1
|
Untiet V. Astrocytic chloride regulates brain function in health and disease. Cell Calcium 2024; 118:102855. [PMID: 38364706 DOI: 10.1016/j.ceca.2024.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Chloride ions (Cl-) play a pivotal role in synaptic inhibition in the central nervous system, primarily mediated through ionotropic mechanisms. A recent breakthrough emphathizes the significant influence of astrocytic intracellular chloride concentration ([Cl-]i) regulation, a field still in its early stages of exploration. Typically, the [Cl-]i in most animal cells is maintained at lower levels than the extracellular chloride [Cl-]o, a critical balance to prevent cell swelling due to osmotic pressure. Various Cl- transporters are expressed differently across cell types, fine-tuning the [Cl-]i, while Cl- gradients are utilised by several families of Cl- channels. Although the passive distribution of ions within cells is governed by basic biophysical principles, astrocytes actively expend energy to sustain [Cl-]i at much higher levels than those achieved passively, and much higher than neuronal [Cl-]i. Beyond the role in volume regulation, astrocytic [Cl-]i is dynamically linked to brain states and influences neuronal signalling in actively behaving animals. As a vital component of brain function, astrocytic [Cl-]i also plays a role in the development of disorders where inhibitory transmission is disrupted. This review synthesises the latest insights into astrocytic [Cl-]i, elucidating its role in modulating brain function and its implications in various pathophysiological conditions.
Collapse
Affiliation(s)
- Verena Untiet
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
2
|
Moreau N, Peirs C, Dallel R, Boucher Y. [Specificities of orofacial neuropathic pain]. Med Sci (Paris) 2024; 40:64-71. [PMID: 38299905 DOI: 10.1051/medsci/2023197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Head pain and notably orofacial pain differs from spinal pain on pathophysiological, clinical, therapeutic and prognostic levels. Its high prevalence, important impact on quality of life and significant socio-economical burden justify specific study of such type of pain. Among them, neuropathic orofacial pain resulting from disease or trauma of the trigeminal nervous system is among the most difficult types of pain to diagnose and to treat. Deciphering of underlying peripheral and central mechanisms has allowed numerous conceptual, clinical and therapeutic advances, notably the role of neural and non neural cell types, such as glia, immunocytes, vascular endothelial cells or the role of trigeminal sensory complex neural circuitry reconfiguration in the development of post-traumatic trigeminal neuropathic pain. Cellular interactions within the trigeminal ganglion, allowing a better understanding of several painful dental, ocular or cephalalgic comorbidities, are also described.
Collapse
Affiliation(s)
- Nathan Moreau
- Laboratoire de neurobiologie orofaciale, EA 7543, Université Paris Cité, Paris, France - Hôpital Bretonneau, Service de médecine bucco-dentaire, AP-HP, Paris, France
| | - Cédric Peirs
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Radhouane Dallel
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Yves Boucher
- Laboratoire de neurobiologie orofaciale, EA 7543, Université Paris Cité, Paris, France - Hôpital Pitié-Salpêtrière, Service de médecine bucco-dentaire, AP-HP, Paris, France
| |
Collapse
|
3
|
Ko HG, Chun H, Han S, Kaang BK. Role of spinal astrocytes through the perisynaptic astrocytic process in pathological pain. Mol Brain 2023; 16:81. [PMID: 38093330 PMCID: PMC10717263 DOI: 10.1186/s13041-023-01069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Pathological pain is caused by abnormal activity in the neural circuit that transmits nociceptive stimuli. Beyond homeostatic functions, astrocytes actively participate in regulating synaptic transmission as members of tripartite synapses. The perisynaptic astrocytic process (PAP) is the key structure that allows astrocytes to play these roles and not only physically supports synapse formation through cell adhesion molecules (CAMs) but also regulates the efficiency of chemical signaling. Accumulating evidence has revealed that spinal astrocytes are involved in pathological pain by modulating the efficacy of neurotransmitters such as glutamate and GABA through transporters located in the PAP and by directly regulating synaptic transmission through various gliotransmitters. Although various CAMs contribute to pathological pain, insufficient evidence is available as to whether astrocytic CAMs also have this role. Therefore, more in-depth research is needed on how pathological pain is induced and maintained by astrocytes, especially in the PAP surrounding the synapse, and this will subsequently increase our understanding and treatment of pathological pain.
Collapse
Affiliation(s)
- Hyoung-Gon Ko
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol- daero, Daegu, 41940, South Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Heejung Chun
- College of Pharmacy, Yonsei-SL Bigen Institute (YSLI), Yonsei University, Incheon, South Korea
| | - Seunghyo Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol- daero, Daegu, 41940, South Korea
| | - Bong-Kiun Kaang
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science (IBS), Daejeon, 34141, South Korea.
| |
Collapse
|
4
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Krishnan KS, Billups B. ASC Transporters Mediate D-Serine Transport into Astrocytes Adjacent to Synapses in the Mouse Brain. Biomolecules 2023; 13:biom13050819. [PMID: 37238689 DOI: 10.3390/biom13050819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
D-serine is an important signalling molecule, which activates N-methyl D-aspartate receptors (NMDARs) in conjunction with its fellow co-agonist, the neurotransmitter glutamate. Despite its involvement in plasticity and memory related to excitatory synapses, its cellular source and sink remain a question. We hypothesise that astrocytes, a type of glial cell that surrounds synapses, are likely candidates to control the extracellular concentration of D-Serine by removing it from the synaptic space. Using in situ patch clamp recordings and pharmacological manipulation of astrocytes in the CA1 region of the mouse hippocampal brain slices, we investigated the transport of D-serine across the plasma membrane. We observed the D-serine-induced transport-associated currents upon puff-application of 10 mM D-serine on astrocytes. Further, O-benzyl-L-serine and trans-4-hydroxy-proline, known substrate inhibitors of the alanine serine cysteine transporters (ASCT), reduced D-serine uptake. These results indicate that ASCT is a central mediator of astrocytic D-serine transport and plays a role in regulating its synaptic concentration by sequestration into astrocytes. Similar results were observed in astrocytes of the somatosensory cortex and Bergmann glia in the cerebellum, indicative of a general mechanism expressed across a range of brain areas. This removal of synaptic D-serine and its subsequent metabolic degradation are expected to reduce its extracellular availability, influencing NMDAR activation and NMDAR-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Karthik Subramanian Krishnan
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT 2601, Australia
| | - Brian Billups
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Breitinger U, Breitinger HG. Excitatory and inhibitory neuronal signaling in inflammatory and diabetic neuropathic pain. Mol Med 2023; 29:53. [PMID: 37069517 PMCID: PMC10111846 DOI: 10.1186/s10020-023-00647-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
Pain, although unpleasant, is an essential warning mechanism against injury and damage of the organism. An intricate network of specialised sensors and transmission systems contributes to reception, transmission and central sensitization of pain. Here, we briefly introduce some of the main aspects of pain signal transmission, including nociceptors and nociceptive signals, mechanisms of inflammatory and neuropathic pain, and the situation of diabetes-associated neuropathic pain. The role of glia-astrocytes, microglia, satellite glia cells-and their specific channels, transporters and signaling pathways is described. A focus is on the contribution of inhibitory synaptic signaling to nociception and a possible role of glycine receptors in glucose-mediated analgesia and treatment-induced diabetic neuropathy. Inhibitory receptors such as GABAA- and glycine receptors are important contributors to nociceptive signaling; their contribution to altered pain sensation in diabetes may be of clinical relevance, and they could be promising therapeutic targets towards the development of novel analgesics.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, 11835, Egypt
| | | |
Collapse
|
7
|
Liu YJ, Li YL, Fang ZH, Liao HL, Zhang YY, Lin J, Liu F, Shen JF. NMDARs mediate peripheral and central sensitization contributing to chronic orofacial pain. Front Cell Neurosci 2022; 16:999509. [PMID: 36238833 PMCID: PMC9553029 DOI: 10.3389/fncel.2022.999509] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Peripheral and central sensitizations of the trigeminal nervous system are the main mechanisms to promote the development and maintenance of chronic orofacial pain characterized by allodynia, hyperalgesia, and ectopic pain after trigeminal nerve injury or inflammation. Although the pathomechanisms of chronic orofacial pain are complex and not well known, sufficient clinical and preclinical evidence supports the contribution of the N-methyl-D-aspartate receptors (NMDARs, a subclass of ionotropic glutamate receptors) to the trigeminal nociceptive signal processing pathway under various pathological conditions. NMDARs not only have been implicated as a potential mediator of pain-related neuroplasticity in the peripheral nervous system (PNS) but also mediate excitatory synaptic transmission and synaptic plasticity in the central nervous system (CNS). In this review, we focus on the pivotal roles and mechanisms of NMDARs in the trigeminal nervous system under orofacial neuropathic and inflammatory pain. In particular, we summarize the types, components, and distribution of NMDARs in the trigeminal nervous system. Besides, we discuss the regulatory roles of neuron-nonneuronal cell/neuron-neuron communication mediated by NMDARs in the peripheral mechanisms of chronic orofacial pain following neuropathic injury and inflammation. Furthermore, we review the functional roles and mechanisms of NMDARs in the ascending and descending circuits under orofacial neuropathic and inflammatory pain conditions, which contribute to the central sensitization. These findings are not only relevant to understanding the underlying mechanisms, but also shed new light on the targeted therapy of chronic orofacial pain.
Collapse
Affiliation(s)
- Ya-Jing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhong-Han Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong-Lin Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie-Fei Shen Fei Liu
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie-Fei Shen Fei Liu
| |
Collapse
|
8
|
Zhou YS, Cui Y, Zheng JX, Quan YQ, Wu SX, Xu H, Han Y. Luteolin relieves lung cancer-induced bone pain by inhibiting NLRP3 inflammasomes and glial activation in the spinal dorsal horn in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153910. [PMID: 35026502 DOI: 10.1016/j.phymed.2021.153910] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bone cancer pain (BCP) is one of the most severe complications in cancer patients. However, the pharmacological therapeutic approaches are limited. Luteolin, a major component of flavones, is widely distributed in plants and plays a critical role in the antinociceptive effects, but whether luteolin could alleviate cancer pain and its underlying mechanisms are not known. HYPOTHESIS/PURPOSE This study investigated the molecular mechanisms by which luteolin reduced BCP. METHODS Behavioral, pharmacological, immunohistochemical, and biochemical approaches were used to investigate the effect of luteolin on BCP. RESULTS Luteolin treatment ameliorated Lewis lung cancer (LLC)-induced bone pain in mice in a dose-dependent manner. Luteolin treatment could inhibit the activation of neurons, glial cells, and NOD-like receptor protein 3 (NLRP3) inflammasomes in the dorsal spinal cord in the BCP mouse model. Furthermore, phosphorylated p-38 mitogen-activated protein kinase (MAPK) in the spinal dorsal horn (SDH) was suppressed by luteolin treatment that could influence the analgesic and glial inhibition effects of luteolin. CONCLUSION Our results demonstrated that luteolin inhibited neuroinflammation by obstructing glial cell and NLRP3 inflammasome activation via modulating p38 MAPK activity in SDH, ultimately improving LLC-induced BCP.
Collapse
Affiliation(s)
- Yong-Sheng Zhou
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China; Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yue Cui
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China; College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, 716099, China
| | - Jia-Xin Zheng
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ya-Qi Quan
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Sheng-Xi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Xu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yong Han
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China; Department of Thoracic Surgery, Air Force Medical Center, PLA, Beijing, 100142, China.
| |
Collapse
|
9
|
Wang Y, Peng Y, Zhang C, Zhou X. Astrocyte-neuron lactate transport in the ACC contributes to the occurrence of long-lasting inflammatory pain in male mice. Neurosci Lett 2021; 764:136205. [PMID: 34478818 DOI: 10.1016/j.neulet.2021.136205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/20/2022]
Abstract
Lactate transport is an important means of communication between astrocytes and neurons and is implicated in a variety of neurobiological processes. However, the connection between astrocyte-neuron lactate transport and nociceptive modulation has not been well established. Here, we found that Complete Freund's adjuvant (CFA)-induced inflammation pain leads to a significant increase in extracellular lactate levels in the anterior cingulate cortex (ACC). Inhibition of glycogenolysis and lactate release in the ACC disrupted the persistent, but not acute, inflammation pain induced by CFA, and this effect was reversed by exogenous L-lactate administration. Knocking down the expression of lactate transporters (MCT1, MCT4, or MCT2) also disrupted the long lasting inflammation pain induced by CFA. Moreover, glycogenolysis in the ACC is critical for the induction of molecular changes related to neuronal plasticity, including the induction of phospho- (p-) ERK, p-CREB, and Fos. Taken together, our findings indicate that astrocyte-neuron lactate transport in the ACC is critical for the occurrence of persistent inflammation pain, suggesting a novel mechanism underlying chronic pain.
Collapse
Affiliation(s)
- Yin Wang
- Department of Anesthesiology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Yunan Peng
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chenjing Zhang
- Department of Anesthesiology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Xuelong Zhou
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Boakye PA, Tang SJ, Smith PA. Mediators of Neuropathic Pain; Focus on Spinal Microglia, CSF-1, BDNF, CCL21, TNF-α, Wnt Ligands, and Interleukin 1β. FRONTIERS IN PAIN RESEARCH 2021; 2:698157. [PMID: 35295524 PMCID: PMC8915739 DOI: 10.3389/fpain.2021.698157] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023] Open
Abstract
Intractable neuropathic pain is a frequent consequence of nerve injury or disease. When peripheral nerves are injured, damaged axons undergo Wallerian degeneration. Schwann cells, mast cells, fibroblasts, keratinocytes and epithelial cells are activated leading to the generation of an "inflammatory soup" containing cytokines, chemokines and growth factors. These primary mediators sensitize sensory nerve endings, attract macrophages, neutrophils and lymphocytes, alter gene expression, promote post-translational modification of proteins, and alter ion channel function in primary afferent neurons. This leads to increased excitability and spontaneous activity and the generation of secondary mediators including colony stimulating factor 1 (CSF-1), chemokine C-C motif ligand 21 (CCL-21), Wnt3a, and Wnt5a. Release of these mediators from primary afferent neurons alters the properties of spinal microglial cells causing them to release tertiary mediators, in many situations via ATP-dependent mechanisms. Tertiary mediators such as BDNF, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and other Wnt ligands facilitate the generation and transmission of nociceptive information by increasing excitatory glutamatergic transmission and attenuating inhibitory GABA and glycinergic transmission in the spinal dorsal horn. This review focusses on activation of microglia by secondary mediators, release of tertiary mediators from microglia and a description of their actions in the spinal dorsal horn. Attention is drawn to the substantial differences in the precise roles of various mediators in males compared to females. At least 25 different mediators have been identified but the similarity of their actions at sensory nerve endings, in the dorsal root ganglia and in the spinal cord means there is considerable redundancy in the available mechanisms. Despite this, behavioral studies show that interruption of the actions of any single mediator can relieve signs of pain in experimental animals. We draw attention this paradox. It is difficult to explain how inactivation of one mediator can relieve pain when so many parallel pathways are available.
Collapse
Affiliation(s)
- Paul A. Boakye
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Shao-Jun Tang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Sun C, An Q, Li R, Chen S, Gu X, An S, Wang Z. Calcitonin gene-related peptide induces the histone H3 lysine 9 acetylation in astrocytes associated with neuroinflammation in rats with neuropathic pain. CNS Neurosci Ther 2021; 27:1409-1424. [PMID: 34397151 PMCID: PMC8504526 DOI: 10.1111/cns.13720] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Aims Calcitonin gene‐related peptide (CGRP) as a regulator of astrocyte activation may facilitate spinal nociceptive processing. Histone H3 lysine 9 acetylation (H3K9ac) is considered an important regulator of cytokine and chemokine gene expression after peripheral nerve injury. In this study, we explored the relationship between CGRP and H3K9ac in the activation of astrocytes, and elucidated the underlying mechanisms in the pathogenesis of chronic neuropathic pain. Methods Astroglial cells (C6) were treated with CGRP and differentially enrichments of H3K9ac on gene promoters were examined using ChIP‐seq. A chronic constriction injury (CCI) rat model was used to evaluate the role of CGRP on astrocyte activation and H3K9ac signaling in CCI‐induced neuropathic pain. Specific inhibitors were employed to delineate the involved signaling. Results Intrathecal injection of CGRP and CCI increased the number of astrocytes displaying H3K9ac in the spinal dorsal horn of rats. Treatment of CGRP was able to up‐regulate H3K9ac and glial fibrillary acidic protein (GFAP) expression in astroglial cells. ChIP‐seq data indicated that CGRP significantly altered H3K9ac enrichments on gene promoters in astroglial cells following CGRP treatment, including 151 gaining H3K9ac and 111 losing this mark, which mostly enriched in proliferation, autophagy, and macrophage chemotaxis processes. qRT‐PCR verified expressions of representative candidate genes (ATG12, ATG4C, CX3CR1, MMP28, MTMR14, HMOX1, RET) and RTCA verified astrocyte proliferation. Additionally, CGRP treatment increased the expression of H3K9ac, CX3CR1, and IL‐1β in the spinal dorsal horn. CGRP antagonist and HAT inhibitor attenuated mechanical and thermal hyperalgesia in CCI rats. Such analgesic effects were concurrently associated with the reduced levels of H3K9ac, CX3CR1, and IL‐1β in the spinal dorsal horn of CCI rats. Conclusion Our findings highly indicate that CGRP is associated with the development of neuropathic pain through astrocytes‐mediated neuroinflammatory responses via H3K9ac in spinal dorsa horn following nerve injury. This study found that CGRP act on their astrocytic receptors and lead to H3K9 acetylation (H3K9ac), which are mainly associated with proliferation‐, autophagy‐, and inflammation‐related gene expression. The number of astrocytes with H3K9ac expression is increased after nerve injury. Inhibition of CGRP attenuates the development of neuropathic pain, which was accompanied by the suppression of H3K9ac, CX3CR1, and IL‐1β expression in CCI rats.
Collapse
Affiliation(s)
- Chenyan Sun
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Qi An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Ruidi Li
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhui Chen
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhong An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Zhaojin Wang
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
12
|
Warfield AE, Prather JF, Todd WD. Systems and Circuits Linking Chronic Pain and Circadian Rhythms. Front Neurosci 2021; 15:705173. [PMID: 34276301 PMCID: PMC8284721 DOI: 10.3389/fnins.2021.705173] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Research over the last 20 years regarding the link between circadian rhythms and chronic pain pathology has suggested interconnected mechanisms that are not fully understood. Strong evidence for a bidirectional relationship between circadian function and pain has been revealed through inflammatory and immune studies as well as neuropathic ones. However, one limitation of many of these studies is a focus on only a few molecules or cell types, often within only one region of the brain or spinal cord, rather than systems-level interactions. To address this, our review will examine the circadian system as a whole, from the intracellular genetic machinery that controls its timing mechanism to its input and output circuits, and how chronic pain, whether inflammatory or neuropathic, may mediate or be driven by changes in these processes. We will investigate how rhythms of circadian clock gene expression and behavior, immune cells, cytokines, chemokines, intracellular signaling, and glial cells affect and are affected by chronic pain in animal models and human pathologies. We will also discuss key areas in both circadian rhythms and chronic pain that are sexually dimorphic. Understanding the overlapping mechanisms and complex interplay between pain and circadian mediators, the various nuclei they affect, and how they differ between sexes, will be crucial to move forward in developing treatments for chronic pain and for determining how and when they will achieve their maximum efficacy.
Collapse
Affiliation(s)
| | | | - William D. Todd
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
13
|
Yu Y, Wei G, Zhou Q, Sha H. ErbB4 in Spinal PV Interneurons Regulates Mechanical Allodynia in Neuropathic Pain via Modulation of Glycinergic Inhibitory Tone. J Pain Res 2021; 14:1643-1651. [PMID: 34135628 PMCID: PMC8200169 DOI: 10.2147/jpr.s311894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 01/12/2023] Open
Abstract
Background Mechanical allodynia is the most common and challenging symptom associated with neuropathic pain; however, the underlying mechanisms are still unclear. The aim of this study was to investigate whether ErbB4, a receptor for neuregulin-1 (NRG1), participates in the modulation of mechanical allodynia. Methods Radiant heat and von Frey filaments were applied to assess nociceptive behaviors. Real-time quantitative polymerase chain reaction, Western blotting, immunofluorescence, and small interfering RNA were used to identify the likely mechanisms. Results ErbB4 was rapidly and persistently activated in spinal parvalbumin (PV) interneurons after chronic constriction injury (CCI) in mice. Knockdown of ErbB4 in the spinal cord prevented and reversed CCI-induced mechanical allodynia, and activation of ErbB4 by spinal application of NRG1 induced mechanical allodynia in naïve mice. Furthermore, we found that activation of ErbB4 decreased the glycine concentration in the spinal cord, contributing to modulation of mechanical allodynia. Conclusion ErbB4 in spinal PV interneurons gates mechanical allodynia in neuropathic pain via regulation of glycinergic inhibitory tone, suggesting that a possible ErbB4-mediated process participates in the development of neuropathic pain.
Collapse
Affiliation(s)
- Yingying Yu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Guohua Wei
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Qi Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Huanhuan Sha
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| |
Collapse
|
14
|
Tang J, Bair M, Descalzi G. Reactive Astrocytes: Critical Players in the Development of Chronic Pain. Front Psychiatry 2021; 12:682056. [PMID: 34122194 PMCID: PMC8192827 DOI: 10.3389/fpsyt.2021.682056] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is associated with long term plasticity of nociceptive pathways in the central nervous system. Astrocytes can profoundly affect synaptic function and increasing evidence has highlighted how altered astrocyte activity may contribute to the pathogenesis of chronic pain. In response to injury, astrocytes undergo a shift in form and function known as reactive astrogliosis, which affects their release of cytokines and gliotransmitters. These neuromodulatory substances have been implicated in driving the persistent changes in central nociceptive activity. Astrocytes also release lactate which neurons can use to produce energy during synaptic plasticity. Furthermore, recent research has provided insight into lactate's emerging role as a signaling molecule in the central nervous system, which may be involved in directly modulating neuronal and astrocytic activity. In this review, we present evidence for the involvement of astrocyte-derived tumor necrosis factor alpha in pain-associated plasticity, in addition to research suggesting the potential involvement of gliotransmitters D-serine and adenosine-5'-triphosphate. We also discuss work implicating astrocyte-neuron metabolic coupling, and the possible role of lactate, which has been sparsely studied in the context of chronic pain, in supporting pathological changes in central nociceptive activity.
Collapse
Affiliation(s)
| | | | - Giannina Descalzi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
15
|
Pharmacological Evidence on Augmented Antiallodynia Following Systemic Co-Treatment with GlyT-1 and GlyT-2 Inhibitors in Rat Neuropathic Pain Model. Int J Mol Sci 2021; 22:ijms22052479. [PMID: 33804568 PMCID: PMC7957511 DOI: 10.3390/ijms22052479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
The limited effect of current medications on neuropathic pain (NP) has initiated large efforts to develop effective treatments. Animal studies showed that glycine transporter (GlyT) inhibitors are promising analgesics in NP, though concerns regarding adverse effects were raised. We aimed to study NFPS and Org-25543, GlyT-1 and GlyT-2 inhibitors, respectively and their combination in rat mononeuropathic pain evoked by partial sciatic nerve ligation. Cerebrospinal fluid (CSF) glycine content was also determined by capillary electrophoresis. Subcutaneous (s.c.) 4 mg/kg NFPS or Org-25543 showed analgesia following acute administration (30-60 min). Small doses of each compound failed to produce antiallodynia up to 180 min after the acute administration. However, NFPS (1 mg/kg) produced antiallodynia after four days of treatment. Co-treatment with subanalgesic doses of NFPS (1 mg/kg) and Org-25543 (2 mg/kg) produced analgesia at 60 min and thereafter meanwhile increased significantly the CSF glycine content. This combination alleviated NP without affecting motor function. Test compounds failed to activate G-proteins in spinal cord. To the best of our knowledge for the first time we demonstrated augmented analgesia by combining GlyT-1 and 2 inhibitors. Increased CSF glycine content supports involvement of glycinergic system. Combining selective GlyT inhibitors or developing non-selective GlyT inhibitors might have therapeutic value in NP.
Collapse
|
16
|
PKCγ interneurons, a gateway to pathological pain in the dorsal horn. J Neural Transm (Vienna) 2020; 127:527-540. [PMID: 32108249 DOI: 10.1007/s00702-020-02162-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022]
Abstract
Chronic pain is a frequent and disabling condition that is significantly maintained by central sensitization, which results in pathological amplification of responses to noxious and innocuous stimuli. As such, mechanical allodynia, or pain in response to a tactile stimulus that does not normally provoke pain, is a cardinal feature of chronic pain. Recent evidence suggests that the dorsal horn excitatory interneurons that express the γ isoform of protein kinase C (PKCγ) play a critical role in the mechanism of mechanical allodynia during chronic pain. Here, we review this evidence as well as the main aspects of the development, anatomy, electrophysiology, inputs, outputs, and pathophysiology of dorsal horn PKCγ neurons. Primary afferent high-threshold neurons transmit the nociceptive message to the dorsal horn of the spinal cord and trigeminal system where it activates second-order nociceptive neurons relaying the information to the brain. In physiological conditions, low-threshold mechanoreceptor inputs activate inhibitory interneurons in the dorsal horn, which may control activation of second-order nociceptive neurons. During chronic pain, low-threshold mechanoreceptor inputs now activate PKCγ neurons that forward the message to second-order nociceptive neurons, turning thus tactile inputs into pain. Several mechanisms may contribute to opening this gate, including disinhibition, activation of local astrocytes, release of diffusible factors such as reactive oxygen species, and alteration of the descending serotoninergic control on PKCγ neurons through 5-HT2A serotonin receptors. Dorsal horn PKCγ neurons, therefore, appear as a relevant therapeutic target to alleviate mechanical allodynia during chronic pain.
Collapse
|
17
|
Dual role of D-amino acid oxidase in experimental pain models. Eur J Pharmacol 2019; 855:98-102. [DOI: 10.1016/j.ejphar.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 02/08/2023]
|
18
|
Zhou KX, He XT, Hu XF, Zhao WJ, Li CX, Zhang C, Zhang T, Gu ZX, Deng JP, Dong YL. XPro1595 ameliorates bone cancer pain in rats via inhibiting p38-mediated glial cell activation and neuroinflammation in the spinal dorsal horn. Brain Res Bull 2019; 149:137-147. [DOI: 10.1016/j.brainresbull.2019.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022]
|
19
|
Mothet JP, Billard JM, Pollegioni L, Coyle JT, Sweedler JV. Investigating brain d-serine: Advocacy for good practices. Acta Physiol (Oxf) 2019; 226:e13257. [PMID: 30650253 PMCID: PMC6462235 DOI: 10.1111/apha.13257] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/31/2022]
Abstract
The last two decades have witnessed remarkable advance in our understanding the role of d-amino acids in the mammalian nervous system: from the unknown, to known molecules with unknown functions, to potential central players in health and disease. d-Amino acids have emerged as an important class of signaling molecules. In particular, the exploration of the roles of d-serine in brain physiopathology is a vibrant field that is growing at an accelerating pace. However, disentangling the functions of a chiral molecule in a complex chemical matrice as the brain requires specific measurement and detection methods but is also a challenging task as many molecular tools and models investigators are using can lead to confounded observations. Thus, study of d-amino acids demands accurate methodologies and specific controls, and these have often been lacking. Here we outline best practices for d-amino acid research, with a special emphasis on d-serine. We hope these concepts help move the field to greater rigor and reproducibility, allowing the field to advance.
Collapse
Affiliation(s)
- Jean-Pierre Mothet
- Team Gliotransmission & Synaptopathies, Aix Marseille University, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille UMR7286 CNRS, Marseille, France
| | | | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Varese, Italy
| | - Joseph T Coyle
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
20
|
Choi SR, Roh DH, Yoon SY, Choi HS, Kang SY, Han HJ, Beitz AJ, Lee JH. Astrocyte D-serine modulates the activation of neuronal NOS leading to the development of mechanical allodynia in peripheral neuropathy. Mol Pain 2019; 15:1744806919843046. [PMID: 30900515 PMCID: PMC6495448 DOI: 10.1177/1744806919843046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/07/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Spinal D-serine plays an important role in nociception via an increase in phosphorylation of the N-Methyl-D-aspartate (NMDA) receptor GluN1 subunit (pGluN1). However, the cellular mechanisms underlying this process have not been elucidated. Here, we investigate the possible role of neuronal nitric oxide synthase (nNOS) in the D-serine-induced potentiation of NMDA receptor function and the induction of neuropathic pain in a chronic constriction injury (CCI) model. Intrathecal administration of the serine racemase inhibitor, L-serine O-sulfate potassium salt (LSOS) or the D-serine degrading enzyme, D-amino acid oxidase (DAAO) on post-operative days 0-3 significantly reduced the CCI-induced increase in nitric oxide (NO) levels and nicotinamide adenine dinucleotide phosphate-diaphorase staining in lumbar dorsal horn neurons, as well as the CCI-induced decrease in phosphorylation (Ser847) of nNOS (pnNOS) on day 3 post-CCI surgery. LSOS or DAAO administration suppressed the CCI-induced development of mechanical allodynia and protein kinase C (PKC)-dependent (Ser896) phosphorylation of GluN1 on day 3 post-surgery, which were reversed by the co-administration of the NO donor, 3-morpholinosydnonimine hydrochloride (SIN-1). In naïve mice, exogenous D-serine increased NO levels via decreases in pnNOS. D-serine-induced increases in mechanical hypersensitivity, NO levels, PKC-dependent pGluN1, and NMDA-induced spontaneous nociception were reduced by pretreatment with the nNOS inhibitor, 7-nitroindazole or with the NMDA receptor antagonists, 7-chlorokynurenic acid and MK-801. Collectively, we show that spinal D-serine modulates nNOS activity and concomitant NO production leading to increases in PKC-dependent pGluN1 and ultimately contributing to the induction of mechanical allodynia following peripheral nerve injury.
Collapse
Affiliation(s)
- Sheu-Ran Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dae-Hyun Roh
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth and Periodontal Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Seo-Yeon Yoon
- College of Korean Medicine, Dongshin University, Naju, Republic of Korea
| | - Hoon-Seong Choi
- Research Animal Resource Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Suk-Yun Kang
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Ho-Jae Han
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Alvin James Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - Jang-Hern Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Murtas G, Caldinelli L, Cappelletti P, Sacchi S, Pollegioni L. Human d-amino acid oxidase: The inactive G183R variant. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:822-830. [PMID: 29274788 DOI: 10.1016/j.bbapap.2017.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
Abstract
In the brain, the enzyme d-amino acid oxidase (DAAO) catalyzes the oxidative deamination of d-serine, a main positive modulator of the N-methyl-d-aspartate subtype of glutamate receptors (NMDAR). Dysregulation in d-serine signaling is implicated in the NMDAR dysfunctions observed in various brain diseases, such as amyotrophic lateral sclerosis, Alzheimer's disease, schizophrenia. A strain of ddY mice lacking DAAO activity due to the G181R substitution (DAAOG181R mice) and exhibiting increased d-serine concentration as compared to wild-type mice shows altered pain response, improved adaptative learning and cognitive functions, and larger hippocampal long-term potentiation. In past years, this mice line has been used to shed light on physiological and pathological brain functions related to NMDAR. Here, we decided to introduce the corresponding substitution in human DAAO (hDAAO). The recombinant G183R hDAAO is produced as an inactive apoprotein: the substitution alters the protein conformation that negatively affects the ability to bind the flavin cofactor in the orientation required for hydride-transfer during catalysis. At the cellular level, the overexpressed G183R hDAAO is not fully targeted to peroxisomes, forms protein aggregates showing a strong colocalization with ubiquitin, and significantly (7-fold) increases both the d-serine cellular concentration and the D/(D+L)-serine ratio. Taken together, our investigation warrants caution in using DAAOG181R mice: the abolition of enzymatic activity is coupled to DAAO aggregation, a central process in different pathological conditions. The effect due to G181R substitution in DAAO could be misleading: the effects due to impairment of d-serine degradation overlap with those related to aggregates accumulation.
Collapse
Affiliation(s)
- Giulia Murtas
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy.
| | - Laura Caldinelli
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy; The Protein Factory, Politecnico di Milano and Università degli studi dell'Insubria, via Mancinelli 7, 20131 Milan, Italy
| | - Pamela Cappelletti
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy; The Protein Factory, Politecnico di Milano and Università degli studi dell'Insubria, via Mancinelli 7, 20131 Milan, Italy
| | - Silvia Sacchi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy; The Protein Factory, Politecnico di Milano and Università degli studi dell'Insubria, via Mancinelli 7, 20131 Milan, Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy; The Protein Factory, Politecnico di Milano and Università degli studi dell'Insubria, via Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
22
|
Hu XF, He XT, Zhou KX, Zhang C, Zhao WJ, Zhang T, Li JL, Deng JP, Dong YL. The analgesic effects of triptolide in the bone cancer pain rats via inhibiting the upregulation of HDACs in spinal glial cells. J Neuroinflammation 2017; 14:213. [PMID: 29096654 PMCID: PMC5668986 DOI: 10.1186/s12974-017-0988-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Background Bone cancer pain (BCP) severely compromises the quality of life, while current treatments are still unsatisfactory. Here, we tested the antinociceptive effects of triptolide (T10), a substance with considerable anti-tumor efficacies on BCP, and investigated the underlying mechanisms targeting the spinal dorsal horn (SDH). Methods Intratibial inoculation of Walker 256 mammary gland carcinoma cells was used to establish a BCP model in rats. T10 was intrathecally injected, and mechanical allodynia was tested by measuring the paw withdrawal thresholds (PWTs). In mechanism study, the activation of microglia, astrocytes, and the mitogen-activated protein kinase (MAPK) pathways in the SDH were evaluated by immunofluorescence staining or Western blot analysis of Iba-1, GFAP, p-ERK, p-p38, and p-JNK. The expression and cellular localization of histone deacetylases (HDACs) 1 and 2 were also detected to investigate molecular mechanism. Results Intrathecal injection of T10 inhibited the bone cancer-induced mechanical allodynia with an ED50 of 5.874 μg/kg. This effect was still observed 6 days after drug withdrawal. Bone cancer caused significantly increased expression of HDAC1 in spinal microglia and neurons, with HDAC2 markedly increased in spinal astrocytes, which were accompanied by the upregulation of MAPK pathways and the activation of microglia and astrocytes in the SDH. T10 reversed the increase of HDACs, especially those in glial cells, and inhibited the glial activation. Conclusions Our results suggest that the upregulation of HDACs contributes to the pathological activation of spinal glial cells and the chronic pain caused by bone cancer, while T10 help to relieve BCP possibly via inhibiting the upregulation of HDACs in the glial cells in the SDH and then blocking the neuroinflammation induced by glial activation.
Collapse
Affiliation(s)
- Xiao-Fan Hu
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao-Tao He
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Disease, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kai-Xiang Zhou
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Zhang
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wen-Jun Zhao
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ting Zhang
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jin-Lian Li
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Jian-Ping Deng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Yu-Lin Dong
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
23
|
Hawkins JL, Cornelison LE, Blankenship BA, Durham PL. Vagus nerve stimulation inhibits trigeminal nociception in a rodent model of episodic migraine. Pain Rep 2017; 2:e628. [PMID: 29392242 PMCID: PMC5741328 DOI: 10.1097/pr9.0000000000000628] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Although neck muscle tension is considered a risk factor for migraine, pungent odors can act as a trigger to initiate an attack in sensitized individuals. Although noninvasive vagus nerve stimulation (nVNS) is now an approved treatment for chronic migraine, how it functions to inhibit trigeminal nociception in an episodic migraine model is not known. OBJECTIVES The objectives of this study were to determine if nVNS could inhibit trigeminal nociception in a novel model of episodic migraine and investigate changes in the expression of proteins implicated in peripheral and central sensitization. METHODS Sprague-Dawley male rats were injected with an inflammatory agent in the trapezius muscle before exposure to pungent volatile compounds, which was used to initiate trigeminal nociceptor activation. The vagus nerve was stimulated transdermally by a 1-ms pulse of 5 kHz sine waves, repeated at 25 Hz for 2 minutes. Nocifensive head withdrawal response to von Frey filaments was determined and immunoreactive protein levels in the spinal cord and trigeminal ganglion (TG) were investigated. RESULTS Exposure to the pungent odor significantly increased the number of nocifensive withdrawals in response to mechanical stimulation of sensitized TG neurons mediated by neck muscle inflammation. Noninvasive vagus nerve stimulation inhibited nociception and repressed elevated levels of P-ERK in TG, Iba1 in microglia, and GFAP in astrocytes from sensitized animals exposed to the pungent odor. CONCLUSION Our findings demonstrate that nVNS inhibits mechanical nociception and represses expression of proteins associated with peripheral and central sensitization of trigeminal neurons in a novel rodent model of episodic migraine.
Collapse
|
24
|
Choi SR, Moon JY, Roh DH, Yoon SY, Kwon SG, Choi HS, Kang SY, Han HJ, Beitz AJ, Lee JH. Spinal D-Serine Increases PKC-Dependent GluN1 Phosphorylation Contributing to the Sigma-1 Receptor-Induced Development of Mechanical Allodynia in a Mouse Model of Neuropathic Pain. THE JOURNAL OF PAIN 2017; 18:415-427. [PMID: 27986591 DOI: 10.1016/j.jpain.2016.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/22/2016] [Indexed: 01/06/2023]
Abstract
We have recently shown that spinal sigma-1 receptor (Sig-1R) activation facilitates nociception via an increase in phosphorylation of the N-methyl-D-aspartate (NMDA) receptor GluN1 subunit (pGluN1). The present study was designed to examine whether the Sig-1R-induced facilitative effect on NMDA-induced nociception is mediated by D-serine, and whether D-serine modulates spinal pGluN1 expression and the development of neuropathic pain after chronic constriction injury (CCI) of the sciatic nerve. Intrathecal administration of the D-serine degrading enzyme, D-amino acid oxidase attenuated the facilitation of NMDA-induced nociception induced by the Sig-1R agonist, 2-(4-morpholinethyl)1-phenylcyclohexane carboxylate. Exogenous D-serine increased protein kinase C (PKC)-dependent (Ser896) pGluN1 expression and facilitated NMDA-induced nociception, which was attenuated by preteatment with the PKC inhibitor, chelerythrine. In CCI mice, administration of the serine racemase inhibitor, L-serine O-sulfate potassium salt or D-amino acid oxidase on postoperative days 0 to 3 suppressed CCI-induced mechanical allodynia (MA) and pGluN1 expression on day 3 after CCI surgery. Intrathecal administration of D-serine restored MA as well as the GluN1 phosphorylation on day 3 after surgery that was suppressed by the Sig-1R antagonist, N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine dihydrobromide or the astrocyte inhibitor, fluorocitrate. In contrast, D-serine had no effect on CCI-induced thermal hyperalgesia or GluN1 expression. These results indicate that spinal D-serine: 1) mediates the facilitative effect of Sig-1R on NMDA-induced nociception, 2) modulates PKC-dependent pGluN1 expression, and 3) ultimately contributes to the induction of MA after peripheral nerve injury. PERSPECTIVE This report shows that reducing D-serine suppresses central sensitization and significantly alleviates peripheral nerve injury-induced chronic neuropathic pain and that this process is modulated by spinal Sig-1Rs. This preclinical evidence provides a strong rationale for using D-serine antagonists to treat peripheral nerve injury-induced neuropathy.
Collapse
Affiliation(s)
- Sheu-Ran Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul, Republic of Korea
| | - Ji-Young Moon
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Dae-Hyun Roh
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth and Periodontal Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Seo-Yeon Yoon
- Pain Cognitive Function Research Center, Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Soon-Gu Kwon
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth and Periodontal Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Hoon-Seong Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul, Republic of Korea
| | - Suk-Yun Kang
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Ho-Jae Han
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul, Republic of Korea
| | - Alvin J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - Jang-Hern Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Wei H, Wu HY, Chen Z, Ma AN, Mao XF, Li TF, Li XY, Wang YX, Pertovaara A. Mechanical antihypersensitivity effect induced by repeated spinal administrations of a TRPA1 antagonist or a gap junction decoupler in peripheral neuropathy. Pharmacol Biochem Behav 2016; 150-151:57-67. [DOI: 10.1016/j.pbb.2016.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 01/06/2023]
|
26
|
Subpopulations of PKCγ interneurons within the medullary dorsal horn revealed by electrophysiologic and morphologic approach. Pain 2016; 156:1714-1728. [PMID: 25961142 DOI: 10.1097/j.pain.0000000000000221] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mechanical allodynia, a cardinal symptom of persistent pain, is associated with the unmasking of usually blocked local circuits within the superficial spinal or medullary dorsal horn (MDH) through which low-threshold mechanical inputs can gain access to the lamina I nociceptive output neurons. Specific interneurons located within inner lamina II (IIi) and expressing the gamma isoform of protein kinase C (PKCγ⁺) have been shown to be key elements for such circuits. However, their morphologic and electrophysiologic features are still unknown. Using whole-cell patch-clamp recordings and immunohistochemical techniques in slices of adult rat MDH, we characterized such lamina IIi PKCγ⁺ interneurons and compared them with neighboring PKCγ⁻ interneurons. Our results reveal that PKCγ⁺ interneurons display very specific activity and response properties. Compared with PKCγ⁻ interneurons, they exhibit a smaller membrane input resistance and rheobase, leading to a lower threshold for action potentials. Consistently, more than half of PKCγ⁺ interneurons respond with tonic firing to step current. They also receive a weaker excitatory synaptic drive. Most PKCγ⁺ interneurons express Ih currents. The neurites of PKCγ⁺ interneurons arborize extensively within lamina IIi, can spread dorsally into lamina IIo, but never reach lamina I. In addition, at least 2 morphologically and functionally different subpopulations of PKCγ⁺ interneurons can be identified: central and radial PKCγ⁺ interneurons. The former exhibit a lower membrane input resistance, rheobase and, thus, action potential threshold, and less PKCγ⁺ immunoreactivity than the latter. These 2 subpopulations might thus differently contribute to the gating of dorsally directed circuits within the MDH underlying mechanical allodynia.
Collapse
|
27
|
Protein Kinase C γ Interneurons Mediate C-fiber–induced Orofacial Secondary Static Mechanical Allodynia, but Not C-fiber–induced Nociceptive Behavior. Anesthesiology 2016; 124:1136-52. [DOI: 10.1097/aln.0000000000001000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Background
Tissue injury enhances pain sensitivity both at the site of tissue damage and in surrounding uninjured skin (secondary hyperalgesia). Secondary hyperalgesia encompasses several pain symptoms including pain to innocuous punctate stimuli or static mechanical allodynia. How injury-induced barrage from C-fiber nociceptors produces secondary static mechanical allodynia has not been elucidated.
Methods
Combining behavioral, immunohistochemical, and Western blot analysis, the authors investigated the cell and molecular mechanisms underlying the secondary static mechanical allodynia in the rat medullary dorsal horn (MDH) using the capsaicin model (n = 4 to 5 per group).
Results
Intradermal injection of capsaicin (25 μg) into the vibrissa pad produces a spontaneous pain and a secondary static mechanical allodynia. This allodynia is associated with the activation of a neuronal network encompassing lamina I–outer lamina III, including interneurons expressing the γ isoform of protein kinase C (PKCγ) within inner lamina II (IIi) of MDH. PKCγ is concomitantly phosphorylated (+351.4 ± 79.2%, mean ± SD; P = 0.0003). Mechanical allodynia and innocuous punctate stimulus–evoked laminae I to III neuronal activation can be replicated after intracisternally applied γ-aminobutyric acid receptor type A (GABAA) antagonist (bicuculline: 0.05 μg) or reactive oxygen species (ROS) donor (tert-butyl hydroperoxide: 50 to 250 ng). Conversely, intracisternal PKCγ antagonist, GABAA receptor agonist, or ROS scavenger prevent capsaicin-induced static mechanical allodynia and neuronal activation.
Conclusions
Sensitization of lamina IIi PKCγ interneurons is required for the manifestation of secondary static mechanical allodynia but not for spontaneous pain. Such sensitization is driven by ROS and GABAAergic disinhibition. ROS released during intense C-fiber nociceptor activation might produce a GABAAergic disinhibition of PKCγ interneurons. Innocuous punctate inputs carried by Aδ low-threshold mechanoreceptors onto PKCγ interneurons can then gain access to the pain transmission circuitry of superficial MDH, producing pain.
Collapse
|
28
|
Benarroch EE. Dorsal horn circuitry: Complexity and implications for mechanisms of neuropathic pain. Neurology 2016; 86:1060-9. [PMID: 26888981 DOI: 10.1212/wnl.0000000000002478] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
29
|
|
30
|
Breitinger U, Breitinger HG. Augmentation of glycine receptor alpha3 currents suggests a mechanism for glucose-mediated analgesia. Neurosci Lett 2016; 612:110-115. [DOI: 10.1016/j.neulet.2015.11.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 11/16/2022]
|
31
|
Betelli C, MacDermott AB, Bardoni R. Transient, activity dependent inhibition of transmitter release from low threshold afferents mediated by GABAA receptors in spinal cord lamina III/IV. Mol Pain 2015; 11:64. [PMID: 26463733 PMCID: PMC4605127 DOI: 10.1186/s12990-015-0067-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/06/2015] [Indexed: 12/20/2022] Open
Abstract
Background Presynaptic GABAA receptors (GABAARs) located on central terminals of low threshold afferent fibers are thought to be involved in the processing of touch and possibly in the generation of tactile allodynia in chronic pain. These GABAARs mediate primary afferent depolarization (PAD) and modulate transmitter release. The objective of this study was to expand our understanding of the presynaptic inhibitory action of GABA released onto primary afferent central terminals following afferent stimulation. Results We recorded evoked postsynaptic excitatory responses (eEPSCs and eEPSPs) from lamina III/IV neurons in spinal cord slices from juvenile rats (P17–P23, either sex), while stimulating dorsal roots. We investigated time and activity dependent changes in glutamate release from low threshold A fibers and the impact of these changes on excitatory drive. Blockade of GABAARs by gabazine potentiated the second eEPSC during a train of four afferent stimuli in a large subset of synapses. This resulted in a corresponding increase of action potential firing after the second stimulus. The potentiating effect of gabazine was due to inhibition of endogenously activated presynaptic GABAARs, because it was not prevented by the blockade of postsynaptic GABAARs through intracellular perfusion of CsF. Exogenous activation of presynaptic GABAARs by muscimol depressed evoked glutamate release at all synapses and increased paired pulse ratio (PPR). Conclusions These observations suggest that afferent driven release of GABA onto low threshold afferent terminals is most effective following the first action potential in a train and serves to suppress the initial strong excitatory drive onto dorsal horn circuitry.
Collapse
Affiliation(s)
- Chiara Betelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy.
| | - Amy B MacDermott
- Departments of Physiology and Cellular Biophysics, Neuroscience, Columbia University, 630 W. 168th Street, New York, NY, 10032, USA.
| | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy.
| |
Collapse
|
32
|
Moon JY, Choi SR, Roh DH, Yoon SY, Kwon SG, Choi HS, Kang SY, Han HJ, Kim HW, Beitz AJ, Oh SB, Lee JH. Spinal sigma-1 receptor activation increases the production of D-serine in astrocytes which contributes to the development of mechanical allodynia in a mouse model of neuropathic pain. Pharmacol Res 2015; 100:353-64. [PMID: 26316425 DOI: 10.1016/j.phrs.2015.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 08/05/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022]
Abstract
We have previously demonstrated that activation of the spinal sigma-1 receptor (Sig-1R) plays an important role in the development of mechanical allodynia (MA) via secondary activation of the N-methyl-d-aspartate (NMDA) receptor. Sig-1Rs have been shown to localize to astrocytes, and blockade of Sig-1Rs inhibits the pathologic activation of astrocytes in neuropathic mice. However, the mechanism by which Sig-1R activation in astrocytes modulates NMDA receptors in neurons is currently unknown. d-serine, synthesized from l-serine by serine racemase (Srr) in astrocytes, is an endogenous co-agonist for the NMDA receptor glycine site and can control NMDA receptor activity. Here, we investigated the role of d-serine in the development of MA induced by spinal Sig-1R activation in chronic constriction injury (CCI) mice. The production of d-serine and Srr expression were both significantly increased in the spinal cord dorsal horn post-CCI surgery. Srr and d-serine were only localized to astrocytes in the superficial dorsal horn, while d-serine was also localized to neurons in the deep dorsal horn. Moreover, we found that Srr exists in astrocytes that express Sig-1Rs. The CCI-induced increase in the levels of d-serine and Srr was attenuated by sustained intrathecal treatment with the Sig-1R antagonist, BD-1047 during the induction phase of neuropathic pain. In behavioral experiments, degradation of endogenous d-serine with DAAO, or selective blockade of Srr by LSOS, effectively reduced the development of MA, but not thermal hyperalgesia in CCI mice. Finally, BD-1047 administration inhibited the development of MA and this inhibition was reversed by intrathecal treatment with exogenous d-serine. These findings demonstrate for the first time that the activation of Sig-1Rs increases the expression of Srr and d-serine in astrocytes. The increased production of d-serine induced by CCI ultimately affects dorsal horn neurons that are involved in the development of MA in neuropathic mice.
Collapse
Affiliation(s)
- Ji-Young Moon
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Sheu-Ran Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dae-Hyun Roh
- Department of Maxillofacial Tissue Regeneration, Kyung Hee University School of Dentistry, Seoul 130-701, Republic of Korea
| | - Seo-Yeon Yoon
- Pain Cognitive Function Research Center, Department of Brain and Cognitive Sciences College of Natural Sciences, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Soon-Gu Kwon
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hoon-Seong Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Suk-Yun Kang
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Ho-Jae Han
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyun-Woo Kim
- Department of Physiology, Institute of Brain Research, Chungnam National University Medical School, Daejeon 301-747, Republic of Korea
| | - Alvin J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Seog-Bae Oh
- Pain Cognitive Function Research Center, Department of Brain and Cognitive Sciences College of Natural Sciences, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Jang-Hern Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
33
|
Lefèvre Y, Amadio A, Vincent P, Descheemaeker A, Oliet SHR, Dallel R, Voisin DL. Neuropathic pain depends upon D-serine co-activation of spinal NMDA receptors in rats. Neurosci Lett 2015; 603:42-7. [PMID: 26182881 DOI: 10.1016/j.neulet.2015.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/20/2015] [Accepted: 07/05/2015] [Indexed: 12/30/2022]
Abstract
Activation of N-methyl-d-aspartate (NMDA) receptors is critical for hypersensitivity in chronic neuropathic pain. Since astroglia can regulate NMDA receptor activation by releasing the NMDA receptor co-agonist d-serine, we investigated the role of NMDA receptor and d-serine in neuropathic chronic pain. Male Wistar rats underwent right L5-L6 spinal nerve ligation or sham surgery and were tested for mechanical allodynia and hyperalgesia after 14 days. Acute intrathecal administration of the NMDA receptor antagonist d-AP5 as well as chronic administration of the glia metabolism inhibitor fluoroacetate significantly reduced mechanical allodynia in neuropathic rats. The effect of fluoroacetate was reversed by acutely administered intrathecal d-serine. Degrading d-serine using acute intrathecal administration of d-aminoacid oxidase also reduced pain symptoms. Immunocytochemistry showed that about 70% of serine racemase, the synthesizing enzyme of d-serine, was expressed in astrocyte processes in the superficial laminae of L5 dorsal horn. Serine racemase expression was upregulated in astrocyte processes in neuropathic rats compared to sham rats. These results show that neuropathic pain depends upon glial d-serine that co-activates spinal NMDA receptors.
Collapse
Affiliation(s)
- Yan Lefèvre
- Neurocentre Magendie, Inserm U862, F-33000 Bordeaux, France; Univ. Bordeaux, F-33000 Bordeaux, France
| | - Aurélie Amadio
- Neurocentre Magendie, Inserm U862, F-33000 Bordeaux, France; Univ. Bordeaux, F-33000 Bordeaux, France
| | - Peggy Vincent
- Neurocentre Magendie, Inserm U862, F-33000 Bordeaux, France; Univ. Bordeaux, F-33000 Bordeaux, France
| | - Amélie Descheemaeker
- Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, Inserm, U1107, F-63001 Clermont-Ferrand, France
| | - Stéphane H R Oliet
- Neurocentre Magendie, Inserm U862, F-33000 Bordeaux, France; Univ. Bordeaux, F-33000 Bordeaux, France
| | - Radhouane Dallel
- Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, Inserm, U1107, F-63001 Clermont-Ferrand, France
| | - Daniel L Voisin
- Neurocentre Magendie, Inserm U862, F-33000 Bordeaux, France; Univ. Bordeaux, F-33000 Bordeaux, France.
| |
Collapse
|
34
|
Peirs C, Patil S, Bouali-Benazzouz R, Artola A, Landry M, Dallel R. Protein kinase C gamma interneurons in the rat medullary dorsal horn: distribution and synaptic inputs to these neurons, and subcellular localization of the enzyme. J Comp Neurol 2014; 522:393-413. [PMID: 23818225 DOI: 10.1002/cne.23407] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 12/18/2022]
Abstract
The γ isoform of protein kinase C (PKCγ), which is concentrated in interneurons in the inner part of lamina II (IIi ) of the dorsal horn, has been implicated in the expression of tactile allodynia. Lamina IIi PKCγ interneurons were shown to be activated by tactile inputs and to participate in local circuits through which these inputs can reach lamina I, nociceptive output neurons. That such local circuits are gated by glycinergic inhibition and that A- and C-fibers low threshold mechanoreceptors (LTMRs) terminate in lamina IIi raise the general issue of synaptic inputs to lamina IIi PKCγ interneurons. Combining light and electron microscopic immunochemistry in the rat spinal trigeminal nucleus, we show that PKCγ-immunoreactivity is mostly restricted to interneurons in lamina IIi of the medullary dorsal horn, where they constitute 1/3 of total neurons. The majority of synapses on PKCγ-immunoreactive interneurons are asymmetric (likely excitatory). PKCγ-immunoreactive interneurons appear to receive exclusively myelinated primary afferents in type II synaptic glomeruli. Neither large dense core vesicle terminals nor type I synaptic glomeruli, assumed to be the endings of unmyelinated nociceptive terminals, were found on these interneurons. Moreover, there is no vesicular glutamate transporter 3-immunoreactive bouton, specific to C-LTMRs, on PKCγ-immunoreactive interneurons. PKCγ-immunoreactive interneurons contain GABAA ergic and glycinergic receptors. At the subcellular level, PKCγ-immunoreactivity is mostly concentrated on plasma membranes, close to, but not within, postsynaptic densities. That only myelinated primary afferents were found to contact PKCγ-immunoreactive interneurons suggests that myelinated, but not unmyelinated, LTMRs play a critical role in the expression of mechanical allodynia.
Collapse
Affiliation(s)
- Cédric Peirs
- Inserm/UdA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Université d'Auvergne, Faculté de Chirurgie Dentaire, Clermont-Ferrand, 63000, France
| | | | | | | | | | | |
Collapse
|
35
|
Ducourneau VR, Dolique T, Hachem-Delaunay S, Miraucourt LS, Amadio A, Blaszczyk L, Jacquot F, Ly J, Devoize L, Oliet SH, Dallel R, Mothet JP, Nagy F, Fénelon VS, Voisin DL. Cancer pain is not necessarily correlated with spinal overexpression of reactive glia markers. Pain 2014; 155:275-291. [DOI: 10.1016/j.pain.2013.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/21/2022]
|
36
|
Inhibition of serine and proline racemases by substrate-product analogues. Bioorg Med Chem Lett 2014; 24:390-3. [DOI: 10.1016/j.bmcl.2013.10.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 11/16/2022]
|
37
|
Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain 2013; 154 Suppl 1:S10-S28. [PMID: 23792284 PMCID: PMC3858488 DOI: 10.1016/j.pain.2013.06.022] [Citation(s) in RCA: 832] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 05/23/2013] [Accepted: 06/12/2013] [Indexed: 12/22/2022]
Abstract
Activation of glial cells and neuro-glial interactions are emerging as key mechanisms underlying chronic pain. Accumulating evidence has implicated 3 types of glial cells in the development and maintenance of chronic pain: microglia and astrocytes of the central nervous system (CNS), and satellite glial cells of the dorsal root and trigeminal ganglia. Painful syndromes are associated with different glial activation states: (1) glial reaction (ie, upregulation of glial markers such as IBA1 and glial fibrillary acidic protein (GFAP) and/or morphological changes, including hypertrophy, proliferation, and modifications of glial networks); (2) phosphorylation of mitogen-activated protein kinase signaling pathways; (3) upregulation of adenosine triphosphate and chemokine receptors and hemichannels and downregulation of glutamate transporters; and (4) synthesis and release of glial mediators (eg, cytokines, chemokines, growth factors, and proteases) to the extracellular space. Although widely detected in chronic pain resulting from nerve trauma, inflammation, cancer, and chemotherapy in rodents, and more recently, human immunodeficiency virus-associated neuropathy in human beings, glial reaction (activation state 1) is not thought to mediate pain sensitivity directly. Instead, activation states 2 to 4 have been demonstrated to enhance pain sensitivity via a number of synergistic neuro-glial interactions. Glial mediators have been shown to powerfully modulate excitatory and inhibitory synaptic transmission at presynaptic, postsynaptic, and extrasynaptic sites. Glial activation also occurs in acute pain conditions, and acute opioid treatment activates peripheral glia to mask opioid analgesia. Thus, chronic pain could be a result of "gliopathy," that is, dysregulation of glial functions in the central and peripheral nervous system. In this review, we provide an update on recent advances and discuss remaining questions.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Department of Anesthesiology and Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Temugin Berta
- Department of Anesthesiology and Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
38
|
A method for the determination of D-kynurenine in biological tissues. Anal Bioanal Chem 2013; 405:9747-54. [PMID: 24158577 DOI: 10.1007/s00216-013-7399-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/19/2013] [Accepted: 09/24/2013] [Indexed: 02/02/2023]
Abstract
D-kynurenine (D-KYN), a metabolite of D-tryptophan, can serve as the bioprecursor of kynurenic acid (KYNA) and 3-hydroxykynurenine, two neuroactive compounds that are believed to play a role in the pathophysiology of several neurological and psychiatric diseases. In order to investigate the possible presence of D-KYN in biological tissues, we developed a novel assay based on the conversion of D-KYN to KYNA by purified D-amino acid oxidase (D-AAO). Samples were incubated with D-AAO under optimal conditions for measuring D-AAO activity (100 mM borate buffer, pH 9.0), and newly produced KYNA was detected by high-performance liquid chromatography (HPLC) with fluorimetric detection. The detection limit for D-KYN was 300 fmol, and linearity of the assay was ascertained up to 300 pmol. No assay interference was noted when other D-amino acids, including D-serine and D-aspartate, were present in the incubation mixture at 50-fold higher concentrations than D-KYN. Using this new method, D-KYN was readily detected in the brain, liver, and plasma of mice treated systemically with D-KYN (300 mg/kg). In these experiments, enantioselectivity was confirmed by determining total kynurenine levels in the same samples using a conventional HPLC assay. Availability of a sensitive, specific, and simple method for D-KYN measurement will be instrumental for evaluating whether D-KYN should be considered for a role in physiology and pathology.
Collapse
|
39
|
Lu Y, Dong H, Gao Y, Gong Y, Ren Y, Gu N, Zhou S, Xia N, Sun YY, Ji RR, Xiong L. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. J Clin Invest 2013; 123:4050-62. [PMID: 23979158 DOI: 10.1172/jci70026] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/27/2013] [Indexed: 01/02/2023] Open
Abstract
Neuropathic pain is characterized by mechanical allodynia induced by low-threshold myelinated Aβ-fiber activation. The original gate theory of pain proposes that inhibitory interneurons in the lamina II of the spinal dorsal horn (DH) act as "gate control" units for preventing the interaction between innocuous and nociceptive signals. However, our understanding of the neuronal circuits underlying pain signaling and modulation in the spinal DH is incomplete. Using a rat model, we have shown that the convergence of glycinergic inhibitory and excitatory Aβ-fiber inputs onto PKCγ+ neurons in the superficial DH forms a feed-forward inhibitory circuit that prevents Aβ input from activating the nociceptive pathway. This feed-forward inhibition was suppressed following peripheral nerve injury or glycine blockage, leading to inappropriate induction of action potential outputs in the nociceptive pathway by Aβ-fiber stimulation. Furthermore, spinal blockage of glycinergic synaptic transmission in vivo induced marked mechanical allodynia. Our findings identify a glycinergic feed-forward inhibitory circuit that functions as a gate control to separate the innocuous mechanoreceptive pathway and the nociceptive pathway in the spinal DH. Disruption of this glycinergic inhibitory circuit after peripheral nerve injury has the potential to elicit mechanical allodynia, a cardinal symptom of neuropathic pain.
Collapse
Affiliation(s)
- Yan Lu
- Department of Anesthesiology and Pain Management, Xijing Hospital, Fourth Military Medical University, Xian, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Spinal D-amino acid oxidase contributes to mechanical pain hypersensitivity induced by sleep deprivation in the rat. Pharmacol Biochem Behav 2013; 111:30-6. [PMID: 23958579 DOI: 10.1016/j.pbb.2013.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/27/2013] [Accepted: 08/08/2013] [Indexed: 11/21/2022]
Abstract
We studied the hypothesis that spinal d-amino acid oxidase (DAAO) that is expressed in astrocytes and that has been reported to promote tonic pain in various pathophysiological conditions plays a role in 'physiological' pain hypersensitivity induced by rapid eye movement sleep deprivation (REMSD). The experiments were performed in healthy rats with a chronic intrathecal (i.t.) catheter. Pain behavior was assessed by determining limb withdrawal response to repetitive stimulation of the hind paw with a calibrated series of monofilaments. REMSD of 48 h duration produced a significant mechanical hypersensitivity. At 48 h of REMSD, the animals were treated i.t. with a DAAO inhibitor or vehicle. Three structurally different DAAO inhibitors were tested in this study: 6-chlorobenzo[d]isoxazol-3-ol (CBIO), sodium benzoate, and 5-methylpyrazole-3-carboxylic acid (AS-057278). CBIO (1-3 μg), sodium benzoate (30-100 μg) and AS-057278 (3-10 μg) produced dose-related antihypersensitivity effects in sleep-deprived animals. In control animals (with no sleep deprivation), the currently used doses of DAAO inhibitors failed to produce significant changes in mechanically evoked pain behavior. The results indicate that among spinal pain facilitatory mechanisms that contribute to the sleep deprivation-induced mechanical pain hypersensitivity is DAAO, presumably due to production of reactive oxygen species, such as hydrogen peroxide, an endogenous agonist of the pronociceptive TRPA1 ion channel.
Collapse
|
41
|
Dieb W, Hafidi A. Astrocytes are involved in trigeminal dynamic mechanical allodynia: potential role of D-serine. J Dent Res 2013; 92:808-13. [PMID: 23881719 DOI: 10.1177/0022034513498898] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Trigeminal neuropathic pain affects millions of people worldwide. Despite decades of study on the neuronal processing of pain, mechanisms underlying enhanced pain states after injury remain unclear. N-methyl-D-aspartate (NMDA) receptor-dependent changes play a critical role in triggering central sensitization in neuropathic pain. These receptors are regulated at the glycine site through a mandatory endogenous co-agonist D-serine, which is synthesized by astrocytes. Therefore, the present study was carried out to determine whether astrocytes are involved, through D-serine secretion, in dynamic mechanical allodynia (DMA) obtained after chronic constriction of the infraorbital nerve (CCI-IoN) in rats. Two weeks after CCI-IoN, an important reaction of astrocytes was present in the medullary dorsal horn (MDH), as revealed by an up-regulation of glial fibrillary acidic protein (GFAP) in allodynic rats. In parallel, an increase in D-serine synthesis, which co-localized with its synthesis enzyme serine racemase, was strictly observed in astrocytes. Blocking astrocyte metabolism by intracisternal delivery of fluorocitrate alleviated DMA. Furthermore, the administration of D-amino-acid oxidase (DAAO), a D-serine-degrading enzyme, or that of L-serine O-sulfate (LSOS), a serine racemase inhibitor, significantly decreased pain behavior in allodynic rats. These results demonstrate that astrocytes are involved in the modulation of orofacial post-traumatic neuropathic pain via the release of the gliotransmitter D-serine.
Collapse
Affiliation(s)
- W Dieb
- 7280, Neuro-Psycho-pharmacologie des Systèmes Dopaminergiques sous-corticaux, Clermont-Ferrand, Université Clermont1, F-63000, France.
| | | |
Collapse
|
42
|
Gelsemine, a principal alkaloid from Gelsemium sempervirens Ait., exhibits potent and specific antinociception in chronic pain by acting at spinal α3 glycine receptors. Pain 2013; 154:2452-2462. [PMID: 23886522 DOI: 10.1016/j.pain.2013.07.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/14/2013] [Accepted: 07/17/2013] [Indexed: 11/22/2022]
Abstract
The present study examined the antinociceptive effects of gelsemine, the principal alkaloid in Gelsemium sempervirens Ait. A single intrathecal injection of gelsemine produced potent and specific antinociception in formalin-induced tonic pain, bone cancer-induced mechanical allodynia, and spinal nerve ligation-induced painful neuropathy. The antinociception was dose-dependent, with maximal inhibition of 50% to 60% and ED50 values of 0.5 to 0.6 μg. Multiple daily intrathecal injections of gelsemine for 7 days induced no tolerance to antinociception in the rat model of bone cancer pain. Spinal gelsemine was not effective in altering contralateral paw withdrawal thresholds, and had only a slight inhibitory effect on formalin-induced acute nociception. The specific antinociception of gelsemine in chronic pain was blocked dose-dependently by the glycine receptor (GlyR) antagonist strychnine with an apparent ID50 value of 3.8 μg. Gelsemine concentration-dependently displaced H(3)-strychnine binding to the membrane fraction of rat spinal cord homogenates, with a 100% displacement and a Ki of 21.9μM. Gene ablation of the GlyR α3 subunit (α3 GlyR) but not α1 GlyR, by a 7-day intrathecal injection of small interfering RNA (siRNA) targeting α3 GlyR or α1 GlyR, nearly completely prevented gelsemine-induced antinociception in neuropathic pain. Our results demonstrate that gelsemine produces potent and specific antinociception in chronic pain states without induction of apparent tolerance. The results also suggest that gelsemine produces antinociception by activation of spinal α3 glycine receptors, and support the notion that spinal α3 glycine receptors are a potential therapeutic target molecule for the management of chronic pain.
Collapse
|
43
|
Suzuki M, Sasabe J, Furuya S, Mita M, Hamase K, Aiso S. Type 1 diabetes mellitus in mice increases hippocampal D-serine in the acute phase after streptozotocin injection. Brain Res 2012; 1466:167-76. [PMID: 22652304 DOI: 10.1016/j.brainres.2012.05.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/28/2012] [Accepted: 05/21/2012] [Indexed: 01/21/2023]
Abstract
Diabetes mellitus (DM) is known to be a risk factor in the development of deficits in cognition, learning, and memory. In DM animal models, including the streptozotocin (STZ)-induced diabetic rodent model, abnormalities in the regulation of several neurotransmitters have been reported. However, the role in DM of d-serine, an endogenous co-agonist of glutamatergic N-methyl-d-aspartate receptors, remains unknown. Here, we measured the amounts of d-/l-serine and l-glutamate in the hippocampi of STZ-treated mice using a 2D-HPLC system from acute to chronic phases after the induction of DM. STZ treatment significantly increased the d-serine level by 23.7% in the hippocampus compared with vehicle treatment at 1 week after the injection, whereas it did not affect the levels of l-serine. In contrast, l-glutamate levels in the hippocampus were elevated at 3 days after STZ injection and rather decreased at 1 week after that. Such alterations in the amino acids were not evident in the chronic phases. We further tested whether the STZ-induced d-serine increase was caused by DM pathophysiology. In vivo, subcutaneous insulin implants into STZ-treated mice restored the elevated d-serine levels in the hippocampus. An in vitro study using primary cultured hippocampal neurons revealed that treatments of STZ did not directly affect the level of d-serine secreted in the cultured media. These results indicate that DM pathology caused by insulin deficiency triggers transient d-serine increase and l-glutamate alteration in the hippocampus. Such aberrant regulations of excitatory neurotransmitters may be relevant to the formation of DM-related dysfunction of the central nervous system (CNS).
Collapse
Affiliation(s)
- Masataka Suzuki
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Chiang CY, Sessle BJ, Dostrovsky JO. Role of Astrocytes in Pain. Neurochem Res 2012; 37:2419-31. [DOI: 10.1007/s11064-012-0801-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/18/2012] [Accepted: 05/07/2012] [Indexed: 12/18/2022]
|
45
|
Gong N, Wang YC, Wang HL, Ma AN, Hashimoto K, Wang YX. Interactions of the potent D-amino acid oxidase inhibitor CBIO with morphine in pain and tolerance to analgesia. Neuropharmacology 2012; 63:460-8. [PMID: 22587944 DOI: 10.1016/j.neuropharm.2012.04.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
A series of experiments using technologies of gene mutation and silencing as well as chemical biology have demonstrated that spinal D-amino acid oxidase (DAAO) contributes to the development of central sensitization-mediated chronic pain and might be a potential molecular target for the treatment of chronic pain. DAAO inhibitors are now under clinical investigations for the management of chronic neuropathic pain. This study examined the interactions between morphine and the DAAO inhibitor CBIO (5-chloro-benzo[d]isoxazol-3-ol) in pain and analgesia tolerance mainly in the formalin test. Given subcutaneously CBIO acutely interacted with morphine in analgesia in an additive manner both in the acute nociception settings (the formalin acute phase nociception, hot-plate test and tail immersion test) and in formalin-induced tonic pain. Bi-daily exposure of CBIO given subcutaneously for 7 days did not produce self-tolerance to analgesia or cross-tolerance to morphine whereas 7-day subcutaneous morphine induced self-tolerance to analgesia but not cross-tolerance to CBIO. More importantly, subcutaneous co-administrations or even single dose of CBIO completely prevented or reversed morphine tolerance to analgesia (exhibited by a single dose or a dose-response curve of morphine) in both formalin-induced acute phase nociception and tonic phase pain. These results, for the first time, identified DAAO as an efficacious molecule mediating morphine tolerance, in addition to clarifying the complex interactions between morphine and DAAO inhibitors probed by CBIO, and provided a pharmacological basis for DAAO inhibitors in combination with morphine to clinically manage pain.
Collapse
Affiliation(s)
- Nian Gong
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
46
|
Chen XL, Li XY, Qian SB, Wang YC, Zhang PZ, Zhou XJ, Wang YX. Down-regulation of spinal D-amino acid oxidase expression blocks formalin-induced tonic pain. Biochem Biophys Res Commun 2012; 421:501-7. [PMID: 22521889 DOI: 10.1016/j.bbrc.2012.04.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/04/2012] [Indexed: 01/07/2023]
Abstract
A series of inhibitors of d-amino acid oxidase (DAAO) are specific in blocking chronic pain, including formalin-induced tonic pain, neuropathic pain and bone cancer pain. This study used RNA interference technology to further validate the notion that spinal DAAO mediates formalin-induced pain. To target DAAO, a siRNA/DAAO formulated in polyetherimide (PEI) complexation and a shRNA/DAAO (shDAAO, with the same sequence as siRNA/DAAO after intracellular processing) expressed in recombinant adenoviral vectors were designed. The siRNA/DAAO was effective in blocking DAAO expression in NRK-52E rat kidney tubule epithelial cells, compared to the nonspecific oligonucleotides. Furthermore, multiple-daily intrathecal injections of both siRNA/DAAO and Ad-shDAAO for 7 days significantly inhibited spinal DAAO expression by 50-80% as measured by real-time quantitative PCR and Western blot, and blocked spinal DAAO enzymatic activity by approximately 60%. Meanwhile, both siRNA/DAAO and Ad-shDAAO prevented formalin-induced tonic phase pain by approximately 60%. Multiple-daily intrathecal injections of siRNA/DAAO and Ad-shDAAO also blocked more than 30% spinal expression of GFAP, a biomarker for the activation of astrocytes. These results further suggest that down-regulation of spinal DAAO expression and enzymatic activity leads to analgesia with its mechanism potentially related to activation of astrocytes in the spinal cord.
Collapse
Affiliation(s)
- Xiao-Ling Chen
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Graeber MB, Christie MJ. Multiple mechanisms of microglia: a gatekeeper's contribution to pain states. Exp Neurol 2012; 234:255-61. [PMID: 22273537 DOI: 10.1016/j.expneurol.2012.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/20/2011] [Accepted: 01/05/2012] [Indexed: 12/30/2022]
Abstract
Microglia are gatekeepers in the CNS for a wide range of pathological stimuli and they blow the whistle when things go wrong. Collectively, microglia form a CNS tissue alarm system (Kreutzberg's "sensor of pathology"), and their involvement in physiological pain is in line with this function. However, pathological neuropathic pain is characterized by microglial activation that is unwanted and considered to contribute to or even cause tactile allodynia, hyperalgesia and spontaneous pain. Such abnormal microglial behavior seems likely due to an as yet ill-understood disturbance of microglial functions unrelated to inflammation. The idea that microglia have roles in the CNS that differ from those of peripheral macrophages has gained momentum with the discovery of their separate, pre-hematopoietic lineage during embryonic development and their direct interactions with synapses.
Collapse
Affiliation(s)
- Manuel B Graeber
- Brain Tumor Research Laboratories, The Brain and Mind Research Institute, University of Sydney, Sydney, Australia.
| | | |
Collapse
|
48
|
Foley JC, McIver SR, Haydon PG. Gliotransmission modulates baseline mechanical nociception. Mol Pain 2011; 7:93. [PMID: 22136202 PMCID: PMC3248913 DOI: 10.1186/1744-8069-7-93] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/02/2011] [Indexed: 02/08/2023] Open
Abstract
Pain is a physiological and adaptive process which occurs to protect organisms from tissue damage and extended injury. Pain sensation beyond injury, however, is a pathological process which is poorly understood. Experimental models of neuropathic pain demonstrate that reactive astrocytes contribute to reduced nociceptive thresholds. Astrocytes release "gliotransmitters" such as D-serine, glutamate, and ATP, which is extracellularly hydrolyzed to adenosine. Adenosine 1 receptor activation in the spinal cord has anti-nociceptive effects on baseline pain threshold, but the source of the endogenous ligand (adenosine) in the spinal cord is unknown. In this study we used a transgenic mouse model in which SNARE-mediated gliotransmission was selectively attenuated (called dnSNARE mice) to investigate the role of astrocytes in mediating baseline nociception and the development of neuropathic pain. Under baseline conditions, immunostaining in the dorsal horn of the spinal cord showed astrocyte-specific transgene expression in dnSNARE mice, and no difference in expression levels of the astrocyte marker GFAP and the microglia marker Iba1 relative to wild-type mice. The Von Frey filament test was used to probe sensitivity to baseline mechanical pain thresholds and allodynia following the spared nerve injury model of neuropathic pain. DnSNARE mice exhibit a reduced nociceptive threshold in response to mechanical stimulation compared to wild-type mice under baseline conditions, but nociceptive thresholds following spared nerve injury were similar between dnSNARE and wild-types. This study is the first to provide evidence that gliotransmission contributes to basal mechanical nociception.
Collapse
Affiliation(s)
- Jeannine C Foley
- Department of Neuroscience, Tufts University, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|