1
|
Xie L, Liu GW, Liu YN, Li PY, Hu XN, He XY, Huan RB, Zhao TL, Guo HJ. Prevalence of Helicobacter pylori infection in China from 2014-2023: A systematic review and meta-analysis. World J Gastroenterol 2024; 30:4636-4656. [DOI: 10.3748/wjg.v30.i43.4636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/31/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) stands as the predominant infectious agent linked to the onset of gastritis, peptic ulcer diseases, and gastric cancer (GC). Identified as the exclusive bacterial factor associated with the onset of GC, it is classified as a group 1 carcinogen by the World Health Organization. The elimination of H. pylori plays a crucial role in the primary prevention of GC. While the prevalence has declined in recent decades, H. pylori infection is still highly prevalent in China, accounting for a significant part of the disease burden of GC. Therefore, updated prevalence information for H. pylori infection, especially regional and demographic variations in China, is an important basis for the design of targeted strategies that will be effective for the prevention of GC and application of policies for H. pylori control.
AIM To methodically evaluate the occurrence of H. pylori infection throughout China and establish a reference point for subsequent investigations.
METHODS A systematic review and meta-analysis was conducted following established guidelines, as detailed in our methodology section.
RESULTS Our review synthesized data from 152 studies, covering a sample of 763827 individuals, 314423 of whom were infected with H. pylori. We evaluated infection rates in mainland China and the combined prevalence of H. pylori was 42.8% (95%CI: 40.7-44.9). Subgroup analysis indicated the highest prevalence in Northwest China at 51.3% (95%CI: 45.6-56.9), and in Qinghai Province, the prevalence reached 60.2% (95%CI: 46.5-73.9). The urea breath test, which recorded the highest infection rate, showed a prevalence of 43.7% (95%CI: 41.4-46.0). No notable differences in infection rates were observed between genders. Notably, the prevalence among the elderly was significantly higher at 44.5% (95%CI: 41.9-47.1), compared to children, who showed a prevalence of 27.5% (95%CI: 19.58-34.7).
CONCLUSION Between 2014 and 2023, the prevalence of H. pylori infection in China decreased to 42.8%, down from the previous decade. However, the infection rates vary considerably across different geographical areas, among various populations, and by detection methods employed.
Collapse
Affiliation(s)
- Lu Xie
- Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Guang-Wei Liu
- Department of Spleen, Stomach, Liver and Gallbladder, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Ya-Nan Liu
- Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Peng-Yu Li
- Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Henan Key Laboratory of Viral Diseases Prevention and Treatment of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Xin-Ning Hu
- Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Xin-Yi He
- Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Rui-Bo Huan
- Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Tai-Long Zhao
- Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Hui-Jun Guo
- Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Henan Key Laboratory of Viral Diseases Prevention and Treatment of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| |
Collapse
|
2
|
Lu C, Deng W, Qiao Z, Sun W, Yang W, Liu Z, Wang F. Childhood Helicobacter pylori infection: Impacts of environmental exposures and parental stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135584. [PMID: 39182294 DOI: 10.1016/j.jhazmat.2024.135584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Helicobacter pylori infection (HPI) is extremely common in the world, particularly in less developed areas, but the primary causes of childhood HPI are unspecified. OBJECTIVES To determine the influences of exposure to home environmental factors (HEFs), outdoor air pollutants (OAPs), and parental stress (PS), as well as their interactions on children's HPI. METHODS We implemented a retrospective cohort study with 8689 preschoolers from nine districts at Changsha, China, was conducted using questionnaires to collect data of health and HEFs. Temperature and OAPs data were collected from ten and eight monitoring stations, individually. Temperature and OAPs exposures were calculated for all home addresses using the inversed distance weighted (IDW) model. Multiple logistic regression analysis was carried out to determine the separate and combined impacts of HEFs, OAPs, and PS on HPI. RESULTS Children's HPI was significantly associated with exposure to moisture-specific indoor allergens in one-year preceding conception, gestation, and first year, smoke-specific air pollution throughout life, and plant-specific allergens in previous year. Outdoor exposures to CO in the 7th-9th month before conception, as well as PM2.5 in the second trimester and previous year, were associated with HPI, with ORs (95 % CIs) of 1.22 (1.05-1.41), 1.23 (1.03-1.46), and 1.33 (1.14-1.55). Parents' socioeconomic and psychological stress indicators were positively related to HPI. High socioeconomic indicators and psychological stresses increased the roles of indoor renovation and moisture indicators as well as outdoor SO2, PM2.5 and O3 on children's HPI over their entire lives. Parental psychological stress interacts with indoor renovation-specific air pollution, moisture- and plant-specific allergens, as well as outdoor traffic-related air pollution on HPI, during a critical time window in early life. CONCLUSIONS Indoor and outdoor air pollutants, as well as allergens, separately and interactively exert important effects on childhood HPI, lending support to the "(pre-) fetal origin of HPI" hypothesis.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410013, China; FuRong Laboratory, Changsha 410078, Hunan, China; Hunan Provincial Key Laboratory of Low Carbon Healthy Building, Central South University, Changsha 410083, China.
| | - Wen Deng
- XiangYa School of Public Health, Central South University, Changsha 410013, China
| | - Zipeng Qiao
- XiangYa School of Public Health, Central South University, Changsha 410013, China
| | - Wenying Sun
- XiangYa School of Public Health, Central South University, Changsha 410013, China
| | - Wenhui Yang
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Zijing Liu
- Xiangcheng District Center for Disease Control and Prevention, Suzhou 215131, China
| | - Faming Wang
- Centre for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
3
|
Fang Y, Fan C, Li Y, Xie H. The influence of Helicobacter pylori infection on acute coronary syndrome and lipid metabolism in the Chinese ethnicity. Front Cell Infect Microbiol 2024; 14:1437425. [PMID: 39290976 PMCID: PMC11405380 DOI: 10.3389/fcimb.2024.1437425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background Acute coronary syndrome (ACS) patients frequently present a relatively high prevalence of Helicobacter pylori (H. pylori) infection. H. pylori was previously hypothesized to induce ACS through the regulation of lipid levels. However, the risk of H. pylori-induced ACS varies significantly among different ethnic groups, and the associations between H. pylori and lipid parameters remain unclear. This study aimed to systematically assess the risk of ACS in Chinese populations with H. pylori infection while also evaluating the effects of H. pylori on lipid parameters. Materials and methods A hospital-based case-control study involving 280 participants was conducted. Immunoblotting was used for the detection and genotyping of H. pylori. The associations between H. pylori and ACS, as well as lipid parameters, were analyzed via the chi-square test and a multiple logistic regression model. Results H. pylori infection significantly increased the risk of ACS among all participants (adjusted odds ratio (OR) = 4.04, 95% confidence interval (CI): 1.76-9.25, P < 0.05), with no associations with virulence factors (cytotoxin-associated gene A (CagA) or vacuole toxin geneA (VacA)). Subgroup analysis revealed a significant increase in the risk of ACS among the elderly population aged 56-64 years with H. pylori infection. Additionally, a substantial association was observed between H. pylori and acute myocardial infarction (AMI). No significant differences were found in lipid parameters, including low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and the LDL/HDL ratio, between individuals positive and negative for H. pylori infection. Similar results were observed between the ACS group and the control group. Conclusions Our study has demonstrated for the first time that H. pylori does not significantly impact lipid metabolism but increases the risk of ACS fourfold in the Chinese population (OR = 4.04, 95% CI: 1.76-9.25). Furthermore, the virulence factors of H. pylori (CagA and VacA) may not be involved in the mechanisms by which they promote the development of ACS. This finding provides additional evidence for the association between H. pylori and ACS among different ethnic groups and refutes the biological mechanism by which H. pylori affects ACS through lipid metabolism regulation. Regular screening for H. pylori and eradication treatment in elderly individuals and those at high risk for ACS may be effective measures for reducing the incidence of ACS. Future research should include multicenter randomized controlled trials and explore host genetics and the effects of H. pylori on the gut microbiota as potential biological pathways linking H. pylori and ACS.
Collapse
Affiliation(s)
- Yizhen Fang
- Department of Clinical Laboratory, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Clinical Laboratory, Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen, China
| | - Chunming Fan
- Department of Clinical Laboratory, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Clinical Laboratory, Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen, China
| | - Yun Li
- Blood Transfusion Department, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| | - Huabin Xie
- Department of Clinical Laboratory, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Clinical Laboratory, Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen, China
| |
Collapse
|
4
|
Zhao Q, Xu B, Mao W, Ren Z, Chi T, Chan P. Helicobacter pylori infection is a risk factor for constipation in patients with Parkinson's disease: A multicenter prospective cohort study. Parkinsonism Relat Disord 2024; 126:107053. [PMID: 39008918 DOI: 10.1016/j.parkreldis.2024.107053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/24/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND AND AIMS Constipation is one of the most common nonmotor symptoms (NMSs) of Parkinson's disease (PD). The infection rate of Helicobacter pylori (HP) is greater in PD patients. This study was a multicenter prospective cohort study in which propensity score matching (PSM) was used to determine whether HP infection was a risk factor for constipation in patients with PD. METHODS A total of 932 PD patients with 13C-urea breath test for HP were included in the study. The PSM was estimated with the use of a nonparsimonious multivariate logistic regression model, with HP infection as the dependent variable and all the baseline characteristics as covariates. A total of 697 patients composed the study cohort, including 252 (36.2 %) patients in the HP-positive (HPP) group and 445 (63.8 %) patients in the HP-negative (HPN) group. Before PSM, there were differences in several of the baseline variables between the two groups. After PSM, 250 HPP patients were matched with 250 HPN patients and the standardized differences were less than 0.1 for all variables. RESULTS The present results demonstrate that HP infection is a risk factor for constipation in patients with PD [RR (95 % CI) 1.412 (1.155-1.727), P < 0.001]. Subgroup analyses revealed that HP infection was both a risk factor for constipation in Hoehn-Yahr scale (1,1.5) group and Hoehn-Yahr scale (2-5) group [OR (95 % CI) 1.811 (1.079-3.038), P < 0.025; OR (95 % CI) 2.041 (1.177-3.541), P < 0.011]. CONCLUSIONS The results of our prospective cohort study suggest that Helicobacter pylori infection is a risk factor for constipation in patients with PD. TRIAL REGISTRATION ChiCTR2300071631.
Collapse
Affiliation(s)
- Quchuan Zhao
- Department of Gastroenterology, Xuanwu Hospital of Capital Medical University, 45 Chang-chun Street, Beijing, China
| | - Baolei Xu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Chang-chun Street, Beijing, China; National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wei Mao
- Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Chang-chun Street, Beijing, China
| | - Zhili Ren
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tianyu Chi
- Department of Gastroenterology, Xuanwu Hospital of Capital Medical University, 45 Chang-chun Street, Beijing, China
| | - Piu Chan
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Clinical Center for Parkinson's Disease, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Beijing, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Pădureanu V, Dop D, Caragea DC, Rădulescu D, Pădureanu R, Forțofoiu MC. Cardiovascular and Neurological Diseases and Association with Helicobacter Pylori Infection-An Overview. Diagnostics (Basel) 2024; 14:1781. [PMID: 39202269 PMCID: PMC11353373 DOI: 10.3390/diagnostics14161781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
This article investigates the link between Helicobacter pylori (H. pylori) infection and cardiovascular and neurological disorders. Recent research suggests that H. pylori may play a role in cardiovascular diseases like atherosclerosis, myocardial infarction, and stroke, as well as neurological diseases including Alzheimer's disease, multiple sclerosis, and Parkinson's disease. Cardiovascular Diseases: H. pylori induces endothelial dysfunction and chronic inflammation, promoting atherosclerotic plaque formation and other cardiac complications. High infection prevalence in cardiovascular patients implies that systemic inflammation from H. pylori accelerates disease progression. Eradication therapies combined with anti-inflammatory and lipid-lowering treatments may reduce cardiovascular risk. Neurological Diseases: H. pylori may contribute to Alzheimer's, multiple sclerosis, and Parkinson's through systemic inflammation, neuroinflammation, and autoimmune responses. Increased infection prevalence in these patients suggests bacterial involvement in disease pathogenesis. The eradication of H. pylori could reduce neuroinflammation and improve outcomes. Discussions and Future Research: Managing H. pylori infection in clinical practice could impact public health and treatment approaches. Further research is needed to clarify these relationships. Longitudinal and mechanistic studies are essential to fully understand H. pylori's role in these conditions. Conclusions: H. pylori infection is a potential risk factor for various cardiovascular and neurological conditions. Additional research is critical for developing effective prevention and treatment strategies. Targeted therapies, including H. pylori eradication combined with anti-inflammatory treatments, could improve clinical outcomes. These findings highlight the need for an integrated clinical approach to include H. pylori evaluation and treatment.
Collapse
Affiliation(s)
- Vlad Pădureanu
- Department of Internal Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (V.P.); (M.-C.F.)
| | - Dalia Dop
- Department of Pediatrics, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Daniel Cosmin Caragea
- Department of Nephrology, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Dumitru Rădulescu
- Department of Surgery, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Rodica Pădureanu
- Department of Internal Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (V.P.); (M.-C.F.)
| | - Mircea-Cătălin Forțofoiu
- Department of Internal Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (V.P.); (M.-C.F.)
| |
Collapse
|
6
|
Grotewold N, Albin RL. Update: Protective and risk factors for Parkinson disease. Parkinsonism Relat Disord 2024; 125:107026. [PMID: 38879999 DOI: 10.1016/j.parkreldis.2024.107026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
We review the epidemiologic literature on potential protective and risk factors in Parkinson's Disease (PD). Prior research identified numerous possible protective and risk factors. Potential protective factors include tobacco abuse, physical activity, urate levels, NSAID use, calcium channel blocker use, statin use, and use of some α1-adrenergic antagonists. Some potential protective factors could be products of reverse causation, including increased serum urate, tobacco abuse, and coffee-tea-caffeine consumption. Potential risk factors include traumatic brain injury, pesticide exposure, organic solvent exposure, lead exposure, air pollution, Type 2 Diabetes, some dairy products, cardiovascular disease, and some infections including Hepatitis C, H. pylori, and COVID-19. Potential non-environmental risk factors include bipolar disorder, essential tremor, bullous pemphigoid, and inflammatory bowel disease. There is an inverse relationship with PD and risk of most cancers. Though many potential protective and risk factors for PD were identified, research has not yet led to unique, rigorous prevention trials or successful disease-modifying interventions. While efforts to reduce exposure to some industrial toxicants are well justified, PD incidence might be most effectively reduced by mitigation of risks, such as Type 2 Diabetes, air pollution, traumatic brain injury, or physical inactivity, that are general public health intervention targets.
Collapse
Affiliation(s)
- Nikolas Grotewold
- Dept. of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Roger L Albin
- Dept. of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA; GRECC & Neurology Service, VAAAHS, Ann Arbor, MI, 48105, USA; University of Michigan Morris K. Udall Center of Excellence for Parkinson's Disease Research, Ann Arbor, MI, 48109, USA; University of Michigan Parkinson's Foundation Research Center of Excellence, USA.
| |
Collapse
|
7
|
Wang F, Yao Z, Jin T, Mao B, Shao S, Shao C. Research progress on Helicobacter pylori infection related neurological diseases. Ageing Res Rev 2024; 99:102399. [PMID: 38955263 DOI: 10.1016/j.arr.2024.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Helicobacter pylori, a type of gram-negative bacterium, infects roughly half of the global population. It is strongly associated with gastrointestinal disorders like gastric cancer, peptic ulcers, and chronic gastritis. Moreover, numerous studies have linked this bacterium to various extra-gastric conditions, including hematologic, cardiovascular, and neurological issues. Specifically, research has shown that Helicobacter pylori interacts with the brain through the microbiota-gut-brain axis, thereby increasing the risk of neurological disorders. The inflammatory mediators released by Helicobacter pylori-induced chronic gastritis may disrupt the function of the blood-brain barrier by interfering with the transmission or direct action of neurotransmitters. This article examines the correlation between Helicobacter pylori and a range of conditions, such as hyperhomocysteinemia, schizophrenia, Alzheimer's disease, Parkinson's disease, ischemic stroke, multiple sclerosis, migraine, and Guillain-Barré syndrome.
Collapse
Affiliation(s)
- Fan Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China
| | - Zhendong Yao
- Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China
| | - Tao Jin
- Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China
| | - Boneng Mao
- Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China.
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China; Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China.
| | - Chen Shao
- Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Menozzi E, Schapira AHV. The Gut Microbiota in Parkinson Disease: Interactions with Drugs and Potential for Therapeutic Applications. CNS Drugs 2024; 38:315-331. [PMID: 38570412 PMCID: PMC11026199 DOI: 10.1007/s40263-024-01073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
The concept of a 'microbiota-gut-brain axis' has recently emerged as an important player in the pathophysiology of Parkinson disease (PD), not least because of the reciprocal interaction between gut bacteria and medications. The gut microbiota can influence levodopa kinetics, and conversely, drugs administered for PD can influence gut microbiota composition. Through a two-step enzymatic pathway, gut microbes can decarboxylate levodopa to dopamine in the small intestine and then dehydroxylate it to m-tyramine, thus reducing availability. Inhibition of bacterial decarboxylation pathways could therefore represent a strategy to increase levodopa absorption. Other bacterial perturbations common in PD, such as small intestinal bacterial overgrowth and Helicobacter pylori infection, can also modulate levodopa metabolism, and eradication therapies may improve levodopa absorption. Interventions targeting the gut microbiota offer a novel opportunity to manage disabling motor complications and dopa-unresponsive symptoms. Mediterranean diet-induced changes in gut microbiota composition might improve a range of non-motor symptoms. Prebiotics can increase levels of short-chain fatty acid-producing bacteria and decrease pro-inflammatory species, with positive effects on clinical symptoms and levodopa kinetics. Different formulations of probiotics showed beneficial outcomes on constipation, with some of them improving dopamine levels; however, the most effective dosage and duration and long-term effects of these treatments remain unknown. Data from faecal microbiota transplantation studies are preliminary, but show encouraging trends towards improvement in both motor and non-motor outcomes.This article summarises the most up-to-date knowledge in pharmacomicrobiomics in PD, and discusses how the manipulation of gut microbiota represents a potential new therapeutic avenue for PD.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, NW3 2PF, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, NW3 2PF, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
9
|
Kell DB, Lip GYH, Pretorius E. Fibrinaloid Microclots and Atrial Fibrillation. Biomedicines 2024; 12:891. [PMID: 38672245 PMCID: PMC11048249 DOI: 10.3390/biomedicines12040891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Atrial fibrillation (AF) is a comorbidity of a variety of other chronic, inflammatory diseases for which fibrinaloid microclots are a known accompaniment (and in some cases, a cause, with a mechanistic basis). Clots are, of course, a well-known consequence of atrial fibrillation. We here ask the question whether the fibrinaloid microclots seen in plasma or serum may in fact also be a cause of (or contributor to) the development of AF. We consider known 'risk factors' for AF, and in particular, exogenous stimuli such as infection and air pollution by particulates, both of which are known to cause AF. The external accompaniments of both bacterial (lipopolysaccharide and lipoteichoic acids) and viral (SARS-CoV-2 spike protein) infections are known to stimulate fibrinaloid microclots when added in vitro, and fibrinaloid microclots, as with other amyloid proteins, can be cytotoxic, both by inducing hypoxia/reperfusion and by other means. Strokes and thromboembolisms are also common consequences of AF. Consequently, taking a systems approach, we review the considerable evidence in detail, which leads us to suggest that it is likely that microclots may well have an aetiological role in the development of AF. This has significant mechanistic and therapeutic implications.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool L7 8TX, UK;
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
10
|
Liu X, Shen L, Wan M, Xie H, Wang Z. Peripheral extracellular vesicles in neurodegeneration: pathogenic influencers and therapeutic vehicles. J Nanobiotechnology 2024; 22:170. [PMID: 38610012 PMCID: PMC11015679 DOI: 10.1186/s12951-024-02428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis epitomize a class of insidious and relentless neurological conditions that are difficult to cure. Conventional therapeutic regimens often fail due to the late onset of symptoms, which occurs well after irreversible neurodegeneration has begun. The integrity of the blood-brain barrier (BBB) further impedes efficacious drug delivery to the central nervous system, presenting a formidable challenge in the pharmacological treatment of NDDs. Recent scientific inquiries have shifted focus toward the peripheral biological systems, investigating their influence on central neuropathology through the lens of extracellular vesicles (EVs). These vesicles, distinguished by their ability to breach the BBB, are emerging as dual operatives in the context of NDDs, both as conveyors of pathogenic entities and as prospective vectors for therapeutic agents. This review critically summarizes the burgeoning evidence on the role of extracerebral EVs, particularly those originating from bone, adipose tissue, and gut microbiota, in modulating brain pathophysiology. It underscores the duplicity potential of peripheral EVs as modulators of disease progression and suggests their potential as novel vehicles for targeted therapeutic delivery, positing a transformative impact on the future landscape of NDD treatment strategies. Search strategy A comprehensive literature search was conducted using PubMed, Web of Science, and Scopus from January 2000 to December 2023. The search combined the following terms using Boolean operators: "neurodegenerative disease" OR "Alzheimer's disease" OR "Parkinson's disease" OR "Amyotrophic lateral sclerosis" AND "extracellular vesicles" OR "exosomes" OR "outer membrane vesicles" AND "drug delivery systems" AND "blood-brain barrier". MeSH terms were employed when searching PubMed to refine the results. Studies were included if they were published in English, involved human subjects, and focused on the peripheral origins of EVs, specifically from bone, adipose tissue, and gut microbiota, and their association with related diseases such as osteoporosis, metabolic syndrome, and gut dysbiosis. Articles were excluded if they did not address the role of EVs in the context of NDDs or did not discuss therapeutic applications. The titles and abstracts of retrieved articles were screened using a dual-review process to ensure relevance and accuracy. The reference lists of selected articles were also examined to identify additional relevant studies.
Collapse
Affiliation(s)
- Xixi Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Changsha, Hunan, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, Hunan, 410008, China
| | - Meidan Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China.
| | - Zhenxing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China.
| |
Collapse
|
11
|
Hull A, Atilano ML, Gergi L, Kinghorn KJ. Lysosomal storage, impaired autophagy and innate immunity in Gaucher and Parkinson's diseases: insights for drug discovery. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220381. [PMID: 38368939 PMCID: PMC10874704 DOI: 10.1098/rstb.2022.0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/08/2023] [Indexed: 02/20/2024] Open
Abstract
Impairment of autophagic-lysosomal pathways is increasingly being implicated in Parkinson's disease (PD). GBA1 mutations cause the lysosomal storage disorder Gaucher disease (GD) and are the commonest known genetic risk factor for PD. GBA1 mutations have been shown to cause autophagic-lysosomal impairment. Defective autophagic degradation of unwanted cellular constituents is associated with several pathologies, including loss of normal protein homeostasis, particularly of α-synuclein, and innate immune dysfunction. The latter is observed both peripherally and centrally in PD and GD. Here, we will discuss the mechanistic links between autophagy and immune dysregulation, and the possible role of these pathologies in communication between the gut and brain in these disorders. Recent work in a fly model of neuronopathic GD (nGD) revealed intestinal autophagic defects leading to gastrointestinal dysfunction and immune activation. Rapamycin treatment partially reversed the autophagic block and reduced immune activity, in association with increased survival and improved locomotor performance. Alterations in the gut microbiome are a critical driver of neuroinflammation, and studies have revealed that eradication of the microbiome in nGD fly and mouse models of PD ameliorate brain inflammation. Following these observations, lysosomal-autophagic pathways, innate immune signalling and microbiome dysbiosis are discussed as potential therapeutic targets in PD and GD. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Alexander Hull
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Magda L Atilano
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Laith Gergi
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Kerri J Kinghorn
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
12
|
Elghannam MT, Hassanien MH, Ameen YA, Turky EA, ELattar GM, ELRay AA, ELTalkawy MD. Helicobacter pylori and oral-gut microbiome: clinical implications. Infection 2024; 52:289-300. [PMID: 37917397 PMCID: PMC10954935 DOI: 10.1007/s15010-023-02115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
More than half of the world's population are colonized with H. pylori; however, the prevalence varies geographically with the highest incidence in Africa. H. pylori is probably a commensal organism that has been associated with the development of gastritis, ulcers, and gastric cancer. H. pylori alone is most probably not enough for the development of gastric carcinoma, but evidence for its association with the disease is high and has, therefore, been classified by the International Agency for Research on Cancer as a Class 1 carcinogen. Bacteroidetes and Fusobacteria positively coexisted during H. pylori infection along the oral-gut axis. The eradication therapy required to treat H. pylori infection can also have detrimental consequences for the gut microbiota, leading to a decreased alpha diversity. Therefore, therapy regimens integrated with probiotics may abolish the negative effects of antibiotic therapy on the gut microbiota. These eradication therapies combined with probiotics have also higher rates of eradication, when compared to standard treatments, and are associated with reduced side effects, improving the patient's compliance. The eradication therapy not only affects gut microbiome but also affects the oral microbiome with robust predominance of harmful bacteria. However, there have been reports of a protective role of H. pylori in Barrett's esophagus, esophageal adenocarcinoma, eosinophilic esophagitis, IBD, asthma, and even multiple sclerosis. Therefore, eradication therapy should be carefully considered, and test to treat policy should be tailored to specific communities especially in highly endemic areas. Supplementation of probiotics, prebiotics, herbals, and microbial metabolites to reduce the negative effects of eradication therapy should be considered. After failure of many eradication attempts, the benefits of H. pylori eradication should be carefully balanced against the risk of adverse effects especially in the elderly, persons with frailty, and intolerance to antibiotics.
Collapse
Affiliation(s)
- Maged T Elghannam
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Moataz H Hassanien
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Yosry A Ameen
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Emad A Turky
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Gamal M ELattar
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ahmed A ELRay
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohammed D ELTalkawy
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
13
|
Sakowski SA, Koubek EJ, Chen KS, Goutman SA, Feldman EL. Role of the Exposome in Neurodegenerative Disease: Recent Insights and Future Directions. Ann Neurol 2024; 95:635-652. [PMID: 38411261 PMCID: PMC11023772 DOI: 10.1002/ana.26897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Neurodegenerative diseases are increasing in prevalence and place a significant burden on society. The causes are multifactorial and complex, and increasing evidence suggests a dynamic interplay between genes and the environment, emphasizing the importance of identifying and understanding the role of lifelong exposures, known as the exposome, on the nervous system. This review provides an overview of recent advances toward defining neurodegenerative disease exposomes, focusing on Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. We present the current state of the field based on emerging data, elaborate on key themes and potential mechanisms, and conclude with limitations and future directions. ANN NEUROL 2024;95:635-652.
Collapse
Affiliation(s)
- Stacey A. Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin S. Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Awogbindin I, Wanklin M, Verkhratsky A, Tremblay MÈ. Microglia in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 37:497-512. [PMID: 39207709 DOI: 10.1007/978-3-031-55529-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are manifested by a progressive death of neural cells, resulting in the deterioration of central nervous system (CNS) functions, ultimately leading to specific behavioural and cognitive symptoms associated with affected brain regions. Several neurodegenerative disorders are caused by genetic variants or mutations, although the majority of cases are sporadic and linked to various environmental risk factors, with yet an unknown aetiology. Neuroglial changes are fundamental and often lead to the pathophysiology of neurodegenerative diseases. In particular, microglial cells, which are essential for maintaining CNS health, become compromised in their physiological functions with the exposure to environmental risk factors, genetic variants or mutations, as well as disease pathology. In this chapter, we cover the contribution of neuroglia, especially microglia, to several neurodegenerative diseases, including Nasu-Hakola disease, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, infectious disease-associated neurodegeneration, and metal-precipitated neurodegeneration. Future research perspectives for the field pertaining to the therapeutic targeting of microglia across these disease conditions are also discussed.
Collapse
Affiliation(s)
- Ifeoluwa Awogbindin
- Department of Biochemistry, Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Michael Wanklin
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Patil RS, Tupe RS. Communal interaction of glycation and gut microbes in diabetes mellitus, Alzheimer's disease, and Parkinson's disease pathogenesis. Med Res Rev 2024; 44:365-405. [PMID: 37589449 DOI: 10.1002/med.21987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Diabetes and its complications, Alzheimer's disease (AD), and Parkinson's disease (PD) are increasing gradually, reflecting a global threat vis-à-vis expressing the essentiality of a substantial paradigm shift in research and remedial actions. Protein glycation is influenced by several factors, like time, temperature, pH, metal ions, and the half-life of the protein. Surprisingly, most proteins associated with metabolic and neurodegenerative disorders are generally long-lived and hence susceptible to glycation. Remarkably, proteins linked with diabetes, AD, and PD share this characteristic. This modulates protein's structure, aggregation tendency, and toxicity, highlighting renovated attention. Gut microbes and microbial metabolites marked their importance in human health and diseases. Though many scientific shreds of evidence are proposed for possible change and dysbiosis in gut flora in these diseases, very little is known about the mechanisms. Screening and unfolding their functionality in metabolic and neurodegenerative disorders is essential in hunting the gut treasure. Therefore, it is imperative to evaluate the role of glycation as a common link in diabetes and neurodegenerative diseases, which helps to clarify if modulation of nonenzymatic glycation may act as a beneficial therapeutic strategy and gut microbes/metabolites may answer some of the crucial questions. This review briefly emphasizes the common functional attributes of glycation and gut microbes, the possible linkages, and discusses current treatment options and therapeutic challenges.
Collapse
Affiliation(s)
- Rahul Shivaji Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rashmi Santosh Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India
| |
Collapse
|
16
|
Li Q, Meng LB, Chen LJ, Shi X, Tu L, Zhou Q, Yu JL, Liao X, Zeng Y, Yuan QY. The role of the microbiota-gut-brain axis and intestinal microbiome dysregulation in Parkinson's disease. Front Neurol 2023; 14:1185375. [PMID: 37305758 PMCID: PMC10249504 DOI: 10.3389/fneur.2023.1185375] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is a complex progressive neurodegenerative disease associated with aging. Its main pathological feature is the degeneration and loss of dopaminergic neurons related to the misfolding and aggregation of α-synuclein. The pathogenesis of PD has not yet been fully elucidated, and its occurrence and development process are closely related to the microbiota-gut-brain axis. Dysregulation of intestinal microbiota may promote the damage of the intestinal epithelial barrier, intestinal inflammation, and the upward diffusion of phosphorylated α-synuclein from the enteric nervous system (ENS) to the brain in susceptible individuals and further lead to gastrointestinal dysfunction, neuroinflammation, and neurodegeneration of the central nervous system (CNS) through the disordered microbiota-gut-brain axis. The present review aimed to summarize recent advancements in studies focusing on the role of the microbiota-gut-brain axis in the pathogenesis of PD, especially the mechanism of intestinal microbiome dysregulation, intestinal inflammation, and gastrointestinal dysfunction in PD. Maintaining or restoring homeostasis in the gut microenvironment by targeting the gut microbiome may provide future direction for the development of new biomarkers for early diagnosis of PD and therapeutic strategies to slow disease progression.
Collapse
Affiliation(s)
- Qing Li
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Ling-bing Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Li-jun Chen
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Xia Shi
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Ling Tu
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Qi Zhou
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Jin-long Yu
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Xin Liao
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Yuan Zeng
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Qiao-ying Yuan
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| |
Collapse
|
17
|
Tan AH, Chuah KH, Beh YY, Schee JP, Mahadeva S, Lim SY. Gastrointestinal Dysfunction in Parkinson's Disease: Neuro-Gastroenterology Perspectives on a Multifaceted Problem. J Mov Disord 2023; 16:138-151. [PMID: 37258277 DOI: 10.14802/jmd.22220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 06/02/2023] Open
Abstract
Patients with Parkinson's disease (PD) face a multitude of gastrointestinal (GI) symptoms, including nausea, bloating, reduced bowel movements, and difficulties with defecation. These symptoms are common and may accumulate during the course of PD but are often under-recognized and challenging to manage. Objective testing can be burdensome to patients and does not correlate well with symptoms. Effective treatment options are limited. Evidence is often based on studies in the general population, and specific evidence in PD is scarce. Upper GI dysfunction may also interfere with the pharmacological treatment of PD motor symptoms, which poses significant management challenges. Several new less invasive assessment tools and novel treatment options have emerged in recent years. The current review provides an overview and a practical approach to recognizing and diagnosing common upper and lower GI problems in PD, e.g., dyspepsia, gastroparesis, small bowel dysfunction, chronic constipation, and defecatory dysfunction. Management aspects are discussed based on the latest evidence from the PD and general populations, with insights for future research pertaining to GI dysfunction in PD.
Collapse
Affiliation(s)
- Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kee Huat Chuah
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yuan Ye Beh
- Department of Medicine, Hospital Pulau Pinang, Penang, Malaysia
| | - Jie Ping Schee
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sanjiv Mahadeva
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Heiden DL, Monogue B, Ali MDH, Beckham JD. A functional role for alpha-synuclein in neuroimmune responses. J Neuroimmunol 2023; 376:578047. [PMID: 36791583 PMCID: PMC10022478 DOI: 10.1016/j.jneuroim.2023.578047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Alpha-synuclein is a neuronal protein with unclear function but is associated with the pathogenesis of Parkinson's disease and other synucleinopathies. In this review, we discuss the emerging functional role of alpha-synuclein in support of the unique immune responses in the nervous system. Recent data now show that alpha-synuclein functions to support interferon signaling within neurons and is released from neurons to support chemoattraction and activation of local glial cells and infiltrating immune cells. Inflammatory activation and interferon signaling also induce post-translational modifications of alpha-synuclein that are commonly associated with Parkinson's disease pathogenesis. Taken together, emerging data implicate complex interactions between alpha-synuclein and host immune responses that may contribute to the pathogenesis of Parkinson's disease. Additional study of the function of alpha-synuclein in the brain's immune response may provide disease-modifying therapeutic targets for Parkinson's disease in the future.
Collapse
Affiliation(s)
- Dustin L Heiden
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brendan Monogue
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - M D Haider Ali
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J David Beckham
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.
| |
Collapse
|
19
|
Bonvegna S, Cilia R. Disease mechanisms as subtypes: Microbiome. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:107-131. [PMID: 36803806 DOI: 10.1016/b978-0-323-85555-6.00006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Abnormalities in gut microbiota have been suggested to be involved in the pathophysiology and progression of Parkinson's disease (PD). Gastrointestinal nonmotor symptoms often precede the onset of motor features in PD, suggesting a role for gut dysbiosis in neuroinflammation and α-synuclein (α-syn) aggregation. In the first part of this chapter, we analyze critical features of healthy gut microbiota and factors (environmental and genetic) that modify its composition. In the second part, we focus on the mechanisms underlying the gut dysbiosis and how it alters anatomically and functionally the mucosal barrier, triggering neuroinflammation and subsequently α-syn aggregation. In the third part, we describe the most common alterations in the gut microbiota of PD patients, dividing the gastrointestinal system in higher and lower tract to examine the association between microbiota abnormalities and clinical features. In the final section, we report on current and future therapeutic approaches to gut dysbiosis aiming to either reduce the risk for PD, modify the disease course, or improve the pharmacokinetic profile of dopaminergic therapies. We also suggest that further studies will be needed to clarify the role of the microbiome in PD subtyping and of pharmacological and nonpharmacological interventions in modifying specific microbiota profiles in individualizing disease-modifying treatments in PD.
Collapse
Affiliation(s)
- Salvatore Bonvegna
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy
| | - Roberto Cilia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy.
| |
Collapse
|
20
|
Sung YF, Yin JH, Lee KH, Tsai CL, Lin YK, Chen SY, Chung CH, Chien WC, Lee JT, Chou CH. Increased risk of sleep-related movement disorder in patients with Helicobacter pylori infection: A nationwide population-based study. Front Neurol 2022; 13:953821. [PMID: 36299273 PMCID: PMC9589275 DOI: 10.3389/fneur.2022.953821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background and purpose Evidence increasingly suggests that Helicobacter pylori infection (HPI) is associated with movement disorders such as Parkinson's disease (PD). However, the relationship between HPI and sleep-related movement disorders (SRMD) remains unknown. This nationwide population-based study tried to demonstrate whether patients with HPI have a higher risk of developing SRMD in a general adult population. Methods The study cohort enrolled 9,393 patients who were initially diagnosed with HPI between 2000 and 2013. Notably, 37,572 age- and sex-matched controls without prior HPI were selected as the reference. A Cox proportional hazard regression analysis was performed for multivariate adjustment. Results Patients with HPI had a higher risk of developing SRMD (adjusted hazard ratio [HR] = 2.18, 95% confidence interval [CI] = 1.26–3.82, p < 0.01). Patients with HPI aged ≥65 years exhibited the highest risk (HR = 3.01, 95% CI = 1.90–5.30, p < 0.001), followed by patients aged 45–64 years (HR = 1.69, 95% CI = 1.26–2.90, p <0.01) and <45 years (HR = 1.49, 95% CI = 1.12–2.49, p < 0.01). Patients were most likely to develop SRMD 5 years or more after diagnosis of HPI (HR = 3.33, 95% CI = 1.97–5.89, p < 0.001). The increased risk of SRMD in male patients with HPI (HR = 2.73, 95% CI = 1.53–4.79, p < 0.001) was greater than in female patients (HR = 1.14, 95% CI = 1.04–1.65, p < 0.05). Conclusion Patients with HPI were associated with an increased risk for SRMD, with a higher risk in men, aged ≥65 years, and diagnosed for more than 5 years.
Collapse
Affiliation(s)
- Yueh-Feng Sung
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jiu-Haw Yin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Internal Medicine, Taipei Veterans General Hospital, Hsinchu, Taiwan
| | - Kuang-Heng Lee
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shao-Yuan Chen
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taiwan
- Department of Hyperbaric Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Chi-Hsiang Chung
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jiunn-Tay Lee
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- *Correspondence: Chung-Hsing Chou
| |
Collapse
|
21
|
Wang Z, Cui Y, Wen L, Yu H, Feng J, Yuan W, He X. Dietary Restriction against Parkinson's Disease: What We Know So Far. Nutrients 2022; 14:nu14194108. [PMID: 36235760 PMCID: PMC9571011 DOI: 10.3390/nu14194108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary restriction (DR) is defined as a moderate reduction in food intake while avoiding malnutrition. The beneficial effects of DR are being increasingly acknowledged in aging and in a series of age-related neurodegenerative disorders, for example, Parkinson's disease (PD). To date, the pathogenesis of PD remains elusive and there is no cure for it in spite of intensive research over decades. In this review, we summarize the current knowledge on the efficacy of DR on PD, focusing on the underlying mechanisms involving general metabolism, neuroendocrinolgy, neuroinflammation, gut microbiome, and so on. We anticipate that this review will provide future perspectives for PD prevention and treatment.
Collapse
Affiliation(s)
- Zhonglei Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yueran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wei Yuan
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang 110001, China
- Correspondence: (W.Y.); (X.H.); Tel.: +86-024-8328-3360 (W.Y.); +86-024-96615-28111 (X.H.)
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Correspondence: (W.Y.); (X.H.); Tel.: +86-024-8328-3360 (W.Y.); +86-024-96615-28111 (X.H.)
| |
Collapse
|
22
|
Park AM, Tsunoda I. Helicobacter pylori infection in the stomach induces neuroinflammation: the potential roles of bacterial outer membrane vesicles in an animal model of Alzheimer's disease. Inflamm Regen 2022; 42:39. [PMID: 36058998 PMCID: PMC9442937 DOI: 10.1186/s41232-022-00224-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/09/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (HP) is a Gram-negative bacterium that colonizes the human stomach chronically. Colonization of HP in the gastric mucosa not only causes gastrointestinal diseases, but also is associated with extra-gastric diseases, such as idiopathic thrombocytopenic purpura and neurological diseases. Among neurological diseases, epidemiological studies have shown that HP infection increases the prevalence of Alzheimer's disease (AD) and Parkinson's disease (PD). Since HP does not invade the central nervous system (CNS), it has been considered that systemic immunological changes induced by HP infection may play pathogenic roles in AD and PD. Here, we investigated the effects of HP infection on the CNS in vivo and in vitro. In the CNS, chronically HP-infected mice had microglial activation without HP colonization, although systemic immunological changes were not observed. This led us to explore the possibility that HP-derived outer membrane vesicles (HP-OMVs) could cause neuroinflammation. OMVs are small, spherical bilayer vesicles (20-500 nm) released into the extracellular space from the outer membrane of Gram-negative bacteria; OMVs contain lipopolysaccharide, proteins, peptidoglycan, DNA, and RNA. OMVs have also been shown to activate both innate and acquired immune cells in vitro, and to disrupt the tight junctions of the gastric epithelium ("leaky gut") as well as cross the blood-brain barrier in vivo. Thus, in theory, OMVs can activate immune responses in the remote organs, including the lymphoid organs and CNS, if only OMVs enter the systemic circulation. From the exosome fraction of sera from HP-infected mice, we detected HP-specific DNA, suggesting the presence of HP-OMVs. We also found that microglia incubated with HP-OMVs in vitro increased the cell proliferation, inflammatory cytokine production, and migration. On the other hand, HP-OMVs suppressed the cell proliferation of neuroblastoma in vitro. Lastly, we found that AD model mice infected with HP had amyloid plaques adjacent to activated microglia and astrocytes in vivo. Based on the literature review and our experimental data, we propose our working hypothesis that OMVs produced in chronic HP infection in the gut induce neuroinflammation in the CNS, explaining the higher prevalence of AD in HP-infected people.
Collapse
Affiliation(s)
- Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| |
Collapse
|
23
|
Malfertheiner P, Megraud F, Rokkas T, Gisbert JP, Liou JM, Schulz C, Gasbarrini A, Hunt RH, Leja M, O'Morain C, Rugge M, Suerbaum S, Tilg H, Sugano K, El-Omar EM. Management of Helicobacter pylori infection: the Maastricht VI/Florence consensus report. Gut 2022; 71:gutjnl-2022-327745. [PMID: 35944925 DOI: 10.1136/gutjnl-2022-327745] [Citation(s) in RCA: 437] [Impact Index Per Article: 218.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023]
Abstract
Helicobacter pyloriInfection is formally recognised as an infectious disease, an entity that is now included in the International Classification of Diseases 11th Revision. This in principle leads to the recommendation that all infected patients should receive treatment. In the context of the wide clinical spectrum associated with Helicobacter pylori gastritis, specific issues persist and require regular updates for optimised management.The identification of distinct clinical scenarios, proper testing and adoption of effective strategies for prevention of gastric cancer and other complications are addressed. H. pylori treatment is challenged by the continuously rising antibiotic resistance and demands for susceptibility testing with consideration of novel molecular technologies and careful selection of first line and rescue therapies. The role of H. pylori and antibiotic therapies and their impact on the gut microbiota are also considered.Progress made in the management of H. pylori infection is covered in the present sixth edition of the Maastricht/Florence 2021 Consensus Report, key aspects related to the clinical role of H. pylori infection were re-evaluated and updated. Forty-one experts from 29 countries representing a global community, examined the new data related to H. pylori infection in five working groups: (1) indications/associations, (2) diagnosis, (3) treatment, (4) prevention/gastric cancer and (5) H. pylori and the gut microbiota. The results of the individual working groups were presented for a final consensus voting that included all participants. Recommendations are provided on the basis of the best available evidence and relevance to the management of H. pylori infection in various clinical fields.
Collapse
Affiliation(s)
- Peter Malfertheiner
- Medical Department 2, LMU, Munchen, Germany
- Department of Radiology, LMU, Munchen, Germany
| | - Francis Megraud
- INSERM U853 UMR BaRITOn, University of Bordeaux, Bordeaux, France
| | - Theodore Rokkas
- Gastroenterology, Henry Dunant Hospital Center, Athens, Greece
- Medical School, European University, Nicosia, Cyprus
| | - Javier P Gisbert
- Gastroenterology, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jyh-Ming Liou
- Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Christian Schulz
- Medical Department 2, LMU, Munchen, Germany
- Partner Site Munich, DZIF, Braunschweig, Germany
| | - Antonio Gasbarrini
- Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Roma, Italy
| | - Richard H Hunt
- Medicine, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
| | - Marcis Leja
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Colm O'Morain
- Faculty of Health Sciences, Trinity College Dublin, Dublin, Ireland
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padova, Padova, Italy
- Veneto Tumor Registry (RTV), Padova, Italy
| | - Sebastian Suerbaum
- Partner Site Munich, DZIF, Braunschweig, Germany
- Max von Pettenkofer Institute, LMU, Munchen, Germany
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| | - Kentaro Sugano
- Department of Medicine, Jichi Medical School, Tochigi, Japan
| | - Emad M El-Omar
- Department of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
24
|
Sheng S, Zhao S, Zhang F. Insights into the roles of bacterial infection and antibiotics in Parkinson’s disease. Front Cell Infect Microbiol 2022; 12:939085. [PMID: 35967873 PMCID: PMC9366083 DOI: 10.3389/fcimb.2022.939085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which is accompanied with the classical motor symptoms and a range of non-motor symptoms. Bacterial infection affects the neuroinflammation associated with the pathology of PD and various antibiotics have also been confirmed to play an important role not only in bacterial infection, but also in the PD progression. This mini-review summarized the role of common bacterial infection in PD and introduced several antibiotics that had anti-PD effects.
Collapse
Affiliation(s)
- Shuo Sheng
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Shuo Zhao
- Electron Microscopy Room of School of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- Laboratory Animal Center, Zunyi Medical University, Zunyi, China
- *Correspondence: Feng Zhang,
| |
Collapse
|
25
|
Tan AH, Lim SY, Lang AE. The microbiome-gut-brain axis in Parkinson disease - from basic research to the clinic. Nat Rev Neurol 2022; 18:476-495. [PMID: 35750883 DOI: 10.1038/s41582-022-00681-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 12/12/2022]
Abstract
Evidence for a close bidirectional link between the brain and the gut has led to a paradigm shift in neurology, especially in the case of Parkinson disease (PD), in which gastrointestinal dysfunction is a prominent feature. Over the past decade, numerous high-quality preclinical and clinical publications have shed light on the highly complex relationship between the gut and the brain in PD, providing potential for the development of new biomarkers and therapeutics. With the advent of high-throughput sequencing, the role of the gut microbiome has been specifically highlighted. Here, we provide a critical review of the literature on the microbiome-gut-brain axis in PD and present perspectives that will be useful for clinical practice. We begin with an overview of the gut-brain axis in PD, including the potential roles and interrelationships of the vagus nerve, α-synuclein in the enteric nervous system, altered intestinal permeability and inflammation, and gut microbes and their metabolic activities. The sections that follow synthesize the proposed roles of gut-related factors in the development and progression of, in responses to PD treatment, and as therapeutic targets. Finally, we summarize current knowledge gaps and challenges and delineate future directions for the field.
Collapse
Affiliation(s)
- Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. .,Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Shen Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Toronto, Ontario, Canada.,Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Wang C, Zheng C. Using Caenorhabditis elegans to Model Therapeutic Interventions of Neurodegenerative Diseases Targeting Microbe-Host Interactions. Front Pharmacol 2022; 13:875349. [PMID: 35571084 PMCID: PMC9096141 DOI: 10.3389/fphar.2022.875349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
Emerging evidence from both clinical studies and animal models indicates the importance of the interaction between the gut microbiome and the brain in the pathogenesis of neurodegenerative diseases (NDs). Although how microbes modulate neurodegeneration is still mostly unclear, recent studies have started to probe into the mechanisms for the communication between microbes and hosts in NDs. In this review, we highlight the advantages of using Caenorhabditis elegans (C. elegans) to disentangle the microbe-host interaction that regulates neurodegeneration. We summarize the microbial pro- and anti-neurodegenerative factors identified using the C. elegans ND models and the effects of many are confirmed in mouse models. Specifically, we focused on the role of bacterial amyloid proteins, such as curli, in promoting proteotoxicity and neurodegeneration by cross-seeding the aggregation of endogenous ND-related proteins, such as α-synuclein. Targeting bacterial amyloid production may serve as a novel therapeutic strategy for treating NDs, and several compounds, such as epigallocatechin-3-gallate (EGCG), were shown to suppress neurodegeneration at least partly by inhibiting curli production. Because bacterial amyloid fibrils contribute to biofilm formation, inhibition of amyloid production often leads to the disruption of biofilms. Interestingly, from a list of 59 compounds that showed neuroprotective effects in C. elegans and mouse ND models, we found that about half of them are known to inhibit bacterial growth or biofilm formation, suggesting a strong correlation between the neuroprotective and antibiofilm activities. Whether these potential therapeutics indeed protect neurons from proteotoxicity by inhibiting the cross-seeding between bacterial and human amyloid proteins awaits further investigations. Finally, we propose to screen the long list of antibiofilm agents, both FDA-approved drugs and novel compounds, for their neuroprotective effects and develop new pharmaceuticals that target the gut microbiome for the treatment of NDs. To this end, the C. elegans ND models can serve as a platform for fast, high-throughput, and low-cost drug screens that target the microbe-host interaction in NDs.
Collapse
Affiliation(s)
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
27
|
Murros KE. Hydrogen Sulfide Produced by Gut Bacteria May Induce Parkinson's Disease. Cells 2022; 11:978. [PMID: 35326429 PMCID: PMC8946538 DOI: 10.3390/cells11060978] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
Several bacterial species can generate hydrogen sulfide (H2S). Study evidence favors the view that the microbiome of the colon harbors increased amounts of H2S producing bacteria in Parkinson's disease. Additionally, H2S can easily penetrate cell membranes and enter the cell interior. In the cells, excessive amounts of H2S can potentially release cytochrome c protein from the mitochondria, increase the iron content of the cytosolic iron pool, and increase the amount of reactive oxygen species. These events can lead to the formation of alpha-synuclein oligomers and fibrils in cells containing the alpha-synuclein protein. In addition, bacterially produced H2S can interfere with the body urate metabolism and affect the blood erythrocytes and lymphocytes. Gut bacteria responsible for increased H2S production, especially the mucus-associated species of the bacterial genera belonging to the Desulfovibrionaceae and Enterobacteriaceae families, are likely play a role in the pathogenesis of Parkinson's disease. Special attention should be devoted to changes not only in the colonic but also in the duodenal microbiome composition with regard to the pathogenesis of Parkinson's disease. Influenza infections may increase the risk of Parkinson's disease by causing the overgrowth of H2S-producing bacteria both in the colon and duodenum.
Collapse
Affiliation(s)
- Kari Erik Murros
- Institute of Clinical Medicine, University of Eastern Finland (UEF), 70211 Kuopio, Finland
| |
Collapse
|
28
|
Chen H, Wang K, Scheperjans F, Killinger B. Environmental triggers of Parkinson's disease - Implications of the Braak and dual-hit hypotheses. Neurobiol Dis 2022; 163:105601. [PMID: 34954321 PMCID: PMC9525101 DOI: 10.1016/j.nbd.2021.105601] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/05/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022] Open
Abstract
Idiopathic Parkinson's disease (PD) may take decades to develop, during which many risk or protective factors may come into play to initiate the pathogenesis or modify its progression to clinical PD. The lack of understanding of this prodromal phase of PD and the factors involved has been a major hurdle in the study of PD etiology and preventive strategies. Although still controversial, the Braak and dual-hit hypotheses that PD may start peripherally in the olfactory structures and/or the gut provides a theoretical platform to identify the triggers and modifiers of PD prodromal development and progression. This is particularly true for the search of environmental causes of PD as the olfactory structures and gut are the major human mucosal interfaces with the environment. In this review, we lay out our personal views about how the Braak and dual-hit hypotheses may help us search for the environmental triggers and modifiers for PD, summarize available experimental and epidemiological evidence, and discuss research gaps and strategies.
Collapse
Affiliation(s)
- Honglei Chen
- Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | - Keran Wang
- Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Haartmaninkatu 4, 00290 Helsinki, Finland
| | - Bryan Killinger
- Graduate College, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
29
|
Microbes and Parkinson’s disease: from associations to mechanisms. Trends Microbiol 2022; 30:749-760. [DOI: 10.1016/j.tim.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
|
30
|
Kramer P. Mitochondria-Microbiota Interaction in Neurodegeneration. Front Aging Neurosci 2022; 13:776936. [PMID: 35002678 PMCID: PMC8733591 DOI: 10.3389/fnagi.2021.776936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s and Parkinson’s are the two best-known neurodegenerative diseases. Each is associated with the excessive aggregation in the brain and elsewhere of its own characteristic amyloid proteins. Yet the two afflictions have much in common and often the same amyloids play a role in both. These amyloids need not be toxic and can help regulate bile secretion, synaptic plasticity, and immune defense. Moreover, when they do form toxic aggregates, amyloids typically harm not just patients but their pathogens too. A major port of entry for pathogens is the gut. Keeping the gut’s microbe community (microbiota) healthy and under control requires that our cells’ main energy producers (mitochondria) support the gut-blood barrier and immune system. As we age, these mitochondria eventually succumb to the corrosive byproducts they themselves release, our defenses break down, pathogens or their toxins break through, and the side effects of inflammation and amyloid aggregation become problematic. Although it gets most of the attention, local amyloid aggregation in the brain merely points to a bigger problem: the systemic breakdown of the entire human superorganism, exemplified by an interaction turning bad between mitochondria and microbiota.
Collapse
Affiliation(s)
- Peter Kramer
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
31
|
Kim TJ, Lee H. Benefits of Helicobacter pylori Eradication on Extragastric Diseases. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2021. [DOI: 10.7704/kjhugr.2021.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Helicobacter pylori (H. pylori) eradication can reduce the risk of gastric diseases such as gastritis, gastric ulcer, and gastric adenocarcinoma. Since H. pylori was discovered more than 30 years ago, many studies have reported associations between H. pylori infection and extragastric diseases such as immune thrombocytopenia and iron-deficiency anemia. Thus, recent guidelines recommended H. pylori eradication in patients with those diseases. In contrast, although the role of H. pylori eradication in other extragastric diseases remains controversial, there is growing evidence of its benefit on them, especially cardiovascular (ischemic heart disease and stroke), metabolic (dyslipidemia, diabetes mellitus, and non-alcoholic fatty liver disease), neurodegenerative (Parkinson’s disease and Alzheimer’s disease), autoimmune (Graves’ disease, Hashimoto’s thyroiditis, Raynaud’s syndrome, rosacea, and chronic urticaria), and other (cap polyposis, colorectal mucosa-associated lymphoid tissue lymphoma, periodontal disease, hyperemesis gravidarum, and osteoporosis) conditions. A recent prospective randomized study reported that H. pylori eradication improved insulin resistance and dyslipidemia. These findings were consistent with the results of a recent meta-analysis. Therefore, well-designed prospective interventional studies are needed to examine the effects of H. pylori eradication on various extragastric diseases.
Collapse
|
32
|
Menozzi E, Macnaughtan J, Schapira AHV. The gut-brain axis and Parkinson disease: clinical and pathogenetic relevance. Ann Med 2021; 53:611-625. [PMID: 33860738 PMCID: PMC8078923 DOI: 10.1080/07853890.2021.1890330] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Gastrointestinal disorders are one of the most significant non-motor problems affecting people with Parkinson disease (PD). Pathogenetically, the gastrointestinal tract has been proposed to be the initial site of pathological changes in PD. Intestinal inflammation and alterations in the gut microbiota may contribute to initiation and progression of pathology in PD. However, the mechanisms underlying this "gut-brain" axis in PD remain unclear. PD patients can display a large variety of gastrointestinal symptoms, leading to reduced quality of life and psychological distress. Gastrointestinal disorders can also limit patients' response to medications, and consequently negatively impact on neurological outcomes. Despite an increasing research focus, gastrointestinal disorders in PD remain poorly understood and their clinical management often suboptimal. This review summarises our understanding of the relevance of the "gut-brain" axis to the pathogenesis of PD, discusses the impact of gastrointestinal disorders in patients with PD, and provides clinicians with practical guidance to their management.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Jane Macnaughtan
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Anthony H. V. Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
33
|
Yu D, Meng X, de Vos WM, Wu H, Fang X, Maiti AK. Implications of Gut Microbiota in Complex Human Diseases. Int J Mol Sci 2021; 22:12661. [PMID: 34884466 PMCID: PMC8657718 DOI: 10.3390/ijms222312661] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/30/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Humans, throughout the life cycle, from birth to death, are accompanied by the presence of gut microbes. Environmental factors, lifestyle, age and other factors can affect the balance of intestinal microbiota and their impact on human health. A large amount of data show that dietary, prebiotics, antibiotics can regulate various diseases through gut microbes. In this review, we focus on the role of gut microbes in the development of metabolic, gastrointestinal, neurological, immune diseases and, cancer. We also discuss the interaction between gut microbes and the host with respect to their beneficial and harmful effects, including their metabolites, microbial enzymes, small molecules and inflammatory molecules. More specifically, we evaluate the potential ability of gut microbes to cure diseases through Fecal Microbial Transplantation (FMT), which is expected to become a new type of clinical strategy for the treatment of various diseases.
Collapse
Affiliation(s)
- Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Xin Meng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands;
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Amit K. Maiti
- Department of Genetics and Genomics, Mydnavar, 2645 Somerset Boulevard, Troy, MI 48084, USA
| |
Collapse
|
34
|
Zhao Z, Ning J, Bao XQ, Shang M, Ma J, Li G, Zhang D. Fecal microbiota transplantation protects rotenone-induced Parkinson's disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. MICROBIOME 2021; 9:226. [PMID: 34784980 PMCID: PMC8597301 DOI: 10.1186/s40168-021-01107-9] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/02/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a prevalent neurodegenerative disorder, displaying not only well-known motor deficits but also gastrointestinal dysfunctions. Consistently, it has been increasingly evident that gut microbiota affects the communication between the gut and the brain in PD pathogenesis, known as the microbiota-gut-brain axis. As an approach to re-establishing a normal microbiota community, fecal microbiota transplantation (FMT) has exerted beneficial effects on PD in recent studies. Here, in this study, we established a chronic rotenone-induced PD mouse model to evaluate the protective effects of FMT treatment on PD and to explore the underlying mechanisms, which also proves the involvement of gut microbiota dysbiosis in PD pathogenesis via the microbiota-gut-brain axis. RESULTS We demonstrated that gut microbiota dysbiosis induced by rotenone administration caused gastrointestinal function impairment and poor behavioral performances in the PD mice. Moreover, 16S RNA sequencing identified the increase of bacterial genera Akkermansia and Desulfovibrio in fecal samples of rotenone-induced mice. By contrast, FMT treatment remarkably restored the gut microbial community, thus ameliorating the gastrointestinal dysfunctions and the motor deficits of the PD mice. Further experiments revealed that FMT administration alleviated intestinal inflammation and barrier destruction, thus reducing the levels of systemic inflammation. Subsequently, FMT treatment attenuated blood-brain barrier (BBB) impairment and suppressed neuroinflammation in the substantia nigra (SN), which further decreased the damage of dopaminergic neurons. Additional mechanistic investigation discovered that FMT treatment reduced lipopolysaccharide (LPS) levels in the colon, the serum, and the SN, thereafter suppressing the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products both in the SN and the colon. CONCLUSIONS Our current study demonstrates that FMT treatment can correct the gut microbiota dysbiosis and ameliorate the rotenone-induced PD mouse model, in which suppression of the inflammation mediated by the LPS-TLR4 signaling pathway both in the gut and the brain possibly plays a significant role. Further, we prove that rotenone-induced microbiota dysbiosis is involved in the genesis of PD via the microbiota-gut-brain axis. Video abstract.
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Xiu-qi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Jingwei Ma
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Gen Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| |
Collapse
|
35
|
Zhao Z, Li F, Ning J, Peng R, Shang J, Liu H, Shang M, Bao XQ, Zhang D. Novel compound FLZ alleviates rotenone-induced PD mouse model by suppressing TLR4/MyD88/NF- κB pathway through microbiota-gut-brain axis. Acta Pharm Sin B 2021; 11:2859-2879. [PMID: 34589401 PMCID: PMC8463266 DOI: 10.1016/j.apsb.2021.03.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/07/2021] [Accepted: 02/12/2021] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, but none of the current treatments for PD can halt the progress of the disease due to the limited understanding of the pathogenesis. In PD development, the communication between the brain and the gastrointestinal system influenced by gut microbiota is known as microbiota-gut-brain axis. However, the explicit mechanisms of microbiota dysbiosis in PD development have not been well elucidated yet. FLZ, a novel squamosamide derivative, has been proved to be effective in many PD models and is undergoing the phase I clinical trial to treat PD in China. Moreover, our previous pharmacokinetic study revealed that gut microbiota could regulate the absorption of FLZ in vivo. The aims of our study were to assess the protective effects of FLZ treatment on PD and to further explore the underlying microbiota-related mechanisms of PD by using FLZ as a tool. In the current study, chronic oral administration of rotenone was utilized to induce a mouse model to mimic the pathological process of PD. Here we revealed that FLZ treatment alleviated gastrointestinal dysfunctions, motor symptoms, and dopaminergic neuron death in rotenone-challenged mice. 16S rRNA sequencing found that PD-related microbiota alterations induced by rotenone were reversed by FLZ treatment. Remarkably, FLZ administration attenuated intestinal inflammation and gut barrier destruction, which subsequently inhibited systemic inflammation. Eventually, FLZ treatment restored blood-brain barrier structure and suppressed neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra (SN). Further mechanistic research demonstrated that FLZ treatment suppressed the TLR4/MyD88/NF-κB pathway both in the SN and colon. Collectively, FLZ treatment ameliorates microbiota dysbiosis to protect the PD model via inhibiting TLR4 pathway, which contributes to one of the underlying mechanisms beneath its neuroprotective effects. Our research also supports the importance of microbiota-gut-brain axis in PD pathogenesis, suggesting its potential role as a novel therapeutic target for PD treatment.
Collapse
Key Words
- ANOSIM, adonis and analysis of similarity
- BBB, blood–brain barrier
- CFU, colony-forming units
- CMC-Na, sodium carboxymethyl cellulose
- CNS, central nerve system
- ELISA, enzyme-linked immunosorbent assay
- FD4, FITC-dextran (MW: 4 kDa)
- FITC, fluorescein isothiocyanate
- FLZ
- GFAP, glial fibrillary acidic protein
- GI, gastrointestinal
- Gastrointestinal dysfunction
- Hp, Helicobacter pylori
- IL-1β, interleukin-1β
- IL-6, interleukin-6
- Iba-1, ionized calcium-binding adapter molecule 1
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LBP, lipopolysaccharide binding protein
- LDA, linear discriminant analysis
- LPS, lipopolysaccharide
- MLNs, mesenteric lymph nodes
- Microbiota–gut–brain axis
- Neuroinflammation
- OTU, operational taxonomic unit
- PBS, phosphate-buffered saline
- PCoA, principal coordinate analysis
- PD, Parkinson's disease
- Parkinson's disease
- Rotenone mouse model
- SD, standard deviation
- SN, substantia nigra
- Systemic inflammation
- TEM, transmission electron microscopy
- TH, tyrosine hydroxylase
- TLR4, toll-like receptor 4
- TLR4/MyD88/NF-κB pathway
- TNF-α, tumor necrosis factor-α
- qPCR, quantitative polymerase chain reaction assay
- α-Syn, α-synuclein
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fangyuan Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ran Peng
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Junmei Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui Liu
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiu-Qi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
36
|
Helicobacter pylori Infection and Extragastric Diseases-A Focus on the Central Nervous System. Cells 2021; 10:cells10092191. [PMID: 34571840 PMCID: PMC8469861 DOI: 10.3390/cells10092191] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) is most known to cause a wide spectrum of gastrointestinal impairments; however, an increasing number of studies indicates that H. pylori infection might be involved in numerous extragastric diseases such as neurological, dermatological, hematologic, ocular, cardiovascular, metabolic, hepatobiliary, or even allergic diseases. In this review, we focused on the nervous system and aimed to summarize the findings regarding H. pylori infection and its involvement in the induction/progression of neurological disorders. Neurological impairments induced by H. pylori infection are primarily due to impairments in the gut-brain axis (GBA) and to an altered gut microbiota facilitated by H. pylori colonization. Currently, regarding a potential relationship between Helicobacter infection and neurological disorders, most of the studies are mainly focused on H. pylori.
Collapse
|
37
|
Lotz SK, Blackhurst BM, Reagin KL, Funk KE. Microbial Infections Are a Risk Factor for Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:691136. [PMID: 34305533 PMCID: PMC8292681 DOI: 10.3389/fncel.2021.691136] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, comprise a family of disorders characterized by progressive loss of nervous system function. Neuroinflammation is increasingly recognized to be associated with many neurodegenerative diseases but whether it is a cause or consequence of the disease process is unclear. Of growing interest is the role of microbial infections in inciting degenerative neuroinflammatory responses and genetic factors that may regulate those responses. Microbial infections cause inflammation within the central nervous system through activation of brain-resident immune cells and infiltration of peripheral immune cells. These responses are necessary to protect the brain from lethal infections but may also induce neuropathological changes that lead to neurodegeneration. This review discusses the molecular and cellular mechanisms through which microbial infections may increase susceptibility to neurodegenerative diseases. Elucidating these mechanisms is critical for developing targeted therapeutic approaches that prevent the onset and slow the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Kristen E. Funk
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
38
|
Zhang Y, Liu Y, Tang Y, Zhang D, He H, Wu J, Zheng J. Antimicrobial α-defensins as multi-target inhibitors against amyloid formation and microbial infection. Chem Sci 2021; 12:9124-9139. [PMID: 34276942 PMCID: PMC8261786 DOI: 10.1039/d1sc01133b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
Amyloid aggregation and microbial infection are considered as pathological risk factors for developing amyloid diseases, including Alzheimer's disease (AD), type II diabetes (T2D), Parkinson's disease (PD), and medullary thyroid carcinoma (MTC). Due to the multifactorial nature of amyloid diseases, single-target drugs and treatments have mostly failed to inhibit amyloid aggregation and microbial infection simultaneously, thus leading to marginal benefits for amyloid inhibition and medical treatments. Herein, we proposed and demonstrated a new "anti-amyloid and antimicrobial hypothesis" to discover two host-defense antimicrobial peptides of α-defensins containing β-rich structures (human neutrophil peptide of HNP-1 and rabbit neutrophil peptide of NP-3A), which have demonstrated multi-target, sequence-independent functions to (i) prevent the aggregation and misfolding of different amyloid proteins of amyloid-β (Aβ, associated with AD), human islet amyloid polypeptide (hIAPP, associated with T2D), and human calcitonin (hCT, associated with MTC) at sub-stoichiometric concentrations, (ii) reduce amyloid-induced cell toxicity, and (iii) retain their original antimicrobial activity upon the formation of complexes with amyloid peptides. Further structural analysis showed that the sequence-independent amyloid inhibition function of α-defensins mainly stems from their cross-interactions with amyloid proteins via β-structure interactions. The discovery of antimicrobial peptides containing β-structures to inhibit both microbial infection and amyloid aggregation greatly expands the new therapeutic potential of antimicrobial peptides as multi-target amyloid inhibitors for better understanding pathological causes and treatments of amyloid diseases.
Collapse
Affiliation(s)
- Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University Zhejiang China
| | - Jiang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University Zhejiang China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| |
Collapse
|
39
|
Bai F, Li X. Association of Helicobacter pylori treatment with Parkinsonism and related disorders: A systematic review and meta-analysis. Life Sci 2021; 281:119767. [PMID: 34216625 DOI: 10.1016/j.lfs.2021.119767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
AIMS Previous studies have suggested that Helicobacter pylori (H. pylori) infections may be the cause of or worsen Parkinson's disease symptoms. In this meta-analysis, all relevant studies were reviewed to assess whether H. pylori treatment would benefit patients with Parkinson's disease. MAIN METHODS Systemically searches were carried out in MEDLINE and other popular databases. The software RevMan 5.2 was used for meta-analysis. The mean difference (MD) was used as the effect size to draw forest plots. KEY FINDINGS A total of 10 qualified studies were included. For bradykinesia, the pooled MD value of stride length was -75.76, 95% CI [-109.37, -42.15, P < 0.05]; for myotonia, the pooled MD value of torque to flex was 75.24, 95% CI [27.36, 123.13, P < 0.05]. The pooled MD value of Unified Parkinson's Disease Rating Scale (UPDRS)-III scores before and after treatment was 6.27, 95% CI [1.30, 11.24, P < 0.05], suggesting that UPDRS-III scores improved in response to H. pylori treatment. The pooled MD value of levodopa onset time (min) was 14.91, 95% CI [8.92, 20.90, P < 0.05]. SIGNIFICANCE H. pylori treatment may improve the stride length in the bradykinesia index and significantly improve UPDRS-III scores.
Collapse
Affiliation(s)
- Fusheng Bai
- Department of Neurology, Liaoning Province Jinqiu Hospital, No. 317 Xiaonan Street, Shenyang 110016, Liaoning Province, China
| | - Xinming Li
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146 North Huanghe Street, Shenyang 110034, Liaoning Province, China.
| |
Collapse
|
40
|
Radyuk SN. Mechanisms Underlying the Biological Effects of Molecular Hydrogen. Curr Pharm Des 2021; 27:626-735. [PMID: 33308112 DOI: 10.2174/1381612826666201211112846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
Aberrant redox-sensitive reactions and accumulation of oxidative damage can impair body functions and contribute to the development of various pathologies and aging. Although antioxidant substances have long been recognized as a measure of alleviating oxidative stress and restoring redox balance, the arsenal of effective means of preventing the development of various disorders, is still limited. There is an emerging field that utilizes molecular hydrogen (H2) as a scavenger of free radicals and reactive oxygen species (ROS). Among the remarkable characteristics of H2 is its ability to counteract the harmful effects of hydroxyl radical and peroxynitrite without affecting the activity of functionally important ROS, such as hydrogen peroxide and nitric oxide. The beneficial effects of H2 have been documented in numerous clinical studies and studies on animal models and cell cultures. However, the established scavenging activity of H2 can only partially explain its beneficial effects because the effects are achieved at very low concentrations of H2. Given the rate of H2 diffusion, such low concentrations may not be sufficient to scavenge continuously generated ROS. H2 can also act as a signaling molecule and induce defense responses. However, the exact targets and mechanism(s) by which H2 exerts these effects are unknown. Here, we analyzed both positive and negative effects of the endogenous H2, identified the redox-sensitive components of the pathways affected by molecular hydrogen, and also discussed the potential role of molecular hydrogen in regulating cellular redox.
Collapse
Affiliation(s)
- Svetlana N Radyuk
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas, United States
| |
Collapse
|
41
|
Kang X, Ploner A, Roelstraete B, Khalili H, Williams DM, Pedersen NL, Ludvigsson JF, Wirdefeldt K. Association Between Microscopic Colitis and Parkinson's Disease in a Swedish Population. Mov Disord 2021; 36:1919-1926. [PMID: 33764622 DOI: 10.1002/mds.28594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/04/2021] [Accepted: 03/08/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Gastrointestinal inflammation has been linked with Parkinson's disease (PD). Microscopic colitis (MC) is an intestinal inflammatory disease with unknown relationship with PD. OBJECTIVE This study aimed to examine the association of MC with PD risk. METHODS In this nationwide matched cohort study in Sweden, PD incidence was compared between 12,609 patients with histologically confirmed MC and a matched population cohort of 58,879 MC-free individuals and a sibling cohort comprising all unaffected siblings of the MC patients (NMC /NSibling = 6281/12,351). Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox regression models. RESULTS During a mean follow-up of ~7 years, we identified 449 incident PD diagnoses among the MC patients and the population cohort. Overall, MC was associated with an adjusted HR of 1.76 for PD, but the association attenuated substantially during follow-up. In the time-varying effects model, PD hazard was 3.45-fold (95% CI: 2.42, 4.93) higher during the first 2 years after biopsy and 1.80-fold (95% CI: 1.23, 2.64) higher during the following 3 years among MC versus MC-free individuals but was not different beyond 5 years after biopsy (HR: 1.03; 95% CI: 0.68, 1.54). This temporal pattern of MC-PD associations persisted when comparing MC patients to their siblings. In a post hoc case-control analysis, we also detected a strong association between MC and preexisting PD (odds ratio: 3.46; 95% CI: 2.91, 4.12). CONCLUSIONS Our findings suggest that MC may not be a risk factor for PD; instead, it may co-occur with PD as a comorbidity or develop after a diagnosis of PD. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xiaoying Kang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Ploner
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Bjorn Roelstraete
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hamed Khalili
- Massachusetts General Hospital, Crohn's and Colitis Center and Harvard Medical School, Boston, Massachusetts, USA.,Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Dylan M Williams
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,MRC Unit for Lifelong Health and Ageing, University College London, London, United Kingdom
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| | - Karin Wirdefeldt
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Helicobacter pylori infection is associated with a poor response to levodopa in patients with Parkinson's disease: a systematic review and meta-analysis. J Neurol 2021; 269:703-711. [PMID: 33616741 DOI: 10.1007/s00415-021-10473-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Helicobacter pylori (HP) infection has been reported to be associated with increased severity of Parkinson's disease (PD) and have negative effects on drug response in patients. We aimed to investigate the influence of HP infection on patients with PD using a systematic review and meta-analysis approach. METHODS PubMed and EMBASE databases for relevant articles published before October 2020 were searched. Two authors independently screened records, extracted data, and evaluated the quality of the included studies. The odds ratios (ORs) or standardized mean differences (SMDs) with their corresponding 95% confidence intervals (CIs) were used to calculate the pooled results by employing a random or fixed-effects model. Sensitivity analyses were conducted, and potential publication bias was assessed. RESULTS A total of 13 studies were included in our meta-analysis. Overall, PD patients with HP infection had significantly higher levodopa equivalent daily dose (UPDRS) motor scores (SMD = 0.266; 95% CI 0.065-0.467; P = 0.009) and more units of levodopa equivalent daily dose (LEDD) (SMD = 0.178; 95% CI 0.004-0.353; P = 0.046) than those of patients without HP infection. Additionally, the time to achieve 'ON' state was significantly longer (SMD = 0.778; 95% CI 0.337-1.220; P = 0.001) and the duration of 'ON' state was significantly shorter (SMD = -0.539; 95% CI = -0.801 to -0.227; P = 0.001) in patients with HP infection than in those without HP infection. CONCLUSION Our pooled results of this meta-analysis demonstrated that HP infection was associated with worse motor symptoms, higher LEDD, and worse response to drugs in patients with PD. This evidence emphasizes the importance of considering subsequent eradication of HP infection in patients with PD.
Collapse
|
43
|
Reshetnyak VI, Burmistrov AI, Maev IV. Helicobacter pylori: Commensal, symbiont or pathogen? World J Gastroenterol 2021; 27:545-560. [PMID: 33642828 PMCID: PMC7901052 DOI: 10.3748/wjg.v27.i7.545] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
This review considers the data on Helicobacter pylori (H. pylori), which have been accumulated over 40 years since its description as an etiological factor in gastrointestinal diseases. The majority of modern publications are devoted to the study of the pathogenic properties of the microorganism in the development of chronic gastritis, peptic ulcer disease, and gastric cancer, as well as methods for its eradication. However, in recent years, there have been more and more studies which have suggested that H. pylori has a beneficial, or potentially positive, effect on the human body. The authors have attempted to objectively analyze the information accumulated in the literature on H. pylori. Some studies consider it as one of the recently identified human bacterial pathogens, and special attention is paid to the evidence suggesting that it is probably part of the composition of the human microbiome as a commensal (commensal from French to English is a table companion) or even a symbiont. The presented data discussing the presence or absence of the effect of H. pylori on human health suggest that there is an apparent ambiguity of the problem. The re-assessment of the data available on H. pylori infection is important in order to answer the question of whether it is necessary to create a program of mass H. pylori eradication or to apply a more personalized approach to treating patients with H. pylori-associated gastrointestinal diseases and to perform eradication therapy.
Collapse
Affiliation(s)
- Vasiliy Ivanovich Reshetnyak
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Alexandr Igorevich Burmistrov
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Igor Veniaminovich Maev
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| |
Collapse
|
44
|
Shen T, Yue Y, He T, Huang C, Qu B, Lv W, Lai HY. The Association Between the Gut Microbiota and Parkinson's Disease, a Meta-Analysis. Front Aging Neurosci 2021; 13:636545. [PMID: 33643026 PMCID: PMC7907649 DOI: 10.3389/fnagi.2021.636545] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/22/2021] [Indexed: 01/11/2023] Open
Abstract
Patients with Parkinson's disease (PD) were often observed with gastrointestinal symptoms, which preceded the onset of motor symptoms. Neuropathology of PD has also been found in the enteric nervous system (ENS). Many studies have reported significant PD-related alterations of gut microbiota. This meta-analysis was performed to evaluate the differences of gut microbiota between patients with PD and healthy controls (HCs) across different geographical regions. We conducted a systematic online search for case-control studies detecting gut microbiota in patients with PD and HCs. Mean difference (MD) and 95% confidence interval (CI) were calculated to access alterations in the abundance of certain microbiota families in PD. Fifteen case-control studies were included in this meta-analysis study. Our results showed significant lower abundance levels of Prevotellaceae (MD = -0.37, 95% CI = -0.62 to -0.11), Faecalibacterium (MD = -0.41, 95% CI: -0.57 to -0.24), and Lachnospiraceae (MD = -0.34, 95% CI = -0.59 to -0.09) in patients with PD compared to HCs. Significant higher abundance level of Bifidobacteriaceae (MD = 0.38, 95%; CI = 0.12 to 0.63), Ruminococcaceae (MD = 0.58, 95% CI = 0.07 to 1.10), Verrucomicrobiaceae (MD = 0.45, 95% CI = 0.21 to 0.69), and Christensenellaceae (MD = 0.20, 95% CI = 0.07 to 0.34) was also found in patients with PD. Thus, shared alterations of certain gut microbiota were detected in patients with PD across different geographical regions. These PD-related gut microbiota dysbiosis might lead to the impairment of short-chain fatty acids (SCFAs) producing process, lipid metabolism, immunoregulatory function, and intestinal permeability, which contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Ting Shen
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yumei Yue
- Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Tingting He
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Cong Huang
- Department of Sports and Exercise Science, Zhejiang University, Hangzhou, China
| | - Boyi Qu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Wen Lv
- Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hsin-Yi Lai
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Smeyne RJ, Noyce AJ, Byrne M, Savica R, Marras C. Infection and Risk of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:31-43. [PMID: 33361610 PMCID: PMC7990414 DOI: 10.3233/jpd-202279] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson’s disease (PD) is thought to be caused by a combination of genetic and environmental factors. Bacterial or viral infection has been proposed as a potential risk factor, and there is supporting although not entirely consistent epidemiologic and basic science evidence to support its role. Encephalitis caused by influenza has included parkinsonian features. Epidemiological evidence is most compelling for an association between PD and hepatitis C virus. Infection with Helicobacter pylori may be associated not only with PD risk but also response to levodopa. Rapidly evolving knowledge regarding the role of the microbiome also suggests a role of resident bacteria in PD risk. Biological plausibility for the role for infectious agents is supported by the known neurotropic effects of specific viruses, particular vulnerability of the substantia nigra and even the promotion of aggregation of alpha-synuclein. A common feature of implicated viruses appears to be production of high levels of cytokines and chemokines that can cross the blood-brain barrier leading to microglial activation and inflammation and ultimately neuronal cell death. Based on multiple avenues of evidence it appears likely that specific bacterial and particularly viral infections may increase vulnerability to PD. The implications of this for PD prevention requires attention and may be most relevant once preventive treatments for at-risk populations are developed.
Collapse
Affiliation(s)
- Richard J Smeyne
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK.,Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Matthew Byrne
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, Minnesota and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Connie Marras
- The Edmond J Safra Program in Parkinson's disease, Toronto Western Hospital and the University of Toronto, Toronto, Canada
| |
Collapse
|
46
|
Gastrointestinal Dysfunction in Parkinson's Disease. J Clin Med 2021; 10:jcm10030493. [PMID: 33572547 PMCID: PMC7866791 DOI: 10.3390/jcm10030493] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Patients show deposits of pathological, aggregated α-synuclein not only in the brain but throughout almost the entire length of the digestive tract. This gives rise to non-motor symptoms particularly within the gastrointestinal tract and patients experience a wide range of frequent and burdensome symptoms such as dysphagia, bloating, and constipation. Recent evidence suggests that progressive accumulation of gastrointestinal pathology is underway several years before a clinical diagnosis of PD. Notably, constipation has been shown to increase the risk of developing PD and in contrast, truncal vagotomy seems to decrease the risk of PD. Animal models have demonstrated gut-to-brain spreading of pathological α-synuclein and it is currently being intensely studied whether PD begins in the gut of some patients. Gastrointestinal symptoms in PD have been investigated by the use of several different questionnaires. However, there is limited correspondence between subjective gastrointestinal symptoms and objective dysfunction along the gastrointestinal tract, and often the magnitude of dysfunction is underestimated by the use of questionnaires. Therefore, objective measures are important tools to clarify the degree of dysfunction in future studies of PD. Here, we summarize the types and prevalence of subjective gastrointestinal symptoms and objective dysfunction in PD. The potential importance of the gastrointestinal tract in the etiopathogenesis of PD is briefly discussed.
Collapse
|
47
|
Chandra S, Alam MT, Dey J, Sasidharan BCP, Ray U, Srivastava AK, Gandhi S, Tripathi PP. Healthy Gut, Healthy Brain: The Gut Microbiome in Neurodegenerative Disorders. Curr Top Med Chem 2021; 20:1142-1153. [PMID: 32282304 DOI: 10.2174/1568026620666200413091101] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/12/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The central nervous system (CNS) known to regulate the physiological conditions of human body, also itself gets dynamically regulated by both the physiological as well as pathological conditions of the body. These conditions get changed quite often, and often involve changes introduced into the gut microbiota which, as studies are revealing, directly modulate the CNS via a crosstalk. This cross-talk between the gut microbiota and CNS, i.e., the gut-brain axis (GBA), plays a major role in the pathogenesis of many neurodegenerative disorders such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and Huntington's disease (HD). OBJECTIVE We aim to discuss how gut microbiota, through GBA, regulate neurodegenerative disorders such as PD, AD, ALS, MS and HD. METHODS In this review, we have discussed the present understanding of the role played by the gut microbiota in neurodegenerative disorders and emphasized the probable therapeutic approaches being explored to treat them. RESULTS In the first part, we introduce the GBA and its relevance, followed by the changes occurring in the GBA during neurodegenerative disorders and then further discuss its role in the pathogenesis of these diseases. Finally, we discuss its applications in possible therapeutics of these diseases and the current research improvements being made to better investigate this interaction. CONCLUSION We concluded that alterations in the intestinal microbiota modulate various activities that could potentially lead to CNS disorders through interactions via the GBA.
Collapse
Affiliation(s)
- Sreyashi Chandra
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Md Tanjim Alam
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India
| | - Jhilik Dey
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Baby C Pulikkaparambil Sasidharan
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology (CUSAT), Kochi, India.,Inter-University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology (CUSAT), Kochi, India
| | - Upasana Ray
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit K Srivastava
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad 500032, India
| | - Prem P Tripathi
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
48
|
Tan W, Zhang Q, Dong Z, Yan Y, Fu Y, Liu X, Zhao B, Duan X. Phosphatidylcholine Ameliorates LPS-Induced Systemic Inflammation and Cognitive Impairments via Mediating the Gut-Brain Axis Balance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14884-14895. [PMID: 33289390 DOI: 10.1021/acs.jafc.0c06383] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Systemic inflammation will cause an imbalance in the steady state of the gut-brain axis. Phosphatidylcholine (PC) is a phospholipid found in egg yolk that has anti-inflammatory and antioxidant properties. The present research proved that PC supplementation (60 mg/kg body weight) for 35 days prevented inflammatory responses and behavioral disturbances in lipopolysaccharide (LPS)-induced mice. PC could regulate the expression of neurotrophic factors and synaptic proteins, which effectively alleviated the nerve damage and synaptic dysfunction caused by LPS. In addition, PC supplementation ameliorated gut barrier damage, altered gut genes, and improved gut health by modulating the cell adhesion molecule (CAM) pathway. Furthermore, PC remodeled the gut microbiome structure in the mice of the LPS group by increasing the relative abundance of Rikenellaceae and Lachnospiraceae. PC also increased short-chain fatty acid (SCFA) production in LPS-induced mice, which in turn ameliorated brain inflammatory responses. In conclusion, PC supplementation may be a nutritional strategy for the prevention of systemic inflammation via the gut-brain axis.
Collapse
Affiliation(s)
- Wen Tan
- College of Food Science and Engineering, Northwest A&F University, 22 Xi-nong Road, Yangling 712100, China
| | - Qinjun Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xi-nong Road, Yangling 712100, China
| | - Zhijian Dong
- Xi'an Gaoxin Hospital, Xi'an 710000, Shaanxi, China
| | - Yubin Yan
- College of Food Science and Engineering, Northwest A&F University, 22 Xi-nong Road, Yangling 712100, China
| | - Yukun Fu
- College of Food Science and Engineering, Northwest A&F University, 22 Xi-nong Road, Yangling 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xi-nong Road, Yangling 712100, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, 22 Xi-nong Road, Yangling 712100, China
| | - Xiang Duan
- College of Food Science and Engineering, Northwest A&F University, 22 Xi-nong Road, Yangling 712100, China
| |
Collapse
|
49
|
Affiliation(s)
- Yogesh Bhattarai
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Purna C. Kashyap
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
50
|
Zuo Y, Jing Z, Bie M, Xu C, Hao X, Wang B. Association between Helicobacter pylori infection and the risk of colorectal cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21832. [PMID: 32925719 PMCID: PMC7489651 DOI: 10.1097/md.0000000000021832] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The existing evidence on the relationship between Helicobacter pylori infection and the risk of colorectal cancer is inconsistent. We conducted a systematic review with a meta-analysis to explore this relationship and to determine whether the relationship varies according to the study characteristics. METHODS We searched the PubMed, OVID, EMBASE database, and the reference lists of pertinent articles published up to October 2019 by 2 researchers independently. Summary odds ratios (OR) with their 95% confidence intervals (CIs) were estimated using a random-effects model. RESULTS Forty seven studies including 17,416 cases of colorectal cancer (CRC) and 55,811 cases of control were included. Overall, H. pylori infection was associated with an increased risk of CRC (OR = 1.70 95% CI 1.64-1.76, I = 97%), although there was significant heterogeneity among the studies. Subgroup analysis revealed that the positive correlation might vary by the design of study conducted. CONCLUSION This meta-analysis demonstrates a positive association between H. pylori infection and the risk of colorectal cancer.
Collapse
Affiliation(s)
- Yuling Zuo
- Hospital of Chengdu University of Traditional Chinese Medicine
| | - Zhao Jing
- Hospital of Chengdu University of Traditional Chinese Medicine
| | - Mingjiang Bie
- West China fourth hospital of Public Health, Sichuan University
| | - Chunyan Xu
- J. N. Medical Laboratory, Big Data Research Center, University of Electronic Science and Technology of China
| | - Xinyu Hao
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Sichuan
| | - Baoning Wang
- West China School of Basic medical sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|