1
|
Yan X, Ye Y, Wang L, Xue J, Shen N, Li T. Platelet-rich plasma alleviates neuropathic pain in osteoarthritis by downregulating microglial activation. BMC Musculoskelet Disord 2024; 25:331. [PMID: 38725009 PMCID: PMC11080143 DOI: 10.1186/s12891-024-07437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND The development of neuropathic pain (NP) is one of the reasons why the pain is difficult to treat, and microglial activation plays an important role in NP. Recently, platelet-rich plasma (PRP) has emerged as a novel therapeutic method for knee osteoarthritis (KOA). However, it's unclarified whether PRP has analgesic effects on NP induced by KOA and the underlying mechanisms unknown. PURPOSE To observe the analgesic effects of PRP on NP induced by KOA and explore the potential mechanisms of PRP in alleviating NP. METHODS KOA was induced in male rats with intra-articular injections of monosodium iodoacetate (MIA) on day 0. The rats received PRP or NS (normal saline) treatment at days 15, 17, and 19 after modeling. The Von Frey and Hargreaves tests were applied to assess the pain-related behaviors at different time points. After euthanizing the rats with deep anesthesia at days 28 and 42, the corresponding tissues were taken for subsequent experiments. The expression of activating transcription factor 3 (ATF3) in dorsal root ganglia (DRG) and ionized-calcium-binding adapter molecule-1(Iba-1) in the spinal dorsal horn (SDH) was detected by immunohistochemical staining. In addition, the knee histological assessment was performed by hematoxylin-eosin (HE) staining. RESULTS The results indicated that injection of MIA induced mechanical allodynia and thermal hyperalgesia, which could be reversed by PRP treatment. PRP downregulated the expression of ATF3 within the DRG and Iba-1 within the SDH. Furthermore, an inhibitory effect on cartilage degeneration was observed in the MIA + PRP group only on day 28. CONCLUSION These results indicate that PRP intra-articular injection therapy may be a potential therapeutic agent for relieving NP induced by KOA. This effect could be attributed to downregulation of microglial activation and reduction in nerve injury.
Collapse
Affiliation(s)
- Xiao Yan
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Yinshuang Ye
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Lin Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Junqiang Xue
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Nana Shen
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Tieshan Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China.
| |
Collapse
|
2
|
Dykstra-Aiello C, Koh KMS, Nguyen J, Xue M, Roy S, Krueger JM. A wake-like state in vitro induced by transmembrane TNF/soluble TNF receptor reverse signaling. Brain Behav Immun 2021; 94:245-258. [PMID: 33571627 PMCID: PMC8058269 DOI: 10.1016/j.bbi.2021.01.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor alpha (TNF) has sleep regulatory and brain development roles. TNF promotes sleep in vivo and in vitro while TNF inhibition diminishes sleep. Transmembrane (tm) TNF and the tmTNF receptors (Rs), are cleaved by tumor necrosis factor alpha convertase to produce soluble (s) TNF and sTNFRs. Reverse signaling occurs in cells expressing tmTNF upon sTNFR binding. sTNFR administration in vivo inhibits sleep, thus we hypothesized that a wake-like state in vitro would be induced by sTNFR-tmTNF reverse signaling. Somatosensory cortical neuron/glia co-cultures derived from male and female mice lacking both TNFRs (TNFRKO), or lacking TNF (TNFKO) and wildtype (WT) mice were plated onto six-well multi-electrode arrays. Daily one-hour electrophysiological recordings were taken on culture days 4 through 14. sTNFR1 (0.0, 0.3, 3, 30, 60, and 120 ng/µL) was administered on day 14. A final one-hour recording was taken on day 15. Four measures were characterized that are also used to define sleep in vivo: action potentials (APs), burstiness index (BI), synchronization of electrical activity (SYN), and slow wave power (SWP; 0.25-3.75 Hz). Development rates of these emergent electrophysiological properties increased in cells from mice lacking TNF or both TNFRs compared to cells from WT mice. Decreased SWP, after the three lowest doses (0.3, 3 and 30 ng/µL) of the sTNFR1, indicate a wake-like state in cells from TNFRKO mice. A wake-like state was also induced after 3 ng/µl sTNFR1 treatment in cells from TNFKO mice, which express the TNFR1 ligand, lymphotoxin alpha. Cells from WT mice showed no treatment effects. Results are consistent with prior studies demonstrating involvement of TNF in brain development, TNF reverse signaling, and sleep regulation in vivo. Further, the current demonstration of sTNFR1 induction of a wake-like state in vitro is consistent with the idea that small neuronal/glial circuits manifest sleep- and wake-like states analogous to those occurring in vivo. Finally, that sTNF forward signaling enhances sleep while sTNFR1 reverse signaling enhances a wake-like state is consistent with other sTNF/tmTNF/sTNFR1 brain actions having opposing activities.
Collapse
Affiliation(s)
- Cheryl Dykstra-Aiello
- Department of Integrative Physiology and Neuroscience, Washington State University-Spokane, WA, United States.
| | - Khia Min Sabrina Koh
- Department of Integrative Physiology and Neuroscience, Washington State University-Spokane, WA, United States
| | - Joseph Nguyen
- Department of Integrative Physiology and Neuroscience, Washington State University-Spokane, WA, United States
| | - Mengran Xue
- Department of Electrical Engineering, Washington State University-Pullman, WA, United States
| | - Sandip Roy
- Department of Electrical Engineering, Washington State University-Pullman, WA, United States
| | - James M Krueger
- Department of Integrative Physiology and Neuroscience, Washington State University-Spokane, WA, United States
| |
Collapse
|
3
|
Kwok CHT, Kohro Y, Mousseau M, O'Brien MS, Matyas JR, McDougall JJ, Trang T. Role of Primary Afferents in Arthritis Induced Spinal Microglial Reactivity. Front Immunol 2021; 12:626884. [PMID: 33897685 PMCID: PMC8058457 DOI: 10.3389/fimmu.2021.626884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/18/2021] [Indexed: 11/18/2022] Open
Abstract
Increased afferent input resulting from painful injury augments the activity of central nociceptive circuits via both neuron-neuron and neuron-glia interactions. Microglia, resident immune cells of the central nervous system (CNS), play a crucial role in the pathogenesis of chronic pain. This study provides a framework for understanding how peripheral joint injury signals the CNS to engage spinal microglial responses. During the first week of monosodium iodoacetate (MIA)-induced knee joint injury in male rats, inflammatory and neuropathic pain were characterized by increased firing of peripheral joint afferents. This increased peripheral afferent activity was accompanied by increased Iba1 immunoreactivity within the spinal dorsal horn indicating microglial activation. Pharmacological silencing of C and A afferents with co-injections of QX-314 and bupivacaine, capsaicin, or flagellin prevented the development of mechanical allodynia and spinal microglial activity after MIA injection. Elevated levels of ATP in the cerebrospinal fluid (CSF) and increased expression of the ATP transporter vesicular nucleotide transporter (VNUT) in the ipsilateral spinal dorsal horn were also observed after MIA injections. Selective silencing of primary joint afferents subsequently inhibited ATP release into the CSF. Furthermore, increased spinal microglial reactivity, and alleviation of MIA-induced arthralgia with co-administration of QX-314 with bupivacaine were recapitulated in female rats. Our results demonstrate that early peripheral joint injury activates joint nociceptors, which triggers a central spinal microglial response. Elevation of ATP in the CSF, and spinal expression of VNUT suggest ATP signaling may modulate communication between sensory neurons and spinal microglia at 2 weeks of joint degeneration.
Collapse
Affiliation(s)
- Charlie H T Kwok
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Yuta Kohro
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Michael Mousseau
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Melissa S O'Brien
- Departments of Pharmacology and Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - John R Matyas
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Jason J McDougall
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tuan Trang
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
LeBlang CJ, Medalla M, Nicoletti NW, Hays EC, Zhao J, Shattuck J, Cruz AL, Wolozin B, Luebke JI. Reduction of the RNA Binding Protein TIA1 Exacerbates Neuroinflammation in Tauopathy. Front Neurosci 2020; 14:285. [PMID: 32327969 PMCID: PMC7161592 DOI: 10.3389/fnins.2020.00285] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammatory processes play an integral role in the exacerbation and progression of pathology in tauopathies, a class of neurodegenerative disease characterized by aggregation of hyperphosphorylated tau protein. The RNA binding protein (RBP) T-cell Intracellular Antigen 1 (TIA1) is an important regulator of the innate immune response in the periphery, dampening cytotoxic inflammation and apoptosis during cellular stress, however, its role in neuroinflammation is unknown. We have recently shown that TIA1 regulates tau pathophysiology and toxicity in part through the binding of phospho-tau oligomers into pathological stress granules, and that haploinsufficiency of TIA1 in the P301S mouse model of tauopathy results in reduced accumulation of toxic tau oligomers, pathologic stress granules, and the development of downstream pathological features of tauopathy. The putative role of TIA1 as a regulator of the peripheral immune response led us to investigate the effects of TIA1 on neuroinflammation in the context of tauopathy, a chronic stressor in the neural environment. Here, we evaluated indicators of neuroinflammation including; reactive microgliosis and phagocytosis, pro-inflammatory cytokine release, and oxidative stress in hippocampal neurons and glia of wildtype and P301S transgenic mice expressing TIA1+/+, TIA1+/-, and TIA1-/- in both early (5 month) and advanced (9 month) disease states through biochemical, ultrastructural, and histological analyses. Our data show that both TIA1 haploinsufficiency and TIA1 knockout exacerbate neuroinflammatory processes in advanced stages of tauopathy, suggesting that TIA1 dampens the immune response in the central nervous system during chronic stress.
Collapse
Affiliation(s)
- Chelsey Jenna LeBlang
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Maria Medalla
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Nicholas William Nicoletti
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Emma Catherine Hays
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - James Zhao
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Jenifer Shattuck
- Laboratory of Neurodegeneration, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Anna Lourdes Cruz
- Laboratory of Neurodegeneration, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin Wolozin
- Laboratory of Neurodegeneration, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- Department of Neuroscience, Boston University, Boston, MA, United States
| | - Jennifer Irene Luebke
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
5
|
Doycheva D, Xu N, Tang J, Zhang J. Viral-mediated gene delivery of TMBIM6 protects the neonatal brain via disruption of NPR-CYP complex coupled with upregulation of Nrf-2 post-HI. J Neuroinflammation 2019; 16:174. [PMID: 31472686 PMCID: PMC6717394 DOI: 10.1186/s12974-019-1559-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Oxidative stress, inflammation, and endoplasmic reticulum (ER) stress play a major role in the pathogenesis of neonatal hypoxic-ischemic (HI) injury. ER stress results in the accumulation of unfolded proteins that trigger the NADPH-P450 reductase (NPR) and the microsomal monooxygenase system which is composed of cytochrome P450 members (CYP) generating reactive oxygen species (ROS) as well as the release of inflammatory cytokines. We explored the role of Bax Inhibitor-1 (BI-1) protein, encoded by the Transmembrane Bax inhibitor Motif Containing 6 (TMBIM6) gene, in protection from ER stress after HI brain injury. BI-1 may attenuate ER stress-induced ROS production and release of inflammatory mediators via (1) disruption of the NPR-CYP complex and (2) upregulation of Nrf-2, a redox-sensitive transcription factor, thus promoting an increase in anti-oxidant enzymes to inhibit ROS production. The main objective of our study is to evaluate BI-1's inhibitory effects on ROS production and inflammation by overexpressing BI-1 in 10-day-old rat pups. METHODS Ten-day-old (P10) unsexed Sprague-Dawley rat pups underwent right common carotid artery ligation, followed by 1.5 h of hypoxia. To overexpress BI-1, rat pups were intracerebroventricularly (icv) injected at 48 h pre-HI with the human adenoviral vector-TMBIM6 (Ad-TMBIM6). BI-1 and Nrf-2 silencing were achieved by icv injection at 48 h pre-HI using siRNA to elucidate the potential mechanism. Percent infarcted area, immunofluorescent staining, DHE staining, western blot, and long-term neurobehavior assessments were performed. RESULTS Overexpression of BI-1 significantly reduced the percent infarcted area and improved long-term neurobehavioral outcomes. BI-1's mediated protection was observed to be via inhibition of P4502E1, a major contributor to ROS generation and upregulation of pNrf-2 and HO-1, which correlated with a decrease in ROS and inflammatory markers. This effect was reversed when BI-1 or Nrf-2 were inhibited. CONCLUSIONS Overexpression of BI-1 increased the production of antioxidant enzymes and attenuated inflammation by destabilizing the complex responsible for ROS production. BI-1's multimodal role in inhibiting P4502E1, together with upregulating Nrf-2, makes it a promising therapeutic target.
Collapse
Affiliation(s)
- Desislava Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - Ningbo Xu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - John Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Loma Linda, CA 92354 USA
| |
Collapse
|
6
|
Rajchgot T, Thomas SC, Wang JC, Ahmadi M, Balood M, Crosson T, Dias JP, Couture R, Claing A, Talbot S. Neurons and Microglia; A Sickly-Sweet Duo in Diabetic Pain Neuropathy. Front Neurosci 2019; 13:25. [PMID: 30766472 PMCID: PMC6365454 DOI: 10.3389/fnins.2019.00025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetes is a common condition characterized by persistent hyperglycemia. High blood sugar primarily affects cells that have a limited capacity to regulate their glucose intake. These cells include capillary endothelial cells in the retina, mesangial cells in the renal glomerulus, Schwann cells, and neurons of the peripheral and central nervous systems. As a result, hyperglycemia leads to largely intractable complications such as retinopathy, nephropathy, hypertension, and neuropathy. Diabetic pain neuropathy is a complex and multifactorial disease that has been associated with poor glycemic control, longer diabetes duration, hypertension, advanced age, smoking status, hypoinsulinemia, and dyslipidemia. While many of the driving factors involved in diabetic pain are still being investigated, they can be broadly classified as either neuron -intrinsic or -extrinsic. In neurons, hyperglycemia impairs the polyol pathway, leading to an overproduction of reactive oxygen species and reactive nitrogen species, an enhanced formation of advanced glycation end products, and a disruption in Na+/K+ ATPase pump function. In terms of the extrinsic pathway, hyperglycemia leads to the generation of both overactive microglia and microangiopathy. The former incites a feed-forward inflammatory loop that hypersensitizes nociceptor neurons, as observed at the onset of diabetic pain neuropathy. The latter reduces neurons' access to oxygen, glucose and nutrients, prompting reductions in nociceptor terminal expression and losses in sensation, as observed in the later stages of diabetic pain neuropathy. Overall, microglia can be seen as potent and long-lasting amplifiers of nociceptor neuron activity, and may therefore constitute a potential therapeutic target in the treatment of diabetic pain neuropathy.
Collapse
Affiliation(s)
- Trevor Rajchgot
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Sini Christine Thomas
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jo-Chiao Wang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Maryam Ahmadi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Mohammad Balood
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Théo Crosson
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jenny Pena Dias
- Johns Hopkins University School of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, United States
| | - Réjean Couture
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Audrey Claing
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Talbot
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
7
|
Okutani H, Yamanaka H, Kobayashi K, Okubo M, Noguchi K. Recombinant interleukin-4 alleviates mechanical allodynia via injury-induced interleukin-4 receptor alpha in spinal microglia in a rat model of neuropathic pain. Glia 2018; 66:1775-1787. [DOI: 10.1002/glia.23340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Hiroai Okutani
- Department of Anatomy and Neuroscience; Hyogo College of Medicine, 1-1 Mukogawa-cho; Nishinomiya Hyogo 663-8501 Japan
| | - Hiroki Yamanaka
- Department of Anatomy and Neuroscience; Hyogo College of Medicine, 1-1 Mukogawa-cho; Nishinomiya Hyogo 663-8501 Japan
| | - Kimiko Kobayashi
- Department of Anatomy and Neuroscience; Hyogo College of Medicine, 1-1 Mukogawa-cho; Nishinomiya Hyogo 663-8501 Japan
| | - Masamichi Okubo
- Department of Anatomy and Neuroscience; Hyogo College of Medicine, 1-1 Mukogawa-cho; Nishinomiya Hyogo 663-8501 Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience; Hyogo College of Medicine, 1-1 Mukogawa-cho; Nishinomiya Hyogo 663-8501 Japan
| |
Collapse
|
8
|
Association between IL4, IL6 gene polymorphism and lumbar disc degeneration in Chinese population. Oncotarget 2017; 8:89064-89071. [PMID: 29179499 PMCID: PMC5687669 DOI: 10.18632/oncotarget.21650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/27/2017] [Indexed: 11/25/2022] Open
Abstract
Lumbar disc disease (LDD) is a common musculoskeletal disorder, caused by degeneration of intervertebral discs of the lumbar spine and is one of the most common musculoskeletal disorders affliction in adult. There is growing evidence that LDD has strong genetic determinants. We analyze whether the IL4 and IL6 gene polymorphism is related to LDD in Chinese Han population. The participants were 498 with LDD and 463 without LDD. IL4 and IL6 gene polymorphism were determined by Sequenom MassARRAY. We found that SNPs rs1800796(OR = 1.29, 95% CI, 1.07 – 1.57, p = 0.009), rs1524107(OR = 1.28, 95% CI, 1.05 – 1.55, p = 0.013), rs2069840 (OR = 1.39, 95% CI, 1.03 – 1.89, p = 0.033) in IL6 gene were significantly associated with LDD risk at a 5% level. In addition, genetic models found IL4 gene (rs2243250) were associated with LDD. In this study, we analyzed and associated SNPs of IL4 and IL6 with LDD risk. In summary, four variations (rs1800796, rs1524107, rs2069840, rs2243250) of the selected candidate SNPs were associated with susceptibility to LDD in our study. The results of this study have the guiding significance in clinical work in the future in the treatment of lumbar disc herniation patients, not one-sided that the symptoms of low back pain only from mechanical oppression.
Collapse
|
9
|
Therapeutic Strategies Under Development Targeting Inflammatory Mechanisms in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2017; 55:2789-2813. [PMID: 28455693 DOI: 10.1007/s12035-017-0532-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
|
10
|
Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases. Mediators Inflamm 2017; 2017:5048616. [PMID: 28154473 PMCID: PMC5244030 DOI: 10.1155/2017/5048616] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/26/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.
Collapse
|
11
|
Altun I. Cytokine profile in degenerated painful intervertebral disc: variability with respect to duration of symptoms and type of disease. Spine J 2016; 16:857-61. [PMID: 26975459 DOI: 10.1016/j.spinee.2016.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/09/2016] [Accepted: 03/02/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Neuroinflammation is supposed to play a crucial role in the generation of chronic pain. Numerous trials have documented the contribution of proinflammatory cytokines in the pathophysiology of pain associated with peripheral and central nociception. Local and systemic expressions of proinflammatory cytokines have been implicated as mediators of pain. Among these cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) are especially notable because of their hyperalgesic impacts after nerve damage. PURPOSE The aim of the present study was to evaluate and compare the tissue levels of IL-1β, IL-6, interleukin-10 (IL-10), and TNF-α in subligamentous and free fragment types of degenerated intervertebral disc in acute and chronic periods. STUDY DESIGN This was a cross-sectional study. PATIENT SAMPLE A cross-sectional study was implemented on a total of 49 patients (24 women, 25 men) with an average age of 38.2±4.9 treated surgically by means of microdiscectomy. OUTCOME MEASURES Of these cases, 19 had complaints for less than 6 months, whereas 30 patients had been suffering from low back pain and leg pain for more than 6 months. Thirty-eight patients have been diagnosed with subligamentous type and 11 patients had free fragment type of disc degeneration. METHODS The levels of IL-1β, IL-6, IL-10, and TNF-α were assessed in tissue samples prepared from nucleus pulposus tissue obtained during microdiscectomy. Results were compared in patients with acute and chronic duration of complaints, as well as subligamentous and free fragment types of intervertebral disc degeneration. RESULTS The levels of IL-1β (p<.001), IL-6 (p<.001), IL-10 (p<.001), and TNF-α (p<.001) were significantly higher in patients with acute duration of complaints. Similarly, free fragment type of intervertebral disc degeneration displayed remarkably higher levels of IL-1β (p=.009), IL-6 (p<.001), IL-10 (p=.024), and TNF-α (p=.017) compared with the subligamentous type. CONCLUSIONS Inflammatory cytokines seem to have a more apparent role in intervertebral disc degeneration especially in acute period and in free fragment type. Further trials should be performed for elucidation of pathophysiology at the molecular level and the development of more effective diagnostic and therapeutic measures.
Collapse
Affiliation(s)
- Idiris Altun
- Department of Neurosurgery, Medical Faculty, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100, Turkey.
| |
Collapse
|
12
|
Dynamic weight bearing is an efficient and predictable method for evaluation of arthritic nociception and its pathophysiological mechanisms in mice. Sci Rep 2015; 5:14648. [PMID: 26511791 PMCID: PMC4625149 DOI: 10.1038/srep14648] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/02/2015] [Indexed: 12/20/2022] Open
Abstract
The assessment of articular nociception in experimental animals is a challenge because available methods are limited and subject to investigator influence. In an attempt to solve this problem, the purpose of this study was to establish the use of dynamic weight bearing (DWB) as a new device for evaluating joint nociception in an experimental model of antigen-induced arthritis (AIA) in mice. AIA was induced in Balb/c and C57BL/6 mice, and joint nociception was evaluated by DWB. Western Blotting and real-time PCR were used to determine protein and mRNA expression, respectively. DWB detected a dose- and time-dependent increase in joint nociception during AIA and was able to detect the dose-response effects of different classes of analgesics. Using DWB, it was possible to evaluate the participation of spinal glial cells (microglia and astrocytes) and cytokines (IL-1β and TNFα) for the genesis of joint nociception during AIA. In conclusion, the present results indicated that DWB is an effective, objective and predictable test to study both the pathophysiological mechanisms involved in arthritic nociception in mice and for evaluating novel analgesic drugs against arthritis.
Collapse
|
13
|
Morioka N, Zhang FF, Nakamura Y, Kitamura T, Hisaoka-Nakashima K, Nakata Y. Tumor necrosis factor-mediated downregulation of spinal astrocytic connexin43 leads to increased glutamatergic neurotransmission and neuropathic pain in mice. Brain Behav Immun 2015; 49:293-310. [PMID: 26116449 DOI: 10.1016/j.bbi.2015.06.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/05/2015] [Accepted: 06/16/2015] [Indexed: 11/29/2022] Open
Abstract
Spinal cord astrocytes are critical in the maintenance of neuropathic pain. Connexin 43 (Cx43) expressed on spinal dorsal horn astrocytes modulates synaptic neurotransmission, but its role in nociceptive transduction has yet to be fully elaborated. In mice, Cx43 is mainly expressed in astrocytes, not neurons or microglia, in the spinal dorsal horn. Hind paw mechanical hypersensitivity was observed beginning 3days after partial sciatic nerve ligation (PSNL), but a persistent downregulation of astrocytic Cx43 in ipsilateral lumbar spinal dorsal horn was not observed until 7days post-PSNL, suggesting that Cx43 downregulation mediates the maintenance and not the initiation of nerve injury-induced hypersensitivity. Downregulation of Cx43 expression by intrathecal treatment with Cx43 siRNA also induced mechanical hypersensitivity. Conversely, restoring Cx43 by an adenovirus vector expressing Cx43 (Ad-Cx43) ameliorated PSNL-induced mechanical hypersensitivity. The sensitized state following PSNL is likely maintained by dysfunctional glutamatergic neurotransmission, as Cx43 siRNA-induced mechanical hypersensitivity was attenuated with intrathecal treatment of glutamate receptor antagonists MK801 and CNQX, but not neurokinin-1 receptor antagonist CP96345 or the Ca(2+) channel subunit α2δ1 blocker gabapentin. The source of this dysfunctional glutamatergic neurotransmission is likely decreased clearance of glutamate from the synapse rather than increased glutamate release into the synapse. Astrocytic expression of glutamate transporter GLT-1, but not GLAST, and activity of glutamate transport were markedly decreased in mice intrathecally injected with Cx43-targeting siRNA but not non-targeting siRNA. Glutamate release from spinal synaptosomes prepared from mice treated with either Cx43-targeting siRNA or non-targeting siRNA was unchanged. Intrathecal injection of Ad-Cx43 in PSNL mice restored astrocytic GLT-1 expression. The cytokine tumor necrosis factor (TNF) has been implicated in the induction of central sensitization, particularly through its actions on astrocytes, in the spinal cord following peripheral injury. Intrathecal injection of TNF in naïve mice induced the downregulation of both Cx43 and GLT-1 in spinal dorsal horn, as well as hind paw mechanical hypersensitivity, as observed in PSNL mice. Conversely, intrathecal treatment of PSNL mice with the TNF inhibitor etanercept prevented not only mechanical hypersensitivity but also the downregulation of Cx43 and GLT-1 expression in astrocytes. The current findings indicate that spinal astrocytic Cx43 are essential for the maintenance of neuropathic pain following peripheral nerve injury and suggest modulation of Cx43 as a novel target for developing analgesics for neuropathic pain.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Tomoya Kitamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
14
|
Li WW, Guo TZ, Shi X, Sun Y, Wei T, Clark DJ, Kingery WS. Substance P spinal signaling induces glial activation and nociceptive sensitization after fracture. Neuroscience 2015; 310:73-90. [PMID: 26386297 DOI: 10.1016/j.neuroscience.2015.09.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 12/30/2022]
Abstract
Tibia fracture in rodents induces substance P (SP)-dependent keratinocyte activation and inflammatory changes in the hindlimb, similar to those seen in complex regional pain syndrome (CRPS). In animal pain models spinal glial cell activation results in nociceptive sensitization. This study tested the hypothesis that limb fracture triggers afferent C-fiber SP release in the dorsal horn, resulting in chronic glial activation and central sensitization. At 4 weeks after tibia fracture and casting in rats, the cast was removed and hind paw allodynia, unweighting, warmth, and edema were measured, then the antinociceptive effects of microglia (minocycline) or astrocyte (L-2-aminoadipic acid (LAA)) inhibitors or an SP receptor antagonist (LY303870) were tested. Immunohistochemistry and PCR were used to evaluate microglial and astrocyte activation in the dorsal horn. Similar experiments were performed in intact rats after brief sciatic nerve electric stimulation at C-fiber intensity. Microglia and astrocytes were chronically activated at 4 weeks after fracture and contributed to the maintenance of hind paw allodynia and unweighting. Furthermore, LY303870 treatment initiated at 4 weeks after fracture partially reversed both spinal glial activation and nociceptive sensitization. Similarly, persistent spinal microglial activation and hind paw nociceptive sensitization were observed at 48 h after sciatic nerve C-fiber stimulation and this effect was inhibited by treatment with minocycline, LAA, or LY303870. These data support the hypothesis that C-fiber afferent SP signaling chronically supports spinal neuroglial activation after limb fracture and that glial activation contributes to the maintenance of central nociceptive sensitization in CRPS. Treatments inhibiting glial activation and spinal inflammation may be therapeutic for CRPS.
Collapse
Affiliation(s)
- W-W Li
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States; Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - T-Z Guo
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - X Shi
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States; Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Y Sun
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States; Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - T Wei
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - D J Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States; Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - W S Kingery
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States.
| |
Collapse
|
15
|
Dagistan Y, Cukur S, Dagistan E, Gezici AR. Importance of IL-6, MMP-1, IGF-1, and BAX Levels in Lumbar Herniated Disks and Posterior Longitudinal Ligament in Patients with Sciatic Pain. World Neurosurg 2015. [PMID: 26211852 DOI: 10.1016/j.wneu.2015.07.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of this study was to evaluate prognostic importance of interleukin-6 (IL-6), matrix metalloproteinase (MMP)-1, insulin-like growth factor (IGF)-1, and Bcl-2-associated X protein (BAX) levels in biopsy specimens taken from the intervertebral disk specimens and the posterior longitudinal ligaments of patients with sciatic pain. METHODS The specimens of the intervertebral disk and the posterior longitudinal ligament were obtained from 52 patients undergoing herniectomy and diskectomy at the Neurosurgery Department of the Abant Izzet Baysal University Izzet Baysal Training and Research Hospital between April 2012 and February 2014. The immunohistochemical expressions of IL-6, MMP-1, IGF-1, and BAX were evaluated in three categories: mild, moderate, and intense. RESULTS The IL-6 expression in the intervertebral disk specimens was intense in the sequestration group when compared with that of the "protrusion" and "extrusion" groups. The intervertebral disk specimens in "extrusion" and "sequestration" groups were stained intensely for MMP-1. The IGF-1 expression was stained intensely in the intervertebral disk tissue of the extrude group patients. For the "extrusion" and "sequestration" groups, the intervertebral disk specimens were stained intensely for BAX compared with the protrude group. The IL-6 expression in the posterior longitudinal ligament specimens was more intense in the "sequestration" and "extrusion" groups when compared with that of the protrude group. The MMP-1 expressions were milder in the sequestration group when compared with that of the "extrusion" and "protrusion" groups. CONCLUSIONS Our findings suggest that the cytokines, enzymes, growth factors, and proapoptotic proteins, such as IL-6, MMP-1, IGF-1, and BAX, may be critical factors in the pathophysiology of the degeneration of the intervertebral disks in patients with symptomatic degenerative disk disease.
Collapse
Affiliation(s)
- Yasar Dagistan
- Department of Neurosurgery, Abant Izzet Baysal University Medical School, Izzet Baysal Training and Research Hospital, Bolu, Turkey.
| | - Selma Cukur
- Department of Pathology, Abant Izzet Baysal University Medical School, Izzet Baysal Training and Research Hospital, Bolu, Turkey
| | - Emine Dagistan
- Department of Radiology, Abant Izzet Baysal University Medical School, Izzet Baysal Training and Research Hospital, Bolu, Turkey
| | - Ali Riza Gezici
- Department of Neurosurgery, Abant Izzet Baysal University Medical School, Izzet Baysal Training and Research Hospital, Bolu, Turkey
| |
Collapse
|
16
|
Ma F, Zhang L, Oz HS, Mashni M, Westlund KN. Dysregulated TNFα promotes cytokine proteome profile increases and bilateral orofacial hypersensitivity. Neuroscience 2015; 300:493-507. [PMID: 26033565 DOI: 10.1016/j.neuroscience.2015.05.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tumor necrosis factor alpha (TNFα) is increased in patients with headache, neuropathic pain, periodontal and temporomandibular disease. This study and others have utilized TNF receptor 1/2 (TNFR1/2) knockout (KO) animals to investigate the effect of TNFα dysregulation in generation and maintenance of chronic neuropathic pain. The present study determined the impact of TNFα dysregulation in a trigeminal inflammatory compression (TIC) nerve injury model comparing wild-type (WT) and TNFR1/2 KO mice. METHODS Chromic gut suture was inserted adjacent to the infraorbital nerve to induce the TIC model mechanical hypersensitivity. Cytokine proteome profiles demonstrated serology, and morphology explored microglial activation in trigeminal nucleus 10weeks post. RESULTS TIC injury induced ipsilateral whisker pad mechanical allodynia persisting throughout the 10-week study in both TNFR1/2 KO and WT mice. Delayed mechanical allodynia developed on the contralateral whisker pad in TNFR1/2 KO mice but not in WT mice. Proteomic profiling 10weeks after chronic TIC injury revealed TNFα, interleukin-1alpha (IL-1α), interleukin-5 (IL-5), interleukin-23 (IL-23), macrophage inflammatory protein-1β (MIP-1β), and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased more than 2-fold in TNFR1/2 KO mice compared to WT mice with TIC. Bilateral microglial activation in spinal trigeminal nucleus was detected only in TNFR1/2 KO mice. p38 mitogen-activated protein kinase (MAPK) inhibitor and microglial inhibitor minocycline reduced hypersensitivity. CONCLUSIONS The results suggest the dysregulated serum cytokine proteome profile and bilateral spinal trigeminal nucleus microglial activation are contributory to the bilateral mechanical hypersensitization in this chronic trigeminal neuropathic pain model in the mice with TNFα dysregulation. Data support involvement of both neurogenic and humoral influences in chronic neuropathic pain.
Collapse
Affiliation(s)
- F Ma
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - L Zhang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - H S Oz
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - M Mashni
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - K N Westlund
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| |
Collapse
|
17
|
Guedon JMG, Wu S, Zheng X, Churchill CC, Glorioso JC, Liu CH, Liu S, Vulchanova L, Bekker A, Tao YX, Kinchington PR, Goins WF, Fairbanks CA, Hao S. Current gene therapy using viral vectors for chronic pain. Mol Pain 2015; 11:27. [PMID: 25962909 PMCID: PMC4446851 DOI: 10.1186/s12990-015-0018-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/01/2015] [Indexed: 02/07/2023] Open
Abstract
The complexity of chronic pain and the challenges of pharmacotherapy highlight the importance of development of new approaches to pain management. Gene therapy approaches may be complementary to pharmacotherapy for several advantages. Gene therapy strategies may target specific chronic pain mechanisms in a tissue-specific manner. The present collection of articles features distinct gene therapy approaches targeting specific mechanisms identified as important in the specific pain conditions. Dr. Fairbanks group describes commonly used gene therapeutics (herpes simplex viral vector (HSV) and adeno-associated viral vector (AAV)), and addresses biodistribution and potential neurotoxicity in pre-clinical models of vector delivery. Dr. Tao group addresses that downregulation of a voltage-gated potassium channel (Kv1.2) contributes to the maintenance of neuropathic pain. Alleviation of chronic pain through restoring Kv1.2 expression in sensory neurons is presented in this review. Drs Goins and Kinchington group describes a strategy to use the replication defective HSV vector to deliver two different gene products (enkephalin and TNF soluble receptor) for the treatment of post-herpetic neuralgia. Dr. Hao group addresses the observation that the pro-inflammatory cytokines are an important shared mechanism underlying both neuropathic pain and the development of opioid analgesic tolerance and withdrawal. The use of gene therapy strategies to enhance expression of the anti-pro-inflammatory cytokines is summarized. Development of multiple gene therapy strategies may have the benefit of targeting specific pathologies associated with distinct chronic pain conditions (by Guest Editors, Drs. C. Fairbanks and S. Hao).
Collapse
Affiliation(s)
- Jean-Marc G Guedon
- Graduate Program in Molecular Virology and Microbiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA. .,Department of Ophthalmology, University of Pittsburgh School of Medicine, Room 1020 EEI, 203 Lothrop Street, Pittsburgh, PA, 15213, USA.
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, State University of New Jersey, 185 S. Orange Ave., MSB, F-548, Newark, NJ, 07103, USA.
| | - Xuexing Zheng
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | | | - Joseph C Glorioso
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Ching-Hang Liu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Shue Liu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, State University of New Jersey, 185 S. Orange Ave., MSB, F-548, Newark, NJ, 07103, USA.
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, State University of New Jersey, 185 S. Orange Ave., MSB, F-548, Newark, NJ, 07103, USA. .,Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, NJ, 07103, USA. .,Department of Neurology & Neuroscience, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, NJ, 07103, USA. .,Department of Physiology & Pharmacology, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, NJ, 07103, USA.
| | - Paul R Kinchington
- Graduate Program in Molecular Virology and Microbiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA. .,Department of Ophthalmology, University of Pittsburgh School of Medicine, Room 1020 EEI, 203 Lothrop Street, Pittsburgh, PA, 15213, USA.
| | - William F Goins
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Carolyn A Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA. .,Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA. .,Department of Pharmacology, University of Minnesota, 9-177 Weaver Densford Hall, 308 Harvard Street, Minneapolis, MN, 55455, USA.
| | - Shuanglin Hao
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
18
|
Wu Z, Wang S, Wu I, Mata M, Fink DJ. Activation of TLR-4 to produce tumour necrosis factor-α in neuropathic pain caused by paclitaxel. Eur J Pain 2014; 19:889-98. [PMID: 25388329 DOI: 10.1002/ejp.613] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuropathic pain is a common complication of treatment with the anti-neoplastic drug paclitaxel. Animal studies suggest neuroinflammation and transient receptor potential channels TRPA1 and TRPV4 are involved in the pathogenesis of pain in this condition. However, how neuroinflammation and TRPA1 and TRPV4 are linked to cause pain in paclitaxel-treated animals is not known. METHODS Paclitaxel-induced pain was modelled by IP injection of paclitaxel (16 mg/kg) once a week for 5 weeks. The role of toll-like receptor 4 (TLR-4) in tumour necrosis factor-α (TNF-α) production and the effect of TNF-α on the expression of TRPA1 and TRPV4 were evaluated in vitro and in vivo. TNF-α signalling in dorsal root ganglion (DRG) was blocked by expressing soluble TNF receptor I (TNFsR) from a herpes simplex virus (HSV)-based vector (vTNFsR). RESULTS Paclitaxel treatment increased the expression and release of TNF-α in satellite glial cells and increased the expression of TRPA1 and TRPV4 in DRG neurons in animals. In vitro, paclitaxel enhanced the expression and release of TNF-α in enriched primary satellite glial cells, an effect that was blocked by an inhibitor of TLR-4. Direct application of TNF-α to primary DRG neurons in culture up-regulated the expression of TRPA1 and TRPV4. In vivo, vector-mediated TNFsR release from DRG neurons reduced paclitaxel-induced up-regulation of TRPA1 and TRPV4 expression and prevented paclitaxel-induced pain. CONCLUSION These results suggest that paclitaxel activation of TLR-4 to cause release of TNF-α from satellite glial cells increases the expression of TRPA1 and TRPV4 in DRG neurons to cause neuropathic pain.
Collapse
Affiliation(s)
- Z Wu
- Department of Neurology, University of Michigan, USA.,VA Ann Arbor Healthcare System, USA
| | - S Wang
- Department of Neurology, University of Michigan, USA.,VA Ann Arbor Healthcare System, USA
| | - I Wu
- Department of Neurology, University of Michigan, USA.,VA Ann Arbor Healthcare System, USA
| | - M Mata
- Department of Neurology, University of Michigan, USA.,VA Ann Arbor Healthcare System, USA
| | - D J Fink
- Department of Neurology, University of Michigan, USA.,VA Ann Arbor Healthcare System, USA
| |
Collapse
|
19
|
Gui Y, Li H, Zhao M, Yang Q, Kuang X. Effect of intermittent normobaric hyperoxia for treatment of neuropathic pain in Chinese patients with spinal cord injury. Spinal Cord 2014; 53:238-242. [PMID: 25288038 DOI: 10.1038/sc.2014.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 08/06/2014] [Accepted: 08/27/2014] [Indexed: 12/24/2022]
Abstract
STUDY DESIGN Prospective, randomized and controlled study. OBJECTIVES The aim of the study was to investigate the effect of intermittent normobaric hyperoxia (InHO) for treatment of neuropathic pain in patients with spinal cord injury (SCI). SETTING The First Affiliated Hospital of Nanhua University, Hengyang, Hunan Province, China. METHODS Patients with SCI from Hunan Province were recruited from the First Affiliated Hospital of Nanhua University. History, duration, localization and characteristics of pain were recorded. Visual analog scale (VAS), the Patient Global Impression of Change (PGIC) and Short Form-36 walk-wheel (SF-36ww) was used to investigate the effect of InHO. Patients were randomly assigned to study and control groups. In study group, patients were exposed to pure oxygen via non-rebreathing reservoir mask, which increased the provided oxygen at a rate of 7 l min-1 for 1 or 4 h daily in 2 weeks. While in control group, patients breathed air via non-rebreathing reservoir mask at the same rate. RESULTS A total of 62 SCI patients with neuropathic pain were included in the study. The mean age of the patients was 36.85±10.71 years. Out of 62 patients, 21 were tetraplegic and 41 were paraplegic. Overall, 14 patients had complete SCI while 48 patients had incomplete injuries. Three groups were similar with respect to age, gender, duration, smoker or not, level and severity of injury. In the 4 h per day InHO groups, a statistically significant reduction of the VAS values was observed (P<0.05). Significant difference was also found in SF-36ww pain scores and PGIC (P<0.05). However, such an effect was not evident in the control group. CONCLUSION This study revealed that in treatment of neuropathic pain of SCI patients, InHO may be effective. PERSPECTIVE This article presents InHO may effectively complement pharmacological treatment in patients with SCI and neuropathic pain.
Collapse
Affiliation(s)
- Y Gui
- Department of Anesthesiology, The First Affiliated Hospital of Nanhua University, Hengyang, China
| | - H Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanhua University, Hengyang, China
| | - M Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Nanhua University, Hengyang, China
| | - Q Yang
- Department of Anesthesiology, The First Affiliated Hospital of Nanhua University, Hengyang, China
| | - X Kuang
- Department of Anesthesiology, The First Affiliated Hospital of Nanhua University, Hengyang, China
| |
Collapse
|
20
|
Lei B, Mace B, Dawson HN, Warner DS, Laskowitz DT, James ML. Anti-inflammatory effects of progesterone in lipopolysaccharide-stimulated BV-2 microglia. PLoS One 2014; 9:e103969. [PMID: 25080336 PMCID: PMC4117574 DOI: 10.1371/journal.pone.0103969] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/08/2014] [Indexed: 12/29/2022] Open
Abstract
Female sex is associated with improved outcome in experimental brain injury models, such as traumatic brain injury, ischemic stroke, and intracerebral hemorrhage. This implies female gonadal steroids may be neuroprotective. A mechanism for this may involve modulation of post-injury neuroinflammation. As the resident immunomodulatory cells in central nervous system, microglia are activated during acute brain injury and produce inflammatory mediators which contribute to secondary injury including proinflammatory cytokines, and nitric oxide (NO) and prostaglandin E2 (PGE2), mediated by inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively. We hypothesized that female gonadal steroids reduce microglia mediated neuroinflammation. In this study, the progesterone’s effects on tumor necrosis factor alpha (TNF-α), iNOS, and COX-2 expression were investigated in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Further, investigation included nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) pathways. LPS (30 ng/ml) upregulated TNF-α, iNOS, and COX-2 protein expression in BV-2 cells. Progesterone pretreatment attenuated LPS-stimulated TNF-α, iNOS, and COX-2 expression in a dose-dependent fashion. Progesterone suppressed LPS-induced NF-κB activation by decreasing inhibitory κBα and NF-κB p65 phosphorylation and p65 nuclear translocation. Progesterone decreased LPS-mediated phosphorylation of p38, c-Jun N-terminal kinase and extracellular regulated kinase MAPKs. These progesterone effects were inhibited by its antagonist mifepristone. In conclusion, progesterone exhibits pleiotropic anti-inflammatory effects in LPS-stimulated BV-2 microglia by down-regulating proinflammatory mediators corresponding to suppression of NF-κB and MAPK activation. This suggests progesterone may be used as a potential neurotherapeutic to treat inflammatory components of acute brain injury.
Collapse
Affiliation(s)
- Beilei Lei
- Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Brian Mace
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Hana N. Dawson
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David S. Warner
- Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Daniel T. Laskowitz
- Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael L. James
- Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
21
|
Antidepressants suppress neuropathic pain by a peripheral β2-adrenoceptor mediated anti-TNFα mechanism. Neurobiol Dis 2013; 60:39-50. [DOI: 10.1016/j.nbd.2013.08.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/26/2013] [Accepted: 08/14/2013] [Indexed: 01/08/2023] Open
|
22
|
Forshammar J, Jörneberg P, Björklund U, Westerlund A, Lundborg C, Biber B, Hansson E. Anti-inflammatory substances can influence some glial cell types but not others. Brain Res 2013; 1539:34-40. [DOI: 10.1016/j.brainres.2013.09.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/16/2013] [Accepted: 09/23/2013] [Indexed: 01/22/2023]
|
23
|
Hoheisel U, Reuter R, de Freitas MF, Treede RD, Mense S. Injection of nerve growth factor into a low back muscle induces long-lasting latent hypersensitivity in rat dorsal horn neurons. Pain 2013; 154:1953-1960. [DOI: 10.1016/j.pain.2013.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/25/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
|
24
|
Wu Z, Wang S, Gruber S, Mata M, Fink DJ. Full-length membrane-bound tumor necrosis factor-α acts through tumor necrosis factor receptor 2 to modify phenotype of sensory neurons. Pain 2013; 154:1778-1782. [PMID: 23711481 DOI: 10.1016/j.pain.2013.05.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/09/2013] [Accepted: 05/20/2013] [Indexed: 11/28/2022]
Abstract
Neuropathic pain resulting from spinal hemisection or selective spinal nerve ligation is characterized by an increase in membrane-bound tumor necrosis factor-alpha (mTNFα) in spinal microglia without detectable release of soluble TNFα (sTNFα). In tissue culture, we showed that a full-length transmembrane cleavage-resistant TNFα (CRTNFα) construct can act through cell-cell contact to activate neighboring microglia. We undertook the current study to test the hypothesis that mTNFα expressed in microglia might also affect the phenotype of primary sensory afferents, by determining the effect of CRTNFα expressed from COS-7 cells on gene expression in primary dorsal root ganglia (DRG) neurons. Co-culture of DRG neurons with CRTNFα-expressing COS-7 cells resulted in a significant increase in the expression of voltage-gated sodium channel isoforms NaV1.7 and NaV1.8, and voltage-gated calcium channel subunit CaV3.2 at both mRNA and protein levels, and enhanced CCL2 expression and release from the DRG neurons. Exposure to sTNFα produced an increase only in CCL2 expression and release. Treatment of the cells with an siRNA against tumor necrosis factor receptor 2 (TNFR2) significantly reduced CRTNFα-induced gene expression changes in DRG neurons, whereas administration of CCR2 inhibitor had no significant effect on CRTNFα-induced increase in gene expression and CCL2 release in DRG neurons. Taken together, the results of this study suggest that mTNFα expressed in spinal microglia can facilitate pain signaling by up-regulating the expression of cation channels and CCL2 in DRG neurons in a TNFR2-dependent manner.
Collapse
Affiliation(s)
- Zetang Wu
- Department of Neurology, University of Michigan and VA Ann Arbor Healthcare System (Neurology and Geriatric Research Education and Clinical Center), Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
25
|
Gui Q, Xu C, Zhuang L, Xia S, Chen Y, Peng P, Yu S. A new rat model of bone cancer pain produced by rat breast cancer cells implantation of the shaft of femur at the third trochanter level. Cancer Biol Ther 2012; 14:193-9. [PMID: 23254954 DOI: 10.4161/cbt.23291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bone cancer pain remains one of the most challenging cancer pains to fully control. In order to clarify bone cancer pain mechanisms and examine treatments, animal models mimicking the human condition are required. In our model of Walker 256 tumor cells implantation of the shaft of femur at the third trochanter level, the anatomical structure is relatively simple and the drilled hole is vertical and in the cortical bone only 1-2 mm in depth without injury of the distal femur. Pain behaviors and tumor growth were observed for 21 days. And neurochemical changes were further investigated in this model. The results showed that cancer-bearing rats demonstrated a decreased limb use score from day 14, an increased spontaneous flinching and guarding times from day 7 and a decreased withdrawal threshold from day 6. The tumor infiltration of bone was monitored by MRI and further verified by histological examination. C-fos and the capsaicin receptor (TRPV1) positive neurons were more expressed in cancer-bearing rats and the substance P expression has no difference, suggesting that neurons were activated in the model. Our animal model demonstrated time-dependent tumor growth and pain behaviors and will be a novel animal model of bone cancer pain in the future.
Collapse
Affiliation(s)
- Qi Gui
- Department of Oncology, Tongji Hospital; Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Zheng X, Zheng W, Liu S, Patel HM, Xia X, Ouyang H, Levitt RC, Candiotti KA, Hao S. Crosstalk between JNK and NF-κB in the KDO2-mediated production of TNFα in HAPI cells. Cell Mol Neurobiol 2012; 32:1375-83. [PMID: 22837047 DOI: 10.1007/s10571-012-9864-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 07/14/2012] [Indexed: 12/16/2022]
Abstract
Both nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases mediate production of proinflammatory cytokines in many types of cells. c-Jun N-terminal kinases (JNK) is a key regulator of many cellular events including cell inflammation and/or programmed cell death (apoptosis). In addition to mediating immune and inflammatory responses, NF-κB transcription factors control cell survival. It is reported that activation of NF-κB antagonizes apoptosis or programmed cell death by numerous triggers. It has been reported that NF-κB activation results in rapid inactivation of JNK in tumor necrosis factor alpha (TNFα)-treated murine embryonic fibroblasts. It is not clear about the relationship of JNK and NF-κB in the microglial cells induced by TLR4 activity. In the present study, we investigated the relationship of JNK and NF-κB in the highly aggressively proliferating immortalized microglial cell line treated with KDO2 (a TLR4 agonist). KDO2 treatment significantly induced the phosphorylation of JNK and NF-κB, and released TNFα. Knockdown of TLR4 with TLR4 siRNA significantly reduced phosphorylation of JNK (pJNK), phosphorylation of NF-κB, and release of TNFα. Inhibition of JNK reduced the release of TNFα, but not phosphorylation of NF-κB. Unexpectedly, inhibition of NF-κB enhanced pJNK and the release of TNFα. These results showed that TNFα induced by KDO2 was JNK-dependent, and that NF-κB negatively modulated both pJNK and TNFα in the cultured microglial cell line. The current study may provide a new insight in the modulation of TNFα in the microglial cell line.
Collapse
Affiliation(s)
- Xuexing Zheng
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Andrade P, Hoogland G, Garcia MA, Steinbusch HW, Daemen MA, Visser-Vandewalle V. Elevated IL-1β and IL-6 levels in lumbar herniated discs in patients with sciatic pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2012; 22:714-20. [PMID: 23014739 DOI: 10.1007/s00586-012-2502-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/16/2012] [Accepted: 09/09/2012] [Indexed: 01/23/2023]
Abstract
PURPOSE Previous experimental models have shown that proinflammatory cytokines modulate peripheral and central nociception. However, the direct correlation between inflammation and pain in patients remains unclear. Our aim is to correlate the levels of inflammation in the spine with pre- and postoperative pain scores after discectomy. METHODS Paravertebral muscle, annulus fibrosus (AF) and nucleus pulposus (NP) biopsies were intraoperatively collected from ten lumbar disc hernia (LDH) patients suffering from chronic sciatic pain and, as painless controls, five scoliosis patients. IL-1β and IL-6 expressions in these biopsies were assessed by qPCR and western blot. The amount of pain, indicated on a 0-10 point visual analogue scale (VAS), was assessed 1 day before surgery and 6 weeks and 1 year after surgery. For analysis purposes, LDH patients were grouped into painful (VAS ≥ 3.5) and non-painful (VAS < 3.5). LDH painful patient group showed a onefold increased mRNA expression of IL-1β in the NP, and IL-6 in the AF and NP (p < 0.05 vs. controls). RESULTS By western blot analysis, both cytokines were clearly visible in all LDH biopsies, but not in controls. However, cytokine expression of the painful patient group did not differ from those of the non-painful patient group. In addition, there was no correlation between VAS scores and either marker. CONCLUSIONS These findings support the idea that LDH is accompanied by a local inflammatory process. Yet, the lack of correlation between IL-1β or IL-6 expression and the severity pain suggests that these cytokines may not play a leading role in maintaining a pain generating network.
Collapse
Affiliation(s)
- Pablo Andrade
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Tan AM, Chakrabarty S, Kimura H, Martin JH. Selective corticospinal tract injury in the rat induces primary afferent fiber sprouting in the spinal cord and hyperreflexia. J Neurosci 2012; 32:12896-908. [PMID: 22973013 PMCID: PMC3499628 DOI: 10.1523/jneurosci.6451-11.2012] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 06/19/2012] [Accepted: 07/15/2012] [Indexed: 12/28/2022] Open
Abstract
The corticospinal tract (CST) has dense contralateral and sparse ipsilateral spinal cord projections that converge with proprioceptive afferents on common spinal targets. Previous studies in adult rats indicate that the loss of dense contralateral spinal CST connections after unilateral pyramidal tract section (PTx), which models CST loss after stroke or spinal cord injury, leads to outgrowth from the spared side into the affected, ipsilateral, spinal cord. The reaction of proprioceptive afferents after this CST injury, however, is not known. Knowledge of proprioceptive afferent responses after loss of the CST could inform mechanisms of maladaptive plasticity in spinal sensorimotor circuits after injury. Here, we hypothesize that the loss of the contralateral CST results in a reactive increase in muscle afferents from the impaired limb and enhancement of their physiological actions within the cervical spinal cord. We found that 10 d after PTx, proprioceptive afferents sprout into cervical gray matter regions denervated by the loss of CST terminations. Furthermore, VGlut1-positive boutons, indicative of group 1A afferent terminals, increased on motoneurons. PTx also produced an increase in microglial density within the gray matter regions where CST terminations were lost. These anatomical changes were paralleled by reduction in frequency-dependent depression of the H-reflex, suggesting hyperreflexia. Our data demonstrate for the first time that selective CST injury induces maladaptive afferent fiber plasticity remote from the lesion. Our findings suggest a novel structural reaction of proprioceptive afferents to the loss of CST terminations and provide insight into mechanisms underlying spasticity.
Collapse
Affiliation(s)
- Andrew M. Tan
- Department of Physiology, Pharmacology, and Neuroscience, The City College of the City University of New York, New York, New York 10031, and
| | - Samit Chakrabarty
- Department of Physiology, Pharmacology, and Neuroscience, The City College of the City University of New York, New York, New York 10031, and
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS29JT, United Kingdom
| | - Hiroki Kimura
- Department of Physiology, Pharmacology, and Neuroscience, The City College of the City University of New York, New York, New York 10031, and
| | - John H. Martin
- Department of Physiology, Pharmacology, and Neuroscience, The City College of the City University of New York, New York, New York 10031, and
| |
Collapse
|
29
|
Emerging role of microglial kinin B1 receptor in diabetic pain neuropathy. Exp Neurol 2012; 234:373-81. [DOI: 10.1016/j.expneurol.2011.11.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/01/2011] [Accepted: 11/22/2011] [Indexed: 12/28/2022]
|
30
|
Zheng W, Zheng X, Liu S, Ouyang H, Levitt RC, Candiotti KA, Hao S. TNFα and IL-1β are mediated by both TLR4 and Nod1 pathways in the cultured HAPI cells stimulated by LPS. Biochem Biophys Res Commun 2012; 420:762-7. [PMID: 22450316 DOI: 10.1016/j.bbrc.2012.03.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/09/2012] [Indexed: 11/20/2022]
Abstract
A growing body of evidence recently suggests that glial cell activation plays an important role in several neurodegenerative diseases and neuropathic pain. Microglia in the central nervous system express toll-like receptor 4 (TLR4) that is traditionally accepted as the primary receptor of lipopolysaccharide (LPS). LPS activates TLR4 signaling pathways to induce the production of proinflammatory molecules. In the present studies, we verified the LPS signaling pathways using cultured highly aggressively proliferating immortalized (HAPI) microglial cells. We found that HAPI cells treated with LPS upregulated the expression of TLR4, phospho-JNK (pJNK) and phospho-NF-κB (pNF-κB), TNFα and IL-1β. Silencing TLR4 with siRNA reduced the expression of pJNK, TNFα and IL-1β, but not pNF-κB in the cells. Inhibition of JNK with SP600125 (a JNK inhibitor) decreased the expression of TNFα and IL-1β. Unexpectedly, we found that inhibition of Nod1 with ML130 significantly reduced the expression of pNF-κB. Inhibition of NF-κB also reduced the expression of TNFα and IL-1β. Nod1 ligand, DAP induced the upregulation of pNF-κB which was blocked by Nod1 inhibitor. These data indicate that LPS-induced pJNK is TLR4-dependent, and that pNF-κB is Nod1-dependent in HAPI cells treated with LPS. Either TLR4-JNK or Nod1-NF-κB pathways is involved in the expression of TNFα and IL-1β.
Collapse
Affiliation(s)
- Wenwen Zheng
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Chronic neuropathic and inflammatory pain is a major public health problem. Nociceptors undergo sensitization, first in peripheral tissues then in the central nervous sytem, via neuroimmune interactions linking neurons, glial cells (microglia and astrocytes), and immune cells. These interactions may either exacerbate or attenuate the pain and inflammation, which normally reach a state of equilibrium. With more powerful or longer lasting stimuli, specific profiles of microglial and, subsequently, astrocytic activation in the dorsal horn play a key role in neuronal plasticity and transition to chronic pain. Recent insights into the interactions between the nervous system and the immune system suggest a large number of potential therapeutic targets that could be influenced either by targeted inhibition or by directing the neuroimmune response toward the antiinflammatory and analgesic end of its spectrum.
Collapse
|
32
|
Tumor necrosis factor-α levels correlate with postoperative pain severity in lumbar disc hernia patients: opposite clinical effects between tumor necrosis factor receptor 1 and 2. Pain 2011; 152:2645-2652. [PMID: 21920667 DOI: 10.1016/j.pain.2011.08.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/04/2011] [Accepted: 08/09/2011] [Indexed: 11/24/2022]
Abstract
Lumbar disc hernia (LDH) is a leading cause of chronic pain in adults. The underlying pathology of chronic pain after discectomy remains unclear. Chronic local inflammation is considered to underlie painful symptomatology. In this context, we investigated tumor necrosis factor (TNF)-α, TNF receptor 1 (TNFR1), and TNF receptor 2 (TNFR2) expression at the time of surgery in LDH patients and correlated it with the severity of postoperative pain. We analyzed protein and mRNA levels from muscle, ligamentum flavum (LF), annulus fibrosus (AF), and nucleus pulposus (NP) in LDH patients and scoliosis patients (SP), who served as controls. Pain assessment with the visual analogue scale (VAS) was performed 1 day before surgery and 6 weeks and 12 months postoperatively. TNF-α protein levels were detected in AF, LF, and NP in all LDH patients, but not in SP. TNF-α mRNA was significantly greater in LDH patients than in SP; ie, 5-fold in AF, 3-fold in NP, and 2-fold in LF. For NP, TNF-α protein levels correlated with VAS scores (r=0.54 at 6-week and r=0.65 at 12-month follow-up). Also, TNFR1 protein levels in NP positively correlated with VAS scores (r=0.75 at 6-week and r=0.80 at 12-month follow-up). However, TNFR2 protein levels in AF negatively correlated with VAS scores (r=-0.60 at 6 weeks and r=-0.60 at 12 months follow-up). These data indicate that TNF-α levels could determine the clinical outcome in LDH patients after discectomy. Moreover, the opposite correlation of TNF receptors with pain sensation suggests that an unbalanced expression plays a role in the generation of pain.
Collapse
|
33
|
Improvement of the trivalent inactivated flu vaccine using PapMV nanoparticles. PLoS One 2011; 6:e21522. [PMID: 21747909 PMCID: PMC3126827 DOI: 10.1371/journal.pone.0021522] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/30/2011] [Indexed: 02/06/2023] Open
Abstract
Commercial seasonal flu vaccines induce production of antibodies directed mostly towards hemaglutinin (HA). Because HA changes rapidly in the circulating virus, the protection remains partial. Several conserved viral proteins, e.g., nucleocapsid (NP) and matrix proteins (M1), are present in the vaccine, but are not immunogenic. To improve the protection provided by these vaccines, we used nanoparticles made of the coat protein of a plant virus (papaya mosaic virus; PapMV) as an adjuvant. Immunization of mice and ferrets with the adjuvanted formulation increased the magnitude and breadth of the humoral response to NP and to highly conserved regions of HA. They also triggered a cellular mediated immune response to NP and M1, and long-lasting protection in animals challenged with a heterosubtypic influenza strain (WSN/33). Thus, seasonal flu vaccine adjuvanted with PapMV nanoparticles can induce universal protection to influenza, which is a major advancement when facing a pandemic.
Collapse
|
34
|
Jasmin L, Ohara PT. Close encounters of the third kind: evidence for contact with TNF-alpha. Pain 2010; 151:241-242. [PMID: 20739122 DOI: 10.1016/j.pain.2010.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 07/20/2010] [Indexed: 12/30/2022]
Affiliation(s)
- Luc Jasmin
- Department of Anatomy, UCSF, 513 Parnassus, San Francisco, CA 94143-0452, USA
| | | |
Collapse
|