1
|
Zhang J, Shi M, Wang J, Li F, Du C, Su G, Xie X, Li S. Novel Strategies for Angiogenesis in Tissue Injury: Therapeutic Effects of iPSCs-Derived Exosomes. Angiology 2025; 76:5-16. [PMID: 37933764 DOI: 10.1177/00033197231213192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Regeneration after tissue injury is a dynamic and complex process, and angiogenesis is necessary for normal physiological activities and tissue repair. Induced pluripotent stem cells are a new approach in regenerative medicine, which provides good model for the study of difficult-to-obtain human tissues, patient-specific therapy, and tissue repair. As an innovative cell-free therapeutic strategy, the main advantages of the treatment of induced pluripotent stem cells (iPSCs)-derived exosomes are low in tumorigenicity and immunogenicity, which become an important pathway for tissue injury. This review focuses on the mechanism of the angiogenic effect of iPSCs-derived exosomes on wound repair in tissue injury and their potential therapeutic targets, with a view to providing a theoretical basis for the use of iPSCs-derived exosomes in clinical therapy.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Wang
- Gansu Province Medical Genetics Center, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, China
| | - Fei Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chenxu Du
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Gang Su
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Shiweng Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
2
|
Salminen A, Kaarniranta K, Kauppinen A. Tissue fibroblasts are versatile immune regulators: An evaluation of their impact on the aging process. Ageing Res Rev 2024; 97:102296. [PMID: 38588867 DOI: 10.1016/j.arr.2024.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibroblasts are abundant stromal cells which not only control the integrity of extracellular matrix (ECM) but also act as immune regulators. It is known that the structural cells within tissues can establish an organ-specific immunity expressing many immune-related genes and closely interact with immune cells. In fact, fibroblasts can modify their immune properties to display both pro-inflammatory and immunosuppressive activities in a context-dependent manner. After acute insults, fibroblasts promote tissue inflammation although they concurrently recruit immunosuppressive cells to enhance the resolution of inflammation. In chronic pathological states, tissue fibroblasts, especially senescent fibroblasts, can display many pro-inflammatory and immunosuppressive properties and stimulate the activities of different immunosuppressive cells. In return, immunosuppressive cells, such as M2 macrophages and myeloid-derived suppressor cells (MDSC), evoke an excessive conversion of fibroblasts into myofibroblasts, thus aggravating the severity of tissue fibrosis. Single-cell transcriptome studies on fibroblasts isolated from aged tissues have confirmed that tissue fibroblasts express many genes coding for cytokines, chemokines, and complement factors, whereas they lose some fibrogenic properties. The versatile immune properties of fibroblasts and their close cooperation with immune cells indicate that tissue fibroblasts have a crucial role in the aging process and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, KYS FI-70029, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| |
Collapse
|
3
|
Wu J, Li Q, Cui C, Xu J. Screening of novel bovine-elastin-derived peptides with elastase inhibition and photoprotective potential: a combined in silico and in vitro study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:716-726. [PMID: 37658829 DOI: 10.1002/jsfa.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND The demand for food-based anti-photoaging products is surging because of the rising recognition of health and beauty, as well as enhanced comprehension of the detrimental impact of ultraviolet (UV) radiation. This study aimed to investigate the potential of bioactive peptides derived from bovine elastin, specifically focusing on identifying novel elastase inhibitory peptides and assessing their photoprotective properties using bioinformatics techniques. RESULTS A total of 48 bioactive peptides were screened in bovine elastin hydrolysate (EH) utilizing Peptide Ranker analysis. Three novel elastase inhibitory peptides, GAGQPFPI, FFPGAG and FPGIG (in descending order of activity), exhibited potent inhibitory effects on elastase in vitro, surpassing the inhibitory effect of EH by a factor of 1-2 and reaching significantly lower concentrations (8-15 times lower) than EH. The cumulative inhibitory effect of GAGQPFPI, FFPGAG, and FPGIG reached 91.5%. Further analysis revealed that FFPGAG and FPGIG exhibited mixed inhibition, whereas GAGQPFPI displayed non-competitive inhibition. Molecular simulations showed that these peptides interacted effectively with the elastase active site through hydrogen bonding and hydrophobic interactions. Furthermore, GAGQPFPI, FFPGAG, and FPGIG demonstrated high stability in gastrointestinal digestion, demonstrated transcellular permeability across Caco-2 cell monolayers, and exhibited remarkable photoprotective properties against UVB-irradiated HaCaT cells. CONCLUSION GAGQPFPI showed the most promising potential as a functional food with photoprotective effects against UVB damage and inhibitory properties against elastase. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Wu
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Qinglan Li
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Chun Cui
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Jucai Xu
- School of Biotechnology and Health Sciences & International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen, China
| |
Collapse
|
4
|
Ma Y, Zhao X, Chen J, Chen X, Fan W, Sun Y, Lin Z, Fu L, Zou H, Mou X. Umbilical cord mesenchymal‐stem‐cell‐derived nanovesicles as a novel strategy to promote wound healing in diabetes. NANO SELECT 2023. [DOI: 10.1002/nano.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Affiliation(s)
- Ying‐Yu Ma
- Center for Plastic & Reconstructive Surgery Department of Plastic and Reconstructive Surgery Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
| | - Xin Zhao
- Center for Plastic & Reconstructive Surgery Department of Plastic and Reconstructive Surgery Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province Clinical Research Institute Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
- College of Pharmacy Hangzhou Medical College Hangzhou China
| | - Jin‐Yang Chen
- Zhejiang Health future Biomedicine Co., Ltd Hangzhou China
| | - Xiao‐Yi Chen
- Center for Plastic & Reconstructive Surgery Department of Plastic and Reconstructive Surgery Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province Clinical Research Institute Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
| | - Wei‐Jiao Fan
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province Clinical Research Institute Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
| | - Yi Sun
- Center for Plastic & Reconstructive Surgery Department of Plastic and Reconstructive Surgery Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
| | - Zhi‐Wei Lin
- Zhejiang Health future Biomedicine Co., Ltd Hangzhou China
| | - Luo‐Qin Fu
- Center for Plastic & Reconstructive Surgery Department of Plastic and Reconstructive Surgery Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province Clinical Research Institute Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
| | - Hai Zou
- Department of Oncology Shanghai Medical College Fudan University Shanghai China
- Department of Critical Care Fudan University Shanghai Cancer Center Shanghai China
| | - Xiao‐Zhou Mou
- Center for Plastic & Reconstructive Surgery Department of Plastic and Reconstructive Surgery Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province Clinical Research Institute Zhejiang Provincial People's Hospital Affiliated People's Hospital Hangzhou Medical College Hangzhou China
- College of Pharmacy Hangzhou Medical College Hangzhou China
| |
Collapse
|
5
|
Understanding Acquired Brain Injury: A Review. Biomedicines 2022; 10:biomedicines10092167. [PMID: 36140268 PMCID: PMC9496189 DOI: 10.3390/biomedicines10092167] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 01/19/2023] Open
Abstract
Any type of brain injury that transpires post-birth is referred to as Acquired Brain Injury (ABI). In general, ABI does not result from congenital disorders, degenerative diseases, or by brain trauma at birth. Although the human brain is protected from the external world by layers of tissues and bone, floating in nutrient-rich cerebrospinal fluid (CSF); it remains susceptible to harm and impairment. Brain damage resulting from ABI leads to changes in the normal neuronal tissue activity and/or structure in one or multiple areas of the brain, which can often affect normal brain functions. Impairment sustained from an ABI can last anywhere from days to a lifetime depending on the severity of the injury; however, many patients face trouble integrating themselves back into the community due to possible psychological and physiological outcomes. In this review, we discuss ABI pathologies, their types, and cellular mechanisms and summarize the therapeutic approaches for a better understanding of the subject and to create awareness among the public.
Collapse
|
6
|
Kashyap MP, Khan J, Sinha R, Jin L, Atigadda V, Deshane JS, Ahmed AR, Kilic A, Raman C, Mukhtar MS, Elmets CA, Athar M. Advances in molecular pathogenesis of hidradenitis suppurativa: Dysregulated keratins and ECM signaling. Semin Cell Dev Biol 2022; 128:120-129. [PMID: 35131152 PMCID: PMC9232849 DOI: 10.1016/j.semcdb.2022.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022]
Abstract
Hidradenitis suppurativa (HS) is characterized by deep-seated, highly inflamed, and painful lumps/abscesses, fistulae, and sinus tracts that grow extensively deep in the dermis and are highly immunogenic in nature. In about one-third of the HS patients there is strong evidence for the role of γ-secretase mutations along with dysregulated Notch signaling. However, the contribution of dysregulated Notch signaling in HS pathogenesis in relation to hair follicle alterations and hyper-activation of the immune system remains undefined. A genome-wide association study (GWAS), proteomic data and functional investigations of identified sequence variants in HS pathology are not fully revealing. The disease initiation or progression may involve bacterial infection besides intrinsic functional defects in keratinocytes, which may be key to further exacerbate immune cell infiltration and cytokine production in and around the lesional tissue. The absence of a suitable animal model that could fully recapitulate the pathogenesis of HS is a major impediment for proper understanding the underlying mechanisms and development of effective treatments. The presence of extracellular matrix (ECM) degradation products along with dysregulation in keratinocytes and, dermal fibroblasts ultimately affect immune regulation and are various components of HS pathogenesis. Bacterial infection further exacerbates the complexity of the disease progression. While anti-TNFα therapy shows partial efficacy, treatment to cure HS is absent. Multiple clinical trials targeting various cytokines, complement C5a and ECM products are in progress. This review provides state-of-the-art information on these aspects with a focus on dysregulated keratinocyte and immune cells; and role of ECM, and Keratin functions in this regard.
Collapse
Affiliation(s)
- Mahendra Pratap Kashyap
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Rajesh Sinha
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Lin Jin
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Venkatram Atigadda
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Jessy S Deshane
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Ayesha R Ahmed
- Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Ali Kilic
- Division of Plastic Surgery, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Chander Raman
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Craig A Elmets
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA.
| |
Collapse
|
7
|
Hoang HT, Park JS, Kim SH, Moon JY, Lee YC. Microwave-Assisted Dendropanax morbifera Extract for Cosmetic Applications. Antioxidants (Basel) 2022; 11:antiox11050998. [PMID: 35624862 PMCID: PMC9137482 DOI: 10.3390/antiox11050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Recently, utilizing natural bioactive compounds for active ingredients in cosmetics has become a growing worldwide trend. More and more studies aim to identify the sources of herbal ingredients for applications in the pharmaceutical and cosmetic fields. Additionally, in order to optimize the safety of natural ingredients, choosing an environmentally friendly extraction method also plays an important role. In this work, an eco-friendly extraction technique for Dendropanax morbifera using microwave treatment and microwave-assisted Dendropanax morbifera extract (MA-DME) was investigated. The results indicate that higher yields of MA-DME were obtained than with conventional methods and that D. morbifera’s antioxidant properties were enhanced. Moreover, we found that MA-DME exhibited extraordinary antioxidant, anti-aging, and skin-whitening activities. We suggest MA-DME as a potential cosmeceutical ingredient than could be utilized for comprehensive protection of human skin.
Collapse
Affiliation(s)
- Hien Thi Hoang
- Department of BioNano Technology, Gachon University, Seongnam-Daero 1342, Sujeong-gu, Seongnam-si 13120, Korea; (H.T.H.); (S.-H.K.)
| | - Jae-Seok Park
- Nature Fairy Co., Ltd., 3F, 28-27, Dongseo-ro 857 beon-gil, Siheung-si 14983, Korea;
| | - Seong-Hyeon Kim
- Department of BioNano Technology, Gachon University, Seongnam-Daero 1342, Sujeong-gu, Seongnam-si 13120, Korea; (H.T.H.); (S.-H.K.)
| | - Ju-Young Moon
- Department of Beauty Design Management, Hansung University, 116 Samseongyoro-16gil, Seoul 02876, Korea
- Correspondence: (J.-Y.M.); (Y.-C.L.)
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, Seongnam-Daero 1342, Sujeong-gu, Seongnam-si 13120, Korea; (H.T.H.); (S.-H.K.)
- Well Scientific Laboratory Ltd., 305, 3F, Mega-center, SKnTechnopark, 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Korea
- Correspondence: (J.-Y.M.); (Y.-C.L.)
| |
Collapse
|
8
|
Collins AE, Saleh TM, Kalisch BE. Naturally Occurring Antioxidant Therapy in Alzheimer's Disease. Antioxidants (Basel) 2022; 11:213. [PMID: 35204096 PMCID: PMC8868221 DOI: 10.3390/antiox11020213] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
It is estimated that the prevalence rate of Alzheimer's disease (AD) will double by the year 2040. Although currently available treatments help with symptom management, they do not prevent, delay the progression of, or cure the disease. Interestingly, a shared characteristic of AD and other neurodegenerative diseases and disorders is oxidative stress. Despite profound evidence supporting the role of oxidative stress in the pathogenesis and progression of AD, none of the currently available treatment options address oxidative stress. Recently, attention has been placed on the use of antioxidants to mitigate the effects of oxidative stress in the central nervous system. In preclinical studies utilizing cellular and animal models, natural antioxidants showed therapeutic promise when administered alone or in combination with other compounds. More recently, the concept of combination antioxidant therapy has been explored as a novel approach to preventing and treating neurodegenerative conditions that present with oxidative stress as a contributing factor. In this review, the relationship between oxidative stress and AD pathology and the neuroprotective role of natural antioxidants from natural sources are discussed. Additionally, the therapeutic potential of natural antioxidants as preventatives and/or treatment for AD is examined, with special attention paid to natural antioxidant combinations and conjugates that are currently being investigated in human clinical trials.
Collapse
Affiliation(s)
| | | | - Bettina E. Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.E.C.); (T.M.S.)
| |
Collapse
|
9
|
Phytochemical Analysis and Antioxidant, Antimicrobial, and Antiaging Activities of Ethanolic Seed Extracts of Four Mucuna Species. COSMETICS 2022. [DOI: 10.3390/cosmetics9010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The investigation into promising botanical materials for natural cosmetics is expanding due to environmental and health awareness. Here, we aimed to evaluate the phytochemical substances and the potential skin-related pharmacological activities of four Mucuna seeds, namely M. gigantea (Willd.) DC. (MGG), M. interrupta Gagnep. (MIT), M. monosperma Wight (MMM), and M. pruriens (L.) DC. (MPR), belonging to the Fabaceae family. In methodology, the Mucuna seeds were authenticated using morphological and molecular approaches. L-DOPA, phenolics, and flavonoid content, incorporated with HPLC and GC–MS fingerprinting analyses, were determined. Then, skin-related antimicrobial, antioxidant, and antiaging activities were determined. The results revealed that MPR showed the highest L-DOPA content (75.94 mg/100 mg extract), whereas MGG exhibited the highest phenolic and flavonoid content (56.73 ± 0.62 mg gallic/g extract and 1030.11 ± 3.97 mg quercetin/g extract, respectively). Only MMM and MPR could inhibit all of S. aureus, S. epidermidis, and C. albicans, but no sample could inhibit C. acnes. Furthermore, all samples demonstrated antioxidant activity. Interestingly, all Mucuna samples exhibited strong collagenase, elastase, and hyaluronidase inhibitory activities. We conclude that the ethanolic extracts of four Mucuna seeds are probably advantageous in the development of skincare cosmeceutical products.
Collapse
|
10
|
Tembely D, Henry A, Vanalderwiert L, Toussaint K, Bennasroune A, Blaise S, Sartelet H, Jaisson S, Galés C, Martiny L, Duca L, Romier-Crouzet B, Maurice P. The Elastin Receptor Complex: An Emerging Therapeutic Target Against Age-Related Vascular Diseases. Front Endocrinol (Lausanne) 2022; 13:815356. [PMID: 35222273 PMCID: PMC8873114 DOI: 10.3389/fendo.2022.815356] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
The incidence of cardiovascular diseases is increasing worldwide with the growing aging of the population. Biological aging has major influence on the vascular tree and is associated with critical changes in the morphology and function of the arterial wall together with an extensive remodeling of the vascular extracellular matrix. Elastic fibers fragmentation and release of elastin degradation products, also known as elastin-derived peptides (EDPs), are typical hallmarks of aged conduit arteries. Along with the direct consequences of elastin fragmentation on the mechanical properties of arteries, the release of EDPs has been shown to modulate the development and/or progression of diverse vascular and metabolic diseases including atherosclerosis, thrombosis, type 2 diabetes and nonalcoholic steatohepatitis. Most of the biological effects mediated by these bioactive peptides are due to a peculiar membrane receptor called elastin receptor complex (ERC). This heterotrimeric receptor contains a peripheral protein called elastin-binding protein, the protective protein/cathepsin A, and a transmembrane sialidase, the neuraminidase-1 (NEU1). In this review, after an introductive part on the consequences of aging on the vasculature and the release of EDPs, we describe the composition of the ERC, the signaling pathways triggered by this receptor, and the current pharmacological strategies targeting ERC activation. Finally, we present and discuss new regulatory functions that have emerged over the last few years for the ERC through desialylation of membrane glycoproteins by NEU1, and its potential implication in receptor transactivation.
Collapse
Affiliation(s)
- Dignê Tembely
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Aubéri Henry
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Laetitia Vanalderwiert
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Kevin Toussaint
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Amar Bennasroune
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Sébastien Blaise
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Hervé Sartelet
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Stéphane Jaisson
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Céline Galés
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, Toulouse, France
| | - Laurent Martiny
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Béatrice Romier-Crouzet
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
- *Correspondence: Pascal Maurice, ; orcid.org0000-0003-2167-4808
| |
Collapse
|
11
|
Hendrawan S, Kusnadi Y, Lagonda CA, Fauza D, Lheman J, Budi E, Manurung BS, Baer HU, Tansil Tan S. Wound healing potential of human umbilical cord mesenchymal stem cell conditioned medium: An in vitro and in vivo study in diabetes-induced rats. Vet World 2021; 14:2109-2117. [PMID: 34566328 PMCID: PMC8448625 DOI: 10.14202/vetworld.2021.2109-2117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022] Open
Abstract
Background and Aim: Human umbilical cord mesenchymal stem cells (hUC-MSCs) and its conditioned medium (CM) promote wound healing. This study investigated the wound healing potential of hUC-MSC CM in vitro and in vivo using diabetic animal models. Materials and Methods: The CM from hUC-MSC CM prepared under hypoxic conditions (hypoxic hUC-MSC) was evaluated for stimulating rat fibroblast growth, collagen production (in vitro), and wound healing in animal models (in vivo). An excision wound on the dorsal side of the diabetes-induced rats was established, and the rats were randomly divided into non-treatment, antibiotic, and hypoxic hUC-MSC CM groups. The cell number of fibroblasts and collagen secretion was evaluated and compared among the groups in an in vitro study. By contrast, wound size reduction, width of re-epithelialization, and the collagen formation area were assessed and compared among the groups in an in vivo study. Results: CM under hypoxic conditions contained a higher concentration of wound healing-related growth factors. Hypoxic hUC-MSC CM could facilitate fibroblast cell growth and collagen synthesis, although not significant compared with the control group. Re-epithelialization and collagen production were higher in the hUC-MSC CM group than in the antibiotic and non-treatment groups. Conclusion: Hypoxic hUC-MSC CM possessed more positive effects on the wound healing process based on re-epithelialization and collagen formation than antibiotic treatment did.
Collapse
Affiliation(s)
- Siufui Hendrawan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, 11440, Jakarta, Indonesia.,Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, 11440, Jakarta, Indonesia
| | - Yuyus Kusnadi
- Stem Cell Division, Stem Cell and Cancer Institute, PT. Kalbe Farma, Tbk., 10510, Jakarta, Indonesia
| | - Christine Ayu Lagonda
- Stem Cell Division, Stem Cell and Cancer Institute, PT. Kalbe Farma, Tbk., 10510, Jakarta, Indonesia
| | - Dilafitria Fauza
- Stem Cell Division, Stem Cell and Cancer Institute, PT. Kalbe Farma, Tbk., 10510, Jakarta, Indonesia
| | - Jennifer Lheman
- Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, 11440, Jakarta, Indonesia
| | - Erwin Budi
- Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, 11440, Jakarta, Indonesia
| | - Brian Saputra Manurung
- Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, 11440, Jakarta, Indonesia
| | - Hans Ulrich Baer
- Baermed, Centre of Abdominal Surgery, Hirslanden Clinic, 2501, Zürich, Switzerland.,Department of Visceral and Transplantation Surgery, University of Bern, 3012, Bern, Switzerland
| | - Sukmawati Tansil Tan
- Department of Dermatovenereology, Faculty of Medicine, Tarumanagara University, 11440, Jakarta, Indonesia
| |
Collapse
|
12
|
Elastin-Derived Peptides in the Central Nervous System: Friend or Foe. Cell Mol Neurobiol 2021; 42:2473-2487. [PMID: 34374904 PMCID: PMC9560920 DOI: 10.1007/s10571-021-01140-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022]
Abstract
Elastin is one of the main structural matrix proteins of the arteries, lung, cartilage, elastic ligaments, brain vessels, and skin. These elastin fibers display incredible resilience and structural stability with long half-life. However, during some physiological and pathophysiological conditions, elastin is prone to proteolytic degradation and, due to the extremely low turnover rate, its degradation is practically an irreversible and irreparable phenomenon. As a result of elastin degradation, new peptides called elastin-derived peptides (EDPs) are formed. A growing body of evidence suggests that these peptides play an important role in the development of age-related vascular disease. They are also detected in the cerebrospinal fluid of healthy people, and their amount increases in patients after ischemic stroke. Recently, elastin-like polypeptides have been reported to induce overproduction of beta-amyloid in a model of Alzheimer's disease. Nevertheless, the role and mechanism of action of EDPs in the nervous system is largely unknown and limited to only a few studies. The article summarizes the current state of knowledge on the role of EDPs in the nervous system.
Collapse
|
13
|
Identification and characterization of a novel ELN mutation in congenital heart disease with pulmonary artery stenosis. Sci Rep 2021; 11:14154. [PMID: 34238994 PMCID: PMC8266886 DOI: 10.1038/s41598-021-93736-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/10/2021] [Indexed: 11/23/2022] Open
Abstract
Congenital heart defects, one of the most common birth defects, affect approximately 1% of live birth globally and remain the leading cause of infant mortality in developed countries. Utilizing the pathogenicity score and inheritance mode from whole exome sequencing results, a heterozygous mutation (NM_001278939.1: c.1939G>T, p.Gly647Ter) in elastin (ELN) was identified among 6,440 variants in a female proband born with an atrial septal defect accompanied by pulmonary artery stenosis. Results of RT-PCR showed that the mutation (NM_001278939.1: c.1939G>T, p.Gly647Ter) did not affect the expression levels of ELN mRNA but increased protein level. The content of ELN truncate (functional component) was significantly lower in both the intracellular and extracellular compartments after mutation. These results indicate that the ELN mutation (NM_001278939.1: c.1939G>T, p.Gly647Ter) affected the protein truncate, which may be a functional component of ELN and play crucial roles for this pedigree. Here we report of an ELN heterozygous variant associated with congenital heart disease accompanied with pulmonary artery stenosis, which is less common. Based on our results, we speculate that this may be the main molecular mechanism underlying the mutation-led functional changes, and propose that the decrease of ELN protein level may cause this pedigree vascular abnormality, especially pulmonary artery stenosis, and reinforce the view that ELN insufficiency is the primary cause of these vascular lesions. This may be the main molecular mechanism underlying the mutation-led functional changes. Thus, systematic analysis not only enables us to better understand the etiology of this disease but also contributes to clinical and prenatal diagnosis.
Collapse
|
14
|
Tanash H, Ekström M, Basil N, Rönmark E, Lindberg A, Piitulainen E. Decreased Risk of Ischemic Heart Disease in Individuals with Severe Alpha 1-Antitrypsin Deficiency (PiZZ) in Comparison with the General Population. Int J Chron Obstruct Pulmon Dis 2020; 15:1245-1252. [PMID: 32606637 PMCID: PMC7282800 DOI: 10.2147/copd.s247377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/20/2020] [Indexed: 11/23/2022] Open
Abstract
Background Severe alpha-1-antitrypsin deficiency (AATD) is an established risk factor for chronic obstructive pulmonary disease (COPD) and liver disease, but the effect on the incidence of ischemic heart disease (IHD) is not well known. The aim was to evaluate the risk of incident IHD in patients with severe AATD compared with a random sample of the general population, with known smoking habits. Methods AAT-deficient individuals, phenotype PiZZ (n=1545), were included in the Swedish National AATD Register. Controls (n=5883) were selected from population-based cohorts in Northern Sweden. Data on IHD and comorbidities were obtained by nationwide cross-linkage with the Swedish National Patient Register. Risk factors for incident IHD were analyzed using Cox regression, adjusted for age, gender, smoking status and the presence of COPD, hypertension, hyperlipidemia and diabetes. Results At inclusion, 46% of the PiZZ individuals and 53% of the controls were never-smokers. During follow-up (median 16 years; range 0.2–23), 8% (n=123) of PiZZ individuals and 12% (n=690) of controls developed IHD. The controls had a significantly higher risk for incident IHD than the PiZZ individuals, with adjusted hazard ratio (HR) of 1.8 (95% CI 1.4–2.3). The risk was higher for controls in both ever-smokers (HR 2.1; 95% CI 1.5–2.9) and never-smokers (HR 1.5; 95% CI 1.1–2.2). Conclusion PiZZ individuals have a lower risk of developing incident ischemic heart disease than the control subjects with known smoking habits, who had been randomly selected from population-based cohorts.
Collapse
Affiliation(s)
- Hanan Tanash
- Departments of Respiratory Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| | - Magnus Ekström
- Faculty of Medicine, Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Nawfal Basil
- Departments of Respiratory Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| | - Eva Rönmark
- Department of Public Health and Clinical Medicine, The OLIN Unit, Division of Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | - Anne Lindberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Eeva Piitulainen
- Departments of Respiratory Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Lee H, Cha H, Park JH. Derivation of Cell-Engineered Nanovesicles from Human Induced Pluripotent Stem Cells and Their Protective Effect on the Senescence of Dermal Fibroblasts. Int J Mol Sci 2020; 21:E343. [PMID: 31948013 PMCID: PMC6981782 DOI: 10.3390/ijms21010343] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 12/29/2022] Open
Abstract
Stem cells secrete numerous paracrine factors, such as cytokines, growth factors, and extracellular vesicles. As a kind of extracellular vesicle (EV), exosomes produced in the endosomal compartment of eukaryotic cells have recently emerged as a biomedical material for regenerative medicine, because they contain many valuable contents that are derived from the host cells, and can stably deliver those contents to other recipient cells. Although we have previously demonstrated the beneficial effects of human induced potent stem cell-derived exosomes (iPSC-Exo) on the aging of skin fibroblasts, low production yield has remained an obstacle for clinical applications. In this study, we generated cell-engineered nanovesicles (CENVs) by serial extrusion of human iPSCs through membrane filters with diminishing pore sizes, and explored whether the iPSC-CENV ameliorates physiological alterations of human dermal fibroblasts (HDFs) that occur by natural senescence. The iPSC-CENV exhibited similar characteristics to the iPSC-Exo, while the production yield was drastically increased compared to that of iPSC-derived EVs, including exosomes. The proliferation and migration of both young and senescent HDFs were stimulated by the treatment with iPSC-CENVs. In addition, it was revealed that the iPSC-CNEV restored senescence-related alterations of gene expression. Treatment with iPSC-CENVs significantly reduced the activity of senescence-associated-β-galactosidase (SA-β-Gal) in senescent HDFs, as well as suppressing the elevated expression of p53 and p21, key factors involved in cell cycle arrest, apoptosis, and cellular senescence signaling pathways. Taken together, these results suggest that iPSC-CENV could provide an excellent alternative to iPSC-exo, and be exploited as a resource for the treatment of signs of skin aging.
Collapse
Affiliation(s)
| | | | - Ju Hyun Park
- Department of Medical Biomaterials Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Korea; (H.L.); (H.C.)
| |
Collapse
|
16
|
Roh SS, Choi I, Kim HM, Lee MS, Jin MH, Kim BH, Hwang SJ, Kim MH. Clinical efficacy of herbal extract cream on the skin hydration, elasticity, thickness, and dermis density for aged skin: A randomized controlled double-blind study. J Cosmet Dermatol 2019; 18:1389-1394. [PMID: 30636339 DOI: 10.1111/jocd.12846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Traditional medicine herbal prescriptions used for the treatment of skin disease have been developed into cosmetics. Sang-Hyul-Yun-Boo-Em (SHYBE) is a mixed herbal formula prescribed for patients with yin or blood deficiency patterns of skin disease. A previous study reported that SHYBE exercises anti-allergic and anti-inflammatory effects. To date, no study has reported the efficacy of cosmetics containing the SHYBE extract. AIMS To observe the efficacy of SHYBE extract cream on hydration, elasticity, thickness, and dermis density in aged skin. METHODS This was a double-blind randomized placebo-controlled parallel-group trial. The trial consisted of an 8-week topical application of the test or placebo products with two visits at 4-week intervals. A total of 46 healthy Korean females, aged 40-59, were enrolled in this study. Objective skin assessments for hydration, elasticity, thickness and dermis density, self-assessment, and safety assessment were conducted. RESULTS Sang-Hyul-Yun-Boo-Em extract cream improved skin hydration, elasticity, and dermal density in Asian middle-aged females compared with placebo cream, which excluded SHYBE extract and contained other cosmetic materials. CONCLUSIONS Sang-Hyul-Yun-Boo-Em extract cream showed anti-aging properties in middle-aged women. It could be recommended for aging skin with dryness, and loss of elasticity and density.
Collapse
Affiliation(s)
- Seok Seon Roh
- Department of Ophthalmology, Otorhinolaryngology &, Dermatology of Korean Medicine, Daejeon University, Daejeon, Korea
| | - Inhwa Choi
- Department of Ophthalmology, Otorhinolaryngology & Dermatology of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Hyung-Min Kim
- Department of Korean Pharmacology, Kyung Hee University, Seoul, Korea
| | - Myeong Soo Lee
- Clinical Medicine Research, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Mu-Hyun Jin
- Skin Research Center, LG Household & Health Care Ltd, Seoul, Korea
| | - Byung Hyun Kim
- Skin Research Center, LG Household & Health Care Ltd, Seoul, Korea
| | - Seung-Jin Hwang
- Skin Research Center, LG Household & Health Care Ltd, Seoul, Korea
| | - Min Hee Kim
- Department of Ophthalmology, Otorhinolaryngology & Dermatology of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| |
Collapse
|
17
|
NMR-Based Metabolomics Profiling for Radical Scavenging and Anti-Aging Properties of Selected Herbs. Molecules 2019; 24:molecules24173208. [PMID: 31484470 PMCID: PMC6749213 DOI: 10.3390/molecules24173208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/22/2023] Open
Abstract
Herbs that are usually recognized as medicinal plants are well known for their therapeutic effects and are traditionally used to treat numerous diseases, including aging. This study aimed to evaluate the metabolite variations among six selected herbs namely Curcurma longa, Oenanthe javanica, Vitex negundo, Pluchea indica, Cosmos caudatus and Persicaria minus using proton nuclear magnetic resonance (1H-NMR) coupled with multivariate data analysis (MVDA). The free radical scavenging activity of the extract was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) and oxygen radical absorbance capacity (ORAC) assay. The anti-aging property was characterized by anti-elastase and anti-collagenase inhibitory activities. The results revealed that P. minus showed the highest radical scavenging activities and anti-aging properties. The partial least squares (PLS) biplot indicated the presence of potent metabolites in P. minus such as quercetin, quercetin-3-O-rhamnoside (quercitrin), myricetin derivatives, catechin, isorhamnetin, astragalin and apigenin. It can be concluded that P. minus can be considered as a potential source for an anti-aging ingredient and also a good free radical eradicator. Therefore, P. minus could be used in future development in anti-aging researches and medicinal ingredient preparations.
Collapse
|
18
|
The role of elastin-derived peptides in human physiology and diseases. Matrix Biol 2019; 84:81-96. [PMID: 31295577 DOI: 10.1016/j.matbio.2019.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/03/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022]
Abstract
Once considered as inert, the extracellular matrix recently revealed to be biologically active. Elastin is one of the most important components of the extracellular matrix. Many vital organs including arteries, lungs and skin contain high amounts of elastin to assure their correct function. Physiologically, the organism contains a determined quantity of elastin from the early development which may remain physiologically constant due to its very long half-life and very low turnover. Taking into consideration the continuously ongoing challenges during life, there is a physiological degradation of elastin into elastin-derived peptides which is accentuated in several disease states such as obstructive pulmonary diseases, atherosclerosis and aortic aneurysm. These elastin-derived peptides have been shown to have various biological effects mediated through their interaction with their cognate receptor called elastin receptor complex eliciting several signal transduction pathways. In this review, we will describe the production and the biological effects of elastin-derived peptides in physiology and pathology.
Collapse
|
19
|
A pilot study of the UVA-photoprotective potential of dehydrosilybin, isosilybin, silychristin, and silydianin on human dermal fibroblasts. Arch Dermatol Res 2019; 311:477-490. [PMID: 31079190 DOI: 10.1007/s00403-019-01928-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 01/01/2023]
Abstract
The exposure of naked unprotected skin to solar radiation may result in numerous acute and chronic undesirable effects. Evidence suggests that silymarin, a standardized extract from Silybum marianum (L.) Gaertn. seeds, and its major component silybin suppress UVB-induced skin damage. Here, we aimed to investigate the UVA-protective effects of silymarin's less abundant flavonolignans, specifically isosilybin (ISB), silychristin (SC), silydianin (SD), and 2,3-dehydrosilybin (DHSB). Normal human dermal fibroblasts (NHDF) pre-treated for 1 h with flavonolignans were then exposed to UVA light using a solar simulator. Their effects on reactive oxygen species (ROS), carbonylated proteins and glutathione (GSH) level, caspase-3 activity, single-strand breaks' (SSBs) formation and protein level of matrix metalloproteinase-1 (MMP-1), heme oxygenase-1 (HO-1), and heat shock protein (HSP70) were evaluated. The most pronounced preventative potential was found for DHSB, a minor component of silymarin, and SC, the second most abundant flavonolignan in silymarin. They had significant effects on most of the studied parameters. Meanwhile, a photoprotective effect of SC was mostly found at double the concentration of DHSB. ISB and SD protected against GSH depletion, the generation of ROS, carbonylated proteins and SSBs, and caspase-3 activation, but had no significant effect on MMP-1, HO-1, or HSP70. In summary, DHSB and to a lesser extent other silymarin flavonolignans are potent UVA-protective compounds. However, due to the in vitro phototoxic potential of DHSB published elsewhere, further studies are needed to exclude phototoxicity for humans as well as to confirm our results on human skin ex vivo and in vivo.
Collapse
|
20
|
Bhattacharjee O, Ayyangar U, Kurbet AS, Ashok D, Raghavan S. Unraveling the ECM-Immune Cell Crosstalk in Skin Diseases. Front Cell Dev Biol 2019; 7:68. [PMID: 31134198 PMCID: PMC6514232 DOI: 10.3389/fcell.2019.00068] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/09/2019] [Indexed: 01/06/2023] Open
Abstract
The extracellular matrix (ECM) is a complex network of proteins and proteoglycans secreted by keratinocytes, fibroblasts and immune cells. The function of the skin ECM has expanded from being a scaffold that provides structural integrity, to a more dynamic entity that is constantly remodeled to maintain tissue homeostasis. The ECM functions as ligands for cell surface receptors such as integrins, dystroglycans, and toll-like receptors (TLRs) and regulate cellular signaling and immune cell dynamics. The ECM also acts as a sink for growth factors and cytokines, providing critical cues during epithelial morphogenesis. Dysregulation in the organization and deposition of ECMs lead to a plethora of pathophysiological conditions that are exacerbated by aberrant ECM-immune cell interactions. In this review, we focus on the interplay between ECM and immune cells in the context of skin diseases and also discuss state of the art therapies that target the key molecular players involved.
Collapse
Affiliation(s)
- Oindrila Bhattacharjee
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Uttkarsh Ayyangar
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Ambika S. Kurbet
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Driti Ashok
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Srikala Raghavan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| |
Collapse
|
21
|
Establishment of Novel Murine Model showing Vascular Inflammation-derived Cognitive Dysfunction. Sci Rep 2019; 9:4023. [PMID: 30858535 PMCID: PMC6411753 DOI: 10.1038/s41598-019-40726-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a critical feature of aging and its related diseases, including cardiovascular diseases. Recent epidemiological studies demonstrated that abdominal aortic aneurysm (AAA), an aging-related vascular pathological condition, is associated with cognitive decline. However, the underlying mechanism, especially the role of vascular inflammation, is largely unknown because of lack of an available animal model. In this study, we examined whether vascular inflammation affects synaptic and cognitive dysfunction, using an AAA mouse model. In young (3 months) and middle-aged (12 months) C57BL/6J mice, AAA was induced by angiotensin II infusion with calcium chloride application. After 4 weeks of induction, aortic diameter was significantly increased and excessive Mac3-positive inflammatory cells infiltrated the destroyed aorta in middle-aged mice. AAA-induced middle-aged mice further exhibited cognitive impairment. Neuronal loss was observed in the CA3 region of the hippocampus. IBA1/MHCII-double-positive microglia activation was also seen in the hippocampus, suggesting that vascular inflammation drives neuroinflammation and subsequent cognitive dysfunction. Furthermore, we found that senescence-accelerated mice prone 8 exhibited robust AAA formation and a marked decrease of cognitive and synaptic function in the hippocampus mediated by inflammation. In conclusion, this novel murine model convincingly suggested the occurrence of vascular inflammation-derived cognitive dysfunction.
Collapse
|
22
|
Kim YJ, Seo DH, Lee SH, Lee SH, An GH, Ahn HJ, Kwon D, Seo KW, Kang KS. Conditioned media from human umbilical cord blood-derived mesenchymal stem cells stimulate rejuvenation function in human skin. Biochem Biophys Rep 2018; 16:96-102. [PMID: 30417126 PMCID: PMC6205340 DOI: 10.1016/j.bbrep.2018.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/04/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023] Open
Abstract
Developing treatments that inhibit skin aging is an important research project. Rejuvenation, which focuses on prevention of skin aging, is one of the major issues. Recent studies suggested that mesenchymal stem cells (MSCs) secrete many cytokines, which are important in wound healing. In this study, we investigated the effect of human umbilical cord blood-derived mesenchymal stem cells conditioned media (USC-CM) in cutaneous wound healing and collagen synthesis. We found that USC-CM has many useful growth factors associated with skin rejuvenation, such as Epithelial Growth Factor (EGF), basic Fibroblast Growth Factor (bFGF), Platelet Derived Growth Factor (PDGF), Hepatocyte Growth Factor (HGF), Collagen type 1, and especially, one of the rejuvenation factors, the growth differentiation factor-11 (GDF-11). Our in vitro results showed that USC-CM stimulate growth and extracellular matrix (ECM) production of Human Dermal Fibroblasts (HDFs) compared to those of other MSCs conditioned media (CM) from different origins. Moreover, we evaluated the roles of GDF-11. The results showed that GDF-11 accelerates growth, migration and ECM production of HDFs. Our In vivo results showed that topical treatment of USC-CM showed anti-wrinkle effect and significantly increased dermal density in women. In conclusion, USC-CM has various useful growth factors including GDF-11 that can stimulate skin rejuvenation by increasing growth and ECM production of HDFs. USC-CM has various growth factors associated with skin rejuvenation including GDF-11 that strongly promoted HDFs migration, collagen synthesis in vitro compared with HDF- and AD-MSC-CM. USC-CM increased dermal density and decreased skin wrinkle in human.
Collapse
Affiliation(s)
- Yoon-Jin Kim
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd floor, Biotechnology center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dong Hee Seo
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd floor, Biotechnology center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seung Hee Lee
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd floor, Biotechnology center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sung-Hoon Lee
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd floor, Biotechnology center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Geun-Ho An
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd floor, Biotechnology center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hee-Jin Ahn
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd floor, Biotechnology center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Daekee Kwon
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd floor, Biotechnology center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kwang-Won Seo
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd floor, Biotechnology center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyung-Sun Kang
- Stem Cells and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., 2nd floor, Biotechnology center, #81 Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.,Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
23
|
Applications of Date (Phoenix dactylifera L.) Fruits as Bioactive Ingredients in Functional Foods. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.3.08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
24
|
Actis Dato V, Chiabrando GA. The Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Lipid Metabolism, Glucose Homeostasis and Inflammation. Int J Mol Sci 2018; 19:ijms19061780. [PMID: 29914093 PMCID: PMC6032055 DOI: 10.3390/ijms19061780] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 12/30/2022] Open
Abstract
Metabolic syndrome (MetS) is a highly prevalent disorder which can be used to identify individuals with a higher risk for cardiovascular disease and type 2 diabetes. This metabolic syndrome is characterized by a combination of physiological, metabolic, and molecular alterations such as insulin resistance, dyslipidemia, and central obesity. The low-density lipoprotein receptor-related protein 1 (LRP1—A member of the LDL receptor family) is an endocytic and signaling receptor that is expressed in several tissues. It is involved in the clearance of chylomicron remnants from circulation, and has been demonstrated to play a key role in the lipid metabolism at the hepatic level. Recent studies have shown that LRP1 is involved in insulin receptor (IR) trafficking and intracellular signaling activity, which have an impact on the regulation of glucose homeostasis in adipocytes, muscle cells, and brain. In addition, LRP1 has the potential to inhibit or sustain inflammation in macrophages, depending on its cellular expression, as well as the presence of particular types of ligands in the extracellular microenvironment. In this review, we summarize existing perspectives and the latest innovations concerning the role of tissue-specific LRP1 in lipoprotein and glucose metabolism, and examine its ability to mediate inflammatory processes related to MetS and atherosclerosis.
Collapse
Affiliation(s)
- Virginia Actis Dato
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba X5000HUA, Argentina.
| | - Gustavo Alberto Chiabrando
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba X5000HUA, Argentina.
| |
Collapse
|
25
|
Rajnochová Svobodová A, Gabrielová E, Michaelides L, Kosina P, Ryšavá A, Ulrichová J, Zálešák B, Vostálová J. UVA-photoprotective potential of silymarin and silybin. Arch Dermatol Res 2018; 310:413-424. [DOI: 10.1007/s00403-018-1828-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/01/2018] [Accepted: 03/19/2018] [Indexed: 01/27/2023]
|
26
|
Alpha-1 antitrypsin deficiency: From the lung to the heart? Atherosclerosis 2018; 270:166-172. [PMID: 29432934 DOI: 10.1016/j.atherosclerosis.2018.01.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Alpha-1 antitrypsin (A1AT) is the most abundant serine protease inhibitor in human blood and exerts important anti-inflammatory and immune-modulatory effects. In combination with smoking or other long-term noxious exposures such as occupational dust and fumes, genetic A1AT deficiency can cause chronic obstructive pulmonary disease, a condition with elevated cardiovascular risk. The effects of A1AT deficiency on cardiovascular risk have hardly been studied today. METHODS Using data from 2614 adults from the population-based SAPALDIA cohort, we tested associations of serum A1AT and SERPINA1 mutations with carotid intima-media thickness (CIMT, measured by B-mode ultrasonography) or self-reported arterial hypertension or cardiovascular disease in multiple regression models using a Mendelian Randomization like analysis design. Mutations Pi-S and Pi-Z were coded as ordinal genotype score (MM, MS, MZ/SS, SZ and ZZ), according to their progressive biological impact. RESULTS Serum A1AT concentration presented a u-shaped association with CIMT. At the lower end of the A1AT distribution, an analogous, linear association between SERPINA1 score and higher CIMT was observed, resulting in an estimated 1.2% (95%-confidence interval -0.1-2.5) increase in CIMT per unit (p = 0.060). Genotype score was significantly associated with arterial hypertension with an odds ratio (OR) of 1.2 (1.0-1.5) per unit (p = 0.028). The association with cardiovascular disease was not significant (OR 1.3 (0.9-1.9)). CONCLUSIONS Our results support a possible causal relationship between genetic A1AT deficiency and increased cardiovascular risk, which needs to be better taken into account for the management of affected patients and first-degree relatives.
Collapse
|
27
|
Kim YJ, Yoo SM, Park HH, Lim HJ, Kim YL, Lee S, Seo KW, Kang KS. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin. Biochem Biophys Res Commun 2017; 493:1102-1108. [DOI: 10.1016/j.bbrc.2017.09.056] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
|
28
|
Studies on secondary metabolite profiling, anti-inflammatory potential, in vitro photoprotective and skin-aging related enzyme inhibitory activities of Malaxis acuminata, a threatened orchid of nutraceutical importance. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:686-695. [PMID: 28743100 DOI: 10.1016/j.jphotobiol.2017.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023]
Abstract
Malaxis acuminata D. Don., a small, terrestrial orchid, is endemic to tropical Himalayas at an altitude of 1200-2000m asl. The dried pseudobulbs are important ingredients of century old ayurvedic drug 'Ashtavarga' and a polyherbal immune-booster nutraceutical 'Chyavanprash', known to restore vigour, vitality and youthfulness. Considering tremendous medicinal importance of this threatened orchid species, a detailed study was undertaken for the first time to address its antioxidant potential, secondary metabolite contents and biological activities against skin-aging related enzymes (anti-collagenase, anti-elastase, anti-tyrosinase and xanthine oxidase) and anti-inflammatory activity (5-lipoxygenase and hyaluronidase) in different plant parts of wild and in vitro-derived plants of M. acuminata. Methanolic leaf and stem extracts were further evaluated for in vitro photoprotective activity against UV-B and UV-A radiations. Furthermore, secondary metabolite profiling of various plant parts was carried out by Gas Chromatography Mass Spectrometry (GC-MS). A significantly higher antioxidant potential (DPPH, metal chelating and ABTS•+) with a comparative higher yield of secondary metabolites was observed in in vitro-derived plantlets as compared to the wild plants. Among various solvent systems used, methanolic leaf and stem extracts showed promising inhibitory activity against major skin aging-related enzymes and anti-inflammatory potential. Methanolic leaf and stem extracts of both wild and in vitro-derived plants showed promising photoprotective activity against UV-B and UV-A radiations in vitro with comparatively higher sun protection factor (SPF). Furthermore, GC-MS analysis of methanolic extracts of leaves and stems of wild as well as in vitro-derived plantlets revealed presence of many bioactive metabolites such as, dietary fatty acids, α-hydroxy acids, phenolic acids, sterols, amino acids, sugars and glycosides which substantially explain the use of M. acuminata as one of the potential rejuvenator and anti-aging ingredient in many Ayurvedic formulations.
Collapse
|
29
|
Abstract
There are clear age-related changes in platelet count and function, driven by changes in hematopoietic tissue, the composition of the blood and vascular health. Platelet count remains relatively stable during middle age (25–60 years old) but falls in older people. The effect of age on platelet function is slightly less clear. The longstanding view is that platelet reactivity increases with age in an almost linear fashion. There are, however, serious limitations to the data supporting this dogma. We can conclude that platelet function increases during middle age, but little evidence exists on the changes in platelet responsiveness in old age (>75 years old). This change in platelet function is driven by differential mRNA and microRNA expression, an increase in oxidative stress and changes in platelet receptors. These age-related changes in platelets are particularly pertinent given that thrombotic disease and use of anti-platelet drugs is much more prevalent in the elderly population, yet the majority of platelet research is carried out in young to middle-aged (20–50 years old) human volunteers and young mice (2–6 months old). We know relatively little about exactly how platelets from people over 75 years old differ from those of middle-aged subjects, and we know even less about the mechanisms that drive these changes. Addressing these gaps in our knowledge will provide substantial understanding in how cell signalling changes during ageing and will enable the development of more precise anti-platelet therapies.
Collapse
Affiliation(s)
- Chris I Jones
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Harborne Building, Whiteknights, Reading, Berkshire, RG6 6AS, UK.
| |
Collapse
|
30
|
Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes. PLoS One 2016; 11:e0145921. [PMID: 26731545 PMCID: PMC4711708 DOI: 10.1371/journal.pone.0145921] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/10/2015] [Indexed: 12/23/2022] Open
Abstract
Human skin is body’s vital organ constantly exposed to abiotic oxidative stress. This can have deleterious effects on skin such as darkening, skin damage, and aging. Plant-derived products having skin-protective effects are well-known traditionally. Triphala, a formulation of three fruit products, is one of the most important rasayana drugs used in Ayurveda. Several skin care products based on Triphala are available that claim its protective effects on facial skin. However, the skin protective effects of Triphala extract (TE) and its mechanistic action on skin cells have not been elucidated in vitro. Gallic acid, ellagic acid, and chebulinic acid were deduced by LC-MS as the major constituents of TE. The identified key compounds were docked with skin-related proteins to predict their binding affinity. The IC50 values for TE on human dermal fibroblasts (HDF) and human keratinocytes (HaCaT) were 204.90 ± 7.6 and 239.13 ± 4.3 μg/mL respectively. The antioxidant capacity of TE was 481.33 ± 1.5 mM Trolox equivalents in HaCaT cells. Triphala extract inhibited hydrogen peroxide (H2O2) induced RBC haemolysis (IC50 64.95 μg/mL), nitric oxide production by 48.62 ± 2.2%, and showed high reducing power activity. TE also rescued HDF from H2O2-induced damage; inhibited H2O2 induced cellular senescence and protected HDF from DNA damage. TE increased collagen-I, involucrin and filaggrin synthesis by 70.72 ± 2.3%, 67.61 ± 2.1% and 51.91 ± 3.5% in HDF or HaCaT cells respectively. TE also exhibited anti-tyrosinase and melanin inhibition properties in a dose-dependent manner. TE increased the mRNA expression of collagen-I, elastin, superoxide dismutase (SOD-2), aquaporin-3 (AQP-3), filaggrin, involucrin, transglutaminase in HDF or HaCaT cells, and decreased the mRNA levels of tyrosinase in B16F10 cells. Thus, Triphala exhibits protective benefits on skin cells in vitro and can be used as a potential ingredient in skin care formulations.
Collapse
|
31
|
Scandolera A, Rabenoelina F, Chaintreuil C, Rusciani A, Maurice P, Blaise S, Romier-Crouzet B, El Btaouri H, Martiny L, Debelle L, Duca L. Uncoupling of Elastin Complex Receptor during In Vitro Aging Is Related to Modifications in Its Intrinsic Sialidase Activity and the Subsequent Lactosylceramide Production. PLoS One 2015; 10:e0129994. [PMID: 26086247 PMCID: PMC4473072 DOI: 10.1371/journal.pone.0129994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/15/2015] [Indexed: 12/16/2022] Open
Abstract
Degradation of elastin leads to the production of elastin-derived peptides (EDP), which exhibit several biological effects, such as cell proliferation or protease secretion. Binding of EDP on the elastin receptor complex (ERC) triggers lactosylceramide (LacCer) production and ERK1/2 activation following ERC Neu-1 subunit activation. The ability for ERC to transduce signals is lost during aging, but the mechanism involved is still unknown. In this study, we characterized an in vitro model of aging by subculturing human dermal fibroblasts. This model was used to understand the loss of EDP biological activities during aging. Our results show that ERC uncoupling does not rely on Neu-1 or PPCA mRNA or protein level changes. Furthermore, we observe that the membrane targeting of these subunits is not affected with aging. However, we evidence that Neu-1 activity and LacCer production are altered. Basal Neu-1 catalytic activity is strongly increased in aged cells. Consequently, EDP fail to promote Neu-1 catalytic activity and LacCer production in these cells. In conclusion, we propose, for the first time, an explanation for ERC uncoupling based on the age-related alterations of Neu-1 activity and LacCer production that may explain the loss of EDP-mediated effects occurring during aging.
Collapse
Affiliation(s)
- Amandine Scandolera
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Fanja Rabenoelina
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Carine Chaintreuil
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Anthony Rusciani
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Pascal Maurice
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Sébastien Blaise
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Béatrice Romier-Crouzet
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Hassan El Btaouri
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Laurent Martiny
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Laurent Debelle
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
| | - Laurent Duca
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences, Reims, France
- * E-mail:
| |
Collapse
|
32
|
Qin Z. Soluble elastin peptides in cardiovascular homeostasis: Foe or ally. Peptides 2015; 67:64-73. [PMID: 25794852 DOI: 10.1016/j.peptides.2015.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 12/23/2022]
Abstract
Elastin peptides, also known as elastin-derived peptides or elastokines, are soluble polypeptides in blood and tissue. The blood levels of elastin peptides are usually low but can increase during cardiovascular diseases, such as atherosclerosis, aortic aneurysm and diabetes with vascular complications. Generally, elastin peptides are derived from the degradation of insoluble elastic polymers. The biological activities of elastin peptides are bidirectional, e.g., a pro-inflammatory effect on monocyte migration induction vs. a protective effect on vasodilation promotion. However, recent in vivo studies have demonstrated that elastin peptides promote the formation of atherosclerotic plaques in hypercholesterolemic mice and induce hyperglycemia and elevations in plasma lipid levels in fasted mice. More important, the detrimental effects induced by elastin peptides can be largely inhibited by genetic or pharmacological blockade of the elastin receptor complex or by neutralization of an antibody against elastin peptides. These studies indicate new therapeutic strategies for the treatment of cardiovascular diseases by targeting elastin peptide metabolism. Therefore, the goal of this review is to summarize current knowledge about elastin peptides relevant to cardiovascular pathologies to further delineate their potential application in cardiovascular disease.
Collapse
Affiliation(s)
- Zhenyu Qin
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| |
Collapse
|
33
|
Mohapatra S, Sandeep Varma R, Sharath Kumar LM, Thiyagarajan OS, Vijaykumar M, Dilmel K, Nishant M, Babu UV, Patki PS. Anti-skin ageing activity of napthoquinones from Arnebia nobilis Reichb.f. Nat Prod Res 2015; 30:574-7. [PMID: 25810219 DOI: 10.1080/14786419.2015.1025232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present isolation and identification of napthoquinones from roots of Arnebia nobilis Reichb.f. can lead to the discovery of new anti-skin ageing ingredient in colour cosmetics. Four compounds have been isolated and purified by rigorous column chromatography. The compounds are identified as β, β-dimethylacryl alkannin (AN-I), acetoxyisovaleryl alkannin (AAN-II), acetyl alkannin (AN-III) and alkannin (AN-IV) by interpretation of spectroscopic data. This study is the first to report the isolation of Acetoxyisovaleryl alkannin (AAN-II) from A. nobilis. The IC50 values of the compounds, determined in human skin cells (human dermal fibroblasts and human keratinocytes) and mouse embryonic fibroblasts (NIH3T3) varied significantly among the four alkannins. Among the four compounds, β-acetoxyisovaleryl alkannin (AAN-II) significantly inhibited hydrogen peroxide (H2O2)-induced red blood corpuscle haemolysis and cellular senescence in human dermal fibroblasts. Collagen-I, elastin and involucrin syntheses in human dermal fibroblasts or keratinocytes were up regulated by AAN-II. These results support the potential utility of alkannins as novel anti-ageing ingredients.
Collapse
Affiliation(s)
- Satyabrata Mohapatra
- a Department of Phytochemistry , Research and Development, The Himalaya Drug Company , Bangalore 562 162 , India
| | - R Sandeep Varma
- b Department of Cell Biology , Research and Development, The Himalaya Drug Company , Bangalore 562 162 , India
| | - L M Sharath Kumar
- a Department of Phytochemistry , Research and Development, The Himalaya Drug Company , Bangalore 562 162 , India
| | - O S Thiyagarajan
- b Department of Cell Biology , Research and Development, The Himalaya Drug Company , Bangalore 562 162 , India
| | - M Vijaykumar
- a Department of Phytochemistry , Research and Development, The Himalaya Drug Company , Bangalore 562 162 , India
| | - K Dilmel
- a Department of Phytochemistry , Research and Development, The Himalaya Drug Company , Bangalore 562 162 , India
| | - M Nishant
- a Department of Phytochemistry , Research and Development, The Himalaya Drug Company , Bangalore 562 162 , India
| | - U V Babu
- a Department of Phytochemistry , Research and Development, The Himalaya Drug Company , Bangalore 562 162 , India
| | - P S Patki
- c Medical Services and Clinical Trials; Research and Development, The Himalaya Drug Company , Bangalore 562 162 , India
| |
Collapse
|
34
|
Gonçalves BF, Campos SGPD, Costa CF, Scarano WR, Góes RM, Taboga SR. Key participants of the tumor microenvironment of the prostate: an approach of the structural dynamic of cellular elements and extracellular matrix components during epithelial-stromal transition. Acta Histochem 2015; 117:4-13. [PMID: 25466989 DOI: 10.1016/j.acthis.2014.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 01/03/2023]
Abstract
Cancer is a multistep process that begins with the transformation of normal epithelial cells and continues with tumor growth, stromal invasion and metastasis. The remodeling of the peritumoral environment is decisive for the onset of tumor invasiveness. This event is dependent on epithelial-stromal interactions, degradation of extracellular matrix components and reorganization of fibrillar components. Our research group has studied in a new proposed rodent model the participation of cellular and molecular components in the prostate microenvironment that contributes to cancer progression. Our group adopted the gerbil Meriones unguiculatus as an alternative experimental model for prostate cancer study. This model has presented significant responses to hormonal treatments and to development of spontaneous and induced neoplasias. The data obtained indicate reorganization of type I collagen fibers and reticular fibers, synthesis of new components such as tenascin and proteoglycans, degradation of basement membrane components and elastic fibers and increased expression of metalloproteinases. Fibroblasts that border the region, apparently participate in the stromal reaction. The roles of each of these events, as well as some signaling molecules, participants of neoplastic progression and factors that promote genetic reprogramming during epithelial-stromal transition are also discussed.
Collapse
|
35
|
Kawecki C, Hézard N, Bocquet O, Poitevin G, Rabenoelina F, Kauskot A, Duca L, Blaise S, Romier B, Martiny L, Nguyen P, Debelle L, Maurice P. Elastin-derived peptides are new regulators of thrombosis. Arterioscler Thromb Vasc Biol 2014; 34:2570-8. [PMID: 25341794 DOI: 10.1161/atvbaha.114.304432] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Elastin is the major structural extracellular matrix component of the arterial wall that provides the elastic recoil properties and resilience essential for proper vascular function. Elastin-derived peptides (EDP) originating from elastin fragmentation during vascular remodeling have been shown to play an important role in cell physiology and development of cardiovascular diseases. However, their involvement in thrombosis has been unexplored to date. In this study, we investigated the effects of EDP on (1) platelet aggregation and related signaling and (2) thrombus formation. We also characterized the mechanism by which EDP regulate thrombosis. APPROACH AND RESULTS We show that EDP, derived from organo-alkaline hydrolysate of bovine insoluble elastin (kappa-elastin), decrease human platelet aggregation in whole blood induced by weak and strong agonists, such as ADP, epinephrine, arachidonic acid, collagen, TRAP, and U46619. In a mouse whole blood perfusion assay over a collagen matrix, kappa-elastin and VGVAPG, the canonical peptide recognizing the elastin receptor complex, significantly decrease thrombus formation under arterial shear conditions. We confirmed these results in vivo by demonstrating that both kappa-elastin and VGVAPG significantly prolonged the time for complete arteriole occlusion in a mouse model of thrombosis and increased tail bleeding times. Finally, we demonstrate that the regulatory role of EDP on thrombosis relies on platelets that express a functional elastin receptor complex and on the ability of EDP to disrupt plasma von Willebrand factor interaction with collagen. CONCLUSIONS These results highlight the complex nature of the mechanisms governing thrombus formation and reveal an unsuspected regulatory role for circulating EDP in thrombosis.
Collapse
Affiliation(s)
- Charlotte Kawecki
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Nathalie Hézard
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Olivier Bocquet
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Gaël Poitevin
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Fanja Rabenoelina
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Alexandre Kauskot
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Laurent Duca
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Sébastien Blaise
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Béatrice Romier
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Laurent Martiny
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Philippe Nguyen
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Laurent Debelle
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.)
| | - Pascal Maurice
- From the URCA, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Reims, France (C.K., O.B., F.R., L. Ducca, S.B., B.R., L.M., L. Debelle, P.M.); EA3801, Hémostase et remodelage vasculaire post-ischémique (HERVI), UFR de Médecine, Reims, France (N.H., G.P., P.N.); CHU Reims, Hôpital Robert Debré, Laboratoire d'Hématologie, Reims, France (N.H., P.N.); INSERM UMRS 1140, Université Paris Descartes, Sorbonne Paris Cité, France (A.K.); and INSERM U770, Le Kremlin Bicêtre, Université Paris-Sud, Le Kremlin Bicêtre, France (A.K.).
| |
Collapse
|
36
|
Samouillan V, Revuelta-López E, Dandurand J, Nasarre L, Badimon L, Lacabanne C, Llorente-Cortés V. Cardiomyocyte intracellular cholesteryl ester accumulation promotes tropoelastin physical alteration and degradation: Role of LRP1 and cathepsin S. Int J Biochem Cell Biol 2014; 55:209-19. [PMID: 25218173 DOI: 10.1016/j.biocel.2014.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 11/26/2022]
Abstract
Dyslipemia has a direct impact on cardiac remodeling by altering extracellular matrix (ECM) components. One of the main ECM components is elastin, a proteic three-dimensional network that can be efficiently degraded by cysteine proteases or cathepsins. Dyslipemic status in insulin resistance and combined hyperlipoproteinemia diseases include raised levels of very low density lipoproteins (VLDL), triglyceride (TG)-cholesteryl ester (CE)-rich lipoproteins. Enhanced VLDL concentration promotes cardiomyocyte intracellular cholesteryl ester (CE) accumulation in a LRP1-dependent manner. The aim of this work was to analyze the effect of cardiomyocyte intracellular CE accumulation on tropoelastin (TE) characteristics and to investigate the role of LRP1 and cathepsin S (CatS) on these effects. Molecular studies showed that LRP1 deficiency impaired CE selective uptake and accumulation from TG-CE-rich lipoproteins (VLDL+IDL) and CE-rich lipoproteins (aggregated LDL, agLDL). Biochemical and confocal microscopic studies showed that LRP1-mediated intracellular CE accumulation increased CatS mature protein levels and induced an altered intracellular TE globule structure. Biophysical studies evidenced that LRP1-mediated intracellular CE accumulation caused a significant drop of Tg2 glass transition temperature of cardiomyocyte secreted TE. Moreover, CatS deficiency prevented the alterations in TE intracellular globule structure and on TE glass transition temperature. These results demonstrate that LRP1-mediated cardiomyocyte intracellular CE accumulation alters the structural and physical characteristics of secreted TE through an increase in CatS mature protein levels. Therefore, the modulation of LRP1-mediated intracellular CE accumulation in cardiomyocytes could impact pathological ventricular remodeling associated with insulin-resistance and combined hyperlipoproteinemia, pathologies characterized by enhanced concentrations of TG-CE-rich lipoproteins.
Collapse
Affiliation(s)
- Valerie Samouillan
- Physique des Polymères, Institut Carnot, CIRIMAT UMR 5085, Université Paul Sabatier, Bat 3R1B2, 118 route de Narbonne, 31062 Toulouse Cedex 04, France.
| | - Elena Revuelta-López
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Jany Dandurand
- Physique des Polymères, Institut Carnot, CIRIMAT UMR 5085, Université Paul Sabatier, Bat 3R1B2, 118 route de Narbonne, 31062 Toulouse Cedex 04, France
| | - Laura Nasarre
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Colette Lacabanne
- Physique des Polymères, Institut Carnot, CIRIMAT UMR 5085, Université Paul Sabatier, Bat 3R1B2, 118 route de Narbonne, 31062 Toulouse Cedex 04, France
| | - Vicenta Llorente-Cortés
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain.
| |
Collapse
|
37
|
The role of oxidative stress and inflammation in cardiovascular aging. BIOMED RESEARCH INTERNATIONAL 2014; 2014:615312. [PMID: 25143940 PMCID: PMC4131065 DOI: 10.1155/2014/615312] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/10/2014] [Indexed: 02/07/2023]
Abstract
Age is an independent risk factor of cardiovascular disease, even in the absence of other traditional factors.
Emerging evidence in experimental animal and human models has emphasized a central role for two main mechanisms
of age-related cardiovascular disease: oxidative stress and inflammation.
Excess reactive oxygen species (ROS) and superoxide generated by oxidative stress
and low-grade inflammation accompanying aging recapitulate age-related cardiovascular dysfunction,
that is, left ventricular hypertrophy, fibrosis, and diastolic dysfunction in the heart as well as endothelial dysfunction,
reduced vascular elasticity, and increased vascular stiffness. We describe the signaling involved in these two
main mechanisms that include the factors NF-κB, JunD, p66Shc, and Nrf2.
Potential therapeutic strategies to improve the cardiovascular function with aging are discussed, with a focus on calorie restriction, SIRT1, and resveratrol.
Collapse
|
38
|
|
39
|
Gayral S, Garnotel R, Castaing-Berthou A, Blaise S, Fougerat A, Berge E, Montheil A, Malet N, Wymann MP, Maurice P, Debelle L, Martiny L, Martinez LO, Pshezhetsky AV, Duca L, Laffargue M. Elastin-derived peptides potentiate atherosclerosis through the immune Neu1-PI3Kγ pathway. Cardiovasc Res 2013; 102:118-27. [PMID: 24357053 DOI: 10.1093/cvr/cvt336] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Elastin is degraded during vascular ageing and its products, elastin-derived peptides (EP), are present in the human blood circulation. EP binds to the elastin receptor complex (ERC) at the cell surface, composed of elastin-binding protein (EBP), a cathepsin A and a neuraminidase 1. Some in vitro functions have clearly been attributed to this binding, but the in vivo implications for arterial diseases have never been clearly investigated. METHODS AND RESULTS Here, we demonstrate that chronic doses of EP injected into mouse models of atherosclerosis increase atherosclerotic plaque size formation. Similar effects were observed following an injection of a VGVAPG peptide, suggesting that the ERC mediates these effects. The absence of phosphoinositide 3-kinase γ (PI3Kγ) in bone marrow-derived cells prevented EP-induced atherosclerosis development, demonstrating that PI3Kγ drive EP-induced arterial lesions. Accordingly, in vitro studies showed that PI3Kγ was required for EP-induced monocyte migration and ROS production and that this effect was dependent upon neuraminidase activity. Finally, we showed that degradation of elastic lamellae in LDLR(-/-) mice fed an atherogenic diet correlated with atherosclerotic plaque formation. At the same time, the absence of the cathepsin A-neuraminidase 1 complex in cells of the haematopoietic lineage abolished atheroma plaque size progression and decreased leucocytes infiltration, clearly demonstrating the role of this complex in atherogenesis and suggesting the involvement of endogenous EP. CONCLUSION Altogether, this work identifies EP as an enhancer of atherogenesis and defines the Neuraminidase 1/PI3Kγ signalling pathway as a key mediator of this function in vitro and in vivo.
Collapse
Affiliation(s)
- Stephanie Gayral
- INSERM UMR 1048, I2MC, Bât. L3, 1 av Jean-Poulhès, BP 84225, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pailler-Mattei C, Debret R, Vargiolu R, Sommer P, Zahouani H. In vivo skin biophysical behaviour and surface topography as a function of ageing. J Mech Behav Biomed Mater 2013; 28:474-83. [DOI: 10.1016/j.jmbbm.2013.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 03/19/2013] [Accepted: 04/09/2013] [Indexed: 12/22/2022]
|
41
|
Ndlovu G, Fouche G, Tselanyane M, Cordier W, Steenkamp V. In vitro determination of the anti-aging potential of four southern African medicinal plants. Altern Ther Health Med 2013; 13:304. [PMID: 24188320 PMCID: PMC4228251 DOI: 10.1186/1472-6882-13-304] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/28/2013] [Indexed: 11/29/2022]
Abstract
Background Aging is an inevitable process for all living organisms. During this process reactive oxygen species generation is increased which leads to the activation of hyaluronidase, collagenase and elastase, which can further contribute to skin aging. Four southern African medicinal plants; Clerodendrum glabrum, Schotia brachypetala, Psychotria capensis and Peltophorum africanum, were investigated to assess their anti-aging properties. Methods Anti-elastase, anti-collagenase and anti-hyaluronidase activities of twenty-eight samples, consisting of methanol and ethyl acetate extracts of the four plants, were determined using spectrophotometric methods. Radical scavenging activity was determined by the ability of the plant extracts to scavenge the ABTS•+ radical. Results The majority of the samples in the anti-elastase assay and nine in the anti-collagenase assay showed more than 80% inhibition. The ethyl acetate extract of S. brachypetala bark and leaves of P. capensis inhibited elastase activity by more than 90%. The methanol extract of S. brachypetala bark contained the highest anti-hyaluronidase activity (75.13 ± 7.49%) whilst the ethyl acetate extract of P. africanum bark exhibited the highest antioxidant activity (IC50: 1.99 ± 0.23 μg/ml). Conclusion The free radical scavenging activity and enzyme inhibitory activity of the plant extracts investigated suggests that they can help restore skin elasticity and thereby slow the wrinkling process. P. africanum was the plant with the most promising activity and will be subjected to further testing and isolation of the active compound/s.
Collapse
|
42
|
Blaise S, Romier B, Kawecki C, Ghirardi M, Rabenoelina F, Baud S, Duca L, Maurice P, Heinz A, Schmelzer CE, Tarpin M, Martiny L, Garbar C, Dauchez M, Debelle L, Durlach V. Elastin-derived peptides are new regulators of insulin resistance development in mice. Diabetes 2013; 62:3807-16. [PMID: 23919962 PMCID: PMC3806616 DOI: 10.2337/db13-0508] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although it has long been established that the extracellular matrix acts as a mechanical support, its degradation products, which mainly accumulate during aging, have also been demonstrated to play an important role in cell physiology and the development of cardiovascular and metabolic diseases. In the current study, we show that elastin-derived peptides (EDPs) may be involved in the development of insulin resistance (IRES) in mice. In chow-fed mice, acute or chronic intravenous injections of EDPs induced hyperglycemic effects associated with glucose uptake reduction and IRES in skeletal muscle, liver, and adipose tissue. Based on in vivo, in vitro, and in silico approaches, we propose that this IRES is due to interaction between the insulin receptor (IR) and the neuraminidase-1 subunit of the elastin receptor complex triggered by EDPs. This interplay was correlated with decreased sialic acid levels on the β-chain of the IR and reduction of IR signaling. In conclusion, this is the first study to demonstrate that EDPs, which mainly accumulate with aging, may be involved in the insidious development of IRES.
Collapse
Affiliation(s)
- Sébastien Blaise
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
- Corresponding author: Sébastien Blaise,
| | - Béatrice Romier
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Charlotte Kawecki
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Maxime Ghirardi
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Fanja Rabenoelina
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Stéphanie Baud
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Laurent Duca
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Pascal Maurice
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Andrea Heinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Michel Tarpin
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Laurent Martiny
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Christian Garbar
- Département de Biopathologie, Institut Jean-Godinot, Centre Régional de Lutte Contre le Cancer, Reims, France
| | - Manuel Dauchez
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Laurent Debelle
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Vincent Durlach
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
- Pôle Thoracique et Cardio-Vasculaire, Hôpital Robert-Debré, Centre Hospitalier Universitaire de Reims, Reims, France
| |
Collapse
|
43
|
Sivaraman B, Bashur CA, Ramamurthi A. Advances in biomimetic regeneration of elastic matrix structures. Drug Deliv Transl Res 2012; 2:323-50. [PMID: 23355960 PMCID: PMC3551595 DOI: 10.1007/s13346-012-0070-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures.
Collapse
Affiliation(s)
- Balakrishnan Sivaraman
- Department of Biomedical Engineering, The Cleveland Clinic, 9500 Euclid Avenue, ND 20, Cleveland, OH 44195, USA
| | - Chris A. Bashur
- Department of Biomedical Engineering, The Cleveland Clinic, 9500 Euclid Avenue, ND 20, Cleveland, OH 44195, USA
| | - Anand Ramamurthi
- Department of Biomedical Engineering, The Cleveland Clinic, 9500 Euclid Avenue, ND 20, Cleveland, OH 44195, USA
| |
Collapse
|
44
|
Smith ER, Tomlinson LA, Ford ML, McMahon LP, Rajkumar C, Holt SG. Elastin degradation is associated with progressive aortic stiffening and all-cause mortality in predialysis chronic kidney disease. Hypertension 2012; 59:973-8. [PMID: 22411928 DOI: 10.1161/hypertensionaha.111.187807] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the large conduit arteries, elastin is important in maintaining vascular compliance. Studies in animal models suggest that elastin degradation may promote arteriosclerotic vascular changes. There is already a well-established link between aortic stiffening and mortality in the general population and in patients undergoing dialysis. Elastin degradation is mediated by several proteases, including matrix metalloproteinase 2 and cathepsin S. Elastin turnover may be inferred by measuring serum levels of elastin-derived peptides. We analyzed the serum concentration of these biomarkers, their endogenous inhibitors, and aortic pulse wave velocity in 200 patients with stages 3 and 4 chronic kidney disease and then serially in a subgroup of 65 patients over 36 months. Serum matrix metalloproteinase 2, cathepsin S, and elastin-derived peptide levels were independently associated with baseline aortic pulse wave velocity and changes in stiffness over the follow-up period. Higher matrix metalloproteinase 2 and elastin-derived peptide levels were also independently associated with preexisting cardiovascular disease. In multivariable Cox regression, higher serum elastin-derived peptide levels were independently associated with increased all-cause mortality (hazard ratio per SD increase=1.78; P=0.021). In predialysis chronic kidney disease, elastin degradation is an important determinant of arterial stiffness and is associated with all-cause mortality.
Collapse
Affiliation(s)
- Edward R Smith
- Brighton and Sussex University Hospitals National Health Service Trust, Brighton, United Kingdom.
| | | | | | | | | | | |
Collapse
|