1
|
Garcia Moreno SI, Limani F, Ludwig I, Gilbert C, Pifl C, Hnasko TS, Steinkellner T. Viral overexpression of human alpha-synuclein in mouse substantia nigra dopamine neurons results in hyperdopaminergia but no neurodegeneration. Exp Neurol 2024; 382:114959. [PMID: 39288832 DOI: 10.1016/j.expneurol.2024.114959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Loss of select neuronal populations such as midbrain dopamine (DA) neurons is a pathological hallmark of Parkinson's disease (PD). The small neuronal protein α-synuclein has been related both genetically and neuropathologically to PD, yet how and if it contributes to selective vulnerability remains elusive. Here, we describe the generation of a novel adeno-associated viral vector (AAV) for Cre-dependent overexpression of wild-type human α-synuclein. Our strategy allows us to restrict α-synuclein to select neuronal populations and hence investigate the cell-autonomous effects of elevated α-synuclein in genetically-defined cell types. Since DA neurons in the substantia nigra pars compacta (SNc) are particularly vulnerable in PD, we investigated in more detail the effects of increased α-synuclein in these cells. AAV-mediated overexpression of wildtype human α-synuclein in SNc DA neurons increased the levels of α-synuclein within these cells and augmented phosphorylation of α-synuclein at serine-129, which is considered a pathological feature of PD and other synucleinopathies. However, despite abundant α-synuclein overexpression and hyperphosphorylation we did not observe any dopaminergic neurodegeneration up to 90 days post virus infusion. In contrast, we noticed that overexpression of α-synuclein resulted in increased locomotor activity and elevated striatal DA levels suggesting that α-synuclein enhanced dopaminergic activity. We therefore conclude that cell-autonomous effects of elevated α-synuclein are not sufficient to trigger acute dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Sofia Ines Garcia Moreno
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Fabian Limani
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Iina Ludwig
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Catherine Gilbert
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christian Pifl
- Center for Brain Research, Medical University of Vienna, Vienna, Vienna, Austria
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Veterans Affairs, San Diego Veterans Affairs Healthcare System, San Diego, CA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Thomas Steinkellner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Burré J, Edwards RH, Halliday G, Lang AE, Lashuel HA, Melki R, Murayama S, Outeiro TF, Papa SM, Stefanis L, Woerman AL, Surmeier DJ, Kalia LV, Takahashi R. Research Priorities on the Role of α-Synuclein in Parkinson's Disease Pathogenesis. Mov Disord 2024; 39:1663-1678. [PMID: 38946200 DOI: 10.1002/mds.29897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Various forms of Parkinson's disease, including its common sporadic form, are characterized by prominent α-synuclein (αSyn) aggregation in affected brain regions. However, the role of αSyn in the pathogenesis and evolution of the disease remains unclear, despite vast research efforts of more than a quarter century. A better understanding of the role of αSyn, either primary or secondary, is critical for developing disease-modifying therapies. Previous attempts to hone this research have been challenged by experimental limitations, but recent technological advances may facilitate progress. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society (MDS) charged a panel of experts in the field to discuss current scientific priorities and identify research strategies with potential for a breakthrough. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research and Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Robert H Edwards
- Department of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Glenda Halliday
- Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hilal A Lashuel
- Laboratory of Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-Aux-Roses, France
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- The Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, University Medical Center, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stella M Papa
- Department of Neurology, School of Medicine, and Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Leonidas Stefanis
- First Department of Neurology, Eginitio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Amanda L Woerman
- Department of Biology, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, Colorado, USA
| | - Dalton James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Lorraine V Kalia
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Moreno SIG, Limani F, Ludwig I, Gilbert C, Pifl C, Hnasko TS, Steinkellner T. Viral overexpression of human alpha-synuclein in mouse substantia nigra dopamine neurons results in hyperdopaminergia but no neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592188. [PMID: 38746104 PMCID: PMC11092628 DOI: 10.1101/2024.05.03.592188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Loss of select neuronal populations such as midbrain dopamine (DA) neurons is a pathological hallmark of Parkinson's disease (PD). The small neuronal protein α-synuclein has been related both genetically and neuropathologically to PD, yet how it contributes to selective vulnerability remains elusive. Here, we describe the generation of a novel adeno-associated viral vector (AAV) for Cre-dependent overexpression of wild-type human α-synuclein. Our strategy allows us to restrict α-synuclein to select neuronal populations and hence investigate the cell-autonomous effects of elevated α-synuclein in genetically-defined cell types. Since DA neurons in the substantia nigra pars compacta (SNc) are particularly vulnerable in PD, we investigated in more detail the effects of increased α-synuclein in these cells. AAV-mediated overexpression of wildtype human α-synuclein in SNc DA neurons increased the levels of α-synuclein within these cells and augmented phosphorylation of α-synuclein at serine-129, which is considered a pathological feature of PD and other synucleinopathies. However, despite abundant α-synuclein overexpression and hyperphosphorylation we did not observe any DA neurodegeneration up to 90 days post virus infusion. In contrast, we noticed that overexpression of α-synuclein resulted in increased locomotor activity and elevated striatal DA levels suggesting that α-synuclein enhanced dopaminergic activity. We therefore conclude that cell-autonomous effects of elevated α-synuclein are not sufficient to trigger acute DA neurodegeneration.
Collapse
|
4
|
Espay AJ, Lees AJ. Loss of monomeric alpha-synuclein (synucleinopenia) and the origin of Parkinson's disease. Parkinsonism Relat Disord 2024; 122:106077. [PMID: 38461037 DOI: 10.1016/j.parkreldis.2024.106077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
These facts argue against the gain-of-function synucleinopathy hypothesis, which proposes that Lewy pathology causes Parkinson's disease: (1) most brains from people without neurological symptoms have multiple pathologies; (2) neither pathology type nor distribution correlate with disease severity or progression in Parkinson's disease; (3) aggregated α-synuclein in the form of Lewy bodies is not a space-occupying lesion but the insoluble fraction of its precursor, soluble monomeric α-synuclein; (4) pathology spread is passive, occurring by irreversible nucleation, not active replication; and (5) low cerebrospinal fluid α-synuclein levels predict brain atrophy and clinical disease progression. The transformation of α-synuclein into Lewy pathology may occur as a response to biological, toxic, or infectious stressors whose persistence perpetuates the nucleation process, depleting normal α-synuclein and eventually leading to Parkinson's symptoms from neuronal death. We propose testing the loss-of-function synucleinopenia hypothesis by evaluating the clinical and neurodegenerative rescue effect of replenishing the levels of monomeric α-synuclein.
Collapse
Affiliation(s)
- Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA.
| | - Andrew J Lees
- The National Hospital, Queen Square and Reta Lila Weston Institute for Neurological Studies University College London, London, UK
| |
Collapse
|
5
|
Abioye A, Akintade D, Mitchell J, Olorode S, Adejare A. Nonintuitive Immunogenicity and Plasticity of Alpha-Synuclein Conformers: A Paradigm for Smart Delivery of Neuro-Immunotherapeutics. Pharmaceutics 2024; 16:609. [PMID: 38794271 PMCID: PMC11124533 DOI: 10.3390/pharmaceutics16050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the extensive research successes and continuous developments in modern medicine in terms of diagnosis, prevention, and treatment, the lack of clinically useful disease-modifying drugs or immunotherapeutic agents that can successfully treat or prevent neurodegenerative diseases is an ongoing challenge. To date, only one of the 244 drugs in clinical trials for the treatment of neurodegenerative diseases has been approved in the past decade, indicating a failure rate of 99.6%. In corollary, the approved monoclonal antibody did not demonstrate significant cognitive benefits. Thus, the prevalence of neurodegenerative diseases is increasing rapidly. Therefore, there is an urgent need for creative approaches to identifying and testing biomarkers for better diagnosis, prevention, and disease-modifying strategies for the treatment of neurodegenerative diseases. Overexpression of the endogenous α-synuclein has been identified as the driving force for the formation of the pathogenic α-synuclein (α-Syn) conformers, resulting in neuroinflammation, hypersensitivity, endogenous homeostatic responses, oxidative dysfunction, and degeneration of dopaminergic neurons in Parkinson's disease (PD). However, the conformational plasticity of α-Syn proffers that a certain level of α-Syn is essential for the survival of neurons. Thus, it exerts both neuroprotective and neurotoxic (regulatory) functions on neighboring neuronal cells. Furthermore, the aberrant metastable α-Syn conformers may be subtle and difficult to detect but may trigger cellular and molecular events including immune responses. It is well documented in literature that the misfolded α-Syn and its conformers that are released into the extracellular space from damaged or dead neurons trigger the innate and adaptive immune responses in PD. Thus, in this review, we discuss the nonintuitive plasticity and immunogenicity of the α-Syn conformers in the brain immune cells and their physiological and pathological consequences on the neuroimmune responses including neuroinflammation, homeostatic remodeling, and cell-specific interactions that promote neuroprotection in PD. We also critically reviewed the novel strategies for immunotherapeutic delivery interventions in PD pathogenesis including immunotherapeutic targets and potential nanoparticle-based smart drug delivery systems. It is envisioned that a greater understanding of the nonintuitive immunogenicity of aberrant α-Syn conformers in the brain's microenvironment would provide a platform for identifying valid therapeutic targets and developing smart brain delivery systems for clinically effective disease-modifying immunotherapeutics that can aid in the prevention and treatment of PD in the future.
Collapse
Affiliation(s)
- Amos Abioye
- College of Pharmacy and Health Sciences, Belmont University, Nashville, TN 37212, USA
| | - Damilare Akintade
- Department of Biomedical Sciences, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK; (D.A.); (J.M.); (S.O.)
| | - James Mitchell
- Department of Biomedical Sciences, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK; (D.A.); (J.M.); (S.O.)
| | - Simisade Olorode
- Department of Biomedical Sciences, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK; (D.A.); (J.M.); (S.O.)
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA;
| |
Collapse
|
6
|
Doskas T, Vadikolias K, Ntoskas K, Vavougios GD, Tsiptsios D, Stamati P, Liampas I, Siokas V, Messinis L, Nasios G, Dardiotis E. Neurocognitive Impairment and Social Cognition in Parkinson's Disease Patients. Neurol Int 2024; 16:432-449. [PMID: 38668129 PMCID: PMC11054167 DOI: 10.3390/neurolint16020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
In addition to motor symptoms, neurocognitive impairment (NCI) affects patients with prodromal Parkinson's disease (PD). NCI in PD ranges from subjective cognitive complaints to dementia. The purpose of this review is to present the available evidence of NCI in PD and highlight the heterogeneity of NCI phenotypes as well as the range of factors that contribute to NCI onset and progression. A review of publications related to NCI in PD up to March 2023 was performed using PubMed/Medline. There is an interconnection between the neurocognitive and motor symptoms of the disease, suggesting a common underlying pathophysiology as well as an interconnection between NCI and non-motor symptoms, such as mood disorders, which may contribute to confounding NCI. Motor and non-motor symptom evaluation could be used prognostically for NCI onset and progression in combination with imaging, laboratory, and genetic data. Additionally, the implications of NCI on the social cognition of afflicted patients warrant its prompt management. The etiology of NCI onset and its progression in PD is multifactorial and its effects are equally grave as the motor effects. This review highlights the importance of the prompt identification of subjective cognitive complaints in PD patients and NCI management.
Collapse
Affiliation(s)
- Triantafyllos Doskas
- Department of Neurology, Athens Naval Hospital, 11521 Athens, Greece;
- Department of Neurology, General University Hospital of Alexandroupoli, 68100 Alexandroupoli, Greece; (K.V.); (D.T.)
| | - Konstantinos Vadikolias
- Department of Neurology, General University Hospital of Alexandroupoli, 68100 Alexandroupoli, Greece; (K.V.); (D.T.)
| | | | - George D. Vavougios
- Department of Neurology, Athens Naval Hospital, 11521 Athens, Greece;
- Department of Neurology, Faculty of Medicine, University of Cyprus, 1678 Lefkosia, Cyprus
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Dimitrios Tsiptsios
- Department of Neurology, General University Hospital of Alexandroupoli, 68100 Alexandroupoli, Greece; (K.V.); (D.T.)
| | - Polyxeni Stamati
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.S.); (I.L.); (V.S.); (E.D.)
| | - Ioannis Liampas
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.S.); (I.L.); (V.S.); (E.D.)
| | - Vasileios Siokas
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.S.); (I.L.); (V.S.); (E.D.)
| | - Lambros Messinis
- School of Psychology, Laboratory of Neuropsychology and Behavioural Neuroscience, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Grigorios Nasios
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece;
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.S.); (I.L.); (V.S.); (E.D.)
| |
Collapse
|
7
|
Peng H, Chen S, Wu S, Shi X, Ma J, Yang H, Li X. Alpha-synuclein in skin as a high-quality biomarker for Parkinson's disease. J Neurol Sci 2023; 451:120730. [PMID: 37454572 DOI: 10.1016/j.jns.2023.120730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Parkinson's disease (PD), the most common neurological motor system disorder, which characterised by the irreversible loss of dopaminergic neurones in the substantia nigra pars compacta, and leads to the deficiency of dopamine in the striatum. Deposited Lewy bodies (LBs) in diseased neurones and nerve terminals are the pathological hallmark of PD, and alpha-synuclein (α-Syn) is the most prominent protein in LBs. The tight association between α-Syn and the molecular pathology of PD has generatly increaed the interest in using the α-Syn species as biomarkers to diagnose early PD. α-Syn is not confined to the central nervous system, it is also present in the peripheral tissues, such as human skin. The assessment of skin α-Syn has the potential to be a diagnostic method that not only has excellent sensitivity, specificity, and reproducibility, but also convenient and acceptable to patients. In this review, we (i) integrate the biochemical, aggregation and structural features of α-Syn; (ii) map the distribution of the α-Syn species present in the brain, biological fluids, and peripheral tissues; and (iii) present a critical and comparative analysis of previous studies that have measured α-Syn in the skin. Finally, we provide an outlook on the future of skin biopsy as a diagnostic approach for PD, and highlight its potential implications for clinical trials, clinical decision-making, treatment strategies as well as the development of new therapies.
Collapse
Affiliation(s)
- Haoran Peng
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Siyuan Chen
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Neurology, People's Hospital of Zheng Zhou University, Zhengzhou, Henan 450003, China
| | - Shaopu Wu
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Neurology, People's Hospital of Zheng Zhou University, Zhengzhou, Henan 450003, China
| | - Xiaoxue Shi
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Neurology, People's Hospital of Zheng Zhou University, Zhengzhou, Henan 450003, China
| | - Jianjun Ma
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Neurology, People's Hospital of Zheng Zhou University, Zhengzhou, Henan 450003, China
| | - Hongqi Yang
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Neurology, People's Hospital of Zheng Zhou University, Zhengzhou, Henan 450003, China
| | - Xue Li
- Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Neurology, People's Hospital of Zheng Zhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
8
|
Espay AJ, McFarthing K. Alpha-synuclein and the Parkinson's disease drug pipeline. Parkinsonism Relat Disord 2023:105432. [PMID: 37244791 DOI: 10.1016/j.parkreldis.2023.105432] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/29/2023]
Abstract
The process of protein aggregation involves the transformation of soluble peptides into insoluble cross-beta amyloids. In Parkinson's disease (PD), soluble monomeric α-synuclein transforms into the amyloid state known as Lewy pathology. Monomeric (functional) α-synuclein depletes as the fraction of Lewy pathology increases. We examined the allocation of disease-modifying projects in the PD therapeutic pipeline classified based on whether they aimed to reduce directly or indirectly the insoluble or increase the soluble α-synuclein. A project was defined as a drug development program that may include more than one registered clinical trial, according to the Parkinson's Hope List, a database of therapies under development for PD. Of 67 projects, 46 aimed to reduce α-synuclein, 15 (22.4%) directly and 31 (46.3%) indirectly, amounting to 68.7% of all disease-modifying projects. No projects explicitly aimed to increase soluble α-synuclein levels. Altogether, α-synuclein is the target of more than two-thirds of the disease-modifying pipeline, with treatments aimed at reducing or preventing an increase in its insoluble fraction. As no treatments aim to restore soluble α-synuclein levels within a normal range, we propose rebalancing the therapeutic PD pipeline.
Collapse
Affiliation(s)
- Alberto J Espay
- Department of Neurology, James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA.
| | | |
Collapse
|
9
|
Sugeno N, Hasegawa T. Unraveling the Complex Interplay between Alpha-Synuclein and Epigenetic Modification. Int J Mol Sci 2023; 24:ijms24076645. [PMID: 37047616 PMCID: PMC10094812 DOI: 10.3390/ijms24076645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Alpha-synuclein (αS) is a small, presynaptic neuronal protein encoded by the SNCA gene. Point mutations and gene multiplication of SNCA cause rare familial forms of Parkinson’s disease (PD). Misfolded αS is cytotoxic and is a component of Lewy bodies, which are a pathological hallmark of PD. Because SNCA multiplication is sufficient to cause full-blown PD, gene dosage likely has a strong impact on pathogenesis. In sporadic PD, increased SNCA expression resulting from a minor genetic background and various environmental factors may contribute to pathogenesis in a complementary manner. With respect to genetic background, several risk loci neighboring the SNCA gene have been identified, and epigenetic alterations, such as CpG methylation and regulatory histone marks, are considered important factors. These alterations synergistically upregulate αS expression and some post-translational modifications of αS facilitate its translocation to the nucleus. Nuclear αS interacts with DNA, histones, and their modifiers to alter epigenetic status; thereby, influencing the stability of neuronal function. Epigenetic changes do not affect the gene itself but can provide an appropriate transcriptional response for neuronal survival through DNA methylation or histone modifications. As a new approach, publicly available RNA sequencing datasets from human midbrain-like organoids may be used to compare transcriptional responses through epigenetic alterations. This informatic approach combined with the vast amount of transcriptomics data will lead to the discovery of novel pathways for the development of disease-modifying therapies for PD.
Collapse
Affiliation(s)
- Naoto Sugeno
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
10
|
Sharma M, Burré J. α-Synuclein in synaptic function and dysfunction. Trends Neurosci 2023; 46:153-166. [PMID: 36567199 PMCID: PMC9877183 DOI: 10.1016/j.tins.2022.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
α-Synuclein is a neuronal protein that is enriched in presynaptic terminals. Under physiological conditions, it binds to synaptic vesicle membranes and functions in neurotransmitter release, although the molecular details remain unclear, and it is controversial whether α-synuclein inhibits or facilitates neurotransmitter release. Pathologically, in synucleinopathies including Parkinson's disease (PD), α-synuclein forms aggregates that recruit monomeric α-synuclein and spread throughout the brain, which triggers neuronal dysfunction at molecular, cellular, and organ levels. Here, we present an overview of the effects of α-synuclein on SNARE-complex assembly, neurotransmitter release, and synaptic vesicle pool homeostasis, and discuss how the observed divergent effects of α-synuclein on neurotransmitter release can be reconciled. We also discuss how gain-of-function versus loss-of-function of α-synuclein may contribute to pathogenesis in synucleinopathies.
Collapse
Affiliation(s)
- Manu Sharma
- Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Jacqueline Burré
- Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Abstract
This Viewpoint makes a case for changing the approach in Parkinson disease research efforts from one of proteinopathy (accrual of amyloids) to proteinopenia (depletion of normal proteins).
Collapse
Affiliation(s)
- Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, Gainesville, Florida
| |
Collapse
|
12
|
Carnazza KE, Komer LE, Xie YX, Pineda A, Briano JA, Gao V, Na Y, Ramlall T, Buchman VL, Eliezer D, Sharma M, Burré J. Synaptic vesicle binding of α-synuclein is modulated by β- and γ-synucleins. Cell Rep 2022; 39:110675. [PMID: 35417693 PMCID: PMC9116446 DOI: 10.1016/j.celrep.2022.110675] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 01/23/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
α-synuclein, β-synuclein, and γ-synuclein are abundantly expressed proteins in the vertebrate nervous system. α-synuclein functions in neurotransmitter release by binding to and clustering synaptic vesicles and chaperoning SNARE-complex assembly. Pathologically, aggregates originating from soluble pools of α-synuclein are deposited into Lewy bodies in Parkinson's disease and related synucleinopathies. The functions of β-synuclein and γ-synuclein in presynaptic terminals remain poorly studied. Using in vitro liposome binding studies, circular dichroism spectroscopy, immunoprecipitation, and fluorescence resonance energy transfer (FRET) experiments on isolated synaptic vesicles in combination with subcellular fractionation of brains from synuclein mouse models, we show that β-synuclein and γ-synuclein have a reduced affinity toward synaptic vesicles compared with α-synuclein, and that heteromerization of β-synuclein or γ-synuclein with α-synuclein results in reduced synaptic vesicle binding of α-synuclein in a concentration-dependent manner. Our data suggest that β-synuclein and γ-synuclein are modulators of synaptic vesicle binding of α-synuclein and thereby reduce α-synuclein's physiological activity at the neuronal synapse.
Collapse
Affiliation(s)
- Kathryn E Carnazza
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lauren E Komer
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ying Xue Xie
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - André Pineda
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Juan Antonio Briano
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Virginia Gao
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yoonmi Na
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Trudy Ramlall
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Cardiff CF103AX, UK; Belgorod State National Research University, 85 Pobedy Street, Belgorod, Belgorod 308015, Russian Federation
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Manu Sharma
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jacqueline Burré
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
13
|
Koros C, Stefanis L, Scarmeas N. Parkinsonism and dementia. J Neurol Sci 2021; 433:120015. [PMID: 34642023 DOI: 10.1016/j.jns.2021.120015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
The aim of the present review is to summarize literature data on dementia in parkinsonian disorders. Cognitive decline and the gradual development of dementia are considered to be key features in the majority of parkinsonian conditions. The burden of dementia in everyday life of parkinsonian patients and their caregivers is vast and can be even more challenging to handle than the motor component of the disease. Common pathogenetic mechanisms involve the aggregation and spreading of abnormal proteins like alpha-synuclein, tau or amyloid in cortical and subcortical regions with subsequent dysregulation of multiple neurotransmitter systems. The degree of cognitive deterioration in these disorders is variable and ranges from mild cognitive impairment to severe cognitive dysfunction. There is also variation in the number and type of affected cognitive domains which can involve either a single domain like executive or visuospatial function or multiple ones. Novel genetic, biological fluid or imaging biomarkers appear promising in facilitating the diagnosis and staging of dementia in parkinsonian conditions. A significant part of current research in Parkinson's disease and other parkinsonian syndromes is targeted towards the cognitive aspects of these disorders. Stabilization or amelioration of cognitive outcomes represents a primary endpoint in many ongoing clinical trials for novel disease modifying treatments in this field. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Christos Koros
- 1st Department of Neurology, Aeginition University, Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Aeginition University, Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aeginition University, Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; The Gertrude H. Sergievsky Center, Department of Neurology, Taub Institute for Research in Alzheimer's, Disease and the Aging Brain, Columbia University, New York, USA.
| |
Collapse
|
14
|
The Impact of SNCA Variations and Its Product Alpha-Synuclein on Non-Motor Features of Parkinson's Disease. Life (Basel) 2021; 11:life11080804. [PMID: 34440548 PMCID: PMC8401994 DOI: 10.3390/life11080804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is a common and progressive neurodegenerative disease, caused by the loss of dopaminergic neurons in the substantia nigra pars compacta in the midbrain, which is clinically characterized by a constellation of motor and non-motor manifestations. The latter include hyposmia, constipation, depression, pain and, in later stages, cognitive decline and dysautonomia. The main pathological features of PD are neuronal loss and consequent accumulation of Lewy bodies (LB) in the surviving neurons. Alpha-synuclein (α-syn) is the main component of LB, and α-syn aggregation and accumulation perpetuate neuronal degeneration. Mutations in the α-syn gene (SNCA) were the first genetic cause of PD to be identified. Generally, patients carrying SNCA mutations present early-onset parkinsonism with severe and early non-motor symptoms, including cognitive decline. Several SNCA polymorphisms were also identified, and some of them showed association with non-motor manifestations. The functional role of these polymorphisms is only partially understood. In this review we explore the contribution of SNCA and its product, α-syn, in predisposing to the non-motor manifestations of PD.
Collapse
|
15
|
Oliveira LMA, Gasser T, Edwards R, Zweckstetter M, Melki R, Stefanis L, Lashuel HA, Sulzer D, Vekrellis K, Halliday GM, Tomlinson JJ, Schlossmacher M, Jensen PH, Schulze-Hentrich J, Riess O, Hirst WD, El-Agnaf O, Mollenhauer B, Lansbury P, Outeiro TF. Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. NPJ Parkinsons Dis 2021; 7:65. [PMID: 34312398 PMCID: PMC8313662 DOI: 10.1038/s41531-021-00203-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
With the advent of the genetic era in Parkinson's disease (PD) research in 1997, α-synuclein was identified as an important player in a complex neurodegenerative disease that affects >10 million people worldwide. PD has been estimated to have an economic impact of $51.9 billion in the US alone. Since the initial association with PD, hundreds of researchers have contributed to elucidating the functions of α-synuclein in normal and pathological states, and these remain critical areas for continued research. With this position paper the authors strive to achieve two goals: first, to succinctly summarize the critical features that define α-synuclein's varied roles, as they are known today; and second, to identify the most pressing knowledge gaps and delineate a multipronged strategy for future research with the goal of enabling therapies to stop or slow disease progression in PD.
Collapse
Affiliation(s)
- Luis M A Oliveira
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA.
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Robert Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA, USA
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ronald Melki
- Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Leonidas Stefanis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- First Department of Neurology, Medical School of the National and Kapodistrian University of Athens, Athens, Greece
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Faculty of Life Sciences, EPFL, Lausanne, Switzerland
| | - David Sulzer
- Department of Psychiatry, Neurology, Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Kostas Vekrellis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Glenda M Halliday
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Sydney, NSW, Australia
| | - Julianna J Tomlinson
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Michael Schlossmacher
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
| | - Poul Henning Jensen
- Aarhus University, Department of Biomedicine & DANDRITE, Danish Research Institute of Translational Neuroscience, Aarhus, Denmark
| | - Julia Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Cambridge, MA, USA
| | - Omar El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | | | - Tiago F Outeiro
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
- Max Planck Institute for Experimental Medicine, Göttingen, Germany.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
| |
Collapse
|
16
|
Pedersen CC, Lange J, Førland MGG, Macleod AD, Alves G, Maple-Grødem J. A systematic review of associations between common SNCA variants and clinical heterogeneity in Parkinson's disease. NPJ PARKINSONS DISEASE 2021; 7:54. [PMID: 34210990 PMCID: PMC8249472 DOI: 10.1038/s41531-021-00196-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/02/2021] [Indexed: 11/09/2022]
Abstract
There is great heterogeneity in both the clinical presentation and rate of disease progression among patients with Parkinson’s disease (PD). This can pose prognostic difficulties in a clinical setting, and a greater understanding of the risk factors that contribute to modify disease course is of clear importance for optimizing patient care and clinical trial design. Genetic variants in SNCA are an established risk factor for PD and are candidates to modify disease presentation and progression. This systematic review aimed to summarize all available primary research reporting the association of SNCA polymorphisms with features of PD. We systematically searched PubMed and Web of Science, from inception to 1 June 2020, for studies evaluating the association of common SNCA variants with age at onset (AAO) or any clinical feature attributed to PD in patients with idiopathic PD. Fifty-eight studies were included in the review that investigated the association between SNCA polymorphisms and a broad range of outcomes, including motor and cognitive impairment, sleep disorders, mental health, hyposmia, or AAO. The most reproducible findings were with the REP1 polymorphism or rs356219 and an earlier AAO, but no clear associations were identified with an SNCA polymorphism and any individual clinical outcome. The results of this comprehensive summary suggest that, while there is evidence that genetic variance in the SNCA region may have a small impact on clinical outcomes in PD, the mechanisms underlying the association of SNCA polymorphisms with PD risk may not be a major factor driving clinical heterogeneity in PD.
Collapse
Affiliation(s)
- Camilla Christina Pedersen
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Johannes Lange
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | | | - Angus D Macleod
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - Guido Alves
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.,Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Jodi Maple-Grødem
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway. .,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
17
|
Liu G, Peng J, Liao Z, Locascio JJ, Corvol JC, Zhu F, Dong X, Maple-Grødem J, Campbell MC, Elbaz A, Lesage S, Brice A, Mangone G, Growdon JH, Hung AY, Schwarzschild MA, Hayes MT, Wills AM, Herrington TM, Ravina B, Shoulson I, Taba P, Kõks S, Beach TG, Cormier-Dequaire F, Alves G, Tysnes OB, Perlmutter JS, Heutink P, Amr SS, van Hilten JJ, Kasten M, Mollenhauer B, Trenkwalder C, Klein C, Barker RA, Williams-Gray CH, Marinus J, Scherzer CR. Genome-wide survival study identifies a novel synaptic locus and polygenic score for cognitive progression in Parkinson's disease. Nat Genet 2021; 53:787-793. [PMID: 33958783 PMCID: PMC8459648 DOI: 10.1038/s41588-021-00847-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 03/16/2021] [Indexed: 02/02/2023]
Abstract
A key driver of patients' well-being and clinical trials for Parkinson's disease (PD) is the course that the disease takes over time (progression and prognosis). To assess how genetic variation influences the progression of PD over time to dementia, a major determinant for quality of life, we performed a longitudinal genome-wide survival study of 11.2 million variants in 3,821 patients with PD over 31,053 visits. We discover RIMS2 as a progression locus and confirm this in a replicate population (hazard ratio (HR) = 4.77, P = 2.78 × 10-11), identify suggestive evidence for TMEM108 (HR = 2.86, P = 2.09 × 10-8) and WWOX (HR = 2.12, P = 2.37 × 10-8) as progression loci, and confirm associations for GBA (HR = 1.93, P = 0.0002) and APOE (HR = 1.48, P = 0.001). Polygenic progression scores exhibit a substantial aggregate association with dementia risk, while polygenic susceptibility scores are not predictive. This study identifies a novel synaptic locus and polygenic score for cognitive disease progression in PD and proposes diverging genetic architectures of progression and susceptibility.
Collapse
Affiliation(s)
- Ganqiang Liu
- Center for Advanced Parkinson Research, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Precision Neurology Program of Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jiajie Peng
- Center for Advanced Parkinson Research, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Precision Neurology Program of Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Zhixiang Liao
- Center for Advanced Parkinson Research, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Precision Neurology Program of Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph J Locascio
- Center for Advanced Parkinson Research, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Precision Neurology Program of Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jean-Christophe Corvol
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Institut National de Santé et en Recherche Médicale, Centre National de Recherche Scientifique, Assistance Publique Hôpitaux de Paris, Département de Neurologie et de Génétique, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Frank Zhu
- Center for Advanced Parkinson Research, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Precision Neurology Program of Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xianjun Dong
- Center for Advanced Parkinson Research, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Precision Neurology Program of Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jodi Maple-Grødem
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Meghan C Campbell
- Departments of Neurology and Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexis Elbaz
- Paris-Saclay University, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Inserm, Gustave Roussy, 'Exposome and heredity' team, Centre de researche en épidémiologie et santé des populations (CESP), Villejuif, France
| | - Suzanne Lesage
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Institut National de Santé et en Recherche Médicale, Centre National de Recherche Scientifique, Assistance Publique Hôpitaux de Paris, Département de Neurologie et de Génétique, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Institut National de Santé et en Recherche Médicale, Centre National de Recherche Scientifique, Assistance Publique Hôpitaux de Paris, Département de Neurologie et de Génétique, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Graziella Mangone
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Institut National de Santé et en Recherche Médicale, Centre National de Recherche Scientifique, Assistance Publique Hôpitaux de Paris, Département de Neurologie et de Génétique, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - John H Growdon
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Albert Y Hung
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael A Schwarzschild
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael T Hayes
- Center for Advanced Parkinson Research, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Anne-Marie Wills
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Todd M Herrington
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Ira Shoulson
- Department of Neurology, Center for Health + Technology, University of Rochester, Rochester, NY, USA
| | - Pille Taba
- Department of Neurology and Neurosurgery, University of Tartu, Tartu, Estonia
| | - Sulev Kõks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia
| | | | - Florence Cormier-Dequaire
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Institut National de Santé et en Recherche Médicale, Centre National de Recherche Scientifique, Assistance Publique Hôpitaux de Paris, Département de Neurologie et de Génétique, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Guido Alves
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
- Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Ole-Bjørn Tysnes
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Joel S Perlmutter
- Departments of Neurology and Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Program of Physical Therapy and Program of Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter Heutink
- German Center for Neurodegenerative diseases (DZNE), Tübingen, Germany
| | - Sami S Amr
- Translational Genomics Core of Partners HealthCare Personalized Medicine, Cambridge, MA, USA
| | - Jacobus J van Hilten
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, University Hospital of Schleswig-Holstein, Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Roger A Barker
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Johan Marinus
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Clemens R Scherzer
- Center for Advanced Parkinson Research, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
- Precision Neurology Program of Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
18
|
Ray B, Mahalakshmi AM, Tuladhar S, Bhat A, Srinivasan A, Pellegrino C, Kannan A, Bolla SR, Chidambaram SB, Sakharkar MK. "Janus-Faced" α-Synuclein: Role in Parkinson's Disease. Front Cell Dev Biol 2021; 9:673395. [PMID: 34124057 PMCID: PMC8194081 DOI: 10.3389/fcell.2021.673395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/15/2021] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease (PD) is a pathological condition characterized by the aggregation and the resultant presence of intraneuronal inclusions termed Lewy bodies (LBs) and Lewy neurites which are mainly composed of fibrillar α-synuclein (α-syn) protein. Pathogenic aggregation of α-syn is identified as the major cause of LBs deposition. Several mutations in α-syn showing varied aggregation kinetics in comparison to the wild type (WT) α-syn are reported in PD (A30P, E46K, H 50Q, G51D, A53E, and A53T). Also, the cell-to-cell spread of pathological α-syn plays a significant role in PD development. Interestingly, it has also been suggested that the pathology of PD may begin in the gastrointestinal tract and spread via the vagus nerve (VN) to brain proposing the gut-brain axis of α-syn pathology in PD. Despite multiple efforts, the behavior and functions of this protein in normal and pathological states (specifically in PD) is far from understood. Furthermore, the etiological factors responsible for triggering aggregation of this protein remain elusive. This review is an attempt to collate and present latest information on α-syn in relation to its structure, biochemistry and biophysics of aggregation in PD. Current advances in therapeutic efforts toward clearing the pathogenic α-syn via autophagy/lysosomal flux are also reviewed and reported.
Collapse
Affiliation(s)
- Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Asha Srinivasan
- Division of Nanoscience & Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, India
| | - Christophe Pellegrino
- Institut National de la Santé et de la Recherche Médicale, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Anbarasu Kannan
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Srinivasa Rao Bolla
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan City, Kazakhstan
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- Special Interest Group – Brain, Behaviour, and Cognitive Neurosciences Research, JSS Academy of Higher Education & Research, Mysuru, India
| | | |
Collapse
|
19
|
Markopoulou K, Chase BA, Premkumar AP, Schoneburg B, Kartha N, Wei J, Yu H, Epshteyn A, Garduno L, Pham A, Vazquez R, Frigerio R, Maraganore D. Variable Effects of PD-Risk Associated SNPs and Variants in Parkinsonism-Associated Genes on Disease Phenotype in a Community-Based Cohort. Front Neurol 2021; 12:662278. [PMID: 33935957 PMCID: PMC8079937 DOI: 10.3389/fneur.2021.662278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic risk factors for Parkinson's disease (PD) risk and progression have been identified from genome-wide association studies (GWAS), as well as studies of familial forms of PD, implicating common variants at more than 90 loci and pathogenic or likely pathogenic variants at 16 loci. With the goal of understanding whether genetic variants at these PD-risk loci/genes differentially contribute to individual clinical phenotypic characteristics of PD, we used structured clinical documentation tools within the electronic medical record in an effort to provide a standardized and detailed clinical phenotypic characterization at the point of care in a cohort of 856 PD patients. We analyzed common SNPs identified in previous GWAS studies, as well as low-frequency and rare variants at parkinsonism-associated genes in the MDSgene database for their association with individual clinical characteristics and test scores at baseline assessment in our community-based PD patient cohort: age at onset, disease duration, Unified Parkinson's Disease Rating Scale I-VI, cognitive status, initial and baseline motor and non-motor symptoms, complications of levodopa therapy, comorbidities and family history of neurological disease with one or more than one affected family members. We find that in most cases an individual common PD-risk SNP identified in GWAS is associated with only a single clinical feature or test score, while gene-level tests assessing low-frequency and rare variants reveal genes associated in either a unique or partially overlapping manner with the different clinical features and test scores. Protein-protein interaction network analysis of the identified genes reveals that while some of these genes are members of already identified protein networks others are not. These findings indicate that genetic risk factors for PD differentially affect the phenotypic presentation and that genes associated with PD risk are also differentially associated with individual disease phenotypic characteristics at baseline. These findings raise the intriguing possibility that different SNPs/gene effects impact discrete phenotypic characteristics. Furthermore, they support the hypothesis that different gene and protein-protein interaction networks that underlie PD risk, the PD phenotype, and the neurodegenerative process leading to the disease phenotype, and point to the significance of the genetic background on disease phenotype.
Collapse
Affiliation(s)
- Katerina Markopoulou
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Bruce A. Chase
- Health Information Technology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Ashvini P. Premkumar
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Bernadette Schoneburg
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Ninith Kartha
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Jun Wei
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, United States
| | - Hongjie Yu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, United States
| | - Alexander Epshteyn
- Health Information Technology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Lisette Garduno
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Anna Pham
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Rosa Vazquez
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Roberta Frigerio
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | | |
Collapse
|
20
|
Tan MM, Lawton MA, Jabbari E, Reynolds RH, Iwaki H, Blauwendraat C, Kanavou S, Pollard MI, Hubbard L, Malek N, Grosset KA, Marrinan SL, Bajaj N, Barker RA, Burn DJ, Bresner C, Foltynie T, Wood NW, Williams-Gray CH, Hardy J, Nalls MA, Singleton AB, Williams NM, Ben-Shlomo Y, Hu MT, Grosset DG, Shoai M, Morris HR. Genome-Wide Association Studies of Cognitive and Motor Progression in Parkinson's Disease. Mov Disord 2021; 36:424-433. [PMID: 33111402 PMCID: PMC9053517 DOI: 10.1002/mds.28342] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/10/2020] [Accepted: 10/05/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND There are currently no treatments that stop or slow the progression of Parkinson's disease (PD). Case-control genome-wide association studies have identified variants associated with disease risk, but not progression. The objective of the current study was to identify genetic variants associated with PD progression. METHODS We analyzed 3 large longitudinal cohorts: Tracking Parkinson's, Oxford Discovery, and the Parkinson's Progression Markers Initiative. We included clinical data for 3364 patients with 12,144 observations (mean follow-up 4.2 years). We used a new method in PD, following a similar approach in Huntington's disease, in which we combined multiple assessments using a principal components analysis to derive scores for composite, motor, and cognitive progression. These scores were analyzed in linear regression in genome-wide association studies. We also performed a targeted analysis of the 90 PD risk loci from the latest case-control meta-analysis. RESULTS There was no overlap between variants associated with PD risk, from case-control studies, and PD age at onset versus PD progression. The APOE ε4 tagging variant, rs429358, was significantly associated with composite and cognitive progression in PD. Conditional analysis revealed several independent signals in the APOE locus for cognitive progression. No single variants were associated with motor progression. However, in gene-based analysis, ATP8B2, a phospholipid transporter related to vesicle formation, was nominally associated with motor progression (P = 5.3 × 10-6 ). CONCLUSIONS We provide early evidence that this new method in PD improves measurement of symptom progression. We show that the APOE ε4 allele drives progressive cognitive impairment in PD. Replication of this method and results in independent cohorts are needed. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Manuela M.X. Tan
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK,UCL Movement Disorders Centre, University College London, London, UK,Correspondence to: Ms Manuela Tan and Prof. Huw Morris, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK; ;
| | - Michael A. Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Edwin Jabbari
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK,UCL Movement Disorders Centre, University College London, London, UK
| | - Regina H. Reynolds
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Hirotaka Iwaki
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA,Data Tecnica International, Glen Echo, Maryland, USA
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Sofia Kanavou
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Miriam I. Pollard
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Leon Hubbard
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Naveed Malek
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Katherine A. Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Sarah L. Marrinan
- Institute for Ageing and Health, Newcastle University, Newcastle Upon Tyne, UK
| | - Nin Bajaj
- Department of Clinical Neurosciences, University of Nottingham, Nottingham, UK
| | - Roger A. Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - David J. Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne. UK
| | - Catherine Bresner
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK,UCL Movement Disorders Centre, University College London, London, UK
| | - Nicholas W. Wood
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK,UCL Movement Disorders Centre, University College London, London, UK
| | - Caroline H. Williams-Gray
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - John Hardy
- UCL Movement Disorders Centre, University College London, London, UK,Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, University College London, London, UK,Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK,UK Dementia Research Institute, University College London, London, UK,National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London, UK,Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Michael A. Nalls
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA,Data Tecnica International, Glen Echo, Maryland, USA
| | - Andrew B. Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Nigel M. Williams
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Michele T.M. Hu
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK,Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, UK,Department of Clinical Neurology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Donald G. Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Maryam Shoai
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, University College London, London, UK,UK Dementia Research Institute, University College London, London, UK
| | - Huw R. Morris
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK,UCL Movement Disorders Centre, University College London, London, UK,Correspondence to: Ms Manuela Tan and Prof. Huw Morris, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK; ;
| |
Collapse
|
21
|
Lee MJ, Pak K, Kim JH, Kim YJ, Yoon J, Lee J, Lyoo CH, Park HJ, Lee JH, Jung NY. Effect of polygenic load on striatal dopaminergic deterioration in Parkinson disease. Neurology 2019; 93:e665-e674. [PMID: 31289143 DOI: 10.1212/wnl.0000000000007939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/21/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the effect of polygenic load on the progression of striatal dopaminergic dysfunction in patients with Parkinson disease (PD). METHODS Using data from 335 patients with PD in the Parkinson's Progression Markers Initiative (PPMI) database, we investigated the longitudinal association of PD-associated polygenic load with changes in striatal dopaminergic activity as measured by 123I-N-3-fluoropropyl-2-β-carboxymethoxy-3β-(4-iodophenyl) nortropane (123I-FP-CIT) SPECT over 4 years. PD-associated polygenic load was estimated by calculating weighted genetic risk scores (GRS) using 1) all available 27 PD-risk single nucleotide polymorphisms (SNPs) in the PPMI database (GRS1) and 2) 23 SNPs with minor allele frequency >0.05 (GRS2). RESULTS GRS1 and GRS2 were correlated with younger age at onset in patients with PD (GRS1, Spearman ρ = -0.128, p = 0.019; GRS2, Spearman ρ = -0.109, p = 0.047). Although GRS1 did not show an association with changes in striatal 123I-FP-CIT availability, GRS2 was associated with a slower decline of striatal dopaminergic activity (interactions with disease duration in linear mixed model; caudate nucleus, estimate = 0.399, SE = 0.165, p = 0.028; putamen, estimate = 0.396, SE = 0.137, p = 0.016). CONCLUSIONS Our results suggest that genetic factors for PD risk may have heterogeneous effects on striatal dopaminergic degeneration, and some factors may be associated with a slower decline of dopaminergic activity. Composition of PD progression-specific GRS may be useful in predicting disease progression in patients.
Collapse
Affiliation(s)
- Myung Jun Lee
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea.
| | - Kyoungjune Pak
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea
| | - Jong Hun Kim
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea
| | - Yun Joong Kim
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea
| | - Jeehee Yoon
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea
| | - Jinwoo Lee
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea.
| | - Chul Hyoung Lyoo
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea
| | - Hyung Jun Park
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea
| | - Jae-Hyeok Lee
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea.
| | - Na-Yeon Jung
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea
| |
Collapse
|
22
|
Ng ASL, Tan YJ, Zhao Y, Saffari SE, Lu Z, Ng EYL, Ng SYE, Chia NSY, Setiawan F, Xu Z, Tay KY, Au WL, Tan LCS, Tan EK. SNCA Rep1 promoter variability influences cognition in Parkinson's disease. Mov Disord 2019; 34:1232-1236. [PMID: 31234238 DOI: 10.1002/mds.27768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/23/2019] [Accepted: 05/27/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND While the association between alpha-synuclein gene promoter (Rep1) variability and risk of PD is well established, its association with cognition is unclear. OBJECTIVES To investigate the association between Rep1 and motor and cognitive outcomes in PD. METHODS Rep1 allele lengths were determined in 172 PD patients who were grouped into "long" and "short" carriers according to previous methods. Multivariable regression analysis was performed to investigate the effect of Rep1 length on cognitive and motor scores. RESULTS Long Rep1 allele carriers had significantly lower MMSE (P = 0.010) and higher UPDRS Part III (P = 0.026) and H & Y (P = 0.008) scores compared to short allele carriers (controlled for age, sex, and disease duration). Interaction analyses of Rep1 with apolipoprotein 4 revealed no significant effect on clinical outcomes. CONCLUSIONS PD patients carrying long Rep1 alleles are more impaired on cognitive and motor function independent of apolipoprotein 4 genotype. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Yi Zhao
- Department of Clinical Translational Research, Singapore General Hospital, Singapore
| | - Seyed Ehsan Saffari
- Center for Quantitative Medicine, Office of Research, Duke-NUS Medical School, Singapore
| | - Zhonghao Lu
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Ebonne Y L Ng
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Samuel Y E Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Nicole S Y Chia
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Fiona Setiawan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Zheyu Xu
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Kay Yaw Tay
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Wing Lok Au
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Louis C S Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore.,Neuroscience and Behavioural Disorders Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
23
|
Zheng J, Zang Q, Hu F, Wei H, Ma J, Xu Y. Alpha-synuclein gene polymorphism affects risk of dementia in Han Chinese with Parkinson's disease. Neurosci Lett 2019; 706:146-150. [PMID: 31102707 DOI: 10.1016/j.neulet.2019.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/30/2019] [Accepted: 05/14/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Single-nucleotide polymorphisms (SNPs) in the SNCA gene encoding alpha-synuclein have been shown to affect the PD phenotype. However, whether such polymorphisms can influence risk of dementia in PD remains unclear. OBJECTIVES To investigate possible associations between SNCA gene polymorphisms and dementia in patients with PD. MATERIALS AND METHODS A consecutive series of 291 PD patients with dementia (n = 45, 15.5%) or without it (n = 246, 84.5%) were genotyped at four SNPs in the SNCA gene. As controls, 615 healthy Han Chinese were also genotyped. RESULTS Three SNPs (rs11931074, rs7684318 and rs356219) were in strong linkage disequilibrium. The GG genotype at rs11931074 significantly reduced risk of PD (p = 0.023), but it significantly increased risk of dementia after PD onset (p = 0.015) based on the recessive genetic model. Logistic regression identified the following risk factors for dementia among patients with PD: age ≥65 years (odds ratio [OR] 2.69, 95% confidence interval [CI] 1.25-5.77, p = 0.011), education ≤6 years (OR 4.66, 95% CI 2.21-9.83, p < 0.001), part III score on the Unified Parkinson's Disease Rating Scale ≥40 (OR 5.01, 95% CI 2.40-10.45, p < 0.001), and GG genotype at rs11931074 (OR 2.81, 95% CI 1.16-6.83, p = 0.022). CONCLUSIONS PD patients carrying the protective GG genotype at SNCA rs11931074 may be at significantly higher risk of dementia than patients with other genotypes. Our results support the view that SNCA polymorphisms can have opposite effects on preclinical and clinical PD.
Collapse
Affiliation(s)
- Jinhua Zheng
- Department of Neurology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, 7 Weiwu Road, Zhengzhou, Henan Province, 450003, PR China
| | - Qiuling Zang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 Jian She East Road, Zhengzhou, Henan Province, 450007, PR China
| | - Fengyun Hu
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, 29 Shuangta Road, Taiyuan, Shanxi Province, 030012, PR China
| | - Hongen Wei
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, 29 Shuangta Road, Taiyuan, Shanxi Province, 030012, PR China
| | - Jianjun Ma
- Department of Neurology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, 7 Weiwu Road, Zhengzhou, Henan Province, 450003, PR China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, PR China.
| |
Collapse
|
24
|
Association of metals with the risk and clinical characteristics of Parkinson's disease. Parkinsonism Relat Disord 2018; 55:117-121. [DOI: 10.1016/j.parkreldis.2018.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/15/2018] [Accepted: 05/27/2018] [Indexed: 01/12/2023]
|
25
|
Heinzel S, Lerche S, Maetzler W, Berg D. Global, Yet Incomplete Overview of Cohort Studies in Parkinson's disease. JOURNAL OF PARKINSONS DISEASE 2018; 7:423-432. [PMID: 28582871 DOI: 10.3233/jpd-171100] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by heterogeneity and multifactorial longitudinal changes. To identify PD subtypes and factors influencing the disease course, multiple cohort studies have been designed globally. Knowledge about existing cohorts is pivotal to foster collaboration, which may help to advance the understanding of PD. OBJECTIVE To raise the awareness about PD cohorts and potential global collaboration opportunities. METHODS Observational cohort studies in clinical PD were identified by a European working group (JPND BioLoC-PD) and through literature search. Using a structured survey investigators of 44 cohorts provided basic information on cohorts and assessments performed. RESULTS For the 44 cohorts (32% on early/de-novo PD), 14.666 participants (cohorts' median: 138; range: 23-3.090), a median 1.5-year follow-up interval (0.5-4 years) and a median (planned) observational period of 5 years (1-20 years) were indicated. All studies have assessed motor functions often using rating scales (UPDRS-III; 93% of studies) and less frequently quantitative gait/balance (25%) or fine motor assessments (27%). Cognitive (100%), neuropsychiatric (91%), daily living (78%), sleep (70%), sensory (63%), and gastrointestinal/autonomic (55%) assessments were common and often comparable. Neuroimaging data (82%) and biomaterial (69%) have been collected in many studies. Surprisingly, possible disease modifiers, such as sport/physical activity (11%), have rarely been assessed. CONCLUSIONS Existing data of PD cohorts provide vast collaboration opportunities. We propose to establish a comprehensive, up-to-date, open-access internet platform with easy-to-use search tools of PD cohort descriptions and potentially available data. Bringing researchers together to enable collaborative joint, meta- and replication analyses is timely and necessary to advance PD research ultimately required for an understanding of PD that can be translated into more effective therapies.
Collapse
Affiliation(s)
- Sebastian Heinzel
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Stefanie Lerche
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Walter Maetzler
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany.,Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Daniela Berg
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany.,Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
26
|
Corrado L, De Marchi F, Tunesi S, Oggioni GD, Carecchio M, Magistrelli L, Tesei S, Riboldazzi G, Di Fonzo A, Locci C, Trezzi I, Zangaglia R, Cereda C, D'Alfonso S, Magnani C, Comi GP, Bono G, Pacchetti C, Cantello R, Goldwurm S, Comi C. The Length of SNCA Rep1 Microsatellite May Influence Cognitive Evolution in Parkinson's Disease. Front Neurol 2018; 9:213. [PMID: 29662465 PMCID: PMC5890103 DOI: 10.3389/fneur.2018.00213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/19/2018] [Indexed: 01/08/2023] Open
Abstract
Background Alpha-synuclein is a constituent of Lewy bodies and mutations of its gene cause familial Parkinson's disease (PD). A previous study showed that a variant of the alpha-synuclein gene (SNCA), namely the 263 bp allele of Rep1 was associated with faster motor progression in PD. On the contrary, a recent report failed to detect a detrimental effect of Rep1 263 on both motor and cognitive outcomes in PD. Aim of this study was to evaluate the influence of the Rep1 variants on disease progression in PD patients. Methods We recruited and genotyped for SNCA Rep1 426 PD patients with age at onset ≥40 years and disease duration ≥4 years. We then analyzed frequency and time of occurrence of wearing-off, dyskinesia, freezing of gait, visual hallucinations, and dementia using a multivariate Cox's proportional hazards regression model. Results SNCA Rep1 263 carriers showed significantly increased risk of both dementia (HR = 3.03) and visual hallucinations (HR = 2.69) compared to 263 non-carriers. Risk of motor complications did not differ in the two groups. Conclusion SNCA Rep1 263 allele is associated with a worse cognitive outcome in PD.
Collapse
Affiliation(s)
- Lucia Corrado
- Laboratory of Genetics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Fabiola De Marchi
- Section of Neurology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Sara Tunesi
- Unit of Medical Statistics and Cancer Epidemiology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.,Center for Cancer Epidemiology and Prevention (CPO), University Hospital "Città della Salute e della Scienza di Torino", Turin, Italy
| | - Gaia Donata Oggioni
- Section of Neurology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.,Parkinson's Disease and Movement Disorders Center, Ospedale di Circolo Fondazione Macchi, University of Insubria, Varese, Italy
| | - Miryam Carecchio
- Section of Neurology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Section of Neurology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Silvana Tesei
- Parkinson Institute, ASST Gaetano Pini-CTO (Formerly ICP), Milan, Italy
| | - Giulio Riboldazzi
- Parkinson's Disease and Movement Disorders Center, Ospedale di Circolo Fondazione Macchi, University of Insubria, Varese, Italy
| | - Alessio Di Fonzo
- Neuroscience Section, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Clarissa Locci
- Laboratory of Genetics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ilaria Trezzi
- Neuroscience Section, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Roberta Zangaglia
- Parkinson's Disease and Movement Disorders Unit, C. Mondino National Institute of Neurology Foundation, IRCCS, Pavia, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Center, C. Mondino National Institute of Neurology Foundation, IRCCS, Pavia, Italy
| | - Sandra D'Alfonso
- Laboratory of Genetics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Corrado Magnani
- Unit of Medical Statistics and Cancer Epidemiology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Giacomo P Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Giorgio Bono
- Parkinson's Disease and Movement Disorders Center, Ospedale di Circolo Fondazione Macchi, University of Insubria, Varese, Italy
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, C. Mondino National Institute of Neurology Foundation, IRCCS, Pavia, Italy
| | - Roberto Cantello
- Section of Neurology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Stefano Goldwurm
- Parkinson Institute, ASST Gaetano Pini-CTO (Formerly ICP), Milan, Italy
| | - Cristoforo Comi
- Section of Neurology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
27
|
Benskey MJ, Sellnow RC, Sandoval IM, Sortwell CE, Lipton JW, Manfredsson FP. Silencing Alpha Synuclein in Mature Nigral Neurons Results in Rapid Neuroinflammation and Subsequent Toxicity. Front Mol Neurosci 2018; 11:36. [PMID: 29497361 PMCID: PMC5819572 DOI: 10.3389/fnmol.2018.00036] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
Human studies and preclinical models of Parkinson’s disease implicate the involvement of both the innate and adaptive immune systems in disease progression. Further, pro-inflammatory markers are highly enriched near neurons containing pathological forms of alpha synuclein (α-syn), and α-syn overexpression recapitulates neuroinflammatory changes in models of Parkinson’s disease. These data suggest that α-syn may initiate a pathological inflammatory response, however the mechanism by which α-syn initiates neuroinflammation is poorly understood. Silencing endogenous α-syn results in a similar pattern of nigral degeneration observed following α-syn overexpression. Here we aimed to test the hypothesis that loss of α-syn function within nigrostriatal neurons results in neuronal dysfunction, which subsequently stimulates neuroinflammation. Adeno-associated virus (AAV) expressing an short hairpin RNA (shRNA) targeting endogenous α-syn was unilaterally injected into the substantia nigra pars compacta (SNc) of adult rats, after which nigrostriatal pathology and indices of neuroinflammation were examined at 7, 10, 14 and 21 days post-surgery. Removing endogenous α-syn from nigrostriatal neurons resulted in a rapid up-regulation of the major histocompatibility complex class 1 (MHC-1) within transduced nigral neurons. Nigral MHC-1 expression occurred prior to any overt cell death and coincided with the recruitment of reactive microglia and T-cells to affected neurons. Following the induction of neuroinflammation, α-syn knockdown resulted in a 50% loss of nigrostriatal neurons in the SNc and a corresponding loss of nigrostriatal terminals and dopamine (DA) concentrations within the striatum. Expression of a control shRNA did not elicit any pathological changes. Silencing α-syn within glutamatergic neurons of the cerebellum did not elicit inflammation or cell death, suggesting that toxicity initiated by α-syn silencing is specific to DA neurons. These data provide evidence that loss of α-syn function within nigrostriatal neurons initiates a neuronal-mediated neuroinflammatory cascade, involving both the innate and adaptive immune systems, which ultimately results in the death of affected neurons.
Collapse
Affiliation(s)
- Matthew J Benskey
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Rhyomi C Sellnow
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Ivette M Sandoval
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Mercy Health Saint Mary's, Grand Rapids, MI, United States
| | - Caryl E Sortwell
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Mercy Health Saint Mary's, Grand Rapids, MI, United States
| | - Jack W Lipton
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Mercy Health Saint Mary's, Grand Rapids, MI, United States
| | - Fredric P Manfredsson
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Mercy Health Saint Mary's, Grand Rapids, MI, United States
| |
Collapse
|
28
|
Cell-Specific RNA Quantification in Human SN DA Neurons from Heterogeneous Post-mortem Midbrain Samples by UV-Laser Microdissection and RT-qPCR. Methods Mol Biol 2018; 1723:335-360. [PMID: 29344870 DOI: 10.1007/978-1-4939-7558-7_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cell specificity of gene expression analysis is from particular relevance when the abundance of target cells is not homogeneous in the compared tissue samples, like it is the case, e.g., when comparing brain tissues from controls and in neurodegenerative disease states. While single-cell gene expression profiling is already a methodological challenge per se, it becomes even more prone to artifacts when analyzing individual cells from human post-mortem samples. Not only because human samples can never be matched as precisely as those from animal models, but also, because the RNA-quality that can be obtained from human samples usually displays a high range of variability. Here, we detail our most actual method for combining contact-free UV-laser microdissection (UV-LMD) with reverse transcription and quantitative PCR (RT-qPCR) that addresses all these issues. We specifically optimized our protocols to quantify and compare mRNA as well as miRNA levels in human neurons from post-mortem brain tissue. As human post-mortem tissue samples are never perfectly matched (e.g., in respect to distinct donor ages and RNA integrity numbers RIN), we refined data analysis by applying a linear mixed effects model to RT-qPCR data, which allows dissecting and subtracting linear contributions of distinct confounders on detected gene expression levels (i.e., RIN, age). All these issues were considered for comparative gene expression analysis in dopamine (DA) midbrain neurons of the Substantia nigra (SN) from controls and Parkinson's disease (PD) specimens, as the preferential degeneration of SN DA neurons in the pathological hallmark of PD. By utilizing the here-described protocol we identified that a variety of genes-encoding for ion channels, dopamine metabolism proteins, and PARK gene products-display a transcriptional dysregulation in remaining human SN DA neurons from PD brains compared to those of controls. We show that the linear mixed effects model allows further stratification of RT-qPCR data, as it indicated that differential gene expression of some genes was rather correlated with different ages of the analyzed human brain samples than with the disease state.
Collapse
|
29
|
Tanguy A, Jönsson L, Ishihara L. Inventory of real world data sources in Parkinson's disease. BMC Neurol 2017; 17:213. [PMID: 29216834 PMCID: PMC5721688 DOI: 10.1186/s12883-017-0985-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 11/22/2017] [Indexed: 11/10/2022] Open
Abstract
Background Real world data have an important role to play in the evaluation of epidemiology and burden of disease; and in assisting health-care decision-makers, especially related to coverage and payment decisions. However, there is currently no overview of the existing longitudinal real world data sources in Parkinson’s disease (PD) in the USA. Such an assessment can be very helpful, to support a future effort to harmonize real world data collection and use the available resources in an optimal way. Methods The objective of this comprehensive literature review is to systematically identify and describe the longitudinal, real world data sources in PD in the USA, and to provide a summary of their measurements (categorized into 8 main dimensions: motor and neurological functions, cognition, psychiatry, activities of daily living, sleep, quality of life, autonomic symptoms and other). The literature search was performed using MEDLINE, EMBASE and internet key word search. Results Of the 53 data sources identified between May and August 2016, 16 were still ongoing. Current medications (81%) and comorbidities (79%) were frequently collected, in comparison to medical imaging (36%), genetic information (30%), caregiver burden (11%) and healthcare costs (2%). Many different measurements (n = 108) were performed and an interesting variability among used measurements was revealed. Conclusions Many longitudinal real world data sources on PD exist. Different types of measurements have been performed over time. To allow comparison and pooling of these multiple data sources, it will be essential to harmonize practices in terms of types of measurements.
Collapse
Affiliation(s)
- Audrey Tanguy
- Lundbeck SAS, 37-45 Quai du Président Roosevelt, CEDEX 92445, Issy-les-Moulineaux, France
| | - Linus Jönsson
- Lundbeck SAS, 37-45 Quai du Président Roosevelt, CEDEX 92445, Issy-les-Moulineaux, France
| | - Lianna Ishihara
- Lundbeck SAS, 37-45 Quai du Président Roosevelt, CEDEX 92445, Issy-les-Moulineaux, France.
| |
Collapse
|
30
|
Genetic Variants in SNCA and the Risk of Sporadic Parkinson's Disease and Clinical Outcomes: A Review. PARKINSONS DISEASE 2017; 2017:4318416. [PMID: 28781905 PMCID: PMC5525082 DOI: 10.1155/2017/4318416] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/17/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
There is increasing evidence of the contribution of genetic susceptibility to the etiology of Parkinson's disease (PD). Genetic variations in the SNCA gene are well established by linkage and genome-wide association studies. Positive associations of single nucleotide polymorphisms (SNPs) in SNCA and increased risk for PD were found. However, the role of SNCA variants in individual traits or phenotypes of PD is unknown. Here, we reviewed the current literature and identified 57 studies, performed in fourteen different countries, that investigated SNCA variants and susceptibility to PD. We discussed the findings based on environmental factors, history of PD, clinical outcomes, and ethnicity. In conclusion, SNPs within the SNCA gene can modify the susceptibility to PD, leading to increased or decreased risk. The risk associations of some SNPs varied among samples. Of notice, no studies in South American or African populations were found. There is little information about the effects of these variants on particular clinical aspects of PD, such as motor and nonmotor symptoms. Similarly, evidence of possible interactions between SNCA SNPs and environmental factors or disease progression is scarce. There is a need to expand the clinical applicability of these data as well as to investigate the role of SNCA SNPs in populations with different ethnic backgrounds.
Collapse
|
31
|
Campêlo CLC, Cagni FC, de Siqueira Figueredo D, Oliveira LG, Silva-Neto AB, Macêdo PT, Santos JR, Izídio GS, Ribeiro AM, de Andrade TG, de Oliveira Godeiro C, Silva RH. Variants in SNCA Gene Are Associated with Parkinson's Disease Risk and Cognitive Symptoms in a Brazilian Sample. Front Aging Neurosci 2017; 9:198. [PMID: 28676755 PMCID: PMC5476777 DOI: 10.3389/fnagi.2017.00198] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 06/02/2017] [Indexed: 02/06/2023] Open
Abstract
Genetic susceptibility contributes to the etiology of sporadic Parkinson's Disease (PD) and worldwide studies have found positive associations of polymorphisms in the alpha-synuclein gene (SNCA) with the risk for PD. However, little is known about the influence of variants of SNCA in individual traits or phenotypical aspects of PD. Further, there is a lack of studies with Latin-American samples. We evaluated the association between SNCA single nucleotide polymorphisms (single nucleotide polymorphisms, SNPs - rs2583988, rs356219, rs2736990, and rs11931074) and PD risk in a Brazilians sample. In addition, we investigated their potential interactions with environmental factors and specific clinical outcomes (motor and cognitive impairments, depression, and anxiety). A total of 105 PD patients and 101 controls participated in the study. Single locus analysis showed that the risk allele of all SNPs were more frequent in PD patients (p < 0.05), and the associations of SNPs rs2583988, rs356219, and rs2736990 with increased PD risk were confirmed. Further, the G-rs356219 and C-rs2736990 alleles were associated with early onset PD. T-rs2583988, G-rs356219 and C-2736990 alleles were significantly more frequent in PD patients with cognitive impairments than controls in this condition. In addition, in a logistic regression model, we found an association of cognitive impairment with PD, and the practice of cognitive activity and smoking habits had a protective effect. This study shows for the first time an association of SNCA polymorphism and PD in a South-American sample. In addition, we found an interaction between SNP rs356219 and a specific clinical outcome, i.e., the increased risk for cognitive impairment in PD patients.
Collapse
Affiliation(s)
- Clarissa L C Campêlo
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do NorteNatal, Brazil
| | - Fernanda C Cagni
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do NorteNatal, Brazil
| | | | - Luiz G Oliveira
- Medicine Department, Universidade Federal do Rio Grande do NorteNatal, Brazil
| | | | - Priscila T Macêdo
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do NorteNatal, Brazil
| | - José R Santos
- Bioscience Department, Universidade Federal de SergipeItabaiana, Brazil
| | - Geison S Izídio
- Department of Cell Biology, Embryology and Genetics, Universidade Federal de Santa CatarinaFlorianópolis, Brazil
| | | | - Tiago G de Andrade
- Molecular Biology and Gene Expression Laboratory, Universidade Federal de AlagoasArapiraca, Brazil.,Faculty of Medicine, Universidade Federal de AlagoasMaceió, Brazil
| | | | - Regina H Silva
- Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São PauloSão Paulo, Brazil
| |
Collapse
|
32
|
Dysregulation of the causative genes for hereditary parkinsonism in the midbrain in Parkinson's disease. Mov Disord 2017; 32:1211-1220. [DOI: 10.1002/mds.27019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 02/26/2017] [Accepted: 03/17/2017] [Indexed: 11/07/2022] Open
|
33
|
Fagan ES, Pihlstrøm L. Genetic risk factors for cognitive decline in Parkinson's disease: a review of the literature. Eur J Neurol 2017; 24:561-e20. [DOI: 10.1111/ene.13258] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/11/2017] [Indexed: 01/18/2023]
Affiliation(s)
- E. S. Fagan
- Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - L. Pihlstrøm
- Institute of Clinical Medicine; University of Oslo; Oslo Norway
- Department of Neurology; Oslo University Hospital; Oslo Norway
| |
Collapse
|
34
|
Biomarkers of Nonmotor Symptoms in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:259-289. [DOI: 10.1016/bs.irn.2017.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Cooper CA, Jain N, Gallagher MD, Weintraub D, Xie SX, Berlyand Y, Espay AJ, Quinn J, Edwards KL, Montine T, Van Deerlin VM, Trojanowski J, Zabetian CP, Chen-Plotkin AS. Common variant rs356182 near SNCA defines a Parkinson's disease endophenotype. Ann Clin Transl Neurol 2016; 4:15-25. [PMID: 28078311 PMCID: PMC5221454 DOI: 10.1002/acn3.371] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/04/2016] [Indexed: 01/11/2023] Open
Abstract
Objective Parkinson's disease (PD) presents clinically with several motor subtypes that exhibit variable treatment response and prognosis. Here, we investigated genetic variants for their potential association with PD motor phenotype and progression. Methods We screened 10 SNPs, previously associated with PD risk, for association with tremor‐dominant (TD) versus postural‐instability gait disorder (PIGD) motor subtypes. SNPs that correlated with the TD/PIGD ratio in a discovery cohort of 251 PD patients were then evaluated in a multi‐site replication cohort of 559 PD patients. SNPs associated with motor phenotype in both cross‐sectional cohorts were next evaluated for association with (1) rates of motor progression in a longitudinal subgroup of 230 PD patients and (2) brain alpha‐synuclein (SNCA) expression in the GTEx (Genotype‐Tissue Expression project) consortium database. Results Genotype at rs356182, near SNCA, correlated with the TD/PIGD ratio in both the discovery (Bonferroni‐corrected P = 0.04) and replication cohorts (P = 0.02). The rs356182 GG genotype was associated with a more tremor‐predominant phenotype and predicted a slower rate of motor progression (1‐point difference in annual rate of UPDRS‐III motor score change, P = 0.01). The rs356182 genotype was associated with SNCA expression in the cerebellum (P = 0.005). Interpretation Our study demonstrates that the GG genotype at rs356182 provides molecular definition for a clinically important endophenotype associated with (1) more tremor‐predominant motor phenomenology, (2) slower rates of motor progression, and (3) decreased brain expression of SNCA. Such molecularly defined endophenotyping in PD may benefit both clinical trial design and tailoring of clinical care as we enter the era of precision medicine.
Collapse
Affiliation(s)
- Christine A Cooper
- Department of Neurology Medical University of South Carolina Charleston South Carolina; Department of Neurology Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
| | - Nimansha Jain
- Department of Neurology Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
| | - Michael D Gallagher
- Department of Neurology Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
| | - Daniel Weintraub
- Department of Psychiatry Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
| | - Sharon X Xie
- Department of Biostatistics and Epidemiology Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
| | - Yosef Berlyand
- Department of Neurology Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania; Harvard Medical School Boston Massachusetts
| | - Alberto J Espay
- Department of Neurology University of Cincinnati Cincinnati Ohio
| | - Joseph Quinn
- Department of Neurology Oregon Health and Science University Portland Oregon
| | - Karen L Edwards
- Department of Epidemiology University of California Irvine Irvine California
| | - Thomas Montine
- Department of Pathology University of Washington Seattle Washington
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
| | - John Trojanowski
- Department of Pathology and Laboratory Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
| | - Cyrus P Zabetian
- Department of Neurology VA Puget Sound Health Care System University of Washington Seattle Washington
| | - Alice S Chen-Plotkin
- Department of Neurology Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
| |
Collapse
|
36
|
Benskey MJ, Perez RG, Manfredsson FP. The contribution of alpha synuclein to neuronal survival and function - Implications for Parkinson's disease. J Neurochem 2016; 137:331-59. [PMID: 26852372 PMCID: PMC5021132 DOI: 10.1111/jnc.13570] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/29/2016] [Indexed: 02/06/2023]
Abstract
The aggregation of alpha synuclein (α-syn) is a neuropathological feature that defines a spectrum of disorders collectively termed synucleinopathies, and of these, Parkinson's disease (PD) is arguably the best characterized. Aggregated α-syn is the primary component of Lewy bodies, the defining pathological feature of PD, while mutations or multiplications in the α-syn gene result in familial PD. The high correlation between α-syn burden and PD has led to the hypothesis that α-syn aggregation produces toxicity through a gain-of-function mechanism. However, α-syn has been implicated to function in a diverse range of essential cellular processes such as the regulation of neurotransmission and response to cellular stress. As such, an alternative hypothesis with equal explanatory power is that the aggregation of α-syn results in toxicity because of a toxic loss of necessary α-syn function, following sequestration of functional forms α-syn into insoluble protein aggregates. Within this review, we will provide an overview of the literature linking α-syn to PD and the knowledge gained from current α-syn-based animal models of PD. We will then interpret these data from the viewpoint of the α-syn loss-of-function hypothesis and provide a potential mechanistic model by which loss of α-syn function could result in at least some of the neurodegeneration observed in PD. By providing an alternative perspective on the etiopathogenesis of PD and synucleinopathies, this may reveal alternative avenues of research in order to identify potential novel therapeutic targets for disease modifying strategies. The correlation between α-synuclein burden and Parkinson's disease pathology has led to the hypothesis that α-synuclein aggregation produces toxicity through a gain-of-function mechanism. However, in this review, we discuss data supporting the alternative hypothesis that the aggregation of α-synuclein results in toxicity because of loss of necessary α-synuclein function at the presynaptic terminal, following sequestration of functional forms of α-synuclein into aggregates.
Collapse
Affiliation(s)
- Matthew J Benskey
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Ruth G Perez
- Department of Biomedical Sciences, Center of Emphasis in Neuroscience, Paul L. Foster School of Medicine, Texas Tech University of the Health Sciences El Paso, El Paso, Texas, USA
| | - Fredric P Manfredsson
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan, USA
| |
Collapse
|
37
|
Collier TJ, Redmond DE, Steece-Collier K, Lipton JW, Manfredsson FP. Is Alpha-Synuclein Loss-of-Function a Contributor to Parkinsonian Pathology? Evidence from Non-human Primates. Front Neurosci 2016; 10:12. [PMID: 26858591 PMCID: PMC4731516 DOI: 10.3389/fnins.2016.00012] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/11/2016] [Indexed: 01/20/2023] Open
Abstract
Accumulation of alpha-synuclein (α-syn) in Lewy bodies and neurites of midbrain dopamine neurons is diagnostic for Parkinson's disease (PD), leading to the proposal that PD is a toxic gain-of-function synucleinopathy. Here we discuss the alternative viewpoint that α-syn displacement from synapses by misfolding and aggregation results in a toxic loss-of-function. In support of this hypothesis we provide evidence from our pilot study demonstrating that knockdown of endogenous α-syn in dopamine neurons of non-human primates reproduces the pattern of nigrostriatal degeneration characteristic of PD.
Collapse
Affiliation(s)
- Timothy J Collier
- Department of Translational Science & Molecular Medicine, Michigan State UniversityGrand Rapids, MI, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary'sGrand Rapids, MI, USA
| | - D Eugene Redmond
- Departments of Psychiatry & Neurosurgery, Yale University School of MedicineNew Haven, CT, USA; Axion Research FoundationHamden, CT, USA
| | - Kathy Steece-Collier
- Department of Translational Science & Molecular Medicine, Michigan State UniversityGrand Rapids, MI, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary'sGrand Rapids, MI, USA
| | - Jack W Lipton
- Department of Translational Science & Molecular Medicine, Michigan State UniversityGrand Rapids, MI, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary'sGrand Rapids, MI, USA
| | - Fredric P Manfredsson
- Department of Translational Science & Molecular Medicine, Michigan State UniversityGrand Rapids, MI, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary'sGrand Rapids, MI, USA
| |
Collapse
|
38
|
Variants in the SNCA gene associate with motor progression while variants in the MAPT gene associate with the severity of Parkinson's disease. Parkinsonism Relat Disord 2015; 24:89-94. [PMID: 26776090 DOI: 10.1016/j.parkreldis.2015.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 12/05/2015] [Accepted: 12/29/2015] [Indexed: 12/24/2022]
Abstract
INTRODUCTION It is well known that α-synuclein (SNCA) and microtubule associated protein (MAPT) genes predispose individuals to develop Parkinson's disease (PD). However, whether these genes contribute to differences in the variable progression observed in PD is obscure. This study aims to evaluate the association of common variants in SNCA (rs11931074, rs894278) and MAPT (rs242557_H1c haplotype, rs3744456) genes with the severity and duration of motor and cognitive performance. METHODS 296 Chinese patients with PD were recruited from Shanghai Ruijin Hospital. Motor performance was assessed using the Unified Parkinson's Disease Rating Scale (UPDRS-III) and Hoehn &Yahar (H&Y) stages and cognitive performance using the Mini-Mental Status Examination (MMSE). Genetic associations were analysed using general linear modelling for severity and Cox regression analysis for duration to motor (UPDRS-III≥36 or H&Y ≥ 3, average duration 13 years) and cognitive (MMSE<27, average duration 8 years) cutoffs, covarying for age and gender. RESULTS The severity of motor function associated with synergic interaction of SNCA (rs11931074) and MAPT (rs3744456) (p ≤ 0.05) while longer survival to the motor cutoff associated with SNCA (rs11931074/T, HR = 0.4, p = 0.03). Increased severity of cognitive function associated with MAPT (H1c haplotype, p = 0.05) with none of the risk alleles chosen associated with survival to the cognitive cutoff (p > 0.05). CONCLUSION Our findings add further data showing that common variants in SNCA and MAPT genes contribute to variability in progression of PD, with SNCA variants associating with motor progression while MAPT variants associated with clinical severity.
Collapse
|
39
|
Clinically meaningful parameters of progression and long-term outcome of Parkinson disease: An international consensus statement. Parkinsonism Relat Disord 2015; 21:675-82. [PMID: 25952959 DOI: 10.1016/j.parkreldis.2015.04.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/09/2015] [Accepted: 04/27/2015] [Indexed: 02/03/2023]
Abstract
Parkinson disease (PD) is associated with a clinical course of variable duration, severity, and a combination of motor and non-motor features. Recent PD research has focused primarily on etiology rather than clinical progression and long-term outcomes. For the PD patient, caregivers, and clinicians, information on expected clinical progression and long-term outcomes is of great importance. Today, it remains largely unknown what factors influence long-term clinical progression and outcomes in PD; recent data indicate that the factors that increase the risk to develop PD differ, at least partly, from those that accelerate clinical progression and lead to worse outcomes. Prospective studies will be required to identify factors that influence progression and outcome. We suggest that data for such studies is collected during routine office visits in order to guarantee high external validity of such research. We report here the results of a consensus meeting of international movement disorder experts from the Genetic Epidemiology of Parkinson's Disease (GEO-PD) consortium, who convened to define which long-term outcomes are of interest to patients, caregivers and clinicians, and what is presently known about environmental or genetic factors influencing clinical progression or long-term outcomes in PD. We propose a panel of rating scales that collects a significant amount of phenotypic information, can be performed in the routine office visit and allows international standardization. Research into the progression and long-term outcomes of PD aims at providing individual prognostic information early, adapting treatment choices, and taking specific measures to provide care optimized to the individual patient's needs.
Collapse
|
40
|
Liscovitch N, French L. Differential Co-Expression between α-Synuclein and IFN-γ Signaling Genes across Development and in Parkinson's Disease. PLoS One 2014; 9:e115029. [PMID: 25493648 PMCID: PMC4262449 DOI: 10.1371/journal.pone.0115029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 11/17/2014] [Indexed: 11/18/2022] Open
Abstract
Expression patterns of the alpha-synuclein gene (SNCA) were studied across anatomy, development, and disease to better characterize its role in the brain. In this postmortem study, negative spatial co-expression between SNCA and 73 interferon-γ (IFN-γ) signaling genes was observed across many brain regions. Recent animal studies have demonstrated that IFN-γ induces loss of dopamine neurons and nigrostriatal degeneration. This opposing pattern between SNCA and IFN-γ signaling genes increases with age (rho = −0.78). In contrast, a meta-analysis of four microarray experiments representing 126 substantia nigra samples reveals a switch to positive co-expression in Parkinson’s disease (p<0.005). Use of genome-wide testing demonstrates this relationship is specific to SNCA (p<0.002). This change in co-expression suggests an immunomodulatory role of SNCA that may provide insight into neurodegeneration. Genes showing similar co-expression patterns have been previously linked to Alzheimer’s (ANK1) and Parkinson’s disease (UBE2E2, PCMT1, HPRT1 and RIT2).
Collapse
Affiliation(s)
- Noa Liscovitch
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Leon French
- Rotman Research Institute, Baycrest Hospital, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|