1
|
Shirmohammadi D, Golmohammadi H, Seyedaghamiri F, Haghparast A. Role of D1- and D2-like dopamine receptors within the CA1 hippocampal region in the stress-induced antinociceptive response in the exposure to acute pain. Behav Pharmacol 2025; 36:30-39. [PMID: 39718045 DOI: 10.1097/fbp.0000000000000810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Exposure to stressful conditions such as forced swim stress (FSS) induces antinociception. Previous reports determined that dopamine receptors in the CA1 hippocampal area are important in chronic pain processing. Considering that neural mechanisms behind acute and chronic pain differ significantly, in this study, we have investigated the role of dopamine receptors within the CA1 region in the FSS-induced antinociceptive response in the acute pain induced by the tail-flick test in the rat. The cannula was implanted unilaterally in the CA1 region of the animal brain. Animals received drugs or vehicles 5 min before FSS exposure. SCH23390 as the D1-like dopamine receptor (D1R) antagonist and Sulpiride as the D2-like dopamine receptor (D2R) antagonist were microinjected into the CA1 area at three doses (0.25, 1, and 4 μg/0.5 μl vehicle); the vehicle groups received saline instead of SCH23390 and dimethyl sulfoxide instead of Sulpiride. After exposure to FSS, the tail-flick test was done. The findings of this study revealed that FSS significantly attenuates nociceptive response during the tail-flick test ( P < 0.0001). Moreover, intra-CA1 microinjection of SCH23390 and Sulpiride significantly reduces the FSS-induced antinociception in the inducing acute pain ( P < 0.0001). The comparison of effective dose of 50% for D1R and D2R antagonists showed that both receptors in the CA1 almost equally reduce the FSS-induced antinociception in the tail-flick test. The result of this study supports the hypothesis, that the dopaminergic system in CA1 is involved in triggering a stress-induced antinociceptive response in acute pain conditions.
Collapse
Affiliation(s)
| | - Homayoon Golmohammadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences
- Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Farmani D, Moteshakereh SM, Nikoohemmat M, Askari R, Salehi S, Haghparast A. Restraint stress-induced antinociceptive effects in acute pain: Involvement of orexinergic system in the nucleus accumbens. Behav Brain Res 2024; 472:115133. [PMID: 38960330 DOI: 10.1016/j.bbr.2024.115133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
The complicated relevance between stress and pain has been identified. Neurotransmitters and neuropeptides of various brain areas play a role in this communication. Pain inhibitory response is known as stress-induced analgesia (SIA). The studies demonstrated that the nucleus accumbens (NAc) is critical in modulating pain. As a neuropeptide, orexin is crucially involved in initiating behavioral and physiological responses to threatening and unfeeling stimuli. However, the role of the orexin receptors of the NAc area after exposure to restraint stress (RS) as acute physical stress in the modulation of acute pain is unclear. One hundered twenty adult male albino Wistar rats (230-250 g) were used. Animals were unilaterally implanted with cannulae above the NAc. The SB334867 and TCS OX2 29 were used as antagonists for OX1r and OX2r, respectively. Different doses of the antagonists (1, 3, 10, and 30 nmol/0.5 µl DMSO) were microinjected intra-NAc five minutes before exposure to RS (3 hours). Then, the tail-flick test as a model of acute pain was performed, and the nociceptive threshold (Tail-flick latency; TFL) was measured in 60-minute time set intervals. According to this study's findings, the antinociceptive effects of RS in the tail-flick test were blocked during intra-NAc administration of SB334867 or TCS OX2 29. The RS as acute stress increased TFL and deceased pain-like behavior responses. The 50 % effective dose values of the OX1r and OX2r antagonists were 12.82 and 21.64 nmol, respectively. The result demonstrated contribution of the OX1r into the NAc was more remarkable than that of the OX2r on antinociceptive responses induced by the RS. Besides, in the absence of RS, the TFL was attenuated. The current study's data indicated that OX1r and OX2r into the NAc induced pain modulation responses during RS in acute pain. In conclusion, the findings revealed the involvement of intra-NAc orexin receptors in improving SIA.
Collapse
Affiliation(s)
- Danial Farmani
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Nikoohemmat
- Neurobiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Askari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sakineh Salehi
- Department of Medicine, Ardabil Medical Sciences Branch, Islamic Azad University, Ardabil, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Baghani M, Bolouri-Roudsari A, Askari R, Haghparast A. Orexin receptors in the hippocampal dentate gyrus modulated the restraint stress-induced analgesia in the animal model of chronic pain. Behav Brain Res 2024; 459:114772. [PMID: 37995966 DOI: 10.1016/j.bbr.2023.114772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Previous studies have shown that stressful stimuli induced an adaptive response of reduced nociception, known as stress-induced analgesia (SIA). Since orexin neuropeptides are involved in pain modulation, and orexin neurons, primarily located in the lateral hypothalamus (LH), project to various hippocampal regions, such as the dentate gyrus (DG), the current study aimed to examine the role of orexin receptors within the DG region in the restraint SIA in the animal model of chronic pain. One hundred-thirty adult male Wistar rats (230-250 g) were unilaterally implanted with a cannula above the DG region. Animals were given SB334867 or TCS OX2 29 (1, 3, 10, and 30 nmol, 0.5 µl/rat) into the DG region as orexin-1 receptor (OX1r) and orexin-2 receptor (OX2r) antagonists, respectively, five min before exposure to a 3-hour restraint stress (RS) period. Animals were then undergone the formalin test to assess pain-related behaviors as the animal model of chronic pain. The results showed that RS produces an analgesic response during the early and late phases of the formalin test. However, intra-DG microinjection of OX1r and OX2r antagonists attenuated the restraint SIA. OX2r antagonist was more potent than OX1r antagonist in the early phase of the formalin test, while OX1r antagonist was little more effective in the late phase. Predominantly, it could be concluded that the orexinergic system in the DG region might act as a potential endogenous pain control system and a novel target for treating stress-related disorders.
Collapse
Affiliation(s)
- Matin Baghani
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arad Bolouri-Roudsari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reyhaneh Askari
- Neurobiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Bolouri-Roudsari A, Baghani M, Askari K, Mazaheri S, Haghparast A. The integrative role of orexin-1 and orexin-2 receptors within the hippocampal dentate gyrus in the modulation of the stress-induced antinociception in the formalin pain test in the rat. Behav Pharmacol 2024; 35:14-25. [PMID: 37578388 DOI: 10.1097/fbp.0000000000000737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The stressful experiences, by triggering a cascade of hormonal and neural changes, can produce antinociception commonly referred to as stress-induced antinociception (SIA). Orexin neuropeptides have an essential role in stress responses and pain modulation. The dentate gyrus receives orexinergic projections and has been shown to be involved in pain processing. The current study investigated the possible role of orexin-1 and orexin-2 receptors (OX1r and OX2r, respectively) within the dentate gyrus in SIA in a rat model of formalin-induced pain behavior in one hind paw. Male Wistar rats weighing 230-250 g underwent stereotaxic surgery and a cannula was implanted in their brains, above the dentate gyrus region. Either SB334867 or TCS OX2 29 (OX1r and OX2r antagonists, respectively) was microinjected into the dentate gyrus region at a range of doses at 1, 3, 10, and 30 nmol (control group received DMSO 12% as vehicle), 5 min before the forced swim stress (FSS) exposure. The formalin test was performed to assess pain-related behaviors. The results indicated that FSS exposure relieves pain-related behavior in the early and late phases of the formalin test. Blockade of intra-dentate gyrus OX1 or OX2 receptors reduced the antinociceptive responses induced by FSS in the formalin test, with more impact during the late phase. Our findings support the potential role of intra-dentate gyrus orexin receptors as target sites of orexin neurons in painful and stressful situations. Therefore, understanding the exact mechanisms of SIA and the role of the orexinergic system in this phenomenon can lead to identifying the strategies to guide future research and offer a new approach to discovering new pain therapeutic agents.
Collapse
Affiliation(s)
- Arad Bolouri-Roudsari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University
| | - Matin Baghani
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University
| | | | - Sajad Mazaheri
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
| |
Collapse
|
5
|
Zheng JY, Wang ZH, Zhu ZY, Huang ZH, Song KX, Ye BL, Zhou HY, Gao SQ. The Lateral Parabrachial Nucleus Inputs to the Lateral Hypothalamus Trigger Nocifensive Behaviors. Neuroscience 2024; 537:12-20. [PMID: 38036057 DOI: 10.1016/j.neuroscience.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
The lateral parabrachial nucleus (LPBN) is known to play a key role in relaying noxious information from the spinal cord to the brain. Different LPBN efferent mediate different aspects of the nocifensive response. However, the function of the LPBN → lateral hypothalamus (LH) circuit in response to noxious stimuli has remained unknown. Here, we show that LPBN → LH circuit is activated by noxious stimuli. Interestingly, either activation or inhibition of this circuit induced analgesia. Optogenetic activation of LPBN afferents in the LH elicited spontaneous jumping and induced place aversion. Optogenetic inhibition inhibited jumping behavior to noxious heat. Ablation of LH glutamatergic neurons could abolish light-evoked analgesia and jumping behavior. Our study revealed a role for the LPBN → LH pathway in nocifensive behaviors.
Collapse
Affiliation(s)
- Jie-Yan Zheng
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zi-Hao Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zi-Yu Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zi-Han Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ke-Xin Song
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Bao-Lin Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hai-Yun Zhou
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuang-Qi Gao
- Departments of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 510630 Guangzhou, Guangdong Province, China.
| |
Collapse
|
6
|
Kazlou A, Bornukova K, Wickham A, Slaykovskiy V, Peven K, Klepchukova A, Ponzo S, Garfinkel S. Effects of stress on pain in females using a mobile health app in the Russia-Ukraine conflict. NPJ MENTAL HEALTH RESEARCH 2024; 3:2. [PMID: 38609485 PMCID: PMC10956037 DOI: 10.1038/s44184-023-00043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/27/2023] [Indexed: 04/14/2024]
Abstract
The chronic and acute effects of stress can have divergent effects on health; long-term effects are associated with detrimental physical and mental health sequelae, while acute effects may be advantageous in the short-term. Stress-induced analgesia, the attenuation of pain perception due to stress, is a well-known phenomenon that has yet to be systematically investigated under ecological conditions. Using Flo, a women's health and wellbeing app and menstrual cycle tracker, with a world-wide monthly active usership of more than 57 million, women in Ukraine were monitored for their reporting of stress, pain and affective symptoms before, and immediately after, the onset of the Russian-Ukrainian conflict. To avoid potential selection (attrition) or collider bias, we rely on a sample of 87,315 users who were actively logging multiple symptoms before and after the start of the war. We found an inverse relationship between stress and pain, whereby higher reports of stress predicted lower rates of pain. Stress did not influence any other physiological symptoms with a similar magnitude, nor did any other symptom have a similar effect on pain. This relationship generally decreased in magnitude in countries neighbouring and surrounding Ukraine, with Ukraine serving as the epicentre. These findings help characterise the relationship between stress and health in a real-world setting.
Collapse
Affiliation(s)
| | - Kateryna Bornukova
- BEROC Economic Research Center, Minsk, Belarus
- Universidad Carlos III de Madrid, Department of Economics, Madrid, Spain
| | | | | | | | | | - Sonia Ponzo
- Flo Health UK Limited, London, United Kingdom
- University College London, Institute of Health Informatics, London, United Kingdom
| | - Sarah Garfinkel
- University College London, Institute of Cognitive Neuroscience, London, United Kingdom
| |
Collapse
|
7
|
Ivanec D, Stanke KM, Tomić I, Matijaš S. Dominance-submissiveness cues modulate pain threshold for mechanical pressure. Q J Exp Psychol (Hove) 2023; 76:2371-2378. [PMID: 36420810 DOI: 10.1177/17470218221143759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Acute pain sensation is an inherently negative but adaptive experience; however, research on pain sensitivity shows that simple contextual cues can effectively attenuate the pain. In this study, we sought to investigate how dominance cues, manipulated as vertical spatial (i.e., height) distance between participants and experimenter, affect participants' pain sensitivity. Positioning participants in a spatially higher position relative to the experimenter was aimed to induce a feeling of dominance in participants. Conversely, a feeling of submissiveness was induced by placing the experimenter in a spatially higher position. In addition, we examined the role of dominance cues with respect to participants' and experimenters' gender. Two separate studies were conducted-Study 1 with a male experimenter measuring pain threshold in female and male participants (N = 137), and Study 2 with a female experimenter conducting pain measurement in a new sample of female and male participants (N = 122). The results of both studies demonstrated that participants in a dominant position reported a higher pain threshold relative to participants in a submissive position. Male participants had a higher pain threshold in both studies; however, Study 1 revealed a significant interaction of dominance manipulation and participant's gender, with the effect of dominance cues being larger in men.
Collapse
Affiliation(s)
- Dragutin Ivanec
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Koraljka Modić Stanke
- Department of Psychology, Social Work Study Centre, Faculty of Law, University of Zagreb, Zagreb, Croatia
| | - Ivan Tomić
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Sanja Matijaš
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
8
|
Bossenger NR, Lewis GN, Rice DA, Shepherd D. The autonomic and nociceptive response to acute experimental stress is impaired in people with knee osteoarthritis: A preliminary study. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100144. [PMID: 38099282 PMCID: PMC10719531 DOI: 10.1016/j.ynpai.2023.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 12/17/2023]
Abstract
Objective Alterations in autonomic function are evident in some chronic pain conditions but have not been thoroughly examined in people with osteoarthritis (OA). The study aimed to examine resting autonomic nervous system (ANS) function in people with knee OA, and the response of the autonomic and nociceptive systems to acute stress. Methods A preliminary cross-sectional study was undertaken involving people with knee OA (n = 14), fibromyalgia (n = 13), and pain-free controls (n = 15). The sympathetic and parasympathetic components of the ANS were assessed through measures of pre-ejection period (PEP), skin conductance level (SCL), and high frequency heart rate variability (HF HRV). The nociceptive system was assessed through pain ratings associated with a tonic heat pain stimulus. In separate sessions, ANS and heat pain measures were assessed at rest and in response to nociceptive and mental arithmetic stressors. Results The knee OA group showed reduced HF HRV at rest and reduced modulation in response to stress. Resting PEP and SCL were normal in the knee OA group but PEP modulation was impaired in both chronic pain groups during nociceptive stress. The expected reduction in tonic heat pain ratings in response to stress was lacking in the knee OA and FM groups. Conclusion Preliminary evidence shows impaired parasympathetic nervous system function at rest and in response to nociceptive and mental stress in people with knee OA, with some evidence of altered sympathetic nervous system function. Impaired ANS function could contribute to ongoing pain experienced, and interventions that target ANS function could be beneficial.
Collapse
Affiliation(s)
- Neil R Bossenger
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Gwyn N Lewis
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - David A Rice
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
- Waitematā Pain Service, Te Whatu Ora Waitematā, Auckland, New Zealand
| | - Daniel Shepherd
- Department of Psychology, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
9
|
Vanneste S, De Ridder D. BurstDR spinal cord stimulation rebalances pain input and pain suppression in the brain in chronic neuropathic pain. Brain Stimul 2023; 16:1186-1195. [PMID: 37541579 DOI: 10.1016/j.brs.2023.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
OBJECTIVE Chronic pain is processed by at least three well-known pathways, two pain provoking pathways including a medial 'suffering' and lateral 'painfulness' pathway. A third descending pain pathway modulates pain but is predominantly inhibitory. Chronic pain can be seen as an imbalance between the two pain-provoking and the pain inhibitory pathways. If this assumption is correct, then the imbalance between pain input and pain suppression should reverse and normalize in response to successful, i.e., pain reducing burstDR spinal cord stimulation, one of the current treatment options for neuropathic pain. MATERIALS AND METHODS Fifteen patients, who received spinal cord stimulation for failed back surgery were included in this study, using source localized electrical brain activity and connectivity recording via EEG to identify the purported imbalance. RESULTS BurstDR spinal cord stimulation induces a significant change in EEG activity in both the left and right somatosensory cortex (SSC) for both θ and γ oscillations. In the dorsal anterior cingulate cortex (dACC), we observed a significant drop in both α and β oscillations. This reduction is accompanied by a change in pain intensity and suffering. BurstDR spinal cord stimulation is also associated with a reduction in θ at the pregenual anterior cingulate cortex (pgACC). Analyzing effective connectivity indicates that for the θ band, more information is sent from the pgACC to the left and right SSC. For α, increased information is sent from the pgACC to the dACC and both the left and right SSC. This is associated with a reduced θ-γ coupling in the SSC and reduced α-β coupling in dACC. CONCLUSION This study suggests that chronic pain is indeed an imbalance between the ascending and descending pathways in the brain and that burst spinal cord stimulation can normalize this imbalance in the brain.
Collapse
Affiliation(s)
- Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, New Zealand
| |
Collapse
|
10
|
Moteshakereh SM, Nikoohemmat M, Farmani D, Khosrowabadi E, Salehi S, Haghparast A. The stress-induced antinociceptive responses to the persistent inflammatory pain involve the orexin receptors in the nucleus accumbens. Neuropeptides 2023; 98:102323. [PMID: 36736068 DOI: 10.1016/j.npep.2023.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/16/2022] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Stress suppresses the sense of pain, a physiological phenomenon known as stress-induced analgesia (SIA). Brain orexin peptides regulate many physiological functions, including wakefulness and nociception. The contribution of the orexinergic system within the nucleus accumbens (NAc) in the modulation of antinociception induced by forced swim stress (FSS) remains unclear. The present study addressed the role of intra-accumbal orexin receptors in the antinociceptive responses induced by FSS during the persistent inflammatory pain model in the rat. Stereotaxic surgery was performed unilaterally on 106 adult male Wistar rats weighing 250-305 g. Different doses (1, 3, 10, and 30 nmol/ 0.5 μl DMSO) of orexin-1 receptor (OX1r) antagonist (SB334867) or OX2 receptor antagonist (TCS OX2 29) were administered into the NAc five minutes before exposure to FSS for a 6-min period. The formalin test was carried out using formalin injection (50 μl; 2.5%) into the rat's hind paw plantar surface, which induces biphasic pain-related responses. The first phase begins immediately after formalin infusion and takes 3-5 min. Subsequently, the late phase begins 15-20 min after formalin injection and takes 20-40 min. The findings demonstrated that intra-accumbal microinjection of SB334867 or TCS OX2 29 attenuated the FSS-induced antinociception in both phases of the formalin test, with the TCS OX2 29 showing higher potency. Moreover, the effect of TCS OX2 29 was more significant during the early phase of the formalin test. The results suggest that OX1 and OX2 receptors in the NAc might modulate the antinociceptive responses induced by the FSS.
Collapse
Affiliation(s)
| | - Mohammad Nikoohemmat
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Danial Farmani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Khosrowabadi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sakineh Salehi
- epartment of Medicine, Ardabil Medical Sciences Branch, Islamic Azad University, Ardabil, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Blockade of the orexin receptors in the ventral tegmental area could attenuate the stress-induced analgesia: A behavioral and molecular study. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110639. [PMID: 36116673 DOI: 10.1016/j.pnpbp.2022.110639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
Abstract
Exposure to stressful stimuli induces various physiological and behavioral responses, affects pain perception, and alters gene expression. Stress elicits an analgesic effect in laboratory animals, termed the "stress-induced analgesia" (SIA). Orexin neuropeptides, processed from pre-pro-orexin in the hypothalamus, release during stress and are known to be antinociceptive. The current study examined the modulatory role of the ventral tegmental area (VTA) orexinergic system in the restraint SIA and extracellular signal-regulated kinase (ERK) activation in the nucleus accumbens (NAc). Adult male Wistar rats were subjected to intra-VTA injection of orexin-1 and -2 receptor antagonists (SB334867 and TCS OX2 29; 1, 3, 10, and 30 nmol/0.3 μl, respectively) five min before a 3-h period of exposure to restraint stress (RS). Western blot analysis was also used to assess the levels of ERK and phosphorylated ERK (p-ERK) in the NAc tissues. RS exposure produced an analgesic response to the thermal pain model (Tail-flick test). RS-induced antinociception was inhibited by intra-VTA administration of SB334867 and TCS OX2 29. Moreover, in the molecular study, exposure to forced swim stress (FSS) and RS significantly enhanced the p-ERK/ERK ratio. Blockade of both orexin receptors diminished the p-ERK/ERK ratio, but this decrease was significant only in the FSS group of animals that received TCS OX2 29. Collectively, the present findings suggested the functional roles of intra-VTA orexin receptors and ERK signaling in the SIA.
Collapse
|
12
|
Stress-induced hyperalgesia instead of analgesia in patients with chronic musculoskeletal pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 13:100110. [PMID: 36561877 PMCID: PMC9764253 DOI: 10.1016/j.ynpai.2022.100110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Many individuals with chronic musculoskeletal pain (CMP) show impairments in their pain-modulatory capacity. Although stress plays an important role in chronic pain, it is not known if stress-induced analgesia (SIA) is affected in patients with CMP. We investigated SIA in 22 patients with CMP and 18 pain-free participants. Pain thresholds, pain tolerance and suprathreshold pain ratings were examined before and after a cognitive stressor that typically induces pain reduction (SIA). Whereas the controls displayed a significant increase in pain threshold in response to the stressor, the patients with CMP showed no analgesia. In addition, increased pain intensity ratings after the stressor indicated hyperalgesia (SIH) in the patients with CMP compared to controls. An exploratory analysis showed no significant association of SIA or SIH with spatial pain extent. We did not observe significant changes in pain tolerance or pain unpleasantness ratings after the stressor in patients with CMP or controls. Our data suggest that altered stress-induced pain modulation is an important mechanism involved in CMP. Future studies need to clarify the psychobiological mechanisms of these stress-induced alterations in pain processing and determine the role of contributing factors such as early childhood trauma, catastrophizing, comorbidity with mental disorders and genetic predisposition.
Collapse
|
13
|
The modulatory role of dopamine receptors within the hippocampal cornu ammonis area 1 in stress-induced analgesia in an animal model of persistent inflammatory pain. Behav Pharmacol 2022; 33:492-504. [PMID: 36148837 DOI: 10.1097/fbp.0000000000000697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The intrinsic pain inhibitory mechanisms can be activated by fear, anxiety, and stress. Stressful experiences produce analgesia, referred to as stress-induced analgesia (SIA). Major components of the limbic system, including the ventral tegmental area, nucleus accumbens, amygdala, and hippocampus, are involved in the SIA. In this study, we tried to understand the role of dopamine receptors in the cornu ammonis area 1 (CA1) of the hippocampus in the forced swim stress (FSS)-induced analgesia. Stereotaxic surgery was unilaterally performed on 129 adult male Wistar rats weighing 220-280 g. SCH23390 (0.25, 1, and 4 μg/0.5 μl saline) or sulpiride (0.25, 1, and 4 μg/0.5 μl DMSO), as D1- and D2-like dopamine receptor antagonists, respectively, were microinjected into the CA1 area, 5 min before exposure to FSS for a 6-min period. The vehicle groups received saline or DMSO instead of SCH23390 or sulpiride, respectively. The formalin test was done using formalin injection (50 μl; 2.5%) into the plantar surface of the rat's hind paw immediately after exposure to FSS. The results demonstrated that FSS produces analgesia during the early and late phases of the formalin test. However, intra-CA1 microinjection of SCH23390 or sulpiride attenuated the FSS-induced analgesia in both phases of the formalin test. This study provides new insight into the role of D1- and D2-like dopamine receptors in the CA1 area in the FSS-induced analgesia during persistent inflammatory pain.
Collapse
|
14
|
Nguyen E, Smith KM, Cramer N, Holland RA, Bleimeister IH, Flores-Felix K, Silberberg H, Keller A, Le Pichon CE, Ross SE. Medullary kappa-opioid receptor neurons inhibit pain and itch through a descending circuit. Brain 2022; 145:2586-2601. [PMID: 35598161 PMCID: PMC9612802 DOI: 10.1093/brain/awac189] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
In perilous and stressful situations, the ability to suppress pain can be critical for survival. The rostral ventromedial medulla contains neurons that robustly inhibit nocioception at the level of the spinal cord through a top-down modulatory pathway. Although much is known about the role of the rostral ventromedial medulla in the inhibition of pain, the precise ability to directly manipulate pain-inhibitory neurons in the rostral ventromedial medulla has never been achieved. We now expose a cellular circuit that inhibits nocioception and itch in mice. Through a combination of molecular, tracing and behavioural approaches, we found that rostral ventromedial medulla neurons containing the kappa-opioid receptor inhibit itch and nocioception. With chemogenetic inhibition, we uncovered that these neurons are required for stress-induced analgesia. Using intersectional chemogenetic and pharmacological approaches, we determined that rostral ventromedial medulla kappa-opioid receptor neurons inhibit nocioception and itch through a descending circuit. Lastly, we identified a dynorphinergic pathway arising from the periaqueductal grey that modulates nociception within the rostral ventromedial medulla. These discoveries highlight a distinct population of rostral ventromedial medulla neurons capable of broadly and robustly inhibiting itch and nocioception.
Collapse
Affiliation(s)
- Eileen Nguyen
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kelly M Smith
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nathan Cramer
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Ruby A Holland
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Isabel H Bleimeister
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Krystal Flores-Felix
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Hanna Silberberg
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Asaf Keller
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah E Ross
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
|
16
|
Ferreira DMAO, Costa YM, Bonjardim LR, Conti PCR. Effects of acute mental stress on conditioned pain modulation in temporomandibular disorders patients and healthy individuals. J Appl Oral Sci 2021; 29:e20200952. [PMID: 34105694 PMCID: PMC8232930 DOI: 10.1590/1678-7757-2020-0952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
Stress is a contributing factor to painful temporomandibular disorders (TMD). Nevertheless, the underpinnings of this relationship are not fully understood.
Collapse
Affiliation(s)
| | - Yuri Martins Costa
- Universidade de Campinas, Faculdade de Odontologia de Piracicaba, Departamento de Biociências, Piracicaba, Brasil
| | - Leonardo Rigoldi Bonjardim
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, Brasil
| | - Paulo César Rodrigues Conti
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Prótese e Periodontia, Bauru, Brasil
| |
Collapse
|
17
|
Lázaro-Navas I, Lorenzo-Sánchez-Aguilera C, Pecos-Martín D, Jiménez-Rejano JJ, Navarro-Santana MJ, Fernández-Carnero J, Gallego-Izquierdo T. Immediate Effects of Dry Needling on the Autonomic Nervous System and Mechanical Hyperalgesia: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116018. [PMID: 34205103 PMCID: PMC8199958 DOI: 10.3390/ijerph18116018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Dry needling (DN) is often used for the treatment of muscle pain among physiotherapists. However, little is known about the mechanisms of action by which its effects are generated. The aim of this randomized controlled trial was to determine if the use of DN in healthy subjects activates the sympathetic nervous system, thus resulting in a decrease in pain caused by stress. METHODS Sixty-five healthy volunteer subjects were recruited from the University of Alcala, Madrid, Spain, with an age of 27.78 (SD = 8.41) years. The participants were randomly assigned to participate in a group with deep DN in the adductor pollicis muscle or a placebo needling group. The autonomic nervous system was evaluated, in addition to local and remote mechanical hyperalgesia. RESULTS In a comparison of the moment at which the needling intervention was carried out with the baseline, the heart rate of the dry needling group significantly increased by 20.60% (SE = 2.88), whereas that of the placebo group increased by 5.33% (SE = 2.32) (p = 0.001, d = 1.02). The pressure pain threshold showed significant differences between both groups, being significantly higher in the needling group (adductor muscle p = 0.001; d = 0.85; anterior tibialis muscle p = 0.022, d = 0.58). CONCLUSIONS This work appears to indicate that dry needling produces an immediate activation in the sympathetic nervous system, improving local and distant mechanical hyperalgesia.
Collapse
Affiliation(s)
- Irene Lázaro-Navas
- Department of Physical Therapy, University Hospital Ramón y Cajal, 28034 Madrid, Spain;
- University of Alcalá, Instituto de Fisioterapia y Dolor, 28805 Madrid, Spain; (C.L.-S.-A.); (D.P.-M.); (T.G.-I.)
| | | | - Daniel Pecos-Martín
- University of Alcalá, Instituto de Fisioterapia y Dolor, 28805 Madrid, Spain; (C.L.-S.-A.); (D.P.-M.); (T.G.-I.)
- Department of Physical Therapy, University of Alcalá, 28805 Alcalá de Henares, Spain
| | - Jose Jesús Jiménez-Rejano
- Department of Physical Therapy, Faculty of Nursing, Physiotherapy and Podology, University of Sevilla, 41009 Sevilla, Spain;
| | | | - Josué Fernández-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28922 Madrid, Spain
- Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Grupo de Excelencia Investigadora URJC-Banco de Santander, Universidad Rey Juan Carlos, 28032 Madrid, Spain
- Paz Hospital Institute for Health Research, IdiPAZ, 28029 Madrid, Spain
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
- Correspondence: ; Tel.: +34-914-888-949
| | - Tomás Gallego-Izquierdo
- University of Alcalá, Instituto de Fisioterapia y Dolor, 28805 Madrid, Spain; (C.L.-S.-A.); (D.P.-M.); (T.G.-I.)
- Department of Physical Therapy, University of Alcalá, 28805 Alcalá de Henares, Spain
| |
Collapse
|
18
|
Vanneste S, De Ridder D. Chronic pain as a brain imbalance between pain input and pain suppression. Brain Commun 2021; 3:fcab014. [PMID: 33758824 PMCID: PMC7966784 DOI: 10.1093/braincomms/fcab014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic pain is pain that persists beyond the expected period of healing. The subjective experience of chronic pain results from pathological brain network interactions, rather than from persisting physiological sensory input of nociceptors. We hypothesize that pain is an imbalance between pain evoking dorsal anterior cingulate cortex and somatosensory cortex and pain suppression (i.e. pregenual anterior cingulate cortex). This imbalance can be measured objectively by current density ratios between pain input and pain inhibition. A balance between areas involved in pain input and pain suppression requires communication, which can be objectively identified by connectivity measures, both functional and effective connectivity. In patients with chronic neuropathic pain, electroencephalography is performed with source localization demonstrating that pain is reflected by an abnormal ratio between the dorsal anterior cingulate cortex, somatosensory cortex and pregenual anterior cingulate cortex. Functional connectivity demonstrates decreased communication between these areas, and effective connectivity puts the culprit at the dorsal anterior cingulate cortex, suggesting that the problem is related to abnormal behavioral relevance attached to the pain. In conclusion, chronic pain can be considered as an imbalance between pain input and pain suppression.
Collapse
Affiliation(s)
- Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, 9016 Dunedin, New Zealand
| |
Collapse
|
19
|
Jung YH, Kim H, Lee D, Lee JY, Lee WJ, Moon JY, Choi SH, Kang DH. Abnormal neurometabolites in fibromyalgia patients: Magnetic resonance spectroscopy study. Mol Pain 2021; 17:1744806921990946. [PMID: 33573464 PMCID: PMC7887674 DOI: 10.1177/1744806921990946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study aimed to investigate distinct neurometabolites in the anterior cingulate cortex (ACC), right and left thalamus, and insula of patients with fibromyalgia (FM) compared with healthy controls using proton magnetic resonance spectroscopy (MRS). Levels of N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG), total NAA (tNAA = NAA + NAAG), myo-inositol (ml), glutamine (Gln), glutamate (Glu), Glx (Glu + Gln), glycerophosphocholine (GPC), total choline (tCho = GPC + phosphocholine) and glutathione (GSH) levels relative to total creatine (tCr) levels including creatine (Cr) and phosphocreatine (PCr) and relative to Cr levels were determined in the ACC, right and left thalamus, and insula in 12 patients with FM and 13 healthy controls using MRS. In the ACC, NAA/tCr (P = 0.028) and tCho/tCr (P = 0.047) were higher in patients with FM. In the right and left insula, tNAA/tCr (P = 0.019, P = 0.007, respectively) was lower in patients with FM. Patients with FM showed lower levels of ml/Cr (P = 0.037) in the right insula than healthy controls. These findings are paramount to understand decisive pathophysiological mechanisms related to abnormal features in the brain and parasympathetic nervous systems in FM. We suggest that the results presented herein may be essential to understand hidden pathological mechanisms and also life system potential as protective and recovering metabolic strategies in patients with FM.
Collapse
Affiliation(s)
- Ye-Ha Jung
- Department of Psychiatry, Seoul National University Hospital, Seoul, Korea
| | - Hyeonjin Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Dasom Lee
- Department of Psychiatry, Seoul National University Hospital, Seoul, Korea
| | - Jae-Yeon Lee
- Department of Psychiatry, Seoul National University Hospital, Seoul, Korea
| | - Won Joon Lee
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Jee Youn Moon
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Korea
| | - Soo-Hee Choi
- Department of Psychiatry, Seoul National University College of Medicine and Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Korea
| | - Do-Hyung Kang
- Emotional Information and Communication Technology Association, Seoul, Korea
- Do-Hyung Kang, Emotional Information and Communication Technology Association, 508, Samseong-ro, Gangnam-gu, Seoul, Korea.
| |
Collapse
|
20
|
Geisler M, Herbsleb M, Bär KJ, Weiss T. Dissociation of Endogenous Pain Inhibition Due to Conditioned Pain Modulation and Placebo in Male Athletes Versus Nonathletes. Front Psychol 2020; 11:553530. [PMID: 33071874 PMCID: PMC7531190 DOI: 10.3389/fpsyg.2020.553530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
Animals and humans are able to inhibit pain by activating their endogenous pain-inhibition system. Endurance athletes possess a higher pain-tolerance threshold and a greater conditioned pain modulation (CPM) effect than nonathletes, suggesting better endogenous pain inhibition. In addition to CPM, placebo is another prominent paradigm used to test endogenous pain inhibition. However, whether the placebo effect and the CPM effect share the same mechanisms of pain inhibition has not been investigated. If there is a shared mechanism, then endurance athletes should show not only a better CPM effect than nonathletes but also a greater placebo effect. Here, we investigated 16 male endurance athletes and 17 male nonathletes in well-established placebo and CPM paradigms to assess whether endurance athletes have a better endogenous pain-inhibition system than nonathletes. As expected, we find a significantly greater CPM effect in athletes than in nonathletes. In contrast, we could only find a significant placebo effect in nonathletes. Explorative analyses reveal negative associations between the placebo effect and heart rate variability as well as between the placebo effect and interoceptive awareness. Together, the results demonstrate a dissociation of endogenous pain inhibition of CPM and placebo effect between endurance athletes and nonathletes. This suggests that both effects are based, at least in part, on different biological mechanisms.
Collapse
Affiliation(s)
- Maria Geisler
- Department of Clinical Psychology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Marco Herbsleb
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
| | - Karl-Jürgen Bär
- Department of Psychosomatic Medicine, University Hospital Jena, Jena, Germany
| | - Thomas Weiss
- Department of Clinical Psychology, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
21
|
Manohar S, Adler HJ, Radziwon K, Salvi R. Interaction of auditory and pain pathways: Effects of stimulus intensity, hearing loss and opioid signaling. Hear Res 2020; 393:108012. [PMID: 32554129 DOI: 10.1016/j.heares.2020.108012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022]
Abstract
Moderate intensity sounds can reduce pain sensitivity (i.e., audio-analgesia) whereas intense sounds can induce aural pain, evidence of multisensory interaction between auditory and pain pathways. To explore auditory-pain pathway interactions, we used the tail-flick (TF) test to assess thermal tail-pain sensitivity by measuring the latency of a rat to remove its tail from 52 °C water. In Experiment 1, TF latencies were measured in ambient noise and broadband noise (BBN) presented from 80 to 120 dB SPL. TF latencies gradually increased from ambient to 90 dB SPL (audio-analgesia), but then declined. At 120 dB, TF latencies were significantly shorter than normal, evidence for audio-hyperalgesia near the aural threshold for pain. In Experiment II, the opioid pain pathway was modified by treating rats with a high dose of fentanyl known to induce post-treatment hyperalgesia. TF latencies in ambient noise were normal 10-days post-fentanyl. However, TF latencies became shorter than normal from 90 to 110 dB indicating that fentanyl pre-treatment had converted audio-analgesia to audio-hyperalgesia. In Experiment III, we tested the hypothesis that hearing loss could alter pain sensitivity by unilaterally exposing rats to an intense noise that induced a significant hearing loss. TF latencies in ambient noise gradually declined from 1- to 4-weeks post-exposure indicating that noise-induced hearing loss had increased pain sensitivity. Our results suggest that auditory and pain pathways interact in ways that depend on intensity, hearing loss and opioid pain signaling, results potentially relevant to pain hyperacusis.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Henry J Adler
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Kelly Radziwon
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
22
|
Bitar N, Dugré JR, Marchand S, Potvin S. Medial Orbitofrontal De-Activation During Tonic Cold Pain Stimulation: A fMRI Study Examining the Opponent-Process Theory. J Pain Res 2020; 13:1335-1347. [PMID: 32606900 PMCID: PMC7292263 DOI: 10.2147/jpr.s248056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/22/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND While the concomitant administration of painful and rewarding stimuli tends to reduce the perception of one another, recent evidence shows that pleasant pain relief is experience after the interruption of noxious stimuli. On neurobiological grounds, these opponent processes should translate into decreased activity in brain reward regions during nociceptive stimulation and increased activity in these regions after its interruption. While growing evidence supports the latter assumption, evidence is lacking in humans in support of the former. METHODS Twenty-six healthy individuals underwent a functional magnetic resonance imaging (fMRI) session during which they were administered a cold pain stimulation, using a novel paradigm which consisted in a cold gel applied on the right foot of participants. RESULTS After the interruption of noxious stimulation, participants experienced significant levels of pleasant pain relief. During cold pain stimulation, brain activations were observed in key regions of the pain matrix (eg, thalamus, primary somatosensory cortex and insula). Conversely, the medial orbitofrontal cortex was found to be de-activated. Medial orbitofrontal de-activations were negatively correlated with subclinical pain symptoms. DISCUSSION Our results show that a key brain reward region (eg, medial orbitofrontal cortex) is de-activated during cold pain stimulation, a result which is consistent with one of the central assumptions of the opponent-process theory. On methodological grounds, our results show that the cold gel applied to the foot can be used to trigger activations in the pain matrix, and that the interruption of the cold pressor test elicits significant levels of pleasant pain relief. fMRI studies on pain-reward interactions in chronic pain patients are warranted.
Collapse
Affiliation(s)
- Nathalie Bitar
- Research Center of the Institute of Mental Health of Montreal, Montreal, Canada
- Department of Psychiatry, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Jules R Dugré
- Research Center of the Institute of Mental Health of Montreal, Montreal, Canada
- Department of Psychiatry, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Serge Marchand
- Genome Quebec, Montreal, Canada
- Department of Surgery, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Canada
| | - Stéphane Potvin
- Research Center of the Institute of Mental Health of Montreal, Montreal, Canada
- Department of Psychiatry, Faculty of Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
23
|
Pain and stress: functional evidence that supra-spinal mechanisms involved in pain-induced analgesia mediate stress-induced analgesia. Behav Pharmacol 2020; 31:159-167. [DOI: 10.1097/fbp.0000000000000529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
When pain and stress interact: looking at stress-induced analgesia and hyperalgesia in birds. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933919000382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Seymour B. Pain: A Precision Signal for Reinforcement Learning and Control. Neuron 2019; 101:1029-1041. [PMID: 30897355 DOI: 10.1016/j.neuron.2019.01.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/18/2019] [Accepted: 01/27/2019] [Indexed: 12/18/2022]
Abstract
Since noxious stimulation usually leads to the perception of pain, pain has traditionally been considered sensory nociception. But its variability and sensitivity to a broad array of cognitive and motivational factors have meant it is commonly viewed as inherently imprecise and intangibly subjective. However, the core function of pain is motivational-to direct both short- and long-term behavior away from harm. Here, we illustrate that a reinforcement learning model of pain offers a mechanistic understanding of how the brain supports this, illustrating the underlying computational architecture of the pain system. Importantly, it explains why pain is tuned by multiple factors and necessarily supported by a distributed network of brain regions, recasting pain as a precise and objectifiable control signal.
Collapse
Affiliation(s)
- Ben Seymour
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan; Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK.
| |
Collapse
|
26
|
Song X, Bhinge S, Quiton RL, Adalı T. An ICA based approach for steady-state and transient analysis of task fMRI data: Application to study of thermal pain response. J Neurosci Methods 2019; 326:108356. [PMID: 31310824 DOI: 10.1016/j.jneumeth.2019.108356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/22/2019] [Accepted: 07/10/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND Data driven analysis methods such as independent component analysis (ICA) offer the advantage of estimating subject contributions when used in a second-level analysis. With the traditionally used regression-based methods this is achieved with a design matrix that has to be specified a priori. NEW METHOD We show that the ability of ICA to estimate subject contributions can be effectively used to perform steady-state as well as transient analysis of task functional magnetic resonance imaging (fMRI) data, which can help reveal important group differences. RESULTS We apply the method to steady-state and transient analysis of block designed thermal pain stimulated fMRI data, and identify distinct sex differences, in parts of the pain matrix: brain stem, thalamus, amygdala, frontal pole (FP), temporal pole (TP), operculum (second somatosensory cortex, SII), anterior insular (AI), dorsal anterior cingulate cortex (dACC), and default mode network (DMN). We also show that the identified regions have significant correlation with weekly exercise and anxiety. Using transient analysis, we identify regions (SII, AI, dACC, DMN) specific to female group showing difference mainly in the initial stages of the experiments. COMPARISON WITH EXISTING METHOD With exact same spatial components input in the second level, permutation analysis of linear models cannot identify any significant group difference. In addition, the proposed transient analysis cannot be realized if user is required to input a design matrix as is the case with regression-based analyses. CONCLUSIONS The proposed two-level ICA is an effective multi-variate analysis method for both steady-state and transient analysis of task data.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, MD 21250, United States
| | - Suchita Bhinge
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, MD 21250, United States
| | - Raimi L Quiton
- Department of Psychology, University of Maryland, Baltimore County, MD 21250, United States
| | - Tülay Adalı
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, MD 21250, United States
| |
Collapse
|
27
|
Nasehi M, Ghazalian F, Shakeri N, Nasehi M, Zarrindast MR. Influence of MLC901 Alone and with Moderate Exercise on Pain Response Concurrent Due to Stress of Male Mice. Galen Med J 2019; 8:e1253. [PMID: 34466479 PMCID: PMC8343824 DOI: 10.31661/gmj.v8i0.1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/16/2018] [Accepted: 05/23/2019] [Indexed: 11/26/2022] Open
Abstract
Background: Physical exercise is known to have a positive effect on pain responses induced by stress, while chronic stress causes a negative effect on cognitive abilities. Depending on the type, duration, and intensity of the stressor, it can induce analgesia or hyperalgesia. Furthermore, the beneficial effects of traditional Chinese medicine MLC901 on stress processes have been reported. Here, the effects of MLC901 and moderate physical activity on pain response in restraint-stressed mice was investigated. Materials and Methods: Male NMRI mice were used in this study and were restrained in plexiglass mesh restrainers for induction of chronic restraint stress. Treadmill exercise was carried out for moderated exercise, 5 days/week for 4 weeks. MLC901 was intraperitoneally administered in the experimental groups. The pain response of the adult NMRI mice was detected via the hot-plate test. Results: It was showed that intraperitoneal administration of MLC901 dose (0.4 but not 0.1 and 0.2 mg/kg; once/2 days; for 25 days) resulted in the decreased percentage of time in the hot plate, indicating hyperalgesia. Moreover, restraint stress for 3 but not 6 and 9 hours/day elicit hyperalgesia in mice. The data showed that subthreshold dose of MLC901 (0.1 mg/kg) reduced hyperalgesia in 3-day stressed mice. Moderate treadmill running (10 meters/min for 30 min/day, 5 days/ week) potentiated the effect of 6 and 9 days on pain (induced hyperalgesia) that was blocked by MLC901 (0.1 mg/kg). Conclusion: Our findings indicated that subthreshold dose of MLC901 alone or when it associated with moderate exercise decreased hyperalgesia induced by stress, indicating the protective effect of MLC901.
Collapse
Affiliation(s)
- Maryam Nasehi
- Department of physical education and sport sciences, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshad Ghazalian
- Department of physical education and sport sciences, Islamic Azad University, Science and Research Branch, Tehran, Iran
- Correspondence to: Farshad Ghazalian, Department of physical education and sport sciences, Islamic Azad University, Science and Research Branch, Tehran, Iran Telephone Number: +9821-66402569 Email Address:
| | - Nader Shakeri
- Department of physical education and sport sciences, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
28
|
Bascour-Sandoval C, Salgado-Salgado S, Gómez-Milán E, Fernández-Gómez J, Michael GA, Gálvez-García G. Pain and Distraction According to Sensory Modalities: Current Findings and Future Directions. Pain Pract 2019; 19:686-702. [PMID: 31104345 DOI: 10.1111/papr.12799] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/12/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND This review discusses the findings in the literature on pain and distraction tasks according to their sensory modality. Distraction tasks have been shown to reduce (experimentally induced) acute pain and chronic pain. This can be influenced by nature and by the sensory modalities used in the distraction tasks. Yet the effect on reducing pain according to the sensory modality of the distraction task has received little attention. METHODS A bibliographic search was performed in different databases. The studies will be systematized according to the sensory modality in which the distraction task was applied. RESULTS The analyzed studies with auditory distractors showed a reduction of acute pain in adults. However, these are not effective at healthy children and in adults with chronic pain. Visual distractors showed promising results in acute pain in adults and children. Similarly, tactile and mixed distractors decreased acute pain in adults. CONCLUSION Distraction tasks by diverse sensory modalities have a positive effect on decreasing the perception of acute pain in adults. Future studies are necessary given the paucity of research on this topic, particularly with tactile distractors (there is only one study). Finally, the most rigorous methodology and the use of ecological contexts are encouraged in future research.
Collapse
Affiliation(s)
- Claudio Bascour-Sandoval
- Departamento de Medicina Interna, Universidad de La Frontera, Temuco, Chile.,Facultad de Ciencias de la Salud, Carrera de Kinesiología, Universidad Autónoma de Chile, Temuco, Chile
| | | | - Emilio Gómez-Milán
- Mind, Brain, and Behavior Research Center, University of Granada, Granada, Spain
| | | | - George A Michael
- Laboratoire d'Étude des Mécanismes Cognitif (EA 3082), Département de Sciences Cognitives, Psychologie Cognitive & Neuropsychologie, Institut de Psychologie, Université Lyon 2, Lyon, France
| | - Germán Gálvez-García
- Laboratoire d'Étude des Mécanismes Cognitif (EA 3082), Département de Sciences Cognitives, Psychologie Cognitive & Neuropsychologie, Institut de Psychologie, Université Lyon 2, Lyon, France.,Laboratorio de Neurociencia y Acción, Departamento de Psicología, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
29
|
Motor corticospinal excitability: a novel facet of pain modulation? Pain Rep 2019; 4:e725. [PMID: 31041424 PMCID: PMC6455687 DOI: 10.1097/pr9.0000000000000725] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 01/20/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022] Open
Abstract
Introduction Increase in excitability of the primary motor cortex (M1) is associated with pain inhibition by analgesics, which is, in turn, associated with the psychophysical antinociceptive pain modulation profile. However, the relationship between neurophysiological M1 excitability and psychophysical pain modulation has not yet been explored. Objectives We aim to study these relationships in healthy subjects. Methods Forty-one young healthy subjects (22 women) underwent a wide battery of psychophysical testing that included conditioned pain modulation (CPM) and pain temporal summation, and a transcranial magnetic stimulation neurophysiological assessment of the motor corticospinal excitability, including resting motor threshold, motor-evoked potentials (MEPs), and cortical silent period. Results Increased motor corticospinal excitability in 2 parameters was associated with more efficient CPM: (1) higher MEP amplitude (r = -0.574; P _Bonferroni = 0.02) and (2) longer MEP duration (r = -0.543; P _Bonferroni = 0.02). The latter also correlated with the lower temporal summation magnitude (r = -0.421; P = 0.007); however, on multiplicity adjustment, significance was lost. Conclusions Increased corticospinal excitability of the primary motor cortex is associated with more efficient inhibitory pain modulation as assessed by CPM, in healthy subjects. Motor-evoked potential amplitude and duration may be considered as an additional, objective and easy to measure parameter to allow for better individual assessment of pain modulation profile.
Collapse
|
30
|
Hinkle CE, Quiton RL. Higher Dispositional Optimism Predicts Lower Pain Reduction During Conditioned Pain Modulation. THE JOURNAL OF PAIN 2019; 20:161-170. [DOI: 10.1016/j.jpain.2018.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 01/19/2023]
|
31
|
Torres-Berrio A, Nava-Mesa MO. The opioid system in stress-induced memory disorders: From basic mechanisms to clinical implications in post-traumatic stress disorder and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:327-338. [PMID: 30118823 DOI: 10.1016/j.pnpbp.2018.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Cognitive and emotional impairment are a serious consequence of stress exposure and are core features of neurological and psychiatric conditions that involve memory disorders. Indeed, acute and chronic stress are high-risk factors for the onset of post-traumatic stress disorder (PTSD) and Alzheimer's disease (AD), two devastating brain disorders associated with memory dysfunction. Besides the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis, stress response also involves the activation of the opioid system in brain regions associated with stress regulation and memory processing. In this context, it is possible that stress-induced memory disorders may be attributed to alterations in the interaction between the neuroendocrine stress system and the opioid system. In this review, we: (1) describe the effects of acute and chronic stress on memory, and the modulatory role of the opioid system, (2) discuss the contribution of the opioid system to the pathophysiology of PTSD and AD, and (3) present evidence of current and potential therapies that target the opioid receptors to treat PTSD- and AD-associated symptoms.
Collapse
Affiliation(s)
| | - Mauricio O Nava-Mesa
- Neuroscience Research Group (NEUROS), School of Medicine, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
32
|
Ahmed S, Plazier M, Ost J, Stassijns G, Deleye S, Ceyssens S, Dupont P, Stroobants S, Staelens S, De Ridder D, Vanneste S. The effect of occipital nerve field stimulation on the descending pain pathway in patients with fibromyalgia: a water PET and EEG imaging study. BMC Neurol 2018; 18:191. [PMID: 30419855 PMCID: PMC6233518 DOI: 10.1186/s12883-018-1190-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/28/2018] [Indexed: 12/26/2022] Open
Abstract
Background Fibromyalgia is a chronic disorder characterized by widespread musculoskeletal pain accompanied by fatigue, sleep, memory, and mood problems. Recently, occipital nerve field stimulation (ONS) has been proposed as an effective potential treatment for fibromyalgia-related pain. The aim of this study is to unravel the neural mechanism behind occipital nerve stimulation’s ability to suppress pain in fibromyalgia patients. Materials and methods Seven patients implanted with subcutaneous electrodes in the C2 dermatoma were enrolled for a Positron Emission Tomography (PET) H215O activation study. These seven patients were selected from a cohort of 40 patients who were part of a double blind, placebo-controlled study followed by an open label follow up at six months. The H215O PET scans were taken during both the “ON” (active stimulation) and “OFF” (stimulating device turned off) conditions. Electroencephalogram (EEG) data were also recorded for the implanted fibromyalgia patients during both the “ON” and “OFF” conditions. Results Relative to the “OFF” condition, ONS stimulation resulted in activation in the dorsal lateral prefrontal cortex, comprising the medial pain pathway, the ventral medial prefrontal cortex, and the bilateral anterior cingulate cortex as well as parahippocampal area, the latter two of which comprise the descending pain pathway. Relative deactivation was observed in the left somatosensory cortex, constituting the lateral pain pathway as well as other sensory areas such as the visual and auditory cortex. The EEG results also showed increased activity in the descending pain pathway. The pregenual anterior cingulate cortex extending into the ventral medial prefrontal cortex displayed this increase in the theta, alpha1, alpha2, beta1, and beta2 frequency bands. Conclusion PET shows that ONS exerts its effect via activation of the descending pain inhibitory pathway and the lateral pain pathway in fibromyalgia, while EEG shows activation of those cortical areas that could be responsible for descending inhibition system recruitment. Trial Registration This study is registered with ClinicalTrials.gov, number NCT00917176 (June 10, 2009).
Collapse
Affiliation(s)
- Shaheen Ahmed
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Mark Plazier
- Department of Neurosurgery, University Hospital Antwerp, Antwerp, Belgium
| | | | - Gaetane Stassijns
- Department of physical health hand rehabilitation, University Hospital Antwerp, Edegem, Belgium
| | - Steven Deleye
- Department of Cognitive Neurology, UZ Leuven, Leuven, Belgium
| | - Sarah Ceyssens
- Department of Cognitive Neurology, UZ Leuven, Leuven, Belgium
| | - Patrick Dupont
- Department of Cognitive Neurology, UZ Leuven, Leuven, Belgium
| | - Sigrid Stroobants
- Department of nuclear medicine, University Hospital Antwerp, Edegem, Belgium
| | - Steven Staelens
- Molecular Imaging Centre, University of Antwerp, Edegem, Belgium
| | - Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA.
| |
Collapse
|
33
|
Tonetti Ciaramicoli M, Kabadayan F, Bernardi MM, Barbosa Suffredini I, Coury Saraceni CH. Diazepam as attenuator of pain induced by dentin hypersensitivity in rats exposed to stress. Arch Oral Biol 2018; 97:165-169. [PMID: 30391792 DOI: 10.1016/j.archoralbio.2018.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 11/25/2022]
Abstract
The pain in dentin hypersensitivity (DH) has distinct sensory and emotional origins, with variations that occur in different intensities for each individual. The aim of this study is to evaluate the effects of diazepam in the attenuation of the pain induced by DH. DESIGN Fifty male Wistar rats were divided into five groups: control group received water ad libitum (C); stress group received water ad libitum plus stress (S); DH induced by erosion challenge with isotonic solution ad libitum (G); DH and stress (GS); and DH, stress and diazepam (GSD) groups. Animals of the GS group were exposed to the New York Subway Stress Model. Animals treated with diazepam (GSD group) received 1 mg/kg every 3 days, from the 15th day of treatment until the end of the stress-inducing period. The body weights of rats were weekly registered. After 30 days, all groups were submitted to the DH test, which was assessed using cold water stimuli, and were graded 0, 0.5, 1, 2, or 3. Dental elements were evaluated using scanning electron microscopy (SEM). RESULTS 1) Groups G and GS presented the highest DH scores, which confirms that stress increased pain response; 2) GSD group had significantly reduced DH scores compared to G and GS groups; 3) SEM of dental elements showed exposed dentin tubules in G, GS, and GSD groups, as expected. CONCLUSIONS diazepam attenuated pain induced by dentin hypersensitivity in rats exposed to stress.
Collapse
Affiliation(s)
- Márcia Tonetti Ciaramicoli
- Graduate Program in Dentistry, Paulista University - UNIP, Av. Dr. Bacelar, 1212, Vila Clementino, 04026-002, São Paulo, SP, Brazil
| | - Fernanda Kabadayan
- Graduate Program in Dentistry, Paulista University - UNIP, Av. Dr. Bacelar, 1212, Vila Clementino, 04026-002, São Paulo, SP, Brazil
| | - Maria Martha Bernardi
- Graduate Program in Dentistry, Paulista University - UNIP, Av. Dr. Bacelar, 1212, Vila Clementino, 04026-002, São Paulo, SP, Brazil
| | - Ivana Barbosa Suffredini
- Graduate Program in Dentistry, Paulista University - UNIP, Av. Dr. Bacelar, 1212, Vila Clementino, 04026-002, São Paulo, SP, Brazil; Center for Research in Biodiversity, Paulista University - UNIP, Av. Paulista, 900, 1st floor, Bela Vista, 01310-100, São Paulo, Brazil
| | - Cintia Helena Coury Saraceni
- Graduate Program in Dentistry, Paulista University - UNIP, Av. Dr. Bacelar, 1212, Vila Clementino, 04026-002, São Paulo, SP, Brazil.
| |
Collapse
|
34
|
Abstract
Substance P (SP) is a highly conserved member of the tachykinin peptide family that is widely expressed throughout the animal kingdom. The numerous members of the tachykinin peptide family are involved in a multitude of neuronal signaling pathways, mediating sensations and emotional responses (Steinhoff et al. in Physiol Rev 94:265–301, 2014). In contrast to receptors for classical transmitters, such as glutamate (Parsons et al. in Handb Exp Pharmacol 249–303, 2005), only a minority of neurons in certain brain areas express neurokinin receptors (NKRs) (Mantyh in J Clin Psychiatry 63:6–10, 2002). SP is also expressed by a variety of non-neuronal cell types such as microglia, as well as immune cells (Mashaghi et al. in Cell Mol Life Sci 73:4249–4264, 2016). SP is an 11-amino acid neuropeptide that preferentially activates the neurokinin-1 receptor (NK1R). It transmits nociceptive signals via primary afferent fibers to spinal and brainstem second-order neurons (Cao et al. in Nature 392:390–394, 1998). Compounds that inhibit SP’s action are being investigated as potential drugs to relieve pain. More recently, SP and NKR have gained attention for their role in complex psychiatric processes. It is a key goal in the field of pain research to understand mechanisms involved in the transition between acute pain and chronic pain. The influence of emotional and cognitive inputs and feedbacks from different brain areas makes pain not only a perception but an experience (Zieglgänsberger et al. in CNS Spectr 10:298–308, 2005; Trenkwaldner et al. Sleep Med 31:78–85, 2017). This review focuses on functional neuronal plasticity in spinal dorsal horn neurons as a major relay for nociceptive information.
Collapse
|
35
|
Timmers I, Kaas AL, Quaedflieg CWEM, Biggs EE, Smeets T, de Jong JR. Fear of pain and cortisol reactivity predict the strength of stress-induced hypoalgesia. Eur J Pain 2018; 22:1291-1303. [PMID: 29577522 PMCID: PMC6055649 DOI: 10.1002/ejp.1217] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
Background Acute stress can have an effect on pain sensitivity, yet the direction of the effect – whether it is hypoalgesic or hyperalgesic – is mixed across studies. Moreover, which part of the stress response influences pain sensitivity is still unclear. In the current experimental study, we aim to examine the effect of acute stress on heat pain thresholds and pain tolerance levels in healthy participants, while taking into account individual differences in stress responses. Methods Forty‐two healthy participants were randomly assigned to either a well‐validated stress paradigm: the Maastricht Acute Stress Task (MAST; combining physical and psychological stressors) or to a nonstressful version of the task. Heat pain thresholds and tolerance levels were assessed at three times: prior to the MAST, immediately after the MAST during the presumed sympatho‐adrenal medullary (SAM) response, and 15 min after MAST to cover the presumed hypothalamus–pituitary–adrenal (HPA) axis response. Stress responses were assessed both subjectively and physiologically. Results We observed that the acute stress induction led to increased heat pain thresholds, an effect that was present only in participants showing a cortisol response following stress induction and only in the presumed HPA axis time window. The strength of this hypoalgesic effect was further predicted by the change in cortisol and by fear of pain levels. Conclusions Our findings indicate that the HPA axis – and not the autonomic – stress response specifically underlies this stress‐induced hypoalgesic effect, having important implications for clinical states with HPA axis dysfunctions. Significance This experimental study shows that an acute stress induction – that combines physical and psychological stressors – increases heat pain thresholds, but not tolerance in healthy participants. Furthermore, the magnitude of this stress‐induced hypoalgesic effect is predicted by cortisol reactivity and fear of pain, revealing specific involvement of the HPA axis stress system and interactions with pain‐related psychosocial aspects.
Collapse
Affiliation(s)
- I Timmers
- Department of Rehabilitation Medicine, Maastricht University, The Netherlands.,Department of Cognitive Neuroscience, Maastricht University, The Netherlands.,Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, United States
| | - A L Kaas
- Department of Cognitive Neuroscience, Maastricht University, The Netherlands
| | - C W E M Quaedflieg
- Department of Clinical Psychological Science, Maastricht University, The Netherlands
| | - E E Biggs
- Department of Cognitive Neuroscience, Maastricht University, The Netherlands.,Department of Clinical Psychological Science, Maastricht University, The Netherlands.,Research Group Health Psychology, University of Leuven, Belgium
| | - T Smeets
- Department of Clinical Psychological Science, Maastricht University, The Netherlands
| | - J R de Jong
- Department of Rehabilitation Medicine, Maastricht University, The Netherlands.,Department of Rehabilitation Medicine, Maastricht University Medical Center, The Netherlands
| |
Collapse
|
36
|
Geva N, Defrin R. Opposite Effects of Stress on Pain Modulation Depend on the Magnitude of Individual Stress Response. THE JOURNAL OF PAIN 2018; 19:360-371. [DOI: 10.1016/j.jpain.2017.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/17/2017] [Accepted: 11/14/2017] [Indexed: 12/29/2022]
|
37
|
van Oort J, Tendolkar I, Hermans EJ, Mulders PC, Beckmann CF, Schene AH, Fernández G, van Eijndhoven PF. How the brain connects in response to acute stress: A review at the human brain systems level. Neurosci Biobehav Rev 2017; 83:281-297. [PMID: 29074385 DOI: 10.1016/j.neubiorev.2017.10.015] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 12/26/2022]
Abstract
The brain's response to stress is a matter of extensive neurocognitive research in an attempt to unravel the mechanistic underpinnings of neural adaptation. In line with the broadly defined concept of acute stress, a wide variety of induction procedures are used to mimic stress experimentally. We set out to review commonalities and diversities of the stress-related functional activity and connectivity changes of functional brain networks in healthy adults across procedures. The acute stress response is consistently associated with both increased activity and connectivity in the salience network (SN) and surprisingly also with increased activity in the default mode network (DMN), while most studies show no changes in the central executive network. These results confirm earlier findings of an essential, coordinating role of the SN in the acute stress response and indicate a dynamic role of the DMN whose function is less clear. Moreover, paradigm specific brain responses have to be taken into account when investigating the role and the within and between network connectivity of these three networks.
Collapse
Affiliation(s)
- J van Oort
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - I Tendolkar
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - E J Hermans
- Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - P C Mulders
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - C F Beckmann
- Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - A H Schene
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - G Fernández
- Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - P F van Eijndhoven
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
38
|
Lopez-Luna J, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU. Impact of stress, fear and anxiety on the nociceptive responses of larval zebrafish. PLoS One 2017; 12:e0181010. [PMID: 28767661 PMCID: PMC5540279 DOI: 10.1371/journal.pone.0181010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/20/2017] [Indexed: 11/19/2022] Open
Abstract
Both adult and larval zebrafish have been demonstrated to show behavioural responses to noxious stimulation but also to potentially stress- and fear or anxiety- eliciting situations. The pain or nociceptive response can be altered and modulated by these situations in adult fish through a mechanism called stress-induced analgesia. However, this phenomenon has not been described in larval fish yet. Therefore, this study explores the behavioural changes in larval zebrafish after noxious stimulation and exposure to challenges that can trigger a stress, fear or anxiety reaction. Five-day post fertilization zebrafish were exposed to either a stressor (air emersion), a predatory fear cue (alarm substance) or an anxiogenic (caffeine) alone or prior to immersion in acetic acid 0.1%. Pre- and post-stimulation behaviour (swimming velocity and time spent active) was recorded using a novel tracking software in 25 fish at once. Results show that larvae reduced both velocity and activity after exposure to the air emersion and alarm substance challenges and that these changes were attenuated using etomidate and diazepam, respectively. Exposure to acetic acid decreased velocity and activity as well, whereas air emersion and alarm substance inhibited these responses, showing no differences between pre- and post-stimulation. Therefore, we hypothesize that an antinociceptive mechanism, activated by stress and/or fear, occur in 5dpf zebrafish, which could have prevented the larvae to display the characteristic responses to pain.
Collapse
Affiliation(s)
- Javier Lopez-Luna
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool. Liverpool, United Kingdom
- * E-mail:
| | - Qussay Al-Jubouri
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | - Waleed Al-Nuaimy
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | - Lynne U. Sneddon
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool. Liverpool, United Kingdom
| |
Collapse
|
39
|
Gaab J, Jiménez J, Voneschen L, Oschwald D, Meyer AH, Nater UM, Krummenacher P. Psychosocial Stress-Induced Analgesia: An Examination of Effects on Heat Pain Threshold and Tolerance and of Neuroendocrine Mediation. Neuropsychobiology 2017; 74:87-95. [PMID: 28190009 DOI: 10.1159/000454986] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/04/2016] [Indexed: 11/19/2022]
Abstract
Stress-induced analgesia (SIA) is an adaptive response of reduced nociception following demanding acute internal and external stressors. Although a psychobiological understanding of this phenomenon is of importance for stress-related psychiatric and pain conditions, comparably little is known about the psychobiological mechanisms of SIA in humans. The aim of this study was to investigate the effects of acute psychosocial stress on heat pain perception and its possible neuroendocrine mediation by salivary cortisol levels and α-amylase activity in healthy men. Employing an intra-individual assessment of heat pain parameters, acute psychosocial stress did not influence heat pain threshold but significantly, albeit slightly, increased heat pain tolerance. Using linear mixed-model analysis, this effect of psychosocial stress on heat pain tolerance was not mediated by increases of salivary cortisol and state anxiety levels or by the activity of α-amylase. These results show that while psychosocial stress is selectively analgesic for heat pain tolerance, this observed effect is not mediated by stress-induced increases of salivary cortisol and α-amylase activity, as proxies of both the hypothalamus-pituitary-adrenal axis and the autonomic nervous system activation.
Collapse
Affiliation(s)
- Jens Gaab
- Division of Clinical Psychology and Psychotherapy, Department of Psychology, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
40
|
De Ridder D, Vanneste S. Occipital Nerve Field Transcranial Direct Current Stimulation Normalizes Imbalance Between Pain Detecting and Pain Inhibitory Pathways in Fibromyalgia. Neurotherapeutics 2017; 14:484-501. [PMID: 28004273 PMCID: PMC5398977 DOI: 10.1007/s13311-016-0493-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Occipital nerve field (OCF) stimulation with subcutaneously implanted electrodes is used to treat headaches, more generalized pain, and even failed back surgery syndrome via unknown mechanisms. Transcranial direct current stimulation (tDCS) can predict the efficacy of implanted electrodes. The purpose of this study is to unravel the neural mechanisms involved in global pain suppression, mediated by occipital nerve field stimulation, within the realm of fibromyalgia. Nineteen patients with fibromyalgia underwent a placebo-controlled OCF tDCS. Electroencephalograms were recorded at baseline after active and sham stimulation. In comparison with healthy controls, patients with fibromyalgia demonstrate increased dorsal anterior cingulate cortex, increased premotor/dorsolateral prefrontal cortex activity, and an imbalance between pain-detecting dorsal anterior cingulate cortex and pain-suppressing pregenual anterior cingulate cortex activity, which is normalized after active tDCS but not sham stimulation associated with increased pregenual anterior cingulate cortex activation. The imbalance improvement between the pregenual anterior cingulate cortex and the dorsal anterior cingulate cortex is related to clinical changes. An imbalance assumes these areas communicate and, indeed, abnormal functional connectivity between the dorsal anterior cingulate cortex and pregenual anterior cingulate cortex is noted to be caused by a dysfunctional effective connectivity from the pregenual anterior cingulate cortex to the dorsal anterior cingulate cortex, which improves and normalizes after real tDCS but not sham tDCS. In conclusion, OCF tDCS exerts its effect via activation of the descending pain inhibitory pathway and de-activation of the salience network, both of which are abnormal in fibromyalgia.
Collapse
Affiliation(s)
- Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- BRAI2N, Sint Augustinus Hospital Antwerp, Antwerp, Belgium
| | - Sven Vanneste
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
- BRAI2N, Sint Augustinus Hospital Antwerp, Antwerp, Belgium.
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA.
| |
Collapse
|
41
|
|
42
|
Roberts MH, Klatzkin RR, Mechlin B. Social Support Attenuates Physiological Stress Responses and Experimental Pain Sensitivity to Cold Pressor Pain. Ann Behav Med 2016; 49:557-69. [PMID: 25623896 DOI: 10.1007/s12160-015-9686-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Social support improves health and has been shown to attenuate stress and pain. The precise characteristics of social support responsible for these effects, however, remain elusive. PURPOSE The purpose of this study is to examine the relative efficacy of social support versus a neutral non-verbal social presence to attenuate stress and pain. METHODS Seventy-six participants provided pain ratings and task assessments during a cold pressor task (CPT) in one of three conditions: verbal social support, neutral non-support, or alone. Reactivity to the CPT was assessed via cardiovascular measures, cortisol, and subjective ratings. RESULTS Participants receiving social support showed attenuated blood pressure, heart rate, and cortisol reactivity, as well as reduced pain ratings, task difficulty, tension, and effort compared to neutral non-support and alone conditions. CONCLUSIONS Social support, not the mere presence of another individual, attenuated stress and pain during a CPT. Given the negative health consequences of stress and pain, clinical studies incorporating social support into medical procedures and treatments are warranted.
Collapse
Affiliation(s)
- Matthew H Roberts
- Department of Psychology, Rhodes College, 2000 North Parkway, Memphis, TN, 38112, USA
| | | | | |
Collapse
|
43
|
Orexin-A and Endocannabinoid Activation of the Descending Antinociceptive Pathway Underlies Altered Pain Perception in Leptin Signaling Deficiency. Neuropsychopharmacology 2016; 41:508-20. [PMID: 26081302 PMCID: PMC5130126 DOI: 10.1038/npp.2015.173] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022]
Abstract
Pain perception can become altered in individuals with eating disorders and obesity for reasons that have not been fully elucidated. We show that leptin deficiency in ob/ob mice, or leptin insensitivity in the arcuate nucleus of the hypothalamus in mice with high-fat diet (HFD)-induced obesity, are accompanied by elevated orexin-A (OX-A) levels and orexin receptor-1 (OX1-R)-dependent elevation of the levels of the endocannabinoid, 2-arachidonoylglycerol (2-AG), in the ventrolateral periaqueductal gray (vlPAG). In ob/ob mice, these alterations result in the following: (i) increased excitability of OX1-R-expressing vlPAG output neurons and subsequent increased OFF and decreased ON cell activity in the rostral ventromedial medulla, as assessed by patch clamp and in vivo electrophysiology; and (ii) analgesia, in both healthy and neuropathic mice. In HFD mice, instead, analgesia is only unmasked following leptin receptor antagonism. We propose that OX-A/endocannabinoid cross talk in the descending antinociceptive pathway might partly underlie increased pain thresholds in conditions associated with impaired leptin signaling.
Collapse
|
44
|
De Ridder D, Vanneste S. Burst and Tonic Spinal Cord Stimulation: Different and Common Brain Mechanisms. Neuromodulation 2015; 19:47-59. [DOI: 10.1111/ner.12368] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/05/2015] [Accepted: 09/24/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery; Dunedin School of Medicine; University of Otago; Dunedin New Zealand
| | - Sven Vanneste
- Lab for Clinical & Integrative Neuroscience; School of Behavioral and Brain Sciences; The University of Texas at Dallas; Dallas TX USA
| |
Collapse
|
45
|
Lautenschläger G, Habig K, Best C, Kaps M, Elam M, Birklein F, Krämer HH. The impact of baroreflex function on endogenous pain control: a microneurography study. Eur J Neurosci 2015; 42:2996-3003. [DOI: 10.1111/ejn.13096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/06/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Gothje Lautenschläger
- Department of Neurology; Justus-Liebig-University; Klinikstraße 33 Giessen 35392 Germany
| | - Kathrin Habig
- Department of Neurology; Justus-Liebig-University; Klinikstraße 33 Giessen 35392 Germany
| | - Christoph Best
- Department of Neurology; Philipps University; Marburg Germany
| | - Manfred Kaps
- Department of Neurology; Justus-Liebig-University; Klinikstraße 33 Giessen 35392 Germany
| | - Mikael Elam
- Department of Clinical Neurophysiology; The Sahlgrenska Academy of Gothenburg University; Gothenburg Sweden
| | - Frank Birklein
- Department of Neurology; University Medical Center; Johannes Gutenberg-University; Mainz Germany
| | - Heidrun H. Krämer
- Department of Neurology; Justus-Liebig-University; Klinikstraße 33 Giessen 35392 Germany
| |
Collapse
|
46
|
The critical role of spinal 5-HT7 receptors in opioid and non-opioid type stress-induced analgesia. Eur J Pharmacol 2015; 762:402-10. [PMID: 25917322 DOI: 10.1016/j.ejphar.2015.04.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/07/2015] [Accepted: 04/12/2015] [Indexed: 12/15/2022]
Abstract
The opioid and non-opioid types of stress-induced analgesia have been well defined. One of the non-opioid type involve the endocannabinoid system. We previously reported that the spinal serotonin 7 receptor (5-HT7) blockers inhibit both morphine and cannabinoid-induced analgesia, thus we hypothesized that descending serotonergic pathways-spinal 5-HT7 receptor loop might contribute to stress-induced analgesia. Stress-induced analgesia was induced with warm (32°C) or cold (20°C) water swim stress in male Balb-C mice. The effects of intrathecal injection of a selective 5-HT7 receptor antagonist, SB 269970, of the denervation of serotonergic neurons by intrathecal administration of 5,7-dihydroxytryptamine (5,7-DHT) and of lesions of the dorsolateral funiculus on opioid and non-opioid type stress-induced analgesia were evaluated with the tail-flick and hot plate tests. The expression of 5-HT7 receptors mRNA in the dorsal lumbar region of spinal cord were analyzed by RT-PCR following spinal serotonin depletion or dorsolateral funiculus lesion. The effects of the selective 5-HT7 receptor agonists LP 44 and AS 19 were tested on nociception. Intrathecal SB 269970 blocked both opioid and non-opioid type stress-induced analgesia. Dorsolateral funiculus lesion or denervation of the spinal serotonergic neurons resulted in a marked decrease in 5-HT7 receptor expression in the dorsal lumbar spinal cord, accompanied by inhibition of opioid and non-opioid type stress-induced analgesia. However, the systemic or intrathecal LP 44 and AS 19 alone did not produce analgesia in unstressed mice. These results indicate that descending serotonergic pathways and the spinal 5-HT7 receptor loop play a crucial role in mediating both opioid and non-opioid type stress-induced analgesia.
Collapse
|
47
|
Fasick V, Spengler RN, Samankan S, Nader ND, Ignatowski TA. The hippocampus and TNF: Common links between chronic pain and depression. Neurosci Biobehav Rev 2015; 53:139-59. [PMID: 25857253 DOI: 10.1016/j.neubiorev.2015.03.014] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 02/02/2015] [Accepted: 03/28/2015] [Indexed: 02/07/2023]
Abstract
Major depression and chronic pain are significant health problems that seriously impact the quality of life of affected individuals. These diseases that individually are difficult to treat often co-exist, thereby compounding the patient's disability and impairment as well as the challenge of successful treatment. The development of efficacious treatments for these comorbid disorders requires a more comprehensive understanding of their linked associations through common neuromodulators, such as tumor necrosis factor-α (TNFα), and various neurotransmitters, as well as common neuroanatomical pathways and structures, including the hippocampal brain region. This review discusses the interaction between depression and chronic pain, emphasizing the fundamental role of the hippocampus in the development and maintenance of both disorders. The focus of this review addresses the hypothesis that hippocampal expressed TNFα serves as a therapeutic target for management of chronic pain and major depressive disorder (MDD).
Collapse
Affiliation(s)
- Victoria Fasick
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | | | - Shabnam Samankan
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | - Nader D Nader
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States; Department of Anesthesiology, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | - Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States; NanoAxis, LLC, Clarence, NY 14031, United States; Program for Neuroscience, School of Medicine and Biomedical Science, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States.
| |
Collapse
|
48
|
Hoheisel U, Vogt MA, Palme R, Gass P, Mense S. Immobilization stress sensitizes rat dorsal horn neurons having input from the low back. Eur J Pain 2015; 19:861-70. [PMID: 25690929 DOI: 10.1002/ejp.682] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Stress is known to promote several forms of muscle pain including non-specific low back pain. However, the question if stress alone activates nociceptive central neurons has not been studied systematically. Here, we investigated the influence of repeated immobilization stress on dorsal horn neurons and behaviour in the rat. METHODS The stress consisted of immobilization in a narrow tube for 1 h on 12 days. Single dorsal horn neurons were recorded with microelectrodes introduced into the spinal segment L2. In this segment, about 14% of the neurons responded to mechanical stimulation of the subcutaneous soft tissues of the low back in naïve rats. The neurons often behaved like wide dynamic range cells in that they had a low mechanical threshold and showed graded responses to noxious stimuli. RESULTS The stress-induced changes in neuronal response behaviour were (1) appearance of new receptive fields in the deep tissues of the hindlimb, (2) increased input from deep soft tissues, but unchanged input from the skin and (3) significant increase in resting activity. Surprisingly, the pressure-pain threshold of the low back remained unchanged, although dorsal horn neurons were sensitized. In the open field test, the rats showed signs of increased anxiety. CONCLUSIONS This study shows that stress alone is sufficient to sensitize dorsal horn neurons. The data may explain the enhanced pain low back patients report when they are under stress. The increased resting discharge may lead to spontaneous pain.
Collapse
Affiliation(s)
- U Hoheisel
- Centre for Biomedicine and Medical Technology Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Bogdanov VB, Viganò A, Noirhomme Q, Bogdanova OV, Guy N, Laureys S, Renshaw PF, Dallel R, Phillips C, Schoenen J. Cerebral responses and role of the prefrontal cortex in conditioned pain modulation: an fMRI study in healthy subjects. Behav Brain Res 2014; 281:187-98. [PMID: 25461267 DOI: 10.1016/j.bbr.2014.11.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/28/2014] [Accepted: 11/18/2014] [Indexed: 12/16/2022]
Abstract
The mechanisms underlying conditioned pain modulation (CPM) are multifaceted. We searched for a link between individual differences in prefrontal cortex activity during multi-trial heterotopic noxious cold conditioning and modulation of the cerebral response to phasic heat pain. In 24 healthy female subjects, we conditioned laser heat stimuli to the left hand by applying alternatively ice-cold or lukewarm compresses to the right foot. We compared pain ratings with cerebral fMRI BOLD responses. We also analyzed the relation between CPM and BOLD changes produced by the heterotopic cold conditioning itself, as well as the impact of anxiety and habituation of cold-pain ratings. Specific cerebral activation was identified in precuneus and left posterior insula/SII, respectively, during early and sustained phases of cold application. During cold conditioning, laser pain decreased (n=7), increased (n=10) or stayed unchanged (n=7). At the individual level, the psychophysical effect was directly proportional to the cold-induced modulation of the laser-induced BOLD response in left posterior insula/SII. The latter correlated with the BOLD response recorded 80s earlier during the initial 10-s phase of cold application in anterior cingulate, orbitofrontal and lateral prefrontal cortices. High anxiety and habituation of cold pain were associated with greater laser heat-induced pain during heterotopic cold stimulation. The habituation was also linked to the early cold-induced orbitofrontal responses. We conclude that individual differences in conditioned pain modulation are related to different levels of prefrontal cortical activation by the early part of the conditioning stimulus, possibly due to different levels in trait anxiety.
Collapse
Affiliation(s)
- Volodymyr B Bogdanov
- INRA, Nutrition et Neurobiologie Intégrée and Bordeaux Segalen University, UMR 1286, 146 rue Léo-Saignat, Bordeaux Cedex, 33076, France; Headache Research Unit, Department of Neurology, CHR Citadelle, University of Liège, Liège, Belgium.
| | - Alessandro Viganò
- Headache Research Unit, Department of Neurology, CHR Citadelle, University of Liège, Liège, Belgium; SAMILAL- Dept. Anatomy, Histology, Forensic Medicine, Orthopaedics - La Sapienza, University of Rome; Dept. of Neurology and Psychiatry - La Sapienza, University of Rome
| | - Quentin Noirhomme
- Cyclotron Research Centre, University of Liège, Liège, Belgium; Coma Science Group, Department of Neurology, University and University Hospital of Liège, Liège, Belgium
| | | | - Nathalie Guy
- Clermont Université, Université d'Auvergne, BP 10448, F-63000 Clermont-Ferrand; Inserm, UMR1107, Trigeminal pain and Migraine F-63000 Clermont-Ferrand; CHU, Clermont-Ferrand
| | - Steven Laureys
- Cyclotron Research Centre, University of Liège, Liège, Belgium; Coma Science Group, Department of Neurology, University and University Hospital of Liège, Liège, Belgium
| | | | - Radhouane Dallel
- Clermont Université, Université d'Auvergne, BP 10448, F-63000 Clermont-Ferrand; Inserm, UMR1107, Trigeminal pain and Migraine F-63000 Clermont-Ferrand; CHU, Clermont-Ferrand
| | - Christophe Phillips
- Cyclotron Research Centre, University of Liège, Liège, Belgium; Department of electrical engineering and computer science, University of Liège, Liège, Belgium
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology, CHR Citadelle, University of Liège, Liège, Belgium
| |
Collapse
|