUSA
| | - Lynne Bemis
- Department of Biomedical SciencesUniversity of Minnesota Medical School ‐ Duluth CampusDuluthMinnesotaUSA
| | | | - Bobak Robert Mozayeni
- Founder and General Medical Director Translational Medicine Group PCNorth BethesdaMarylandUSA
| | - Jamie Dencklau
- DermatologyUniversity of Minnesota Medical School ‐ Twin CitiesMinneapolisMinnesotaUSA
| | - Marna Ericson
- DermatologyUniversity of Minnesota Medical School ‐ Twin CitiesMinneapolisMinnesotaUSA
| |
Collapse
|
10
|
Ungard RG, Linher-Melville K, Nashed MG, Sharma M, Wen J, Singh G. xCT knockdown in human breast cancer cells delays onset of cancer-induced bone pain. Mol Pain 2019; 15:1744806918822185. [PMID: 30799686 PMCID: PMC6329019 DOI: 10.1177/1744806918822185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancers in the bone produce a number of severe symptoms including pain that compromises patient functional status, quality of life, and survival. The source of this pain is multifaceted and includes factors secreted from tumor cells. Malignant cells release the neurotransmitter and cell-signaling molecule glutamate via the oxidative stress-related cystine/glutamate antiporter, system xC-, which reciprocally imports cystine for synthesis of glutathione and the cystine/cysteine redox cycle. Pharmacological inhibition of system xC- has shown success in reducing and delaying the onset of cancer pain-related behavior in mouse models. This investigation describes the development of a stable siRNA-induced knockdown of the functional trans-membrane system xC- subunit xCT ( SLC7A11) in the human breast cancer cell line MDA-MB-231. Clones were verified for xCT knockdown at the transcript, protein, and functional levels. RNAseq was performed on a representative clone to comprehensively examine the transcriptional cellular signature in response to xCT knockdown, identifying multiple differentially regulated factors relevant to cancer pain including nerve growth factor, interleukin-1, and colony-stimulating factor-1. Mice were inoculated intrafemorally and recordings of pain-related behaviors including weight bearing, mechanical withdrawal, and limb use were performed. Animals implanted with xCT knockdown cancer cells displayed a delay until the onset of nociceptive behaviors relative to control cells. These results add to the body of evidence suggesting that a reduction in glutamate release from cancers in bone by inhibition of the system xC- transporter may decrease the severe and intractable pain associated with bone metastases.
Collapse
Affiliation(s)
- Robert G Ungard
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katja Linher-Melville
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mina G. Nashed
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Manu Sharma
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jianping Wen
- 2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Donovan TA, Fox PR, Balakrishnan N, Ericson M, Hooker V, Breitschwerdt EB. Pyogranulomatous Pancarditis with Intramyocardial Bartonella henselae San Antonio 2 (BhSA2) in a Dog. J Vet Intern Med 2016; 31:142-148. [PMID: 27883248 PMCID: PMC5259629 DOI: 10.1111/jvim.14609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 09/21/2016] [Accepted: 10/18/2016] [Indexed: 12/27/2022] Open
Affiliation(s)
- T A Donovan
- Department of Pathology, The Animal Medical Center, New York, NY
| | - P R Fox
- Department of Cardiology, The Animal Medical Center, New York, NY
| | - N Balakrishnan
- Department of Clinical Sciences, Intracellular Pathogens Research Laboratory, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - M Ericson
- University of Minnesota Imaging Center, Minneapolis, MN
| | - V Hooker
- The Animal Medical Center, New York, NY
| | - E B Breitschwerdt
- Department of Clinical Sciences, Intracellular Pathogens Research Laboratory, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| |
Collapse
|
12
|
Abdelaziz DM, Stone LS, Komarova SV. Localized experimental bone metastasis drives osteolysis and sensory hypersensitivity at distant non-tumor-bearing sites. Breast Cancer Res Treat 2015. [PMID: 26208488 DOI: 10.1007/s10549-015-3517-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Patients with breast cancer metastasis to bone suffer from inadequate pain relief. Animal models provide increased understanding of cancer-induced bone and sensory alterations. The objective of this study was to investigate the measures of pain at distant non-tumor-bearing sites in animals with localized bone metastasis. Immunocompetent BALB/c mice are injected intra-tibially with murine mammary carcinoma cells (4T1) or saline, and the sensitivity to mechanical and thermal stimuli in the contralateral paw was examined. In addition to previously demonstrated development of osteolysis and hypersensitivity to mechanical and thermal stimuli in the cancer-injected tibia, these animals exhibited an increase in sensory hypersensitivity in the contralateral limb. No bone lesions were evident on radiographs of the contralateral limbs. Histomorphometry detected decreased bone volume per tissue volume and increased osteoclast number in the contralateral tibia and vertebral bones of cancer-bearing animals. Neuroplasticity was examined by immunofluorescence for calcitonin gene-related peptide (CGRP) in sensory neurons and glial fibrillary acidic protein (GFAP) in lumbar spinal cords. CGRP-immunoreactivity and GFAP-immunoreactivity were significantly elevated both ipsilateral and contralateral in tumor-bearing animals. The anti-inflammatory and osteolysis-targeting drug rapamycin reduced hypersensitivity to mechanical and cold stimuli, attenuated GFAP over-expression, and lowered osteoclast number. The osteoclast-targeting drug pamidronate reduced sensitivity to cold and protected against bone loss. Localized bone cancer drives hypersensitivity, bone remodeling, and sensory neuron plasticity at sites distant from the primary tumor area. Drugs targeting these mechanisms may be useful in the treatment of pain distant from the primary tumor site.
Collapse
|
13
|
Abstract
Cells in injured and inflamed tissues produce a number of proalgesic lipid-derived mediators, which excite nociceptive neurons by activating selective G-protein-coupled receptors or ligand-gated ion channels. Recent work has shown that these proalgesic factors are counteracted by a distinct group of lipid molecules that lower nociceptor excitability and attenuate nociception in peripheral tissues. Analgesic lipid mediators include endogenous agonists of cannabinoid receptors (endocannabinoids), lipid-amide agonists of peroxisome proliferator-activated receptor-α, and products of oxidative metabolism of polyunsaturated fatty acids via cytochrome P450 and other enzyme pathways. Evidence indicates that these lipid messengers are produced and act at different stages of inflammation and the response to tissue injury, and may be part of a peripheral gating mechanism that regulates the access of nociceptive information to the spinal cord and the brain. Growing knowledge about this peripheral control system may be used to discover safer medicines for pain.
Collapse
|
14
|
Abstract
The global burden of cancer pain is enormous and opioids, despite their side effects, remain the primary therapeutic approach. The cause of cancer pain is unknown. Mechanisms driving cancer pain differ from those mechanisms responsible for inflammatory and neuropathic pain. The prevailing hypothesis put forward to explain cancer pain posits that cancers generate and secrete mediators which sensitize and activate primary afferent nociceptors in the cancer microenvironment. Moreover, cancers induce neurochemical reorganization of the spinal cord, which contributes to spontaneous activity and enhanced responsiveness. The purpose of this review, which covers clinical and preclinical studies, is to highlight those peripheral and central mechanisms responsible for cancer pain. The challenges facing neuroscientists and clinicians studying and ultimately treating cancer pain are discussed.
Collapse
Affiliation(s)
- Brian L Schmidt
- Department of Oral Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA Bluestone Center for Clinical Research, New York University, NY, USA
| |
Collapse
|
15
|
Walker CS, Hay DL. CGRP in the trigeminovascular system: a role for CGRP, adrenomedullin and amylin receptors? Br J Pharmacol 2013; 170:1293-307. [PMID: 23425327 PMCID: PMC3838677 DOI: 10.1111/bph.12129] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/21/2013] [Accepted: 01/30/2013] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED The neuropeptide calcitonin gene-related peptide (CGRP) is reported to play an important role in migraine. It is expressed throughout the trigeminovascular system. Antagonists targeting the CGRP receptor have been developed and have shown efficacy in clinical trials for migraine. However, no CGRP antagonist is yet approved for treating this condition. The molecular composition of the CGRP receptor is unusual because it comprises two subunits; one is a GPCR, the calcitonin receptor-like receptor (CLR). This associates with receptor activity-modifying protein (RAMP) 1 to yield a functional receptor for CGRP. However, RAMP1 also associates with the calcitonin receptor, creating a receptor for the related peptide amylin but this also has high affinity for CGRP. Other combinations of CLR or the calcitonin receptor with RAMPs can also generate receptors that are responsive to CGRP. CGRP potentially modulates an array of signal transduction pathways downstream of activation of these receptors, in a cell type-dependent manner. The physiological significance of these signalling processes remains unclear but may be a potential avenue for refining drug design. This complexity has prompted us to review the signalling and expression of CGRP and related receptors in the trigeminovascular system. This reveals that more than one CGRP responsive receptor may be expressed in key parts of this system and that further work is required to determine their contribution to CGRP physiology and pathophysiology. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7.
Collapse
Affiliation(s)
- C S Walker
- School of Biological Sciences, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
16
|
Gregory NS, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA. An overview of animal models of pain: disease models and outcome measures. THE JOURNAL OF PAIN 2013; 14:1255-69. [PMID: 24035349 PMCID: PMC3818391 DOI: 10.1016/j.jpain.2013.06.008] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 01/12/2023]
Abstract
UNLABELLED Pain is ultimately a perceptual phenomenon. It is built from information gathered by specialized pain receptors in tissue, modified by spinal and supraspinal mechanisms, and integrated into a discrete sensory experience with an emotional valence in the brain. Because of this, studying intact animals allows the multidimensional nature of pain to be examined. A number of animal models have been developed, reflecting observations that pain phenotypes are mediated by distinct mechanisms. Animal models of pain are designed to mimic distinct clinical diseases to better evaluate underlying mechanisms and potential treatments. Outcome measures are designed to measure multiple parts of the pain experience, including reflexive hyperalgesia measures, sensory and affective dimensions of pain, and impact of pain on function and quality of life. In this review, we discuss the common methods used for inducing each of the pain phenotypes related to clinical pain syndromes as well as the main behavioral tests for assessing pain in each model. PERSPECTIVE Understanding animal models and outcome measures in animals will assist in translating data from basic science to the clinic.
Collapse
Affiliation(s)
- Nicholas S Gregory
- Department of Physical Therapy and Rehabilitation Science, College of Medicine, University of Iowa, Iowa City, Iowa; Neuroscience Graduate Program, College of Medicine, University of Iowa, Iowa City, Iowa
| | | | | | | | | | | |
Collapse
|
17
|
Lu Y, You M, Ghazoui Z, Liu P, Vedell PT, Wen W, Bode AM, Grubbs CJ, Lubet RA. Concordant effects of aromatase inhibitors on gene expression in ER+ Rat and human mammary cancers and modulation of the proteins coded by these genes. Cancer Prev Res (Phila) 2013; 6:1151-61. [PMID: 24067424 DOI: 10.1158/1940-6207.capr-13-0126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aromatase inhibitors are effective in therapy/prevention of estrogen receptor-positive (ER⁺) breast cancers. Rats bearing methylnitrosourea (MNU)-induced ER⁺ mammary cancers were treated with the aromatase inhibitor vorozole (1.25 mg/kg BW/day) for five days. RNA expression showed 162 downregulated and 180 upregulated (P < 0.05 and fold change >1.5) genes. Genes modulated by vorozole were compared with published data from four clinical neoadjuvant trials using aromatase inhibitors (anastrozole or letrozole). More than 30 genes and multiple pathways exhibited synchronous changes in animal and human datasets. Cell-cycle genes related to chromosome condensation in prometaphase [anaphase-prometaphase complex (APC) pathway, including Aurora-A kinase, BUBR1B, TOP2, cyclin A, cyclin B CDC2, and TPX-2)] were downregulated in animal and human studies reflecting the strong antiproliferative effects of aromatase inhibitors. Comparisons of rat arrays with a cell culture study where estrogen was removed from MCF-7 cells showed decreased expression of E2F1-modulated genes as a major altered pathway. Alterations of the cell cycle and E2F-related genes were confirmed in a large independent set of human samples (81 pairs baseline and two weeks anastrozole treatment). Decreases in proliferation-related genes were confirmed at the protein level for cyclin A2, BuRB1, cdc2, Pttg, and TPX-2. Interestingly, the proteins downregulated in tumors were similarly downregulated in vorozole-treated normal rat mammary epithelium. Finally, decreased expression of known estrogen-responsive genes (including TFF, 1,3, progesterone receptor, etc.) were decreased in the animal model. These studies demonstrate that gene expression changes (pathways and individual genes) are similar in humans and the rat model.
Collapse
Affiliation(s)
- Yan Lu
- University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G-78-D Box 800, Birmingham, AL 35294.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Inhibition of breast cancer-cell glutamate release with sulfasalazine limits cancer-induced bone pain. Pain 2013; 155:28-36. [PMID: 23999057 DOI: 10.1016/j.pain.2013.08.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 08/14/2013] [Accepted: 08/26/2013] [Indexed: 12/29/2022]
Abstract
Cancer in bone is frequently a result of metastases from distant sites, particularly from the breast, lung, and prostate. Pain is a common and often severe pathological feature of cancers in bone, and is a significant impediment to the maintenance of quality of life of patients living with bone metastases. Cancer cell lines have been demonstrated to release significant amounts of the neurotransmitter and cell-signalling molecule l-glutamate via the system xC(-) cystine/glutamate antiporter. We have developed a novel mouse model of breast cancer bone metastases to investigate the impact of inhibiting cancer cell glutamate transporters on nociceptive behaviour. Immunodeficient mice were inoculated intrafemorally with the human breast adenocarcinoma cell line MDA-MB-231, then treated 14days later via mini-osmotic pumps inserted intraperitoneally with sulfasalazine, (S)-4-carboxyphenylglycine, or vehicle. Both sulfasalazine and (S)-4-carboxyphenylglycine attenuated in vitro cancer cell glutamate release in a dose-dependent manner via the system xC(-) transporter. Animals treated with sulfasalazine displayed reduced nociceptive behaviours and an extended time until the onset of behavioural evidence of pain. Animals treated with a lower dose of (S)-4-carboxyphenylglycine did not display this reduction in nociceptive behaviour. These results suggest that a reduction in glutamate secretion from cancers in bone with the system xC(-) inhibitor sulfasalazine may provide some benefit for treating the often severe and intractable pain associated with bone metastases.
Collapse
|
19
|
Khasabova IA, Holman M, Morse T, Burlakova N, Coicou L, Harding-Rose C, Simone DA, Seybold VS. Increased anandamide uptake by sensory neurons contributes to hyperalgesia in a model of cancer pain. Neurobiol Dis 2013; 58:19-28. [PMID: 23644187 DOI: 10.1016/j.nbd.2013.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/19/2013] [Accepted: 04/24/2013] [Indexed: 11/26/2022] Open
Abstract
Opioids do not effectively manage pain in many patients with advanced cancer. Because anandamide (AEA) activation of cannabinoid type-1 receptors (CB1R) on nociceptors reduces nociception, manipulation of AEA metabolism in the periphery may be an effective alternative or adjuvant therapy in the management of cancer pain. AEA is hydrolyzed by the intracellular enzyme fatty acid amide hydrolase (FAAH), and this enzyme activity contributes to uptake of AEA into neurons and to reduction of AEA available to activate CB1R. We used an in vitro preparation of adult murine dorsal root ganglion (DRG) neurons co-cultured with fibrosarcoma cells to investigate how tumors alter the uptake of AEA into neurons. Evidence that the uptake of [(3)H]AEA into dissociated DRG cells in the co-culture model mimicked the increase in uptake that occurred in DRG cells from tumor-bearing mice supported the utility of the in vitro model to study AEA uptake. Results with the fluorescent AEA analog CAY10455 confirmed that an increase in uptake in the co-culture model occurred in neurons. One factor that contributed to the increase in [(3)H]AEA uptake was an increase in total cellular cholesterol in the cancer condition. Treatment with the FAAH inhibitor URB597 reduced CAY10455 uptake in the co-culture model to the level observed in DRG neurons maintained in the control condition (i.e., in the absence of fibrosarcoma cells), and this effect was paralleled by OMDM-1, an inhibitor of AEA uptake, at a concentration that had no effect on FAAH activity. Maximally effective concentrations of the two drugs together produced a greater reduction than was observed with each drug alone. Treatment with BMS309403, which competes for AEA binding to fatty acid binding protein-5, mimicked the effect of OMDM-1 in vitro. Local injection of OMDM-1 reduced hyperalgesia in vivo in mice with unilateral tumors in and around the calcaneous bone. Intraplantar injection of OMDM-1 (5μg) into the tumor-bearing paw reduced mechanical hyperalgesia through a CB1R-dependent mechanism and also reduced a spontaneous nocifensive behavior. The same dose reduced withdrawal responses evoked by suprathreshold mechanical stimuli in naive mice. These data support the conclusion that OMDM-1 inhibits AEA uptake by a mechanism that is independent of inhibition of FAAH and provide a rationale for the development of peripherally restricted drugs that decrease AEA uptake for the management of cancer pain.
Collapse
Affiliation(s)
- Iryna A Khasabova
- Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Maggi RG, Ericson M, Mascarelli PE, Bradley JM, Breitschwerdt EB. Bartonella henselae bacteremia in a mother and son potentially associated with tick exposure. Parasit Vectors 2013; 6:101. [PMID: 23587194 PMCID: PMC3637281 DOI: 10.1186/1756-3305-6-101] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 03/21/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bartonella henselae is a zoonotic, alpha Proteobacterium, historically associated with cat scratch disease (CSD), but more recently associated with persistent bacteremia, fever of unknown origin, arthritic and neurological disorders, and bacillary angiomatosis, and peliosis hepatis in immunocompromised patients. A family from the Netherlands contacted our laboratory requesting to be included in a research study (NCSU-IRB#1960), designed to characterize Bartonella spp. bacteremia in people with extensive arthropod or animal exposure. All four family members had been exposed to tick bites in Zeeland, southwestern Netherlands. The mother and son were exhibiting symptoms including fatigue, headaches, memory loss, disorientation, peripheral neuropathic pain, striae (son only), and loss of coordination, whereas the father and daughter were healthy. METHODS Each family member was tested for serological evidence of Bartonella exposure using B. vinsonii subsp. berkhoffii genotypes I-III, B. henselae and B. koehlerae indirect fluorescent antibody assays and for bacteremia using the BAPGM enrichment blood culture platform. RESULTS The mother was seroreactive to multiple Bartonella spp. antigens and bacteremia was confirmed by PCR amplification of B. henselae DNA from blood, and from a BAPGM blood agar plate subculture isolate. The son was not seroreactive to any Bartonella sp. antigen, but B. henselae DNA was amplified from several blood and serum samples, from BAPGM enrichment blood culture, and from a cutaneous striae biopsy. The father and daughter were seronegative to all Bartonella spp. antigens, and negative for Bartonella DNA amplification. CONCLUSIONS Historically, persistent B. henselae bacteremia was not thought to occur in immunocompetent humans. To our knowledge, this study provides preliminary evidence supporting the possibility of persistent B. henselae bacteremia in immunocompetent persons from Europe. Cat or flea contact was considered an unlikely source of transmission and the mother, a physician, reported that clinical symptoms developed following tick exposure. To our knowledge, this is the first time that a B. henselae organism has been visualized in and amplified from a striae lesion. As the tick bites occurred three years prior to documentation of B. henselae bacteremia, the mode of transmission could not be determined.
Collapse
Affiliation(s)
- Ricardo G Maggi
- Intracellular Pathogens Research Laboratory, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | | | | | | | | |
Collapse
|
21
|
Cho YY, Kim DJ, Lee HS, Jeong CH, Cho EJ, Kim MO, Byun S, Lee KY, Yao K, Carper A, Langfald A, Bode AM, Dong Z. Autophagy and cellular senescence mediated by Sox2 suppress malignancy of cancer cells. PLoS One 2013; 8:e57172. [PMID: 23451179 PMCID: PMC3581442 DOI: 10.1371/journal.pone.0057172] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/18/2013] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a critical cellular process required for maintaining cellular homeostasis in health and disease states, but the molecular mechanisms and impact of autophagy on cancer is not fully understood. Here, we found that Sox2, a key transcription factor in the regulation of the "stemness" of embryonic stem cells and induced-pluripotent stem cells, strongly induced autophagic phenomena, including intracellular vacuole formation and lysosomal activation in colon cancer cells. The activation occurred through Sox2-mediated ATG10 gene expression and resulted in the inhibition of cell proliferation and anchorage-independent colony growth ex vivo and tumor growth in vivo. Further, we found that Sox2-induced-autophagy enhanced cellular senescence by up-regulating tumor suppressors or senescence factors, including p16(INK4a), p21 and phosphorylated p53 (Ser15). Notably, knockdown of ATG10 in Sox2-expressing colon cancer cells restored cancer cell properties. Taken together, our results demonstrated that regulation of autophagy mediated by Sox2 is a mechanism-driven novel strategy to treat human colon cancers.
Collapse
Affiliation(s)
- Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Gyeonggi-do, Korea
- * E-mail: (YYC); (ZD)
| | - Dong Joon Kim
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Chul-Ho Jeong
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Eun-Jin Cho
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Myong-Ok Kim
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Sanguine Byun
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Kun-Yeong Lee
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Ke Yao
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Andria Carper
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Alyssa Langfald
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
- * E-mail: (YYC); (ZD)
| |
Collapse
|
22
|
Jimenez-Andrade JM, Mantyh PW. Sensory and sympathetic nerve fibers undergo sprouting and neuroma formation in the painful arthritic joint of geriatric mice. Arthritis Res Ther 2012; 14:R101. [PMID: 22548760 PMCID: PMC3446478 DOI: 10.1186/ar3826] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/15/2012] [Accepted: 05/01/2012] [Indexed: 12/11/2022] Open
Abstract
Introduction Although the prevalence of arthritis dramatically increases with age, the great majority of preclinical studies concerning the mechanisms that drive arthritic joint pain have been performed in young animals. One mechanism hypothesized to contribute to arthritic pain is ectopic nerve sprouting; however, neuroplasticity is generally thought to be greater in young versus old nerves. Here we explore whether sensory and sympathetic nerve fibers can undergo a significant ectopic nerve remodeling in the painful arthritic knee joint of geriatric mice. Methods Vehicle (saline) or complete Freund's adjuvant (CFA) was injected into the knee joint of 27- to 29-month-old female mice. Pain behaviors, macrophage infiltration, neovascularization, and the sprouting of sensory and sympathetic nerve fibers were then assessed 28 days later, when significant knee-joint pain was present. Knee joints were processed for immunohistochemistry by using antibodies raised against CD68 (monocytes/macrophages), PECAM (endothelial cells), calcitonin gene-related peptide (CGRP; sensory nerve fibers), neurofilament 200 kDa (NF200; sensory nerve fibers), tyrosine hydroxylase (TH; sympathetic nerve fibers), and growth-associated protein 43 (GAP43; nerve fibers undergoing sprouting). Results At 4 weeks after initial injection, CFA-injected mice displayed robust pain-related behaviors (which included flinching, guarding, impaired limb use, and reduced weight bearing), whereas animals injected with vehicle alone displayed no significant pain-related behaviors. Similarly, in the CFA-injected knee joint, but not in the vehicle-injected knee joint, a remarkable increase was noted in the number of CD68+ macrophages, density of PECAM+ blood vessels, and density and formation of neuroma-like structures by CGRP+, NF200+, and TH+ nerve fibers in the synovium and periosteum. Conclusions Sensory and sympathetic nerve fibers that innervate the aged knee joint clearly maintain the capacity for robust nerve sprouting and formation of neuroma-like structures after inflammation/injury. Understanding the factors that drive this neuroplasticity, whether this pathologic reorganization of nerve fibers contributes to chronic joint pain, and how the phenotype of sensory and sympathetic nerves changes with age may provide pharmacologic insight and targets for better controlling aging-related joint pain.
Collapse
Affiliation(s)
- Juan M Jimenez-Andrade
- Department of Pharmacology, University of Arizona, 1501 N, Campbell Avenue, Tucson, AZ 85724, USA
| | | |
Collapse
|
23
|
Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain. Pain 2011; 152:2564-2574. [PMID: 21907491 DOI: 10.1016/j.pain.2011.07.020] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/18/2011] [Accepted: 07/26/2011] [Indexed: 12/22/2022]
Abstract
Early, preemptive blockade of nerve growth factor (NGF)/tropomyosin receptor kinase A (TrkA) attenuates tumor-induced nerve sprouting and bone cancer pain. A critical unanswered question is whether late blockade of NGF/TrkA can attenuate cancer pain once NGF-induced nerve sprouting and neuroma formation has occurred. By means of a mouse model of prostate cancer-induced bone pain, anti-NGF was either administered preemptively at day 14 after tumor injection when nerve sprouting had yet to occur, or late at day 35, when extensive nerve sprouting had occurred. Animals were humanely killed at day 70 when, in vehicle-treated animals, significant nerve sprouting and neuroma formation was present in the tumor-bearing bone. Although preemptive and sustained administration (days 14-70) of anti-NGF more rapidly attenuated bone cancer nociceptive behaviors than late and sustained administration (days 35-70), by day 70 after tumor injection, both preemptive and late administration of anti-NGF significantly reduced nociceptive behaviors, sensory and sympathetic nerve sprouting, and neuroma formation. In this model, as in most cancers, the individual cancer cell colonies have a limited half-life because they are constantly proliferating, metastasizing, and undergoing necrosis as the parent cancer cell colony outgrows its blood supply. Similarly, the sensory and sympathetic nerve fibers that innervate the tumor undergo sprouting at the viable/leading edge of the parent tumor, degenerate as the parent cancer cell colony becomes necrotic, and resprout in the viable, newly formed daughter cell colonies. These results suggest that preemptive or late-stage blockade of NGF/TrkA can attenuate nerve sprouting and cancer pain.
Collapse
|
24
|
Li J, Cho YY, Langfald A, Carper A, Lubet RA, Grubbs CJ, Ericson ME, Bode AM. Lapatinib, a preventive/therapeutic agent against mammary cancer, suppresses RTK-mediated signaling through multiple signaling pathways. Cancer Prev Res (Phila) 2011; 4:1190-7. [PMID: 21791570 DOI: 10.1158/1940-6207.capr-10-0330] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of receptor tyrosine kinases (RTK) plays a key role in the prognosis of mammary cancer. Lapatinib is a small molecule dual RTK inhibitor that targets epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Identifying the protein targets involved in the effects of lapatinib and other RTK inhibitors might help determine why preventive efficacy varies. In this study, female Sprague-Dawley rats were given methylnitrosourea (MNU) by intravenous injection resulting in the development of multiple estrogen receptor-positive tumors. Treatment with lapatinib beginning 5 days after MNU was highly effective in preventing cancer development. In addition, we treated rats with palpable mammary tumors with lapatinib daily. In these tumor-bearing animals, treatment continued for 42 days and therapeutic results were obtained. Some rats bearing cancers were treated for 5 days, and the resulting lesions were examined for biomarker modulation. Lapatinib effectively suppressed the abundance of HER2, phosphorylated HER2 (Tyr1221/1222), and phosphorylated EGFR (Tyr1173, Tyr1110) compared with tumors from untreated rats. Protein array analyses allowed parallel determination of the effect of lapatinib on the relative levels of protein phosphorylation and proteins associated with apoptosis. These results combined with immunoreactivity data indicated that, in addition to EGFR and HER2, lapatinib treatment was associated with changes in a number of other signaling molecules, including IGF-1R, Akt, and downstream targets such as GSK3, p27, p53, and cyclin D1 presumably leading to impaired proliferation, apoptosis, or cell-cycle arrest.
Collapse
Affiliation(s)
- Jixia Li
- The Hormel Institute, University of Minnesota, 801 16 Ave N.E., Austin, MN 55912, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Fujita M, Andoh T, Sasaki A, Saiki I, Kuraishi Y. Involvement of peripheral adenosine 5'-triphosphate and P2X purinoceptor in pain-related behavior produced by orthotopic melanoma inoculation in mice. Eur J Neurosci 2010; 31:1629-36. [PMID: 20525075 DOI: 10.1111/j.1460-9568.2010.07185.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Adenosine 5'-triphosphate (ATP) plays an important role in nociceptive processing. We used a mouse model of skin cancer pain to investigate the role of ATP in cancer pain. Orthotopic inoculation of B16-BL6 melanoma cells into the hind paw produced spontaneous licking of the tumor-bearing paw. Intraperitoneal injection of the P2 purinoceptor antagonist suramin suppressed spontaneous licking dose-dependently. Two P2X purinoceptor antagonists also suppressed spontaneous licking. An intraplantar injection of ATP, which did not induce licking in the healthy paw, increased licking of the tumor-bearing paw. Spontaneous firing of the tibial nerve was significantly increased in tumor-bearing mice and was inhibited by suramin. Extracellular concentration of ATP was significantly increased in the tumor-bearing paw than in the normal paw. ATP is concentrated in the culture medium of melanoma, lung cancer and breast cancer cells, but not fibroblasts. The P2X(3) receptor was expressed in about 40% of peripherin-positive small and medium-sized neurons in the dorsal root ganglia. P2X(3)-positive neurons were significantly increased in melanoma-bearing mice. These results suggest that ATP and P2X, especially P2X(3), receptors are involved in skin cancer pain, due to the increased release of ATP and increased expression of P2X(3) receptors in the sensory neurons.
Collapse
Affiliation(s)
- Masahide Fujita
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | | | | | | | | |
Collapse
|
26
|
Mishra R, Su W, Pohmann R, Pfeuffer J, Sauer MG, Ugurbil K, Engelmann J. Cell-penetrating peptides and peptide nucleic acid-coupled MRI contrast agents: evaluation of cellular delivery and target binding. Bioconjug Chem 2009; 20:1860-8. [PMID: 19788302 DOI: 10.1021/bc9000454] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular imaging of cells and cellular processes can be achieved by tagging intracellular targets such as receptors, enzymes, or mRNA. Seeking to visualize the presence of specific mRNAs by magnetic resonance (MR) imaging, we coupled peptide nucleic acids (PNA) with gadolinium-based MR contrast agents using cell-penetrating peptides for intracellular delivery. Antisense to mRNA of DsRed2 protein was used as proof of principle. The conjugates were produced by continuous solid-phase synthesis followed by chelation with gadolinium. Their cellular uptake was confirmed by fluorescence microscopy and spectroscopy as well as by MR imaging of labeled cells. The cell-penetrating peptide D-Tat(57-49) was selected over two other derivatives of HIV-1 Tat peptide, based on its superior intracellular delivery of the gadolinium-based contrast agents. Further improved delivery of conjugates was achieved upon coupling peptide nucleic acids (antisense to mRNA of DsRed2 protein and nonsense with no natural counterpart). Significant enhancement in MR contrast was obtained in cells labeled with concentrations as low as 2.5 μM of these agents. Specific binding of the targeting PNA containing conjugate to its complementary oligonucleotide sequence was proven by in vitro cell-free assay. In contrast, a lack of specific enrichment was observed in transgenic cells containing the target due to nonspecific vesicular entrapment of contrast agents. Preliminary biodistribution studies showed conjugate-related fluorescence in several organs, especially the liver and bladder, indicating high mobility of the agent in spite of its high molecular weight. No conjugate related toxicity was observed. These results are encouraging, as they warrant further molecular optimization and consecutive specificity studies in vivo of this new generation of contrast agents.
Collapse
Affiliation(s)
- Ritu Mishra
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Spemannstrasse 41, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Schiller KR, Zillhardt MR, Alley J, Borjesson DL, Beitz AJ, Mauro LJ. Secretion of MCP-1 and other paracrine factors in a novel tumor-bone coculture model. BMC Cancer 2009; 9:45. [PMID: 19192289 PMCID: PMC2644314 DOI: 10.1186/1471-2407-9-45] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 02/03/2009] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The bone-tumor microenvironment encompasses unique interactions between the normal cells of the bone and marrow cavity and the malignant cells from a primary or metastasized cancer. A multitude of paracrine factors within this microenvironment such as the growth factor, TGF-beta, and the chemokine, MCP-1, are secreted by many of these cell types. These factors can act in concert to modulate normal and malignant cell proliferation, malignant cell migration and invasion and, often, mediate bone cancer pain. Although many valuable in vitro and in vivo models exist, identifying the relevant paracrine factors and deciphering their interactions is still a challenge. The aim of our study is to test an ex vivo coculture model that will allow monitoring of the expression, release and regulation of paracrine factors during interactions of an intact femur explant and tumor cells. METHODS Intact or marrow-depleted neonatal mouse femurs and select murine and human sarcoma or carcinoma cell lines were incubated singly or in coculture in specialized well plates. Viability of the bone and cells was determined by immunohistochemical stains, microscopy and marrow cytopreps. Secretion and mRNA expression of paracrine factors was quantitated by ELISA and real-time RT-PCR. RESULTS Compartments of the bone were optimally viable for up to 48 h in culture and tumor cells for up to 4 days. Bone was the major contributor of TGF-beta and MMP2 whereas both bone and sarcoma cells secreted the chemokine MCP-1 in cocultures. Synergistic interaction between the femur and sarcoma resulted in enhanced MCP-1 secretion and expression in cocultures and was dependent on the presence of the hematopoietic component of the bone as well as other bone cells. In contrast, coculturing with breast carcinoma cells resulted in reduction of TGF-beta and MCP-1 secretion from the bone. CONCLUSION These studies illustrate the feasibility of this model to examine paracrine interactions between intact bone and tumor cells. Further study of unique regulation of MCP-1 secretion and signaling between these cell types in different types of cancer will be possible using this simulated microenvironment.
Collapse
Affiliation(s)
- Katherine R Schiller
- Department of Animal Science-Physiology, University of Minnesota, St Paul, MN 55108-6009, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Zwolak P, Jasinski P, Terai K, Gallus NJ, Ericson ME, Clohisy DR, Dudek AZ. Addition of receptor tyrosine kinase inhibitor to radiation increases tumour control in an orthotopic murine model of breast cancer metastasis in bone. Eur J Cancer 2008; 44:2506-17. [DOI: 10.1016/j.ejca.2008.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/10/2008] [Accepted: 07/01/2008] [Indexed: 01/10/2023]
|
29
|
Lubet RA, Szabo E, Christov K, Bode AM, Ericson ME, Steele VE, Juliana MM, Grubbs CJ. Effects of gefitinib (Iressa) on mammary cancers: preventive studies with varied dosages, combinations with vorozole or targretin, and biomarker changes. Mol Cancer Ther 2008; 7:972-9. [PMID: 18375820 DOI: 10.1158/1535-7163.mct-07-2141] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ability of the epidermal growth factor receptor inhibitor gefitinib (Iressa) to prevent/treat methylnitrosourea (MNU)-induced mammary cancers and to modulate biomarkers in female Sprague-Dawley rats was examined. Rats were given a single dose of MNU (75 mg/kg body weight) at 50 days of age. In the prevention studies, continual treatment with Iressa at 10, 3, or 1 mg/kg body weight per day beginning 5 days after MNU reduced tumor multiplicity by 93%, 43%, and 20%, respectively. Treatment of rats bearing small palpable cancers with Iressa (10 mg/kg body weight per day) resulted in the complete regression of 70% of the tumors. Short-term treatment of tumor-bearing rats with Iressa caused decreases in cell proliferation and phosphorylated epidermal growth factor receptor and increases in apoptosis. To examine treatment regimens that might decrease the skin toxicity associated with Iressa, both intermittent treatments and combinations of lower doses of Iressa with other effective agents were evaluated. Treatment with Iressa (10 mg/kg body weight per day) continually or intermittently (either "3 weeks on/3 weeks off" or "4 days on/3 days off") reduced cancer multiplicity by 91%, 24%, and 68%, respectively. However, all regimens reduced tumor weights >85%. Finally, combining suboptimal doses of Iressa with suboptimal doses of vorozole (an aromatase inhibitor) or targretin (a retinoid X receptor agonist) yielded greater chemopreventive efficacy than any of these agents given alone.
Collapse
Affiliation(s)
- Ronald A Lubet
- National Cancer Institute, Executive Plaza North, Suite 2110, 6130 Executive Boulevard, Bethesda, MD 20852, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Pain as a symptom of peripheral nerve sheath tumors: clinical significance and future therapeutic directions. J Brachial Plex Peripher Nerve Inj 2008; 3:6. [PMID: 18312658 PMCID: PMC2291052 DOI: 10.1186/1749-7221-3-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 02/29/2008] [Indexed: 01/04/2023] Open
Abstract
Tumors arising from the supporting cells of peripheral nerve sheaths are relatively uncommon neoplasms, and as such many clinicians are unfamiliar with the details of their presentation, diagnosis and management. Further, little is known regarding the pathogenesis of these tumors, how they cause symptoms, and how to treat these symptoms. One classic symptom of peripheral nerve tumors is pain, however there has been little formal discussion regarding the significance of pain in this setting. Here we present a brief review of the clinical significance of pain, its relevance in pre-operative planning for the treatment of these tumors, and what is known regarding the molecular mechanisms of pain generation by these tumors.
Collapse
|
31
|
Zwolak P, Dudek AZ, Bodempudi VD, Nguyen J, Hebbel RP, Gallus NJ, Ericson ME, Goblirsch MJ, Clohisy DR. Local irradiation in combination with bevacizumab enhances radiation control of bone destruction and cancer-induced pain in a model of bone metastases. Int J Cancer 2008; 122:681-8. [PMID: 17943718 DOI: 10.1002/ijc.23157] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Skeletal metastases are a major source of morbidity for cancer patients. The purpose of this study was to evaluate the effects of megavoltage irradiation and antiangiogenic therapy on metastatic bone cancer. A tumor xenograft model was prepared in C3H/Scid mice using 4T1 murine breast carcinoma cells. Twenty-eight mice bearing tumors were treated with either bevacizumab (15 mg/kg), local megavoltage irradiation (30 Gy in 1 fraction), combination of bevacizumab and local megavoltage irradiation or physiologic saline solution (control group). Tumor area, bone destruction, tumor microvessel density, pain-associated behaviors and expression of substance P were assessed. Combined modality treatment reduced the frequency of pain-associated behaviors, decreased levels of nociceptive protein expression in the spinal cord, maintained cortical integrity and decreased the density of microvessels as compared to single modality treatments. We conclude that concurrent antiangiogenic therapy and localized radiotherapy for the treatment of bone metastases warrants further evaluation in human clinical trials.
Collapse
Affiliation(s)
- Pawel Zwolak
- Department of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Khasabov SG, Hamamoto DT, Harding-Rose C, Simone DA. Tumor-evoked hyperalgesia and sensitization of nociceptive dorsal horn neurons in a murine model of cancer pain. Brain Res 2007; 1180:7-19. [PMID: 17935703 PMCID: PMC2701262 DOI: 10.1016/j.brainres.2007.08.075] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/20/2007] [Accepted: 08/24/2007] [Indexed: 12/31/2022]
Abstract
Pain associated with cancer, particularly when tumors metastasize to bone, is often severe and debilitating. Better understanding of the neurobiological mechanisms underlying cancer pain will likely lead to the development of more effective treatments. The aim of this study was to characterize changes in response properties of nociceptive dorsal horn neurons following implantation of fibrosarcoma cells into and around the calcaneus bone, an established model of cancer pain. Extracellular electrophysiological recordings were made from wide dynamic range (WDR) and high threshold (HT) dorsal horn neurons in mice with tumor-evoked hyperalgesia and control mice. WDR and HT neurons were examined for ongoing activity and responses to mechanical, heat, and cold stimuli applied to the plantar surface of the hind paw. Behavioral experiments showed that mice exhibited hyperalgesia to mechanical and heat stimuli applied to their tumor-bearing hind paw. WDR, but not HT, nociceptive dorsal horn neurons in tumor-bearing mice exhibited sensitization to mechanical, heat, and cold stimuli and may contribute to tumor-evoked hyperalgesia. Specifically, the proportion of WDR neurons that exhibited ongoing activity and their evoked discharge rates were greater in tumor-bearing than in control mice. In addition, WDR neurons exhibited lower response thresholds for mechanical and heat stimuli, and increased responses to suprathreshold mechanical, heat, and cold stimuli. Our findings show that sensitization of WDR neurons contributes to cancer pain and supports the notion that the mechanisms underlying cancer pain differ from those that contribute to inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Sergey G. Khasabov
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware St. S.E., Minneapolis, Minnesota 55455
| | - Darryl T. Hamamoto
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware St. S.E., Minneapolis, Minnesota 55455
| | - Catherine Harding-Rose
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware St. S.E., Minneapolis, Minnesota 55455
| | - Donald A. Simone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware St. S.E., Minneapolis, Minnesota 55455
| |
Collapse
|
33
|
Lynch JL, Gallus NJ, Ericson ME, Beitz AJ. Analysis of nociception, sex and peripheral nerve innervation in the TMEV animal model of multiple sclerosis. Pain 2007; 136:293-304. [PMID: 17766043 PMCID: PMC2673489 DOI: 10.1016/j.pain.2007.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 06/20/2007] [Accepted: 07/16/2007] [Indexed: 11/21/2022]
Abstract
Although pain was previously not considered an important element of multiple sclerosis (MS), recent evidence indicates that over 50% of MS patients suffer from chronic pain. In the present study, we utilized the Theiler's murine encephalomyelitis virus (TMEV) model of MS to examine whether changes in nociception occur during disease progression and to investigate whether sex influences the development of nociception or disease-associated neurological symptoms. Using the rotarod assay, TMEV infected male mice displayed increased neurological deficits when compared to TMEV infected female mice, which mimics what is observed in human MS. While both male and female TMEV infected mice exhibited thermal hyperalgesia and mechanical allodynia, female mice developed mechanical allodynia at a faster rate and displayed significantly more mechanical allodynia than male mice. Since neuropathic symptoms have been described in MS patients, we quantified sensory nerve fibers in the epidermis of TMEV-infected and non-infected mice to determine if there were alterations in epidermal nerve density. There was a significantly higher density of PGP9.5 and CGRP-immunoreactive axons in the epidermis of TMEV-infected mice versus controls. Collectively these results indicate that the TMEV model is well suited to study the mechanisms of MS-induced nociception and suggest that alterations in peripheral nerve innervation may contribute to MS pain.
Collapse
Affiliation(s)
- Jessica L. Lynch
- Department of Veterinary and Biomedical Sciences, University of Minnesota College of Veterinary Medicine and School of Medicine, St. Paul, MN, 55108
| | - Nathan J. Gallus
- Department of Dermatology, University of Minnesota College of Veterinary Medicine and School of Medicine, St. Paul, MN, 55108
| | - Marna E. Ericson
- Department of Dermatology, University of Minnesota College of Veterinary Medicine and School of Medicine, St. Paul, MN, 55108
| | - Alvin J. Beitz
- Department of Veterinary and Biomedical Sciences, University of Minnesota College of Veterinary Medicine and School of Medicine, St. Paul, MN, 55108
| |
Collapse
|
34
|
Abstract
Neuropeptides and kinins are important messengers in the nervous system and--on the basis of their anatomical localisation and the effects produced when the substances themselves are administered, to animals or to human subjects-a significant number of them have been suggested to have a role in pain and inflammation. Experiments in gene deletion (knock-out or null mutant) mice and parallel experiments with pharmacological receptor antagonists in a variety of species have strengthened the evidence that a number of peptides, notably substance P and calcitonin gene-related peptide (CGRP), and the kinins have a pathophysiological role in nociception. Clinical studies with non-peptide pharmacological antagonists are now in progress to determine if blocking the action of these peptides might have utility in the treatment of pain.
Collapse
Affiliation(s)
- R G Hill
- Merck, Sharp and Dohme Research Laboratories, Terlings Park, Harlow, Essex CM20 2QR, UK.
| | | |
Collapse
|
35
|
Ramnaraine ML, Mathews WE, Donohue JM, Lynch CM, Goblirsch MJ, Clohisy DR. Osteoclasts direct bystander killing of bone cancer. Cancer Res 2006; 66:10929-35. [PMID: 17108130 DOI: 10.1158/0008-5472.can-06-1295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Primary and metastatic bone cancers are difficult to eradicate and novel approaches are needed to improve treatment and extend life. As bone cancer grows, osteoclasts, the principal bone-resorbing cells of the body, are recruited to and activated at sites of cancer. In this investigation, we determined if osteoclast lineage cells could function as a cell-based gene delivery system to bone cancers. We used the cytosine deaminase (CD) 5-fluorocytosine (5-FC) enzyme/prodrug system and studied bone marrow and bones from transgenic mice expressing a novel CD gene regulated by the osteoclast tartrate-resistant acid phosphatase (TRAP) gene promoter (Tg/NCD). DsRed2-labeled 2472 sarcoma cells were placed in Tg/NCD osteoclastogenic cultures and treated with 5-FC. 5-FC treatment resulted in profound bystander killing (90%; P < 0.05). The effect of 5-FC treatment on osteoclast lineage cells was most dramatic when administered at the beginning of the 7-day cultures, suggesting that mature osteoclasts are less sensitive to 5-FC. Evaluation of osteoclast-directed bystander killing in vivo revealed dramatic killing of bone cancer with only a modest effect on osteoclast number. Specifically, 5-FC treatment of tumor-bearing Tg/NCD mice or Tg/NCD bone marrow transplanted C3H mice (Tg/NCD-C3H) resulted in 92% and 44% reductions in tumor area, respectively (P < 0.05). Eight of ten 5-FC-treated Tg/NCD mice had complete bone tumor killing and five of six 5-FC-treated Tg/NCD-C3H mice had reduced tumor compared with controls. In addition, Tg/NCD osteoclasts were resistant to 5-FC treatment in vivo, a very important feature, as it identifies osteoclasts as an ideal CD gene delivery system.
Collapse
Affiliation(s)
- Margaret L Ramnaraine
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
36
|
Hamamoto DT, Giridharagopalan S, Simone DA. Acute and chronic administration of the cannabinoid receptor agonist CP 55,940 attenuates tumor-evoked hyperalgesia. Eur J Pharmacol 2006; 558:73-87. [PMID: 17250825 PMCID: PMC1995024 DOI: 10.1016/j.ejphar.2006.11.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/13/2006] [Accepted: 11/21/2006] [Indexed: 11/17/2022]
Abstract
Patients with cancer frequently report pain that can be difficult to manage. This study examined the antihyperalgesic effects of a cannabinoid receptor agonist, CP 55,940, in a murine model of cancer pain. Implantation of fibrosarcoma cells into and around the calcaneous bone in mice produced mechanical hyperalgesia (decreased paw withdrawal thresholds and increased frequency of paw withdrawals). On day 13 after implantation, mechanical hyperalgesia, nociception, and catalepsy were assessed. Mice were randomly assigned to receive CP 55,940 (0.01-3 mg/kg, i.p.) or vehicle and behavioral measures were redetermined. CP 55,940 dose-dependently attenuated tumor-evoked mechanical hyperalgesia. To examine the effect of catalepsy on the antihyperalgesic effect of CP 55,940, mice with tumor-evoked hyperalgesia were pretreated with the dopamine agonist apomorphine prior to administration of CP 55,940. Apomorphine attenuated the cataleptic effect of CP 55,940 but did not attenuate its antihyperalgesic effect. In a separate group of mice with tumor-evoked hyperalgesia, administration of the dopamine antagonist spiperone produced catalepsy that was approximately 2.5 fold greater than that produced by CP 55,490. Whereas this dose of CP 55,940 completely reversed tumor-evoked mechanical hyperalgesia, spiperone only attenuated mechanical hyperalgesia by approximately 35%. Thus, the cataleptic effects of CP 55,940 did not fully account for its antihyperalgesic effect. The antihyperalgesic effect of CP 55,940 was mediated via the cannabinoid CB1 but not CB2 receptor. Finally, repeated administration of CP 55,940 produced a short-term and a longer-term attenuation of tumor-evoked hyperalgesia. These results suggest that cannabinoids may be a useful alternative or adjunct therapy for treating cancer pain.
Collapse
Affiliation(s)
- Darryl T Hamamoto
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
37
|
Nagamine K, Ozaki N, Shinoda M, Asai H, Nishiguchi H, Mitsudo K, Tohnai I, Ueda M, Sugiura Y. Mechanical allodynia and thermal hyperalgesia induced by experimental squamous cell carcinoma of the lower gingiva in rats. THE JOURNAL OF PAIN 2006; 7:659-70. [PMID: 16942952 DOI: 10.1016/j.jpain.2006.02.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 02/27/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
UNLABELLED We developed a rat model of oral cancer pain by inoculating cancer cells into the lower gingiva. A squamous cell carcinoma (SCC) derived from Fisher rats, SCC-158, was inoculated into the subperiosteal tissue on the lateral side of the lower gingiva in male Fisher rats. Inoculation of cancer cells induced marked mechanical allodynia and thermal hyperalgesia in the ipsilateral maxillary and mandibular nerve area. Infiltration of the tumor cells into the mandible and the completely encompassed inferior alveolar nerve was observed. Calcitonin gene-related peptide (CGRP)-, substance P (SP)-, ATP receptor (P2X(3))-, and capsaicin receptor (TRPV1)-immunoreactive cells strikingly increased in the small-cell group of trigeminal ganglia (TGs) after tumor cell inoculation. The TRPV1-immunoreactive cells also increased in the medium- and large-cell groups. Retrograde tracing combined with immunofluorescence techniques revealed the increased expression of peptides and the receptors in maxillary nerve afferent neurons. These results suggest that inoculation of SCC cells into the lower gingiva produces mechanical allodynia and thermal hyperalgesia, indicating the establishment of a novel rat model of oral cancer pain. Increased expression of CGRP, SP, P2X(3), and TRPV1 in the TG may be involved in the behavioral changes in this model. PERSPECTIVE To clarify the mechanisms of oral cancer pain, we examined the expression of calcitonin gene-related peptide, substance P, ATP receptor P2X(3), and capsaicin receptor TRPV1 in trigeminal ganglia. Characterizations of these molecular systems which mediate pain perception are important to develop novel clinical tools for promoting relief of oral cancer pain.
Collapse
Affiliation(s)
- Kenjiro Nagamine
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Peters EMJ, Ericson ME, Hosoi J, Seiffert K, Hordinsky MK, Ansel JC, Paus R, Scholzen TE. Neuropeptide control mechanisms in cutaneous biology: physiological and clinical significance. J Invest Dermatol 2006; 126:1937-47. [PMID: 16912691 DOI: 10.1038/sj.jid.5700429] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The skin as a barrier and immune organ is exposed to omnipresent environmental challenges such as irradiation or chemical and biologic hazards. Neuropeptides released from cutaneous nerves or skin and immune cells in response to noxious stimuli are mandatory for a fine-tuned regulation of cutaneous immune responses and tissue maintenance and repair. They initialize host immune responses, but are equally important for counter regulation of proinflammatory events. Interaction of the nervous and immune systems occurs both locally - at the level of neurogenic inflammation and immunocyte activation - and centrally - by controlling inflammatory pathways such as mononuclear activation or lymphocyte cytokine secretion. Consequently, a deregulated neurogenic immune control results in disease manifestation and frequently accompanies chronic development of cutaneous disorders. The current understanding, therapeutic options, and open questions of the role that neuropeptides such as substance P, calcitonin gene-related peptide, vasoactive intestinal peptide/pituitary adenylate cyclase-activating polypeptide, neuropeptide Y, or others play in these events are discussed. Progress in this field will likely result in novel therapies for the management of diseases characterized by deregulated inflammation, tissue remodeling, angiogenesis, and neoplasm.
Collapse
Affiliation(s)
- Eva M J Peters
- Department of Internal Medicine, Psychosomatics, Biomedical Research Center, Universitätsmedizin-Charité, Campus Virchow Klinikum, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Harrison AR, McLoon LK. Reduction in touch sensitivity and hyperinnervation in vesicant-injured rabbit eyelid by direct injection of corticotropin releasing factor. Neurosci Lett 2006; 400:30-4. [PMID: 16510247 DOI: 10.1016/j.neulet.2006.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Revised: 02/06/2006] [Accepted: 02/07/2006] [Indexed: 01/20/2023]
Abstract
Skin injury can result in inflammatory responses and increased sensitivity to touch. Corticotropin releasing factor (CRF), when administered locally or systemically, can reduce the inflammatory and hyperalgesic processes after skin injury. However, the mechanisms that control its effects are unclear. Doxorubicin injection produced inflammation, increased sensitivity to touch and more sensitive blink responses in eyelids of adult rabbits, and local injection of CRF reduced these changes. Doxorubicin alone resulted in a significant ingrowth of nerve fibers as determined by morphometric analysis of PGP 9.5 and substance P immunohistochemistry. Treatment with CRF significantly reduced this nerve fiber ingrowth, and a CRF antagonist partially blocked this protective effect. Thus, CRF has a potent tissue protective effect when administered locally after a vesicant-induced injury, and one mechanism of action is the reduction of nerve fiber ingrowth and sensitivity of the eyelid to touch.
Collapse
Affiliation(s)
- Andrew R Harrison
- Department of Ophthalmology, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
40
|
Vit JP, Ohara PT, Tien DA, Fike JR, Eikmeier L, Beitz A, Wilcox GL, Jasmin L. The analgesic effect of low dose focal irradiation in a mouse model of bone cancer is associated with spinal changes in neuro-mediators of nociception. Pain 2006; 120:188-201. [PMID: 16360279 DOI: 10.1016/j.pain.2005.10.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 09/21/2005] [Accepted: 10/31/2005] [Indexed: 11/19/2022]
Abstract
Despite the widespread use of radiotherapy to treat painful bone metastases, the mechanism underlying the analgesic effect of low dose ionizing radiation is unknown. Bone cancer pain is mostly associated with an inflammatory response dominated by local activation of osteoclasts and by astrogliosis in the spinal cord. We determined the effects of a 6 Gy irradiation given focally on osteolytic sarcoma cells inoculated in humeri of mice. Pain behavior was assessed using the rota-rod and the grip force test. Seven days post-irradiation (day 17 post-tumor implantation) the performance of mice markedly improved on the rotarod (non-irradiated, 67+/-16s vs irradiated, 223 +/- 22 s; P = 0.0005), and the grip force test (non-irradiated, 34 +/- 4 g vs irradiated, 55 +/- 2 g; P = 0.001). This improvement was similar to the analgesia achieved with 30 mg/kg of the cyclooxygenase (COX) inhibitor ketorolac (Rota-rod, 67 +/- 16 s vs 178 +/- 35 s; P = 0.01: grip force test, 34 +/- 4 g, vs 60 +/- 5 g; P = 0.003). Following irradiation, the tumor mass and the number of osteoclasts did not decrease while the expression of two pro-inflammatory cytokines (monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)-alpha) increased. Tumor irradiation led to clear differences in the spinal cord. These include a decrease in glial activity (astrocytes and microglial cells) as well as pain mediators such as dynorphin, COX-2 and chemotactic cytokine receptor (CCR2). We conclude that the analgesic effect of low dose irradiation of bone cancer is associated with the alteration of nociceptive transmission in the central nervous system.
Collapse
Affiliation(s)
- Jean-Philippe Vit
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143-0452, USA Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA Departments of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA Departments of Neuroscience, Pharmacology and Dermatology, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Gilchrist LS, Cain DM, Harding-Rose C, Kov AN, Wendelschafer-Crabb G, Kennedy WR, Simone DA. Re-organization of P2X3 receptor localization on epidermal nerve fibers in a murine model of cancer pain. Brain Res 2005; 1044:197-205. [PMID: 15885218 DOI: 10.1016/j.brainres.2005.02.081] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 02/18/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
To determine whether ATP and P2X3 receptors contribute to bone-cancer pain in a mouse model, immunohistochemical techniques were used to identify whether changes in the labeling of P2X3 receptors on epidermal nerve fibers (ENFs) occurred during tumor development. C3H mice were injected with osteolytic fibrosarcoma cells in and around the calcaneus bone. These mice exhibited mechanical hyperalgesia by day 10 post-implantation as assessed using von Frey monofilaments. Biopsies of the plantar skin overlying the tumor were obtained at days 10, 14, and 18 post-implantation. Confocal images were analyzed for the number of PGP 9.5, P2X3, and CGRP immunoreactive (ir) ENFs. The overall ENF population (PGP-ir) decreased progressively over time, whereas the subsets of P2X3-ir fibers demonstrated a modest increase and CGRP-ir nerve fibers remained fairly constant. Importantly, the proportion of CGRP-ir fibers that labeled for P2X3 increased from approximately 6% in control animals to nearly 30% at day 14 following tumor cell implantation. These studies demonstrate increased expression of P2X3 receptors on CGRP-ir ENFs during tumor growth and suggest a role for ATP in cancer-related pain.
Collapse
Affiliation(s)
- Laura S Gilchrist
- Physical Therapy Program, College of St. Catherine, Minneapolis, MN 55454, USA
| | | | | | | | | | | | | |
Collapse
|