1
|
Emvalomenos GM, Kang JW, Salberg S, Li C, Jupp B, Long M, Haskali MB, Kellapatha S, Davanzo OII, Lim H, Mychasiuk R, Keay KA, Henderson LA. Evidence for glial reactivity using positron-emission tomography imaging of translocator Protein-18 kD [TSPO] in both sham and nerve-injured rats in a preclinical model of orofacial neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2025; 17:100175. [PMID: 39758133 PMCID: PMC11699482 DOI: 10.1016/j.ynpai.2024.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/08/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025]
Abstract
Chronic neuropathic pain is a debilitating condition that results from damage to the nervous system. Current treatments are largely ineffective, with limited understanding of the underlying mechanisms hindering development of effective treatments. Preclinical models of neuropathic pain have revealed that non-neural changes are important for the development of neuropathic pain, although these data are derived almost exclusively from post-mortem histological analyses. Although these static snapshots have provided valuable data, they cannot provide insights into non-neural cell changes that could be also assessed in human patients with chronic pain. In this study we used translocator protein 18 kDa (TSPO) PET imaging with [18F]PBR06 to visualise in-vivo, the activity of macrophages and microglia in a rodent preclinical model of trigeminal neuropathic pain. Using chronic constriction injury of the infraorbital nerve (ION-CCI) we compared temporal changes in TSPO binding in male rats, prior to, and up to 28 days after ION-CCI compared with both sham-injured and naïve counterparts. Unexpectedly, we found significant increases in TSPO signal in both ION-CCI and sham-injured rats within the trigeminal ganglion, spinal trigeminal nucleus and paratrigeminal nucleus during the initial phase following surgery and/or nerve injury. This increased TSPO binding returned to control levels by day 28. Qualitative histological appraisal of macrophage accumulation and glial reactivity in both ION-CCI and sham-injured rats indicated macrophage accumulation in the trigeminal ganglion and microglial reactivity in the brainstem trigeminal complex. These findings show, glial changes in the peripheral nerve and brain in both nerve-injured and sham-injured rats in a preclinical model of neuropathic pain which provides a platform for translation into human patients.
Collapse
Affiliation(s)
- Gaelle M. Emvalomenos
- School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| | - James W.M. Kang
- School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Crystal Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Bianca Jupp
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Matthew Long
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Mohammad B. Haskali
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Sunil Kellapatha
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - OIivia I. Davanzo
- School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| | - Hyunsol Lim
- School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kevin A. Keay
- School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| | - Luke A. Henderson
- School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Edwards KA, Lii T, Schouten TD, Kearney KM, Ziadni MS, Darnall BD, Mackey SC, Gilam G. Is There an Association Between Lateralization of Chronic Pain in the Body and Depression? THE JOURNAL OF PAIN 2024; 25:104490. [PMID: 38341013 PMCID: PMC11310367 DOI: 10.1016/j.jpain.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Depression commonly co-occurs with chronic pain and can worsen pain outcomes. Recent theoretical work has hypothesized that pain localized to the left hemibody is a risk factor for worse depression due to overlap in underlying neural substrates. This hypothesis has not been tested a priori. Using a large sample of treatment-seeking adults with mixed-etiology chronic pain (N = 1,185), our cross-sectional study tested whether patients with left-sided pain endorse worse depressive symptoms. We also examined differences in other pain-related functioning measures. We tested 4 comparisons based on painful body areas using the CHOIR body map: 1) only left-sided (OL) versus any right-sided pain; 2) only right-sided (OR) versus any left-sided pain; 3) OL versus OR versus bilateral pain; and 4) more left-sided versus more right-sided versus equal-sided pain. Analysis of variance models showed OL pain was not associated with worse depression (F = 5.50, P = .019). Any left-sided pain was associated with worse depression, though the effect was small (F = 8.58, P = .003, Cohens d = .29). Bilateral pain was associated with worse depression (F = 8.05, P < .001, Cohens d = .24-.33). Regardless of pain location, more body areas endorsed was associated with greater depression. Although a more rigorous assessment of pain laterality is needed, our findings do not support the hypothesis that left-lateralized pain is associated with worse depression. PERSPECTIVE: Pain lateralized to the left side of the body has been hypothesized as a risk factor for worse depression in chronic pain, despite never being tested in a large, real-world sample of patients with chronic pain. Findings showed that more widespread pain, not pain laterality, was associated with worse depression.
Collapse
Affiliation(s)
- Karlyn A. Edwards
- Division of Pain Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine
| | - Theresa Lii
- Division of Pain Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine
| | - Troy D. Schouten
- Division of Pain Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine
| | - Katherine M. Kearney
- Division of Pain Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine
| | - Maisa S. Ziadni
- Division of Pain Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine
| | - Beth D. Darnall
- Division of Pain Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine
| | - Sean C. Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine
| | - Gadi Gilam
- Division of Pain Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem
| |
Collapse
|
3
|
Nichols SJ, Yanes JA, Reid MA, Robinson JL. 7 T characterization of excitatory and inhibitory systems of acute pain in healthy female participants. NMR IN BIOMEDICINE 2024; 37:e5088. [PMID: 38140895 DOI: 10.1002/nbm.5088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Current understanding of the physiological underpinnings of normative pain processing is incomplete. Enhanced knowledge of these systems is necessary to advance our understanding of pain processes as well as to develop effective therapeutic interventions. Previous neuroimaging research suggests a network of interrelated brain regions that seem to be implicated in the processing and experience of pain. Among these, the dorsal anterior cingulate cortex (dACC) plays an important role in the affective aspects of pain signals. The current study leveraged functional MRS to investigate the underlying dynamic shifts in the neurometabolic signature of the human dACC at rest and during acute pain. Results provide support for increased glutamate levels following acute pain administration. Specifically, a 4.6% increase in glutamate was observed during moderate pressure pain compared with baseline. Exploratory analysis also revealed meaningful changes in dACC gamma aminobutyric acid in response to pain stimulation. These data contribute toward the characterization of neurometabolic shifts, which lend insight into the role of the dACC in the pain network. Further research in this area with larger sample sizes could contribute to the development of novel therapeutics or other advances in pain-related outcomes.
Collapse
Affiliation(s)
- Steven J Nichols
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
| | - Julio A Yanes
- Exponent Inc., Washington, District of Columbia, USA
| | - Meredith A Reid
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
| | - Jennifer L Robinson
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
4
|
Henssen DJHA, Pritsch C, Nazari P, Mulleners W, Vissers K. The non-decussating and decussating trigeminothalamic tracts in humans: A combination of connectome-based tractography and histological validation. Cephalalgia 2024; 44:3331024241235168. [PMID: 38613234 DOI: 10.1177/03331024241235168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
BACKGROUND Functional anatomical research proposed the existence of a bilateral trigeminal ascending system although the anatomy trajectories of the trigeminothalamic connections cranial to the pons remain largely elusive. This study therefore aimed to clarify the anatomical distributions of the trigeminothalamic connections in humans. METHODS Advanced deterministic tractography to an averaged template of diffusion tensor imaging data from 1065 subjects from the Human Connectome Project was used. Seedings masks were placed in Montreal Neurological Institute standard space by use of the BigBrain histological dataset. Waypoint masks of the sensory thalamus was obtained from the Brainnetome Atlas. RESULTS Tractography results were validated by use of the BigBrain histological dataset and Polarized Light Imaging microscopy. The trigeminothalamic tract bifurcated into a decussating ventral and a non-decussating dorsal tract. The ventral and dorsal tracts ascended to the contralateral thalamus and ipsilateral thalamus and reflected the ventral trigeminothalamic tract and the dorsal trigeminothalamic tract, respectively. The projection of the ventral trigeminothalamic tract and the dorsal trigeminothalamic tract to both thalami confirm the existence of a bilateral trigeminothalamic system in humans. CONCLUSIONS Because our study is strictly anatomical, no further conclusions can be drawn with regard to physiological functionality. Future research should explore if the dorsal trigeminothalamic tract and the ventral trigeminothalamic tract actually transmit signals from noxious stimuli, this offers potential in understanding and possibly treating neuropathology in the orofacial region.
Collapse
Affiliation(s)
- Dylan J H A Henssen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Cynthia Pritsch
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pouyan Nazari
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wim Mulleners
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kris Vissers
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Chen TC, Lin CS. Neuroimaging meta-analysis of brain mechanisms of the association between orofacial pain and mastication. J Oral Rehabil 2023; 50:1070-1081. [PMID: 37252887 DOI: 10.1111/joor.13526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Temporomandibular disorders (TMD) are characterized by pain and impaired masticatory functions. The Integrated Pain Adaptation Model (IPAM) predicts that alterations in motor activity may be associated with increased pain in some individuals. The IPAM highlights the diversity of patients' responses to orofacial pain and suggests that such diversity is related to the sensorimotor network of the brain. It remains unclear whether the pattern of brain activation reflects the diversity of patients' responses underlying the association between mastication and orofacial pain. OBJECTIVE This meta-analysis aims to compare the spatial pattern of brain activation, as the primary outcome of neuroimaging studies, between studies of mastication (i.e. Study 1: mastication of healthy adults) and studies of orofacial pain (i.e. Study 2: muscle pain in healthy adults and Study 3: noxious stimulation of the masticatory system in TMD patients). METHODS Neuroimaging meta-analyses were conducted for two groups of studies: (a) mastication of healthy adults (Study 1, 10 studies) and (b) orofacial pain (7 studies), including muscle pain in healthy adults (Study 2) and noxious stimulation of the masticatory system in TMD patients (Study 3). Consistent loci of brain activation were synthesized using Activation Likelihood Estimation (ALE) with an initial cluster-forming threshold (p < .05) and a threshold of cluster size (p < .05, familywise error-corrected). RESULTS The orofacial pain studies have shown consistent activation in pain-related regions, including the anterior cingulate cortex and the anterior insula (AIns). A conjunctional analysis of mastication and orofacial pain studies showed joint activation at the left AIns, the left primary motor cortex and the right primary somatosensory cortex. CONCLUSION The meta-analytical evidence suggests that the AIns, as a key region in pain, interoception and salience processing, contributes to the pain-mastication association. These findings reveal an additional neural mechanism of the diversity of patients' responses underlying the association between mastication and orofacial pain.
Collapse
Affiliation(s)
- Ta-Chung Chen
- Division of Prosthodontics, Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Shu Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
6
|
Peck CM, Bereiter DA, Eberly LE, Lenglet C, Moana-Filho EJ. Altered brain responses to noxious dentoalveolar stimuli in high-impact temporomandibular disorder pain patients. PLoS One 2022; 17:e0266349. [PMID: 36240243 PMCID: PMC9565712 DOI: 10.1371/journal.pone.0266349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022] Open
Abstract
High-impact temporomandibular disorder (TMD) pain may involve brain mechanisms related to maladaptive central pain modulation. We investigated brain responses to stimulation of trigeminal sites not typically associated with TMD pain by applying noxious dentoalveolar pressure to high- and low-impact TMD pain cases and pain-free controls during functional magnetic resonance imaging (fMRI). Fifty female participants were recruited and assigned to one of three groups based on the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) and Graded Chronic Pain Scale: controls (n = 17), low-impact (n = 17) and high-impact TMD (n = 16). Multimodal whole-brain MRI was acquired following the Human Connectome Project Lifespan protocol, including stimulus-evoked fMRI scans during which painful dentoalveolar pressure was applied to the buccal gingiva of participants. Group analyses were performed using non-parametric permutation tests for parcellated cortical and subcortical neuroimaging data. There were no significant between-group differences for brain activations/deactivations evoked by the noxious dentoalveolar pressure. For individual group mean activations/deactivations, a gradient in the number of parcels surviving thresholding was found according to the TMD pain grade, with the highest number seen in the high-impact group. Among the brain regions activated in chronic TMD pain groups were those previously implicated in sensory-discriminative and motivational-affective pain processing. These results suggest that dentoalveolar pressure pain evokes abnormal brain responses to sensory processing of noxious stimuli in high-impact TMD pain participants, which supports the presence of maladaptive brain plasticity in chronic TMD pain.
Collapse
Affiliation(s)
- Connor M. Peck
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - David A. Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Lynn E. Eberly
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, Minnesota, United States of America
| | - Christophe Lenglet
- Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Estephan J. Moana-Filho
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| |
Collapse
|
7
|
Crawford L, Mills E, Meylakh N, Macey PM, Macefield VG, Henderson LA. Brain activity changes associated with pain perception variability. Cereb Cortex 2022; 33:4145-4155. [PMID: 36069972 DOI: 10.1093/cercor/bhac332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/14/2022] Open
Abstract
Pain perception can be modulated by several factors. Phenomena like temporal summation leads to increased perceived pain, whereas behavioral conditioning can result in analgesic responses. Furthermore, during repeated, identical noxious stimuli, pain intensity can vary greatly in some individuals. Understanding these variations is important, given the increase in investigations that assume stable baseline pain for accurate response profiles, such as studies of analgesic mechanisms. We utilized functional magnetic resonance imaging to examine the differences in neural circuitry between individuals displaying consistent pain ratings and those who experienced variable pain during a series of identical noxious stimuli. We investigated 63 healthy participants: 31 were assigned to a "consistent" group, and 32 were assigned to a "variable" group dependent on pain rating variability. Variable pain ratings were associated with reduced signal intensity in the dorsolateral prefrontal cortex (dlPFC). Furthermore, the dlPFC connectivity with the primary somatosensory cortex and temperoparietal junction was significantly reduced in variable participants. Our results suggest that investigators should consider variability of baseline pain when investigating pain modulatory paradigms. Additionally, individuals with consistent and variable pain ratings differ in their dlPFC activity and connectivity with pain-sensitive regions during noxious stimulation, possibly reflecting the differences in attentional processing and catastrophizing during pain.
Collapse
Affiliation(s)
- L Crawford
- Department of Anatomy and Histology, School of Medical Sciences, Brain and Mind Centre, University of Sydney, New South Wales 2006, Australia
| | - E Mills
- Department of Anatomy and Histology, School of Medical Sciences, Brain and Mind Centre, University of Sydney, New South Wales 2006, Australia
| | - N Meylakh
- Department of Anatomy and Histology, School of Medical Sciences, Brain and Mind Centre, University of Sydney, New South Wales 2006, Australia
| | - P M Macey
- UCLA School of Nursing, University of California, Los Angeles, California 90095, United States
| | - V G Macefield
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Anatomy & Physiology, University of Melbourne, Melbourne, Victoria, 3052, Australia
| | - L A Henderson
- Department of Anatomy and Histology, School of Medical Sciences, Brain and Mind Centre, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
8
|
The trigeminal pathways. J Neurol 2022; 269:3443-3460. [DOI: 10.1007/s00415-022-11002-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 12/14/2022]
|
9
|
Clinical Evaluation and Treatment of Patients with Postconcussion Syndrome. Neurol Res Int 2021; 2021:5567695. [PMID: 34194843 PMCID: PMC8181109 DOI: 10.1155/2021/5567695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Postconcussion syndrome (PCS) is a complex set of symptoms occurring in a small percentage of patients following concussion. The condition is characterized by headaches, dizziness, cognitive difficulties, somatosensory issues, and a variety of other symptoms with varying durations. There is a lack of objective markers and standard treatment protocols. With the complexity created by premorbid conditions, psychosomatic issues, secondary gains, and litigations, providers often find themselves in a tough situation in the care of these patients. This article combines literature review and clinical insights with a focus on the underlying pathophysiology of PCS to provide a roadmap for evaluating and treating this condition.
Collapse
|
10
|
Pais Clemente M, Pinto A, Milheiro F, Costa TF, Moreira A, Vardasca R, Pereira PA, Mendes J, Dulce Madeira M, Manuel Amarante J. Adhesive dentistry sensory stimulus technique as a neuromechanism for the treatment of orofacial pain associated to temporomandibular disorders: Case study. J Oral Biol Craniofac Res 2020; 10:6-12. [PMID: 32025480 DOI: 10.1016/j.jobcr.2020.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/14/2020] [Indexed: 11/15/2022] Open
Abstract
Purpose The authors intend, by presenting a case study, emphasize the neuromodulation process of orofacial pain induced by the stimulation of the sensory and motor stimulation of the trigeminal nerve, which can play an important role on pain modulation. Materials and methods A 25 year-old woman presenting orofacial pain was referred to the stomatology service at the Centro Hospitalar do Porto. After collecting the patient's anamnesis, the thermographic camera FLIR i7 was used to record the thermal status of the orofacial structures, before the adhesive dentistry sensory stimulus protocol, after 45 minutes, and after one week. Results This study suggests the relation of adhesive dentistry sensory stimulus technique in the neuromodulation of orofacial pain and its association with the temporomandibular disorders . As the tongue senses the stimulus of the resin composite placed on the palatal surface of the 1st premolar, 2nd premolar and 1st molar of the maxilla, this can promote and induce an effect regarding a peripheral nerve neuromodulation resulting in a blockage of the nociceptive trigeminal pathway from temporomandibular disorders. Conclusion Orofacial pain is a common complaint among the patients that come to a dentistry appointment, which may have different diagnosis and treatments. A positive effect on the patient's symptomatology was confirmed clinically on subsequent dental appointments and monitored by infrared thermography.
Collapse
Affiliation(s)
- Miguel Pais Clemente
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal
| | - Asdrúbal Pinto
- Serviço de Estomatologia e Cirurgia Maxilo Facial, Centro Hospitalar do Porto, Portugal
| | - Fernando Milheiro
- Serviço de Estomatologia e Cirurgia Maxilo Facial, Centro Hospitalar do Porto, Portugal
| | - Teresa F Costa
- Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Andre Moreira
- Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Ricardo Vardasca
- Faculty of Engineering, University of Porto, Portugal.,Labiomep, University of Porto, Portugal
| | - Pedro A Pereira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Portugal.,CINTESIS - Centro de Investigação em Tecnologias e Serviços de Saúde, Porto, Portugal
| | - Joaquim Mendes
- Faculty of Engineering, University of Porto, Portugal.,Labiomep, University of Porto, Portugal.,INEGI, Porto, Portugal
| | - M Dulce Madeira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Portugal.,CINTESIS - Centro de Investigação em Tecnologias e Serviços de Saúde, Porto, Portugal
| | - José Manuel Amarante
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal.,Labiomep, University of Porto, Portugal
| |
Collapse
|
11
|
Alterations in grey matter density and functional connectivity in trigeminal neuropathic pain and trigeminal neuralgia: A systematic review and meta-analysis. NEUROIMAGE-CLINICAL 2019; 24:102039. [PMID: 31698316 PMCID: PMC6978224 DOI: 10.1016/j.nicl.2019.102039] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
Abstract
Activation likelihood estimation (ALE) shows to be a verified method to meta-analyze heterogeneous imaging results. From a broad variety of key regions, structural and functional changes were repeatedly found in the thalamus, the cingulate cortex and the middle frontal gyrus in TN/TNP patients. Future research should focus on these regions of interest in order to improve diagnostic imaging in TN/TNP.
Background Various studies reported changes in grey matter volumes and modifications in functional connectivity of cortical and subcortical structures in patients suffering from trigeminal neuralgia (TN) and trigeminal neuropathic pain (TNP). This study meta-analyzed the concordant structural and functional changes in foci and provide further understanding of the anatomy and biology of TN/TNP. Methods Relevant articles on magnetic resonance imaging (MRI) and functional MRI in TN/TNP, published before August 2018, were searched for on PubMed and Embase. Following exclusion of unsuitable studies, a meta-analysis was performed using activation likelihood estimation (ALE). Results In total, 322 paper were identified, 11 of which could be included based on the predefined inclusion and exclusion criteria. Eight papers, totaling 279 subjects, discussing structural changes and four papers, totaling 102 subjects, discussing functional changes were included (i.e., one paper investigated both structural and functional alterations). ALE analysis showed that in TN/TNP, grey matter decreases are found in the thalamus, (anterior) cingulate gyrus, bilateral striatum, the superior-, middle- and transverse temporal gyrus, subcallosal gyrus, the bilateral insular cortex, the pre- and postcental gyrus, the middle frontal gyrus bilaterally and the anterior cerebellar lobe. Grey matter increases were seen in the periaqueductal grey (PAG). Increased resting state functional organization was found within the bilateral middle- and superior frontal gyri, the (posterior) cingulate cortex and the thalamus/pulvinar. Conclusions Structural and functional changes meta-analyzed in this paper may contribute to elucidating the central pathophysiological mechanisms involved in TN/TNP. These results may be used as biomarkers to predict the response to medication and, ideally, in the future to offer personalized treatments.
Collapse
|
12
|
Delahunty ET, Bisset LM, Kavanagh JJ. Intracortical motor networks are affected in both the contralateral and ipsilateral hemisphere during single limb cold water immersion. Exp Physiol 2019; 104:1296-1305. [PMID: 31206866 DOI: 10.1113/ep087745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does single limb cold water immersion affect corticomotor function and intracortical circuitry in the motor cortex of each cerebral hemisphere? What is the main finding and its importance? Immersion of a single limb in very cold water caused an increase in corticomotor excitability and intracortical facilitation, and a decrease in intracortical inhibition, in the motor cortex of both hemispheres. These findings provide evidence that intense sensory stimuli induce widespread changes in motor circuitry in the contralateral, as well as the ipsilateral, hemisphere. ABSTRACT Although responses to noxious stimuli have been extensively studied for the contralateral hemisphere, little is known about how the ipsilateral hemisphere may be affected. Therefore, this study examined how exposing a single limb to noxious cold stimuli affects motor output arising from both the contralateral and ipsilateral hemisphere. A total of 17 healthy adults participated in three experiments. Single- and paired-pulse TMS protocols were used to identify how immersing a single upper limb in cold water (4.0 ± 0.5 °C) affects inhibitory and facilitatory circuits in the primary motor cortex (M1) of the contralateral (experiment 1) and ipsilateral (experiment 2) hemisphere. The third experiment used a reaction time task to assess the functional consequences of acute adaptations in the ipsilateral M1. The target muscle in all experiments was the extensor carpi radialis brevis (ECRB). Immersion of a single limb in cold water increased self-perception of pain and temperature, and increased EMG amplitude of the immersed limb. During immersion, motor evoked potentials and intracortical facilitation increased, whereas short interval intracortical inhibition decreased, for both the ipsilateral M1 and contralateral M1. Activity in the ipsilateral hemisphere to the limb immersed in cold water also slowed reaction time for the non-immersed limb. Our findings suggest that altered motor responses from single limb cold water immersion are not restricted to a single hemisphere. Instead, widespread activation of somatosensory systems influences inhibitory and facilitatory circuits in the primary motor cortex of each hemisphere.
Collapse
Affiliation(s)
- Eden T Delahunty
- Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Gold Coast, Queensland, Australia
| | - Leanne M Bisset
- Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Gold Coast, Queensland, Australia
| | - Justin J Kavanagh
- Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Gold Coast, Queensland, Australia
| |
Collapse
|
13
|
|
14
|
Sclocco R, Garcia RG, Kettner NW, Isenburg K, Fisher HP, Hubbard CS, Ay I, Polimeni JR, Goldstein J, Makris N, Toschi N, Barbieri R, Napadow V. The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: A multimodal ultrahigh-field (7T) fMRI study. Brain Stimul 2019; 12:911-921. [PMID: 30803865 DOI: 10.1016/j.brs.2019.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/02/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Brainstem-focused mechanisms supporting transcutaneous auricular VNS (taVNS) effects are not well understood, particularly in humans. We employed ultrahigh field (7T) fMRI and evaluated the influence of respiratory phase for optimal targeting, applying our respiratory-gated auricular vagal afferent nerve stimulation (RAVANS) technique. HYPOTHESIS We proposed that targeting of nucleus tractus solitarii (NTS) and cardiovagal modulation in response to taVNS stimuli would be enhanced when stimulation is delivered during a more receptive state, i.e. exhalation. METHODS Brainstem fMRI response to auricular taVNS (cymba conchae) was assessed for stimulation delivered during exhalation (eRAVANS) or inhalation (iRAVANS), while exhalation-gated stimulation over the greater auricular nerve (GANctrl, i.e. earlobe) was included as control. Furthermore, we evaluated cardiovagal response to stimulation by calculating instantaneous HF-HRV from cardiac data recorded during fMRI. RESULTS Our findings demonstrated that eRAVANS evoked fMRI signal increase in ipsilateral pontomedullary junction in a cluster including purported NTS. Brainstem response to GANctrl localized a partially-overlapping cluster, more ventrolateral, consistent with spinal trigeminal nucleus. A region-of-interest analysis also found eRAVANS activation in monoaminergic source nuclei including locus coeruleus (LC, noradrenergic) and both dorsal and median raphe (serotonergic) nuclei. Response to eRAVANS was significantly greater than iRAVANS for all nuclei, and greater than GANctrl in LC and raphe nuclei. Furthermore, eRAVANS, but not iRAVANS, enhanced cardiovagal modulation, confirming enhanced eRAVANS response on both central and peripheral neurophysiological levels. CONCLUSION 7T fMRI localized brainstem response to taVNS, linked such response with autonomic outflow, and demonstrated that taVNS applied during exhalation enhanced NTS targeting.
Collapse
Affiliation(s)
- Roberta Sclocco
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Radiology, Logan University, Chesterfield, MO, USA.
| | - Ronald G Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Norman W Kettner
- Department of Radiology, Logan University, Chesterfield, MO, USA
| | - Kylie Isenburg
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Harrison P Fisher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Catherine S Hubbard
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ilknur Ay
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jill Goldstein
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikos Makris
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Toschi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Riccardo Barbieri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vitaly Napadow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Radiology, Logan University, Chesterfield, MO, USA
| |
Collapse
|
15
|
Cao FL, Xu M, Gong K, Wang Y, Wang R, Chen X, Chen J. Imbalance Between Excitatory and Inhibitory Synaptic Transmission in the Primary Somatosensory Cortex Caused by Persistent Nociception in Rats. THE JOURNAL OF PAIN 2019; 20:917-931. [PMID: 30742914 DOI: 10.1016/j.jpain.2018.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/04/2018] [Accepted: 11/12/2018] [Indexed: 11/25/2022]
Abstract
There is substantial evidence supporting the notion that the primary somatosensory (S1) cortex is an important structure involved in the perceptional component of pain. However, investigations have mainly focused on other pain-related formations, and few reports have been provided to investigate the synaptic plasticity in the S1 cortex in response to persistent pain. In the present study, we report that bee venom (BV) injection triggered an imbalance between excitatory and inhibitory synaptic transmission in the S1 cortex in rats. Using a multi-electrode array recording, we found that BV-induced persistent inflammatory pain led to temporal and spatial enhancement of synaptic plasticity. Moreover, slice patch clamp recordings on identified pyramidal neurons demonstrated that BV injection increased presynaptic and postsynaptic transmission in excitatory synapses and decreased postsynaptic transmission in inhibitory synapses in the layer II/III neurons within the S1 cortex. In immunohistochemistry and Western blot sections, the distribution and expression of total AMPA receptor subunits and gamma-amino butyric acid-A (GABAA) were unaffected, although the membrane fractions of GluR2 and GABAA were decreased, and their cytosolic fractions were increased in contrast. The change of GluR1 was opposite to that of GluR2, and GluR3 did not change significantly. Our studies, therefore, provide direct evidence for both presynaptic and postsynaptic changes in synapses within the S1 cortex in persistent nociception, which are probably related to the membrane trafficking of GluR1, GluR2, and GABAA. Perspective: Increased synaptic plasticity was detected in S1 after peripheral nociception, with enhanced excitatory and decreased inhibitory synaptic transmissions. Increased GluR1, and decreased GABAAα1 and GluR2 membrane trafficking were detected. Therefore, the disrupted excitatory/inhibitory balance in transmissions is involved in nociception processing, and S1 can be a potential antinociceptive site.
Collapse
Affiliation(s)
- Fa-Le Cao
- The Department of Neurology, The 88th Hospital of PLA, Tai'an, PR China; Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Min Xu
- The Department of Nephrology, The 88th Hospital of PLA, Tai'an, PR China
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, California
| | - Yan Wang
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Ruirui Wang
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Xuefeng Chen
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, PR China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|
16
|
Bilateral vs. unilateral repetitive transcranial magnetic stimulation to treat neuropathic orofacial pain: A pilot study. Brain Stimul 2019; 12:803-805. [PMID: 30772275 DOI: 10.1016/j.brs.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 11/22/2022] Open
|
17
|
Szabadi E. Functional Organization of the Sympathetic Pathways Controlling the Pupil: Light-Inhibited and Light-Stimulated Pathways. Front Neurol 2018; 9:1069. [PMID: 30619035 PMCID: PMC6305320 DOI: 10.3389/fneur.2018.01069] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/23/2018] [Indexed: 11/13/2022] Open
Abstract
Pupil dilation is mediated by a sympathetic output acting in opposition to parasympathetically mediated pupil constriction. While light stimulates the parasympathetic output, giving rise to the light reflex, it can both inhibit and stimulate the sympathetic output. Light-inhibited sympathetic pathways originate in retina-receptive neurones of the pretectum and the suprachiasmatic nucleus (SCN): by attenuating sympathetic activity, they allow unimpeded operation of the light reflex. Light stimulates the noradrenergic and serotonergic pathways. The hub of the noradrenergic pathway is the locus coeruleus (LC) containing both excitatory sympathetic premotor neurones (SympPN) projecting to preganglionic neurones in the spinal cord, and inhibitory parasympathetic premotor neurones (ParaPN) projecting to preganglionic neurones in the Edinger-Westphal nucleus (EWN). SympPN receive inputs from the SCN via the dorsomedial hypothalamus, orexinergic neurones of the latero-posterior hypothalamus, wake- and sleep-promoting neurones of the hypothalamus and brain stem, nociceptive collaterals of the spinothalamic tract, whereas ParaPN receive inputs from the amygdala, sleep/arousal network, nociceptive spinothalamic collaterals. The activity of LC neurones is regulated by inhibitory α2-adrenoceptors. There is a species difference in the function of the preautonomic LC. In diurnal animals, the α2-adrenoceptor agonist clonidine stimulates mainly autoreceptors on SymPN, causing miosis, whereas in nocturnal animals it stimulates postsynaptic α2-arenoceptors in the EWN, causing mydriasis. Noxious stimulation activates SympPN in diurnal animals and ParaPN in nocturnal animals, leading to pupil dilation via sympathoexcitation and parasympathetic inhibition, respectively. These differences may be attributed to increased activity of excitatory LC neurones due to stimulation by light in diurnal animals. This may also underlie the wake-promoting effect of light in diurnal animals, in contrast to its sleep-promoting effect in nocturnal species. The hub of the serotonergic pathway is the dorsal raphe nucleus that is light-sensitive, both directly and indirectly (via an orexinergic input). The light-stimulated pathways mediate a latent mydriatic effect of light on the pupil that can be unmasked by drugs that either inhibit or stimulate SympPN in these pathways. The noradrenergic pathway has widespread connections to neural networks controlling a variety of functions, such as sleep/arousal, pain, and fear/anxiety. Many physiological and psychological variables modulate pupil function via this pathway.
Collapse
Affiliation(s)
- Elemer Szabadi
- Developmental Psychiatry, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
18
|
Mascarenhas RJ, Hapangama ND, Mews PJ, Burlakoti A, Ranjitkar S. Orofacial neuralgia associated with a middle cerebral artery aneurysm. Aust Dent J 2018; 64:106-110. [PMID: 30525205 DOI: 10.1111/adj.12668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2018] [Indexed: 12/01/2022]
Abstract
Chronic orofacial pain of neuropathic origin can present diagnostic and management dilemmas to dental practitioners and also affects the patient's quality of life. Intracranial aneurysms are a potential cause of stroke (e.g. sub-arachnoid haemorrhage) that is usually associated with, high rates of mortality and morbidity. A patient who had been previously managed for symptoms of temporomandibular joint disorder (TMD) presented with sharp, shooting pain of moderate intensity. It was precipitated by swallowing, and radiated to the right throat, posterior border of the mandible, ear and temporomandibular joint. Clinical and radiological investigations ruled out odontogenic pain, TMD and other more common types of facial pain. Magnetic resonance imaging revealed a 7 × 6 mm aneurysm in the right middle cerebral artery (MCA) which was subsequently surgically clipped. Interestingly, the facial pain resolved after this procedure. Compression of the insular region of the brain innervated by the trigeminal, glossopharyngeal and vagus nerves provides a plausible explanation for the pain reported. To our knowledge, this is the first case of facial neuralgia associated with an aneurysm in the MCA which emphasizes the importance of a multidisciplinary approach in the diagnosis and management of unusual cases of chronic orofacial pain.
Collapse
Affiliation(s)
- R J Mascarenhas
- School of Dentistry and Health Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - N D Hapangama
- Oral and Maxillofacial Surgery Unit, Canberra Hospital, Garran, Australian Capital Territory, Australia
| | - P J Mews
- ANU Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - A Burlakoti
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - S Ranjitkar
- Adelaide Dental School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
19
|
Ex vivo visualization of the trigeminal pathways in the human brainstem using 11.7T diffusion MRI combined with microscopy polarized light imaging. Brain Struct Funct 2018; 224:159-170. [PMID: 30293214 PMCID: PMC6373363 DOI: 10.1007/s00429-018-1767-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/02/2018] [Indexed: 01/12/2023]
Abstract
Classic anatomical atlases depict a contralateral hemispheral representation of each side of the face. Recently, however, a bilateral projection of each hemiface was hypothesized, based on animal studies that showed the coexistence of an additional trigeminothalamic tract sprouting from the trigeminal principal sensory nucleus that ascends ipsilaterally. This study aims to provide an anatomical substrate for the hypothesized bilateral projection. Three post-mortem human brainstems were scanned for anatomical and diffusion magnetic resonance imaging at 11.7T. The trigeminal tracts were delineated in each brainstem using track density imaging (TDI) and tractography. To evaluate the reconstructed tracts, the same brainstems were sectioned for polarized light imaging (PLI). Anatomical 11.7T MRI shows a dispersion of the trigeminal tract (tt) into a ventral and dorsal portion. This bifurcation was also seen on the TDI maps, tractography results and PLI images of all three specimens. Referring to a similar anatomic feature in primate brains, the dorsal and ventral tracts were named the dorsal and ventral trigeminothalamic tract (dtt and vtt), respectively. This study shows that both the dtt and vtt are present in humans, indicating that each hemiface has a bilateral projection, although the functional relevance of these tracts cannot be determined by the present anatomical study. If both tracts convey noxious stimuli, this could open up new insights into and treatments for orofacial pain in patients.
Collapse
|
20
|
Zhang FX, Ge SN, Dong YL, Shi J, Feng YP, Li Y, Li YQ, Li JL. Vesicular glutamate transporter isoforms: The essential players in the somatosensory systems. Prog Neurobiol 2018; 171:72-89. [PMID: 30273635 DOI: 10.1016/j.pneurobio.2018.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 02/08/2023]
Abstract
In nervous system, glutamate transmission is crucial for centripetal conveyance and cortical perception of sensory signals of different modalities, which necessitates vesicular glutamate transporters 1-3 (VGLUT 1-3), the three homologous membrane-bound protein isoforms, to load glutamate into the presysnaptic vesicles. These VGLUTs, especially VGLUT1 and VGLUT2, selectively label and define functionally distinct neuronal subpopulations at each relay level of the neural hierarchies comprising spinal and trigeminal sensory systems. In this review, by scrutinizing each structure of the organism's fundamental hierarchies including dorsal root/trigeminal ganglia, spinal dorsal horn/trigeminal sensory nuclear complex, somatosensory thalamic nuclei and primary somatosensory cortex, we summarize and characterize in detail within each relay the neuronal clusters expressing distinct VGLUT protein/transcript isoforms, with respect to their regional distribution features (complementary distribution in some structures), axonal terminations/peripheral innervations and physiological functions. Equally important, the distribution pattern and characteristics of VGLUT1/VGLUT2 axon terminals within these structures are also epitomized. Finally, the correlation of a particular VGLUT isoform and its physiological role, disclosed thus far largely via studying the peripheral receptors, is generalized by referring to reports on global and conditioned VGLUT-knockout mice. Also, researches on VGLUTs relating to future direction are tentatively proposed, such as unveiling the elusive differences between distinct VGLUTs in mechanism and/or pharmacokinetics at ionic/molecular level, and developing VGLUT-based pain killers.
Collapse
Affiliation(s)
- Fu-Xing Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Shun-Nan Ge
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China; Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China
| | - Yu-Lin Dong
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Juan Shi
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Yu-Peng Feng
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Yang Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China.
| | - Jin-Lian Li
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
21
|
Ayoub LJ, Seminowicz DA, Moayedi M. A meta-analytic study of experimental and chronic orofacial pain excluding headache disorders. NEUROIMAGE-CLINICAL 2018; 20:901-912. [PMID: 30292089 PMCID: PMC6176551 DOI: 10.1016/j.nicl.2018.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023]
Abstract
Chronic orofacial pain (COFP) disorders are prevalent and debilitating pain conditions affecting the head, neck and face areas. Neuroimaging studies have reported functional and grey matter abnormalities, but not all the studies have reported consistent findings. Identifying convergent abnormalities across COFPs provides a basis for future hypothesis-driven research aimed at elucidating common CNS mechanisms. Here, we perform three coordinate-based meta-analyses according to PRISMA guidelines to elucidate the central mechanisms of orofacial pain disorders. Specifically, we investigated consistent patterns of: (1) brain function to experimental orofacial pain in healthy subjects, (2) structural and (3) functional brain abnormalities in COFP. We computed our coordinate-based meta-analyses using GingerALE. The experimental pain meta-analysis revealed increased brain activity in bilateral thalami, posterior mid-cingulate cortices, and secondary somatosensory cortices, the right posterior parietal cortex extending to the orofacial region of the right primary somatosensory cortex and the right insula, and decreased activity in the right somatomotor regions. The structural COFP meta-analysis identified consistent higher grey matter volume/concentration in the right ventral thalamus and posterior putamen of COFP patients compared to healthy controls. The functional COFP meta-analysis identified a consistent increase in brain activity in the left medial and posterior thalamus and lesser activity in the left posterior insula in COFP, compared to healthy controls. Overall, these findings provide evidence of brain abnormalities in pain-related regions, namely the thalamus and insula, across different COFP disorders. The convergence of thalamic abnormalities in both structure and function suggest a key role for this region in COFP pathophysiology. Identifying convergent abnormalities in COFP can elucidate novel therapeutic targets. Experimental orofacial pain is associated with activity in nociceptive processing brain areas. Chronic orofacial pain (COFP) is associated with abnormal thalamic activity and grey matter. Our review highlights the need for more high quality COFP brain imaging studies.
Collapse
Affiliation(s)
- Lizbeth J Ayoub
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| | - David A Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD, United States; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| | - Massieh Moayedi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada; Department of Dentistry, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
22
|
Acute and Chronic Pain Processing in the Thalamocortical System of Humans and Animal Models. Neuroscience 2018; 387:58-71. [DOI: 10.1016/j.neuroscience.2017.09.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/24/2017] [Accepted: 09/24/2017] [Indexed: 02/07/2023]
|
23
|
Exposto FG, Masuda M, Castrillon EE, Svensson P. Effects of nerve growth factor experimentally-induced craniofacial muscle sensitization on referred pain frequency and number of headache days: A double-blind, randomized placebo-controlled study. Cephalalgia 2018. [PMID: 29528692 DOI: 10.1177/0333102418758481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To assess if repeated intramuscular injections of nerve growth factor into the temporalis and masseter muscles increase mechanical sensitivity and entropy scores. Furthermore, to investigate if increased mechanical sensitivity would lead to increased prevalence of referred pain in the studied individuals. Finally, if increased muscle sensitization would lead to an increase in number of headache days during the experimental period. METHODS The present double-blind, randomized placebo-controlled study recruited 16 healthy participants who were injected with nerve growth-factor, on 2 days, into the masseter and temporalis muscles and isotonic saline on the contralateral side. Mechanical sensitivity was assessed at seven different time-points (total of 21 days) by application of three different forces to 15 different sites of both muscles. Participants were asked after each force application if they experienced referred pain and were asked to keep a headache diary during the experimental period. RESULTS In summary, a) repeated intramuscular injections of nerve-growth-factor caused an increase in mechanical sensitivity for the masseter but not the temporalis muscle, and an increase in entropy scores when compared to the isotonic saline side. b) Both referred pain frequency and number of headache days were not increased following nerve-growth-factor injections. CONCLUSIONS These findings support the idea that mechanical sensitization in the masseter and temporalis muscles differs following injections of nerve growth factor. Furthermore, referred pain and headache frequency do not seem to be related to nerve growth factor sensitization in this model. These findings support the idea that in healthy individuals referred pain may be an epiphenomenon of the muscle in response to noxious input.
Collapse
Affiliation(s)
- F G Exposto
- 1 Section of Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Health, Aarhus University, Aarhus, Denmark.,2 Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark
| | - M Masuda
- 3 Department of Oral Function and Rehabilitation, Nihon University School of Dentistry at Matsudo, Japan
| | - E E Castrillon
- 1 Section of Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Health, Aarhus University, Aarhus, Denmark.,2 Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark
| | - P Svensson
- 1 Section of Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Health, Aarhus University, Aarhus, Denmark.,2 Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark.,4 Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
24
|
Van der Cruyssen F, Politis C. Neurophysiological aspects of the trigeminal sensory system: an update. Rev Neurosci 2018; 29:115-123. [DOI: 10.1515/revneuro-2017-0044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/20/2017] [Indexed: 02/04/2023]
Abstract
AbstractThe trigeminal system is one of the most complex cranial nerve systems of the human body. Research on it has vastly grown in recent years and concentrated more and more on molecular mechanisms and pathophysiology, but thorough reviews on this topic are lacking, certainly on the normal physiology of the trigeminal sensory system. Here we review the current literature on neurophysiology of the trigeminal nerve from peripheral receptors up to its central projections toward the somatosensory cortex. We focus on the most recent scientific discoveries and describe historical relevant research to substantiate further. One chapter on new insights of the pathophysiology of pain at the level of the trigeminal system is added. A database search of Medline, Embase and Cochrane was conducted with the search terms ‘animal study’, ‘neurophysiology’, ‘trigeminal’, ‘oral’ and ‘sensory’. Articles were manually selected after reading the abstract and where needed the article. Reference lists also served to include relevant research articles. Fifty-six articles were included after critical appraisal. Physiological aspects on mechanoreceptors, trigeminal afferents, trigeminal ganglion and central projections are reviewed in light of reference works. Embryologic and anatomic insights are cited where needed. A brief description of pathophysiology of pain pathways in the trigeminal area and recent advances in dental stem cell research are also discussed. Neurophysiology at the level of the central nervous system is not reviewed. The current body of knowledge is mainly based on animal and cadaveric studies, but recent advancements in functional imaging and molecular neuroscience are elucidating the pathways and functioning of this mixed nerve system. Extrapolation of animal studies or functioning of peripheral nerves should be warranted.
Collapse
|
25
|
Henssen DJHA, Kurt E, Kozicz T, van Dongen R, Bartels RHMA, van Cappellen van Walsum AM. New Insights in Trigeminal Anatomy: A Double Orofacial Tract for Nociceptive Input. Front Neuroanat 2016; 10:53. [PMID: 27242449 PMCID: PMC4861896 DOI: 10.3389/fnana.2016.00053] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/26/2016] [Indexed: 12/22/2022] Open
Abstract
Orofacial pain in patients relies on the anatomical pathways that conduct nociceptive information, originating from the periphery towards the trigeminal sensory nucleus complex (TSNC) and finally, to the thalami and the somatosensorical cortical regions. The anatomy and function of the so-called trigeminothalamic tracts have been investigated before. In these animal-based studies from the previous century, the intracerebral pathways were mapped using different retro- and anterograde tracing methods. We review the literature on the trigeminothalamic tracts focusing on these animal tracer studies. Subsequently, we related the observations of these studies to clinical findings using fMRI trials. The intracerebral trigeminal pathways can be subdivided into three pathways: a ventral (contralateral) and dorsal (mainly ipsilateral) trigeminothalamic tract and the intranuclear pathway. Based on the reviewed evidence we hypothesize the co-existence of an ipsilateral nociceptive conduction tract to the cerebral cortex and we translate evidence from animal-based research to the human anatomy. Our hypothesis differs from the classical idea that orofacial pain arises only from nociceptive information via the contralateral, ventral trigeminothalamic pathway. Better understanding of the histology, anatomy and connectivity of the trigeminal fibers could contribute to the discovery of a more effective pain treatment in patients suffering from various orofacial pain syndromes.
Collapse
Affiliation(s)
- Dylan J. H. A. Henssen
- Department of Anatomy, Donders Institute for Brain Cognition and Behavior, Radboud University Medical CenterNijmegen, Netherlands
- Department of Neurosurgery, Radboud University Medical CenterNijmegen, Netherlands
| | - Erkan Kurt
- Department of Neurosurgery, Radboud University Medical CenterNijmegen, Netherlands
| | - Tamas Kozicz
- Department of Anatomy, Donders Institute for Brain Cognition and Behavior, Radboud University Medical CenterNijmegen, Netherlands
| | - Robert van Dongen
- Department of Anaesthesiology, Pain and Palliative Care, Radboud University Medical CenterNijmegen, Netherlands
| | | | | |
Collapse
|
26
|
Burns E, Chipchase L, Schabrun S. Primary sensory and motor cortex function in response to acute muscle pain: A systematic review and meta-analysis. Eur J Pain 2016; 20:1203-13. [DOI: 10.1002/ejp.859] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 12/20/2022]
Affiliation(s)
- E. Burns
- Brain Rehabilitation and Neuroplasticity Unit; School of Science and Health; Western Sydney University; Australia
| | - L.S. Chipchase
- Brain Rehabilitation and Neuroplasticity Unit; School of Science and Health; Western Sydney University; Australia
| | - S.M. Schabrun
- Brain Rehabilitation and Neuroplasticity Unit; School of Science and Health; Western Sydney University; Australia
| |
Collapse
|
27
|
Muret D, Daligault S, Dinse HR, Delpuech C, Mattout J, Reilly KT, Farnè A. Neuromagnetic correlates of adaptive plasticity across the hand-face border in human primary somatosensory cortex. J Neurophysiol 2016; 115:2095-104. [PMID: 26888099 DOI: 10.1152/jn.00628.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 02/16/2016] [Indexed: 11/22/2022] Open
Abstract
It is well established that permanent or transient reduction of somatosensory inputs, following hand deafferentation or anesthesia, induces plastic changes across the hand-face border, supposedly responsible for some altered perceptual phenomena such as tactile sensations being referred from the face to the phantom hand. It is also known that transient increase of hand somatosensory inputs, via repetitive somatosensory stimulation (RSS) at a fingertip, induces local somatosensory discriminative improvement accompanied by cortical representational changes in the primary somatosensory cortex (SI). We recently demonstrated that RSS at the tip of the right index finger induces similar training-independent perceptual learning across the hand-face border, improving somatosensory perception at the lips (Muret D, Dinse HR, Macchione S, Urquizar C, Farnè A, Reilly KT.Curr Biol24: R736-R737, 2014). Whether neural plastic changes across the hand-face border accompany such remote and adaptive perceptual plasticity remains unknown. Here we used magnetoencephalography to investigate the electrophysiological correlates underlying RSS-induced behavioral changes across the hand-face border. The results highlight significant changes in dipole location after RSS both for the stimulated finger and for the lips. These findings reveal plastic changes that cross the hand-face border after an increase, instead of a decrease, in somatosensory inputs.
Collapse
Affiliation(s)
- Dollyane Muret
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France;
| | | | - Hubert R Dinse
- Neural Plasticity Laboratory, Institute of Neuroinformatics, Ruhr University, Bochum, Germany; Clinic of Neurology, BG University Hospital Bergmannsheil, Bochum, Germany; and
| | | | - Jérémie Mattout
- University Claude Bernard Lyon I, Lyon, France; Dycog Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France
| | - Karen T Reilly
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France
| | - Alessandro Farnè
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France
| |
Collapse
|
28
|
Ceusters W, Nasri-Heir C, Alnaas D, Cairns BE, Michelotti A, Ohrbach R. Perspectives on next steps in classification of oro-facial pain - Part 3: biomarkers of chronic oro-facial pain - from research to clinic. J Oral Rehabil 2015; 42:956-66. [PMID: 26200973 PMCID: PMC4715524 DOI: 10.1111/joor.12324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2015] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to review the current status of biomarkers used in oro-facial pain conditions. Specifically, we critically appraise their relative strengths and weaknesses for assessing mechanisms associated with the oro-facial pain conditions and interpret that information in the light of their current value for use in diagnosis. In the third section, we explore biomarkers through the perspective of ontological realism. We discuss ontological problems of biomarkers as currently widely conceptualised and implemented. This leads to recommendations for research practice aimed to a better understanding of the potential contribution that biomarkers might make to oro-facial pain diagnosis and thereby fulfil our goal for an expanded multidimensional framework for oro-facial pain conditions that would include a third axis.
Collapse
Affiliation(s)
- Werner Ceusters
- Department of Biomedical Informatics, University at Buffalo, NY, USA
| | | | | | - Brian E Cairns
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Ambra Michelotti
- Section of Orthodontics, School of Dentistry, University of Naples Federico II, Naples, Italy
| | - Richard Ohrbach
- Department of Oral Diagnostic Sciences, University at Buffalo, NY, USA
| |
Collapse
|
29
|
Agarwal M, Ulmer JL, Klein AP, Mark LP. Cortical and Subcortical Substrates of Cranial Nerve Function. Semin Ultrasound CT MR 2015; 36:275-90. [PMID: 26233861 DOI: 10.1053/j.sult.2015.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The pivotal role of cranial nerves in a wholesome life experience cannot be overemphasized. Research has opened new avenues to understand cranial nerve function. Classical concept of strict bilateral cortical control of cranial nerves has given way to concepts of hemispheric dominance and hemispheric lateralization. An astute Neuroradiologist should keep abreast of these concepts and help patients and referring physicians by applying this knowledge in reading images. This chapter provides an overview of cranial nerve function and latest concepts pertaining to their cortical and subcortical control.
Collapse
Affiliation(s)
- Mohit Agarwal
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI.
| | - John L Ulmer
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI
| | - Andrew P Klein
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI
| | - Leighton P Mark
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
30
|
Xiao Y, Lei J, Ye G, Xu H, You HJ. Role of thalamic nuclei in the modulation of Fos expression within the cerebral cortex during hypertonic saline-induced muscle nociception. Neuroscience 2015; 304:36-46. [PMID: 26189794 DOI: 10.1016/j.neuroscience.2015.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/02/2015] [Accepted: 07/09/2015] [Indexed: 11/16/2022]
Abstract
It has been proposed that thalamic mediodorsal (MD) and ventromedial (VM) nuclei form thalamic 'nociceptive discriminators' in discrimination of nociceptive afferents, and specifically govern endogenous descending facilitation and inhibition. The present study conducted in rats was to explore the role of thalamic MD and VM nuclei in modulation of cerebral neuronal activities by means of detection of spatiotemporal variations of Fos expression within the cerebral cortex. Following a unilateral intramuscular injection of 5.8% saline into the gastrocnemius muscle, Fos expression within the bilateral, different areas of the cerebral cortex except S2 was significantly increased (P<0.05). Particularly, the increases in Fos expression within the cingulate cortex and the insular cortex occurred at 0.5h, 4h and reached the peak level at 4h, 16h, respectively. Electrolytic lesion of the contralateral thalamic MD and VM nuclei significantly blocked the 5.8% saline intramuscularly induced increases in Fos expression within the bilateral cingulate and insular cortices, respectively. Additionally, the 5.8% saline-induced Fos expression in the cingulate cortex and the insular cortex were dose-dependently attenuated by microinjection of μ-opioid antagonist β-funaltrexamine hydrochloride into the thalamic MD and VM nuclei. It is suggested that (1) the neural circuits of 'thalamic MD nucleus - cingulate cortex' and 'thalamic VM nucleus - insular cortex' form two distinct pathways in the endogenous control of nociception, (2) mirror or contralateral pain is hypothesized to be related to cross-talk of neuronal activities within the bilateral cerebral cortices modulated by μ-opioid receptors within the thalamic MD and VM nuclei.
Collapse
Affiliation(s)
- Y Xiao
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - J Lei
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - G Ye
- Department of Pain, Tongji Hospital Affiliated to Shanghai Tongji University, Shanghai 200065, PR China
| | - H Xu
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an 710032, PR China
| | - H-J You
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
31
|
Brain Network Response to Acupuncture Stimuli in Experimental Acute Low Back Pain: An fMRI Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:210120. [PMID: 26161117 PMCID: PMC4487721 DOI: 10.1155/2015/210120] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 12/30/2022]
Abstract
Most neuroimaging studies have demonstrated that acupuncture can significantly modulate brain activation patterns in healthy subjects, while only a few studies have examined clinical pain. In the current study, we combined an experimental acute low back pain (ALBP) model and functional magnetic resonance imaging (fMRI) to explore the neural mechanisms of acupuncture analgesia. All ALBP subjects first underwent two resting state fMRI scans at baseline and during a painful episode and then underwent two additional fMRI scans, once during acupuncture stimulation (ACUP) and once during tactile stimulation (SHAM) pseudorandomly, at the BL40 acupoint. Our results showed that, compared with the baseline, the pain state had higher regional homogeneity (ReHo) values in the pain matrix, limbic system, and default mode network (DMN) and lower ReHo values in frontal gyrus and temporal gyrus; compared with the OFF status, ACUP yielded broad deactivation in subjects, including nearly all of the limbic system, pain status, and DMN, and also evoked numerous activations in the attentional and somatosensory systems; compared with SHAM, we found that ACUP induced more deactivations and fewer activations in the subjects. Multiple brain networks play crucial roles in acupuncture analgesia, suggesting that ACUP exceeds a somatosensory-guided mind-body therapy for ALBP.
Collapse
|
32
|
Bagüés A, Martín MI, Sánchez-Robles EM. Involvement of central and peripheral cannabinoid receptors on antinociceptive effect of tetrahydrocannabinol in muscle pain. Eur J Pharmacol 2014; 745:69-75. [DOI: 10.1016/j.ejphar.2014.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 12/11/2022]
|
33
|
Gómez-de Diego R, Cutando-Soriano A, Montero-Martín J, Prados-Frutos JC, López-Valverde A. State anxiety and depression as factors modulating and influencing postoperative pain in dental implant surgery. A prospective clinical survey. Med Oral Patol Oral Cir Bucal 2014; 19:e592-7. [PMID: 24880447 PMCID: PMC4259376 DOI: 10.4317/medoral.19685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/04/2014] [Indexed: 12/03/2022] Open
Abstract
Objetives: To determine whether preoperative state anxiety and depression modulate or influence objective and subjective postoperative pain following dental implant insertion.
Study Design: Prospective, clinical study with 7-day follow-up of a sample of 105 subjects who preoperatively completed the state anxiety questionnaire (STAI-E) and Beck Depression Inventory (BDI) and postoperatively, at 2 and 7 days, recorded objective pain with the Semmes-Weinstein mechanical esthesiometer (SW test) and subjective pain with the Visual Analog Scale (VAS).
Results: 85.6% and 81.5% of patients, respectively, recorded no signs of state anxiety or depression. The correlation between anxiety and depression for both maxillary bones was the lower (P=0.02). The correlation between subjective and objective pain at 2 and 7 days, and the anatomic regions intervened, was statistically significant in the mandible at day 7 (P<0.01), and highly significant (P<0.001) for the other variables. The correlation between state anxiety and objective pain at day 7 was nearly statistically significant (P=0.07).
Conclusions: The correlation between state anxiety and depression, and objective and subjective pain at day 7 was not statistically significant. A strong correlation was found between objective and subjective pain in the immediate postoperative period.
Key words:Anxiety, depression, postoperative pain, dental implants.
Collapse
|
34
|
Zhang S, Wu W, Huang G, Liu Z, Guo S, Yang J, Wang K. Resting-state connectivity in the default mode network and insula during experimental low back pain. Neural Regen Res 2014; 9:135-42. [PMID: 25206794 PMCID: PMC4146160 DOI: 10.4103/1673-5374.125341] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2013] [Indexed: 01/02/2023] Open
Abstract
Functional magnetic resonance imaging studies have shown that the insular cortex has a significant role in pain identification and information integration, while the default mode network is associated with cognitive and memory-related aspects of pain perception. However, changes in the functional connectivity between the default mode network and insula during pain remain unclear. This study used 3.0 T functional magnetic resonance imaging scans in 12 healthy subjects aged 24.8 ± 3.3 years to compare the differences in the functional activity and connectivity of the insula and default mode network between the baseline and pain condition induced by intramuscular injection of hypertonic saline. Compared with the baseline, the insula was more functionally connected with the medial prefrontal and lateral temporal cortices, whereas there was lower connectivity with the posterior cingulate cortex, precuneus and inferior parietal lobule in the pain condition. In addition, compared with baseline, the anterior cingulate cortex exhibited greater connectivity with the posterior insula, but lower connectivity with the anterior insula, during the pain condition. These data indicate that experimental low back pain led to dysfunction in the connectivity between the insula and default mode network resulting from an impairment of the regions of the brain related to cognition and emotion, suggesting the importance of the interaction between these regions in pain processing.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wen Wu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ziping Liu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shigui Guo
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jianming Yang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Kangling Wang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
35
|
Zhang SS, Wu W, Liu ZP, Huang GZ, Guo SG, Yang JM. Altered regional homogeneity in experimentally induced low back pain: a resting-state fMRI study. J Neuroeng Rehabil 2014; 11:115. [PMID: 25080831 PMCID: PMC4237877 DOI: 10.1186/1743-0003-11-115] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 07/21/2014] [Indexed: 11/22/2022] Open
Abstract
Background Functional imaging studies have indicated that patients with low back pain can have significant reductions in cerebral cortex grey matter. However, the mechanisms governing the nociceptive pathways in the human brain are unclear. The aim of this study was to use functional magnetic resonance imaging (fMRI) and regional homogeneity (ReHo) to investigate changes in resting-state brain activity in subjects that experienced experimentally induced low back pain. Methods Healthy subjects (n = 15) underwent fMRI (3.0 T) at baseline and during painful stimulation (intramuscular injection of 3% hypertonic saline). Results Compared to the scans conducted at baseline, scans conducted during experimentally induced low back pain showed increased ReHo on the right side in the medial prefrontal cortex, precuneus, insula, parahippocampal gyrus and cerebellum (posterior lobe), but decreased ReHo in the primary somatosensory cortex, anterior cingulate cortex and parahippocampal gyrus on the left side. The right inferior parietal lobule also showed a decreased ReHo (P < 0.05, cluster threshold ≥10). Conclusions These findings suggest that abnormally spontaneous resting-state activity in some brain regions may be associated with pain processing. These changes in neural activity may contribute to the recognition, execution, memory and emotional processing of acute low back pain.
Collapse
Affiliation(s)
| | - Wen Wu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China.
| | | | | | | | | |
Collapse
|
36
|
Simonic-Kocijan S, Zhao X, Liu W, Wu Y, Uhac I, Wang K. TRPV1 channel-mediated bilateral allodynia induced by unilateral masseter muscle inflammation in rats. Mol Pain 2013; 9:68. [PMID: 24377488 PMCID: PMC3880456 DOI: 10.1186/1744-8069-9-68] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/17/2013] [Indexed: 11/12/2022] Open
Abstract
Pain in masticatory muscles is among the most prominent symptoms of temperomandibular disorders (TMDs) that have diverse and complex etiology. A common complaint of TMD is that unilateral pain of craniofacial muscle can cause a widespread of bilateral pain sensation, although the underlying mechanism remains unknown. To investigate whether unilateral inflammation of masseter muscle can cause a bilateral allodynia, we generated masseter muscle inflammation induced by unilateral injection of complete Freund’s adjuvant (CFA) in rats, and measured the bilateral head withdrawal threshold at different time points using a von Frey anesthesiometer. After behavioral assessment, both right and left trigeminal ganglia (TRG) were dissected and examined for histopathology and transient receptor potential vanilloid 1 (TRPV1) mRNA expression using quantitative real-time PCR analysis. A significant increase in TRPV1 mRNA expression occurred in TRG ipsilateral to CFA injected masseter muscle, whereas no significant alteration in TRPV1 occurred in the contralateral TRG. Interestingly, central injection of TRPV1 antagonist 5-iodoresiniferatoxin into the hippocampus significantly attenuated the head withdrawal response of both CFA injected and non-CFA injected contralateral masseter muscle. Our findings show that unilateral inflammation of masseter muscle is capable of inducing bilateral allodynia in rats. Upregulation of TRPV1 at the TRG level is due to nociception caused by inflammation, whereas contralateral nocifensive behavior in masticatory muscle nociception is likely mediated by central TRPV1, pointing to the involvement of altered information processing in higher centers.
Collapse
Affiliation(s)
| | | | | | | | | | - KeWei Wang
- Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
37
|
Youssef AM, Gustin SM, Nash PG, Reeves JM, Petersen ET, Peck CC, Murray GM, Henderson LA. Differential brain activity in subjects with painful trigeminal neuropathy and painful temporomandibular disorder. Pain 2013; 155:467-475. [PMID: 24269492 DOI: 10.1016/j.pain.2013.11.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/04/2013] [Accepted: 11/15/2013] [Indexed: 12/30/2022]
Abstract
Human brain imaging investigations have revealed that acute pain is associated with coactivation of numerous brain regions, including the thalamus, somatosensory, insular, and cingulate cortices. Surprisingly, a similar set of brain structures is not activated in all chronic pain conditions, particularly chronic neuropathic pain, which is associated with almost exclusively decreased thalamic activity. These inconsistencies may reflect technical issues or fundamental differences in the processing of acute compared with chronic pain. The appreciation of any differences is important because better treatment development will depend on understanding the underlying mechanisms of different forms of pain. In this investigation, we used quantitative arterial spin labeling to compare and contrast regional cerebral blood flow (CBF) patterns in individuals with chronic neuropathic orofacial pain (painful trigeminal neuropathy) and chronic nonneuropathic orofacial pain (painful temporomandibular disorder). Neuropathic pain was associated with CBF decreases in a number of regions, including the thalamus and primary somatosensory and cerebellar cortices. In contrast, chronic nonneuropathic pain was associated with significant CBF increases in regions commonly associated with higher-order cognitive and emotional functions, such as the anterior cingulate and dorsolateral prefrontal cortices and the precuneus. Furthermore, in subjects with nonneuropathic pain, blood flow increased in motor-related regions as well as within the spinal trigeminal nucleus.
Collapse
Affiliation(s)
- Andrew M Youssef
- Department of Anatomy and Histology, University of Sydney, Sydney, NSW 2006, Australia Departments of Radiology and Radiotherapy, University Medical Center Utrecht, The Netherlands Jaw Function and Orofacial Pain Research Unit, Faculty of Dentistry, University of Sydney, Westmead Hospital, Westmead, NSW 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Gerstner GE, Gracely RH, Deebajah A, Ichesco E, Quintero A, Clauw DJ, Sundgren PC. Posterior insular molecular changes in myofascial pain. J Dent Res 2012; 91:485-90. [PMID: 22451533 DOI: 10.1177/0022034512443366] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Temporomandibular disorders (TMD) include craniocervical pain conditions with unclear etiologies. Central changes are suspected; however, few neuroimaging studies of TMD exist. Single-voxel proton magnetic resonance spectroscopy ((1)H-MRS) was used before and after pressure-pain testing to assess glutamate (Glu), glutamine (Gln), N-acetylaspartate (NAA), and choline (Cho) levels in the right and left posterior insulae of 11 individuals with myofascial TMD and 11 matched control individuals. Glu levels were significantly lower in all individuals after pain testing. Among those with TMD, left-insular Gln levels were related to reported pain, left posterior insular NAA and Cho levels were significantly higher at baseline than in control individuals, and NAA levels were significantly correlated with pain-symptom duration, suggesting adaptive changes. The results suggest that significant central cellular and molecular changes can occur in individuals with TMD.
Collapse
Affiliation(s)
- G E Gerstner
- Department of Biologic and Materials Sciences, School of Dentistry, 1011 N. University Ave., University of Michigan, Ann Arbor, MI 48109-1078, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Burgmer M, Pfleiderer B, Maihöfner C, Gaubitz M, Wessolleck E, Heuft G, Pogatzki-Zahn E. Cerebral mechanisms of experimental hyperalgesia in fibromyalgia. Eur J Pain 2011; 16:636-47. [DOI: 10.1002/j.1532-2149.2011.00058.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2011] [Indexed: 01/07/2023]
Affiliation(s)
- M. Burgmer
- Department of Psychosomatics and Psychotherapy; University Hospital Münster; Münster; Germany
| | - B. Pfleiderer
- Department of Clinical Radiology; University Hospital Münster; Münster; Germany
| | - C. Maihöfner
- Department of Neurology; University Hospital Erlangen; Erlangen; Germany
| | - M. Gaubitz
- Interdisciplinary Diagnostics and Therapy; University Hospital Münster; Münster; Germany
| | - E. Wessolleck
- Clinic for Laryngology, Rhinology and Otology; Hannover Medical School; Hannover; Germany
| | - G. Heuft
- Department of Psychosomatics and Psychotherapy; University Hospital Münster; Münster; Germany
| | - E. Pogatzki-Zahn
- Department of Anesthesiology and Intensive Care; University Hospital Münster; Münster; Germany
| |
Collapse
|
40
|
Duerden EG, Albanese MC. Localization of pain-related brain activation: a meta-analysis of neuroimaging data. Hum Brain Mapp 2011; 34:109-49. [PMID: 22131304 DOI: 10.1002/hbm.21416] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 05/28/2011] [Accepted: 07/05/2011] [Indexed: 12/23/2022] Open
Abstract
A meta-analysis of 140 neuroimaging studies was performed using the activation-likelihood-estimate (ALE) method to explore the location and extent of activation in the brain in response to noxious stimuli in healthy volunteers. The first analysis involved the creation of a likelihood map illustrating brain activation common across studies using noxious stimuli. The left thalamus, right anterior cingulate cortex (ACC), bilateral anterior insulae, and left dorsal posterior insula had the highest likelihood of being activated. The second analysis contrasted noxious cold with noxious heat stimulation and revealed higher likelihood of activation to noxious cold in the subgenual ACC and the amygdala. The third analysis assessed the implications of using either a warm stimulus or a resting baseline as the control condition to reveal activation attributed to noxious heat. Comparing noxious heat to warm stimulation led to peak ALE values that were restricted to cortical regions with known nociceptive input. The fourth analysis tested for a hemispheric dominance in pain processing and showed the importance of the right hemisphere, with the strongest ALE peaks and clusters found in the right insula and ACC. The fifth analysis compared noxious muscle with cutaneous stimuli and the former type was more likely to evoke activation in the posterior and anterior cingulate cortices, precuneus, dorsolateral prefrontal cortex, and cerebellum. In general, results indicate that some brain regions such as the thalamus, insula and ACC have a significant likelihood of activation regardless of the type of noxious stimuli, while other brain regions show a stimulus-specific likelihood of being activated.
Collapse
Affiliation(s)
- Emma G Duerden
- Département de Physiologie, Groupe de Recherche Sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|
41
|
Newberg AB, Hersh EV, Levin LM, Giannakopoulos H, Secreto SA, Wintering NA, Farrar JT. Double-blind, placebo-controlled, randomized pilot study of cerebral blood flow patterns employing SPECT imaging in dental postsurgical pain patients with and without pain relief. Clin Ther 2011; 33:1894-903. [PMID: 22101161 DOI: 10.1016/j.clinthera.2011.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Single-photon emission computed tomography (SPECT) has been employed in the study of altered regional cerebral blood flow (CBF) in experimental and chronic pain. CBF patterns have not been evaluated in patients with acute postoperative pain. OBJECTIVE The purpose of this pilot study was to employ SPECT to measure CBF distribution associated with postoperative dental pain and to compare these CBF patterns to subsequent images in the same patients who were experiencing pain relief versus continued or worsening pain who had received active or placebo analgesic interventions. The primary outcome measure was the percentage change in blood flow in various regions of interest. METHODS Twenty-two healthy individuals (10 males and 12 females, age range 20-29 years) who underwent the removal of ≥1 partial or full bony impacted mandibular third molars were evaluated for pain intensity as the local anesthesia dissipated, employing a 0 to10 numeric rating scale (0 = no pain; 10 = worst imaginable). When the subjects' pain level reached ≥4/10, they were injected intravenously with 260 MBq of technetium Tc 99m bicisate (ethyl cysteinate dimer). Under double-blind conditions and 10 minutes before being placed in the SPECT scanner, the first 10 subjects were randomized to receive intravenous ketorolac 15 mg or saline while the remaining 12 subjects were randomized to receive by mouth either ibuprofen 400 mg, ibuprofen 200 mg, acetaminophen 1000 mg, or placebo. One hour after drug administration, subjects were reevaluated for pain, injected with 925 MBq of technetium Tc 99m bicisate, given rescue medication if required, and then rescanned. CBF ratios were obtained for regions of interest and by normalizing to average whole brain activity. RESULTS Subjects generally had a moderate degree (mean [SD], 7.3% [4.0%]) of thalamic asymmetry on initial scans with pain; after treatment, subjects reporting worsening pain regardless of the intervention had higher thalamic asymmetry (8.1% vs 2.8%) than those reporting relief of pain. Subjects who reported reduced pain after the intervention had significantly different (P < 0.05) mean CBF changes compared with those reporting worsening pain in the left prefrontal cortex, left sensorimotor area, right anterior cingulate, and right caudate. CONCLUSIONS Acute postoperative dental pain was associated with moderate thalamic asymmetry that improved following successful pain management. Sustained or worsening pain was associated with increased CBF in brain regions associated with pain pathways, whereas pain relief was associated with decreased activity in the same areas.
Collapse
Affiliation(s)
- Andrew B Newberg
- Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
CASTROFLORIO T, FALLA D, WANG K, SVENSSON P, FARINA D. Effect of experimental jaw-muscle pain on the spatial distribution of surface EMG activity of the human masseter muscle during tooth clenching. J Oral Rehabil 2011; 39:81-92. [DOI: 10.1111/j.1365-2842.2011.02246.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|