1
|
Avraham Y, Shapira-Furman T, Saklani R, Van Heukelom B, Carmel M, Vorobiev L, Lipsker L, Zwas DR, Berry EM, Domb AJ. Sustained insulin treatment restoring metabolic status, body weight, and cognition in an anorexia nervosa-like animal model in mice. Behav Brain Res 2024; 466:115001. [PMID: 38642861 DOI: 10.1016/j.bbr.2024.115001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION Anorexia Nervosa (AN) is a psycho-socio-biological disease characterized by severe weight loss as result of dieting and hyperactivity. Effective treatments are scarce, despite its significant prevalence and mortality. AN patients show lower basal insulin levels and increased metabolic clearance, leading to weight loss, cognitive deficits, and hormonal imbalances. Low-dose polymer insulin could potentially reverse these effects by restoring brain function, reducing fear of weight gain, encouraging food intake, and restoring fat depots. This study evaluates an insulin delivery system designed for sustained release and AN treatment. METHODS AN-like model was established through dietary restriction (DR). On days 1-25, mice were on DR, and on days 26-31 they were on ad libitum regimen. An insulin-loaded delivery system was administered subcutaneously (1% w/w insulin). The impact of insulin treatment on gene expression in the hippocampus (cognition, regulation of stress, neurogenesis) and hypothalamus (eating behavior, mood) was assessed. Behavioral assays were conducted to evaluate motor activity and cognitive function. RESULTS The delivery system demonstrated sustained insulin release, maintaining therapeutic plasma levels. Diet restriction mice treated with the insulin delivery system showed body weight restoration. Gene expression analysis revealed enhanced expression of CB1 and CB2 genes associated with improved eating behavior and cognition, while POMC expression was reduced. Insulin-polymer treatment restored cognitive function and decreased hyperactivity in the AN-like model. CONCLUSION The PSA-RA-based insulin delivery system effectively restores metabolic balance, body weight, and cognitive function in the AN model. Its ability to steadily release insulin makes it a promising candidate for AN treatment."
Collapse
Affiliation(s)
- Yosefa Avraham
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, Jerusalem 91120, Israel.
| | - Tovi Shapira-Furman
- Institute of Drug Research, School of Pharmacy Hadassah-Hebrew University Medical School, Jerusalem 91120, Israel
| | - Ravi Saklani
- Institute of Drug Research, School of Pharmacy Hadassah-Hebrew University Medical School, Jerusalem 91120, Israel
| | - Bob Van Heukelom
- Department of Neurology, Gelderse Vallei Hospital, 6716 RP, the Netherlands
| | - Moshe Carmel
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, Jerusalem 91120, Israel
| | - Lia Vorobiev
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, Jerusalem 91120, Israel
| | - Leah Lipsker
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, Jerusalem 91120, Israel
| | - Donna R Zwas
- Linda Joy Pollin Cardiovascular Wellness Center for Women, Heart Institute, Hadassah University Medical Center, Jerusalem, Israel
| | - Elliot M Berry
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, Jerusalem 91120, Israel
| | - Abraham J Domb
- Institute of Drug Research, School of Pharmacy Hadassah-Hebrew University Medical School, Jerusalem 91120, Israel
| |
Collapse
|
2
|
Christensen C, Rose M, Cornett C, Allesø M. Decoding the Postulated Entourage Effect of Medicinal Cannabis: What It Is and What It Isn't. Biomedicines 2023; 11:2323. [PMID: 37626819 PMCID: PMC10452568 DOI: 10.3390/biomedicines11082323] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The 'entourage effect' term was originally coined in a pre-clinical study observing endogenous bio-inactive metabolites potentiating the activity of a bioactive endocannabinoid. As a hypothetical afterthought, this was proposed to hold general relevance to the usage of products based on Cannabis sativa L. The term was later juxtaposed to polypharmacy pertaining to full-spectrum medicinal Cannabis products exerting an overall higher effect than the single compounds. Since the emergence of the term, a discussion of its pharmacological foundation and relevance has been ongoing. Advocates suggest that the 'entourage effect' is the reason many patients experience an overall better effect from full-spectrum products. Critics state that the term is unfounded and used primarily for marketing purposes in the Cannabis industry. This scoping review aims to segregate the primary research claiming as well as disputing the existence of the 'entourage effect' from a pharmacological perspective. The literature on this topic is in its infancy. Existing pre-clinical and clinical studies are in general based on simplistic methodologies and show contradictory findings, with the clinical data mostly relying on anecdotal and real-world evidence. We propose that the 'entourage effect' is explained by traditional pharmacological terms pertaining to other plant-based medicinal products and polypharmacy in general (e.g., synergistic interactions and bioenhancement).
Collapse
Affiliation(s)
- Catalina Christensen
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| | - Martin Rose
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| | - Claus Cornett
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark;
| | - Morten Allesø
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| |
Collapse
|
3
|
Avraham Y, Berry EM, Merchavia S, Vorobiev L, Najajreh Y, Furman S, Zwas DR, Albeck A. Novel N-Acylethanolamide Derivatives Affect Body Weight and Energy Balance. Chem Biodivers 2023; 20:e202300212. [PMID: 37461813 DOI: 10.1002/cbdv.202300212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Introduction - The obesity pandemic is multifactorial. Nutritional, pharmacologic and surgical interventions are limited in reach and efficacy, raising need for new therapeutics. Aims - Characterization of anorexigenic and cognitive effect and central mechanism of action of novel N-acylethanolamide derivatives. Methods - Sabra mice divided to similar experimental groups, injected IP with: oleyl-L-leucinolamide (1 A), linoleyl-L-leucinolamide (4 A), linoleyl-L-valinolamide (5 A), oleyl-oxycarbonyl-L-valinolamide (1 B), oleyl-oxycarbonyl-D-valinolamide (2 B), oleylamine-carbonyl-L-valinolamide (3 B), oleylamine-carbonyl-D-valinolamide (4 B), and oleyl-L-hydroxyvalineamide (5 B). Control group with vehicle. Body weight and food consumption followed for 39 days. Motor activity and cognitive function by open field test and eight-arm maze. Mice sacrificed and mechanism of action investigated by qPCR. The genes analyzed involved in energy balance and regulation of appetite. Catecholamines and serotonin evaluated. Results - Compounds 1 A, 5 A, 1 B-4 B, caused significant weight loss of 4.2-5.6 % and 5 A, 1 B-4 B, improved cognitive function following 8 i. p. injections of 1 mg/kg during 39 days, by different mechanisms. 5 A, 3 B and 4 B decreased food consumption, whereas 1 A, 5 A and 2 B increased motor activity. 1 A, 4 A, 1 B and 3 B elevated SIRT-1, associated with survival. POMC upregulated by 1 B and 2 B, CART by 1 B, 2 B and 1 A. NPY and CAMKK2 downregulated by 5 A. 4 B enhanced 5-HT levels. 4 A, 5 A, 1 B, 4 B, 5 B decreased FAAH, showing long lasting effect. Conclusions - These new compounds might be developed for the treatment of obesity and for improved cognitive function.
Collapse
Affiliation(s)
- Yosefa Avraham
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, P.O.Box 91120, Jerusalem, Israel
| | - Elliot M Berry
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, P.O.Box 91120, Jerusalem, Israel
| | - Shira Merchavia
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, P.O.Box 91120, Jerusalem, Israel
| | - Lia Vorobiev
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, P.O.Box 91120, Jerusalem, Israel
| | - Yousef Najajreh
- Anticancer Drugs Research lab, Faculty of Pharmacy, Al-Quds University, Abu-Dies, P.O.Box 20002, Jerusalem, Palestinian Authority
| | - Svetlana Furman
- The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | - Donna R Zwas
- Linda Joy Pollin Cardiovascular Wellness Center for Women, Heart Institute, Hadassah University Medical Center, P.O.Box 12000, Jerusalem, Israel
| | - Amnon Albeck
- The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
4
|
Shaker K, Nillas A, Ellison R, Martin K, Trecki J, Gerona R, Aldy K. Delta-8-Tetrahydrocannabinol Exposure and Confirmation in Four Pediatric Patients. J Med Toxicol 2023; 19:190-195. [PMID: 36757578 PMCID: PMC10050257 DOI: 10.1007/s13181-022-00927-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 02/10/2023] Open
Abstract
INTRODUCTION Delta-8-tetrahydrocannabinol (THC) is a known isomer of delta-9-THC, both found naturally in the Cannabis sativa plant and thought to have similar potency. Delta-8-THC products are widely accessible in retail shops which may lead to a rise in pediatric exposures with substantial clinical effects. CASE REPORT This is a case series of four pediatric patients that were seen between June and September 2021. The patients presented with varied clinical symptoms including confusion, somnolence, seizure-like activity, hypotension, and tachycardia after exposure to delta-8-THC products obtained in retail shops. Basic urine drug screen immunoassays revealed positive results for cannabinoids in all patients. Subsequent confirmatory drug analysis of residual biological samples of blood and/or urine was sent to the University of California San Francisco Clinical Toxicology and Environment Biomonitoring Laboratory with the assistance of the Drug Enforcement Administration's Toxicology Testing Program (DEA TOX). Confirmatory testing revealed 11-nor-9-carboxy-delta-8-THC, the metabolite of delta-8-THC. Delta-9-THC and its metabolites were not detected on confirmatory testing in any of the cases. DISCUSSION Clinical effects of delta-8-THC in children include but are not limited to altered mental status, seizure-like activity, and vital sign abnormalities. Delta-8-THC exposure may lead to a positive urine drug screen for cannabinoids, but confirmatory testing is needed to differentiate from delta-9-THC.
Collapse
Affiliation(s)
- Kerollos Shaker
- University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Andrea Nillas
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ross Ellison
- University of California, San Francisco, CA, USA
| | - Kelsey Martin
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jordan Trecki
- Drug Enforcement Administration, Springfield, VA, USA
| | - Roy Gerona
- University of California, San Francisco, CA, USA
| | - Kim Aldy
- University of Texas Southwestern Medical Center, Dallas, TX, USA
- American College of Medical Toxicology, Phoenix, AZ, USA
| |
Collapse
|
5
|
LoParco CR, Rossheim ME, Walters ST, Zhou Z, Olsson S, Sussman SY. Delta-8 tetrahydrocannabinol: a scoping review and commentary. Addiction 2023; 118:1011-1028. [PMID: 36710464 DOI: 10.1111/add.16142] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIMS Delta-8 tetrahydrocannabinol (THC) is a psychoactive substance from the Cannabis plant that has been rising in popularity in the United States since the 2018 US Farm Bill implicitly legalized it. This study reviewed research from peer-reviewed and non-peer-reviewed (e.g. anecdotal and news) reports related to delta-8 THC to summarize current knowledge and implications for public health and safety. METHODS A scoping review was conducted using PubMed, Scopus, Google Scholar and Google as search engines, leading to the identification of 103 documents that were summarized. The themes that emerged were (1) legality, (2) use (popularity, motives, psychoactivity/potency, benefits/consequences), (3) synthesis (byproducts, laboratory testing) and (4) retail (availability, price, packaging, youth-oriented marketing). A second author independently coded 20% of the documents, which verified the categorization of articles by these emergent themes. RESULTS Most research used animal/cell models or focused upon ways to identify the chemical structure of delta-8 THC in various products. Findings suggest that people often use delta-8 THC as a substitute for other substances. Anecdotally, delta-8 THC is a less potent psychoactive than delta-9 THC; however, several negative consequences have been reported. There is no federal age restriction for purchase/possession of delta-8 THC products. Delta-8 THC is readily accessible on-line, is typically less expensive than delta-9 THC and is often marketed in ways that would seemingly appeal to children. There are no regulations on synthesis, resulting in products being contaminated and/or yielding inconsistent effects. There have been thousands of calls to US poison control centers due to accidental delta-8 THC exposure among minors. CONCLUSIONS Most research on delta-8 THC is largely anecdotal, not peer-reviewed and does not involve human subjects. Future research should examine delta-8 THC use using nationally representative samples to more clearly understand the prevalence and consequences of use. Laws are needed to mitigate the risks of using delta-8 THC, particularly quality control of synthesis and minimum purchase age.
Collapse
Affiliation(s)
- Cassidy R LoParco
- School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Matthew E Rossheim
- School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Scott T Walters
- School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Zhengyang Zhou
- School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sofia Olsson
- School of Medicine, Texas Christian University, Fort Worth, TX, USA
| | - Steve Y Sussman
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Vanegas SO, Reck AM, Rodriguez CE, Marusich JA, Yassin O, Sotzing G, Wiley JL, Kinsey SG. Assessment of dependence potential and abuse liability of Δ 8-tetrahydrocannabinol in mice. Drug Alcohol Depend 2022; 240:109640. [PMID: 36179506 PMCID: PMC10288383 DOI: 10.1016/j.drugalcdep.2022.109640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/06/2023]
Abstract
Delta-8-tetrahydrocannabinol (Δ8-THC) is a psychotropic cannabinoid produced in low quantities in the cannabis plant. Refinements in production techniques, paired with the availability of inexpensive cannabidiol substrate, have resulted in Δ8-THC being widely marketed as a quasi-legal, purportedly milder alternative to Δ9-THC. Yet, little research has probed the behavioral and physiological effects of repeated Δ8-THC use. The present study aimed to evaluate the effects of acute and repeated exposure to Δ8-THC. We hypothesized that Δ8-THC produces effects similar to Δ9-THC, including signs of drug tolerance and dependence. Adult male and female C57BL/6J mice were treated acutely with Δ8-THC (6.25-100 mg/kg, i.p.) or vehicle and tested in the tetrad battery to quantify cannabimimetic effects (i.e., catalepsy, antinociception, hypothermia, immobility) as compared with a non-selective synthetic cannabinoid (WIN 55,212-2) and Δ9-THC. As previously reported, Δ8-THC (≥12.5 mg/kg) induced cannabimimetic effects. Pretreatment with the CB1 receptor-selective antagonist rimonabant (3 mg/kg, i.p.) blocked each of these effects. In addition, repeated administration of Δ8-THC (50 mg/kg, s.c.) produced tolerance, as well as cross-tolerance to WIN 55,212-2 (10 mg/kg, s.c.) in tetrad, consistent with downregulated CB1 receptor function. Behavioral signs of physical dependence in the somatic signs, tail suspension, and marble burying assays were also observed following rimonabant-precipitated withdrawal from Δ8-THC (≥10 mg/kg BID for 6 days). Lastly, Δ8-THC produced Δ9-THC-like discriminative stimulus effects in both male and female mice. Together, these findings demonstrate that Δ8-THC produces qualitatively similar effects to Δ9-THC, including risk of drug dependence and abuse liability.
Collapse
Affiliation(s)
- S O Vanegas
- School of Nursing, University of Connecticut, Storrs, CT, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - A M Reck
- School of Nursing, University of Connecticut, Storrs, CT, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - C E Rodriguez
- School of Nursing, University of Connecticut, Storrs, CT, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - J A Marusich
- RTI International, Research Triangle Park, NC, USA
| | | | - G Sotzing
- Department of Chemistry, University of Connecticut, Storrs, CT, USA; 3BC, Inc., Farmington, CT, USA
| | - J L Wiley
- RTI International, Research Triangle Park, NC, USA
| | - S G Kinsey
- School of Nursing, University of Connecticut, Storrs, CT, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
7
|
Avraham Y, Van Heukelom B, Zolotarev O, Magen I, Vorobiev L, Zwas DR. Insulin normalized brain metabolic status on a Model of Anorexia Nervosa in Mice. Physiol Behav 2022; 249:113738. [PMID: 35182554 DOI: 10.1016/j.physbeh.2022.113738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Anorexia nervosa is a psycho-socio-biological disease, characterized by self-starvation and distorted perception of body weight. Patients often over-exercise. Insulin is an anabolic hormone that increases food intake and restores body fat and is present in low levels in anorexia nervosa patients: thus may have therapeutic potential in treating anorexia nervosa. AIMS to explore whether low levels insulin administration may result in recovery of cerebral function and restoration of metabolic disorder providing a treatment option for anorexia nervosa. METHODS Female Sabra mice maintained on DR of 2.0 hours per day for 32 days, in cages with or without wheel attached to an electronic counter (activity wheel). They were then permitted to eat ad libitum for additional 15 days. On the second week, mice were injected ip with 0.5U/kg long acting Insulin(Lantus) or saline and cognitive function was evaluated. Insulin administered three times a week during days 8-32. Mice euthanized on day 48 and cerebral levels of monoamines, 2-AG and expression of genes associated with metabolic status were evaluated. RESULTS Activity wheel mice decreased body weight, 2-AG, dopamine levels and 5-HT1A and increased Camkk2 and SIRT1 gene expression compared to mice without it. Insulin increased body weight, decreased revolutions, enhanced NPY and normalized Camkk2, SIRT-1, BDNF, elevated 2-AG and improved cognition in the wheel group. CONCLUSION low dose insulin administration to animal model of anorexia associated with exercise, led to alterations and normalization in brain metabolic status and improved cognition. Insulin should be further explored as potential novel treatment for anorexia nervosa.
Collapse
Affiliation(s)
- Yosefa Avraham
- Linda Joy Pollin Cardiovascular Wellness Center for Women, Heart Institute, Hadassah University Medical Center, Jerusalem, Israel 91120.
| | - Bob Van Heukelom
- Department of Neurology Gelderse Vallei Hospital, Ede Netherlands 6716 RP Ede
| | - Olga Zolotarev
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, Jerusalem, Israel 91120
| | - Iddo Magen
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, Jerusalem, Israel 91120
| | - Lia Vorobiev
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, Jerusalem, Israel 91120
| | - Donna R Zwas
- Linda Joy Pollin Cardiovascular Wellness Center for Women, Heart Institute, Hadassah University Medical Center, Jerusalem, Israel 91120
| |
Collapse
|
8
|
Pugazhendhi A, Suganthy N, Chau TP, Sharma A, Unpaprom Y, Ramaraj R, Karuppusamy I, Brindhadevi K. Cannabinoids as anticancer and neuroprotective drugs: Structural insights and pharmacological interactions—A review. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Chan-Hosokawa A, Nguyen L, Lattanzio N, Adams WR. Emergence of Delta-8 Tetrahydrocannabinol (THC) in DUID Investigation Casework: Method Development, Validation and Application. J Anal Toxicol 2021; 46:1-9. [PMID: 33754645 DOI: 10.1093/jat/bkab029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 11/12/2022] Open
Abstract
Cannabinoids is the most frequently reported illicit drug class in Driving Under the Influence of Drugs (DUID) investigation casework. In recent years, our laboratory observed an increasing rate of overlapping peaks for the cannabinoids confirmation performed using two-dimensional (2D)-High Performance Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS). Starting in early 2018, the incidence of unresolved interfering substances increased, contributing to a higher rate of canceled testing that peaked at 3.7% in February 2019. The observed interference demonstrates a distinctive pattern affecting identifications and quantification of both Delta-9 THC and Delta-9 carboxy THC. An improved quantitative method was developed and validated to separate Delta-8 and -9 isomers and their metabolites in blood. All acceptance criteria were met with identical measurement ranges from the original method (lower limit of quantitation: 0.5 ng/mL for Delta-9 THC, 1.0 ng/mL for 11-Hydroxy Delta-9 THC, and 5.0 ng/mL for Delta-9 carboxy THC). Cannabinoids were extracted from whole blood using liquid-liquid extraction, separated in a 2D liquid chromatography system over a run-time of 10 min and detected by a tandem mass spectrometry system equipped with ESI source operating in positive ionization mode with scheduled multiple reaction mass spectrometric monitoring (MRM). The LC system consisted of a pair of Phenomenex® SecurityGuard™ C6 Phenyl (4x2 mm) cartridges for extracting the compounds with 5 mM ammonium formate buffer in deionized (DI) water and 0.1% formic acid in methanol as mobile phase, and a Phenomenex® Kinetex C18 column (100x3 mm) with 0.1% formic acid in DI water and 0.1% formic acid in methanol for LC separation at 45°C. Each set of isomers was fully resolved by the longer run-time method. To the authors' knowledge, this is the first report of a method that successfully quantitates these primary cannabinoids in blood specimens where significant concentrations of both Delta-9 and Delta-8 isomers are present.
Collapse
|
10
|
Rock EM, Parker LA. Constituents of Cannabis Sativa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1264:1-13. [PMID: 33332000 DOI: 10.1007/978-3-030-57369-0_1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Cannabis sativa plant has been used medicinally and recreationally for thousands of years, but recently only relatively some of its constituents have been identified. There are more than 550 chemical compounds in cannabis, with more than 100 phytocannabinoids being identified, including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). These phytocannabinoids work by binding to the cannabinoid receptors, as well as other receptor systems. Also within cannabis are the aromatic terpenes, more than 100 of which have been identified. Cannabis and its constituents have been indicated as therapeutic compounds in numerous medical conditions, such as pain, anxiety, epilepsy, nausea and vomiting, and post-traumatic stress disorder. This chapter provides an overview of some of the biological effects of a number of the cannabinoids and terpenes, as well as discussing their known mechanisms of action and evidence of potential therapeutic effects.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
11
|
Tarragon E, Moreno JJ. Cannabinoids, Chemical Senses, and Regulation of Feeding Behavior. Chem Senses 2020; 44:73-89. [PMID: 30481264 DOI: 10.1093/chemse/bjy068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The herb Cannabis sativa has been traditionally used in many cultures and all over the world for thousands of years as medicine and recreation. However, because it was brought to the Western world in the late 19th century, its use has been a source of controversy with respect to its physiological effects as well as the generation of specific behaviors. In this regard, the CB1 receptor represents the most relevant target molecule of cannabinoid components on nervous system and whole-body energy homeostasis. Thus, the promotion of CB1 signaling can increase appetite and stimulate feeding, whereas blockade of CB1 suppresses hunger and induces hypophagia. Taste and flavor are sensory experiences involving the oral perception of food-derived chemicals and drive a primal sense of acceptable or unacceptable for what is sampled. Therefore, research within the last decades focused on deciphering the effect of cannabinoids on the chemical senses involved in food perception and consequently in the pattern of feeding. In this review, we summarize the data on the effect of cannabinoids on chemical senses and their influences on food intake control and feeding behavior.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Department of Psychobiology, Faculty of Health Sciences, University Jaume I of Castellon, Castellon, Spain.,Department of Psychobiology and Methodology on Behavioral Sciences, Faculty of Psychology, Universidad Complutense de Madrid, Campus de Somosaguas, Ctra. de Húmera, Madrid, Spain
| | - Juan José Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Campus Torribera, Barcelona, Spain.,IBEROBN Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Nelson NG, Weingarten MJ, Law WX, Sangiamo DT, Liang NC. Joint and separate exposure to alcohol and ∆ 9-tetrahydrocannabinol produced distinct effects on glucose and insulin homeostasis in male rats. Sci Rep 2019; 9:12025. [PMID: 31427627 PMCID: PMC6700198 DOI: 10.1038/s41598-019-48466-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/06/2019] [Indexed: 01/04/2023] Open
Abstract
Cannabis and alcohol co-use is common, and the trend may increase further given the current popularity of cannabis legalization. However, the metabolic consequences of such co-use are unclear. Here, we investigated how co-administration of alcohol and ∆9-tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, affects body weight and visceral adiposity, and glucose and insulin homeostasis in rats. For 16 consecutive days during adolescence, male rats drank saccharin or alcohol after receiving subcutaneous oil or THC injections in Experiment 1 and voluntarily consumed alcohol, THC edible, or both drugs in Experiment 2. Experiment 1 showed that following abstinence, drug co-exposure reduced visceral fat and the amount of insulin required to clear glucose during an oral glucose tolerance test (OGTT). In Experiment 2, rats received a high-fat diet (HFD) after 3-week abstinence. Although adolescent drug use did not interact with the HFD to worsen hyperglycemia and hyperinsulinemia during an OGTT, HFD-fed rats that co-used alcohol and THC had the lowest insulin levels 75 min after an insulin injection, suggesting an altered rate of insulin secretion and degradation. These results suggest that THC and alcohol co-exposure can distinctly alter the physiology of glucose and insulin homeostasis in a rodent model.
Collapse
Affiliation(s)
- Nnamdi G Nelson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, USA
| | - Michael J Weingarten
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA
| | - Wen Xuan Law
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA
| | - Daniel T Sangiamo
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, USA
| | - Nu-Chu Liang
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, USA.
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, USA.
| |
Collapse
|
13
|
Avraham Y, Paturski I, Magen I, Vorobiev L, Berry EM. 2-Arachidonoylglycerol as a possible treatment for anorexia nervosa in animal model in mice. Brain Res 2017; 1670:185-190. [PMID: 28606779 DOI: 10.1016/j.brainres.2017.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/21/2017] [Accepted: 06/02/2017] [Indexed: 01/31/2023]
Abstract
We have investigated the effects of 0.001mg/kg 2-arachidonoylglycerol (2-AG) administered in combination with compounds present in the body alongside 2-AG like 2-palmitoylglycerol and 2-linoleylglycerol (also termed "entourage"), on cognitive function,food intake, and neurotransmitter levels in the hippocampus and hypothalamus of mice under diet restriction. Young female Sabra mice were treated with vehicle, 2-AG, 2-AG+entourage, 2-AG+entourage+5-(4-Chlorophenyl)-1-(2,4-dichloro-phenyl)- 4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (SR141716A, a CB1 antagonist) and SR141716A. The mice were fed for 2.5h a day for 14days. Cognitive function was evaluated by the eight arm maze test, and neurotransmitter (norepinephrine, dopamine, L-DOPA and serotonin) levels were measured in the hippocampus and hypothalamus by high-performance liquid chromatography-electrochemical detection. Food intake was increased by 2-AG and, to an even greater extent, by 2-AG+entourage. SR141716A reversed the effect of 2-AG+entourage. The administration of 2-AG+entourage improved cognitive function compared to the vehicle mice, and this improvement was blocked by SR141716A. 2-AG+entourage-treated mice showed an increase in norepinephrine (NE), dopamine and L-DOPA levels in the hippocampus. SR141716A normalized NE and L-DOPA levels. There were no significant changes in hypothalamic neurotransmitter levels. The use of very low doses of the endocannabinoid 2-AG+entourage can improve cognitive function by elevating norepinephrine and L-DOPA levels in the hippocampus, without cannabinomimetic side effects. These findings may have implications for cognitive enhancement in anorexia nervosa.
Collapse
Affiliation(s)
- Y Avraham
- Department of Human Nutrition and Metabolism Hebrew University - Hadassah Medical School, POB 12272, Jerusalem 91120, Israel.
| | - I Paturski
- Department of Human Nutrition and Metabolism Hebrew University - Hadassah Medical School, POB 12272, Jerusalem 91120, Israel
| | - I Magen
- Department of Human Nutrition and Metabolism Hebrew University - Hadassah Medical School, POB 12272, Jerusalem 91120, Israel
| | - L Vorobiev
- Department of Human Nutrition and Metabolism Hebrew University - Hadassah Medical School, POB 12272, Jerusalem 91120, Israel
| | - E M Berry
- Department of Human Nutrition and Metabolism Hebrew University - Hadassah Medical School, POB 12272, Jerusalem 91120, Israel
| |
Collapse
|
14
|
Badal S, Smith KN, Rajnarayanan R. Analysis of natural product regulation of cannabinoid receptors in the treatment of human disease. Pharmacol Ther 2017; 180:24-48. [PMID: 28583800 DOI: 10.1016/j.pharmthera.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The organized, tightly regulated signaling relays engaged by the cannabinoid receptors (CBs) and their ligands, G proteins and other effectors, together constitute the endocannabinoid system (ECS). This system governs many biological functions including cell proliferation, regulation of ion transport and neuronal messaging. This review will firstly examine the physiology of the ECS, briefly discussing some anomalies in the relay of the ECS signaling as these are consequently linked to maladies of global concern including neurological disorders, cardiovascular disease and cancer. While endogenous ligands are crucial for dispatching messages through the ECS, there are also commonalities in binding affinities with copious exogenous ligands, both natural and synthetic. Therefore, this review provides a comparative analysis of both types of exogenous ligands with emphasis on natural products given their putative safer efficacy and the role of Δ9-tetrahydrocannabinol (Δ9-THC) in uncovering the ECS. Efficacy is congruent to both types of compounds but noteworthy is the effect of a combination therapy to achieve efficacy without unideal side-effects. An example is Sativex that displayed promise in treating Huntington's disease (HD) in preclinical models allowing for its transition to current clinical investigation. Despite the in vitro and preclinical efficacy of Δ9-THC to treat neurodegenerative ailments, its psychotropic effects limit its clinical applicability to treating feeding disorders. We therefore propose further investigation of other compounds and their combinations such as the triterpene, α,β-amyrin that exhibited greater binding affinity to CB1 than CB2 and was more potent than Δ9-THC and the N-alkylamides that exhibited CB2 selective affinity; the latter can be explored towards peripherally exclusive ECS modulation. The synthetic CB1 antagonist, Rimonabant was pulled from commercial markets for the treatment of diabetes, however its analogue SR144528 maybe an ideal lead molecule towards this end and HU-210 and Org27569 are also promising synthetic small molecules.
Collapse
Affiliation(s)
- S Badal
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Mona, Jamaica.
| | - K N Smith
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Rajnarayanan
- Jacobs School of Medicine and Biomedical Sciences, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14228, USA
| |
Collapse
|
15
|
Bloomfield MAP, Ashok AH, Volkow ND, Howes OD. The effects of Δ 9-tetrahydrocannabinol on the dopamine system. Nature 2016; 539:369-377. [PMID: 27853201 PMCID: PMC5123717 DOI: 10.1038/nature20153] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022]
Abstract
The effects of Δ9-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, are a pressing concern for global mental health. Patterns of cannabis use are changing drastically owing to legalization, the availability of synthetic analogues (commonly termed spice), cannavaping and an emphasis on the purported therapeutic effects of cannabis. Many of the reinforcing effects of THC are mediated by the dopamine system. Owing to the complexity of the cannabinoid-dopamine interactions that take place, there is conflicting evidence from human and animal studies concerning the effects of THC on the dopamine system. Acute THC administration causes increased dopamine release and neuron activity, whereas long-term use is associated with blunting of the dopamine system. Future research must examine the long-term and developmental dopaminergic effects of THC.
Collapse
Affiliation(s)
- Michael A P Bloomfield
- Psychiatric Imaging Group, Robert Steiner MR Unit, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London WC1T 7NF, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology &Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, 1-19 Torrington Place, London WC1E 6BT, UK
| | - Abhishekh H Ashok
- Psychiatric Imaging Group, Robert Steiner MR Unit, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology &Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK
| | - Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, 6001 Executive Boulevard, Bethesda, Maryland 20892-9561, USA
| | - Oliver D Howes
- Psychiatric Imaging Group, Robert Steiner MR Unit, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology &Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK
| |
Collapse
|
16
|
Chakravarti B, Ravi J, Ganju RK. Cannabinoids as therapeutic agents in cancer: current status and future implications. Oncotarget 2015; 5:5852-72. [PMID: 25115386 PMCID: PMC4171598 DOI: 10.18632/oncotarget.2233] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The pharmacological importance of cannabinoids has been in study for several years. Cannabinoids comprise of (a) the active compounds of the Cannabis sativa plant, (b) endogenous as well as (c) synthetic cannabinoids. Though cannabinoids are clinically used for anti-palliative effects, recent studies open a promising possibility as anti-cancer agents. They have been shown to possess anti-proliferative and anti-angiogenic effects in vitro as well as in vivo in different cancer models. Cannabinoids regulate key cell signaling pathways that are involved in cell survival, invasion, angiogenesis, metastasis, etc. There is more focus on CB1 and CB2, the two cannabinoid receptors which are activated by most of the cannabinoids. In this review article, we will focus on a broad range of cannabinoids, their receptor dependent and receptor independent functional roles against various cancer types with respect to growth, metastasis, energy metabolism, immune environment, stemness and future perspectives in exploring new possible therapeutic opportunities.
Collapse
Affiliation(s)
- Bandana Chakravarti
- Division of Endocrinology, Central Drug Research Institute, Lucknow, UP, India; These authors contributed equally to this work
| | - Janani Ravi
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA; These authors contributed equally to this work
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
17
|
The role of serotonin in drug use and addiction. Behav Brain Res 2014; 277:146-92. [PMID: 24769172 DOI: 10.1016/j.bbr.2014.04.007] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/26/2022]
Abstract
The use of psychoactive drugs is a wide spread behaviour in human societies. The systematic use of a drug requires the establishment of different drug use-associated behaviours which need to be learned and controlled. However, controlled drug use may develop into compulsive drug use and addiction, a major psychiatric disorder with severe consequences for the individual and society. Here we review the role of the serotonergic (5-HT) system in the establishment of drug use-associated behaviours on the one hand and the transition and maintenance of addiction on the other hand for the drugs: cocaine, amphetamine, methamphetamine, MDMA (ecstasy), morphine/heroin, cannabis, alcohol, and nicotine. Results show a crucial, but distinct involvement of the 5-HT system in both processes with considerable overlap between psychostimulant and opioidergic drugs and alcohol. A new functional model suggests specific adaptations in the 5-HT system, which coincide with the establishment of controlled drug use-associated behaviours. These serotonergic adaptations render the nervous system susceptible to the transition to compulsive drug use behaviours and often overlap with genetic risk factors for addiction. Altogether we suggest a new trajectory by which serotonergic neuroadaptations induced by first drug exposure pave the way for the establishment of addiction.
Collapse
|
18
|
Lim CT, Kola B, Feltrin D, Perez-Tilve D, Tschöp MH, Grossman AB, Korbonits M. Ghrelin and cannabinoids require the ghrelin receptor to affect cellular energy metabolism. Mol Cell Endocrinol 2013; 365. [PMID: 23178796 PMCID: PMC3566541 DOI: 10.1016/j.mce.2012.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Ghrelin is a potent orexigenic brain-gut peptide with lipogenic and diabetogenic effects, possibly mediated by growth hormone secretagogue receptor (GHS-R1a). Cannabinoids also have orexigenic and lipogenic effects. AMPK is a regulator of energy homeostasis and we have previously shown that ghrelin and cannabinoids stimulate hypothalamic AMPK activity while inhibiting it in the liver and adipose tissue, suggesting that AMPK mediates both the central appetite-inducing and peripheral effects of ghrelin and cannabinoids. AIMS Using GHS-R KO mice, we investigated whether the known ghrelin receptor GHS-R1a is required for the tissue-specific effects of ghrelin on AMPK activity, and if an intact ghrelin signalling pathway is necessary for the effects of cannabinoids on AMPK activity. METHODS Wild-type and GHS-R KO mice were treated intraperitoneally with ghrelin 500 ng/g bodyweight or CB1 agonist HU210 20 ng/g and hypothalamic, hepatic and adipose AMPK activity was studied using a functional kinase assay. RESULTS Ghrelin and HU210 significantly stimulated hypothalamic AMPK activity in wild-type animals (mean±SEM, 122.5±5.2% and 128±11.6% of control, p<0.05) and inhibited it in liver (55.1±4.8% and 62.2±14.5%, p<0.01) and visceral fat (mesenteric fat (MF): 54.6±16% and 52.0±9.3%, p<0.05; epididymal fat (EF): 47.9±12.1% and 45.6±1.7%, p<0.05). The effects of ghrelin, and interestingly also HU210, on hypothalamic, visceral fat and liver AMPK activity were abolished in the GHS-R KO mice (hypothalamus: 107.9±7.7% and 87.4±13.3%, liver: 100.5±11.6% and 116.7±5.4%, MF: 132.1±29.9% and 107.1±32.7%, EF: 89.8±7.3% and 91.7±18.3%, p>0.05). CONCLUSIONS Ghrelin requires GHS-R1a for its effect on hypothalamic, liver and adipose tissue AMPK activity. An intact ghrelin signalling pathway is necessary for the effects of cannabinoids on AMPK activity.
Collapse
Affiliation(s)
- Chung Thong Lim
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, London EC1M 6BQ, UK
| | - Blerina Kola
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, London EC1M 6BQ, UK
| | - Daniel Feltrin
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, London EC1M 6BQ, UK
| | - Diego Perez-Tilve
- Metabolic Disease Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Matthias H. Tschöp
- Metabolic Disease Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
- Institute for Diabetes and Obesity, Helmholtz Centre Munich, Department of Medicine, Technische Universität München, Munich, Germany
| | - Ashley B. Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, London EC1M 6BQ, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, London EC1M 6BQ, UK
- Corresponding author. Address: Endocrinology and Metabolism, Queen Mary University of London Barts and the London School of Medicine and Dentistry, Department of Endocrinology, Charterhouse Square, London EC1M 6BQ, UK. Tel.: +44 20 7882 6238; fax: +44 20 7882 6197.
| |
Collapse
|
19
|
Hippalgaonkar K, Gul W, ElSohly MA, Repka MA, Majumdar S. Enhanced solubility, stability, and transcorneal permeability of δ-8-tetrahydrocannabinol in the presence of cyclodextrins. AAPS PharmSciTech 2011; 12:723-31. [PMID: 21637944 DOI: 10.1208/s12249-011-9639-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/23/2011] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to investigate the effect of cyclodextrins (CDs) on aqueous solubility, stability, and in vitro corneal permeability of delta-8-tetrahydrocannabinol (Δ(8)-THC). Phase solubility of Δ(8)-THC was studied in the presence of 2-hydroxypropyl-β-cyclodextrin (HPβCD), randomly methylated-β-cyclodextrin (RMβCD) and sulfobutyl ether-β-cyclodextrin sodium salt (SβCD). Stability of Δ(8)-THC in 5% w/v aqueous CD solutions, as a function of pH, was studied following standard protocols. In vitro corneal permeation of Δ(8)-THC (with and without CDs) across excised rabbit cornea was also determined. Phase-solubility profile of Δ(8)-THC in the presence of both HPβCD and RMβCD was of the A(P) type, whereas, with SβCD an A(L) type was apparent. Aqueous solubility of Δ(8)-THC increased to 1.65, 2.4, and 0.64 mg/mL in the presence of 25% w/v HPβCD, RMβCD, and SβCD, respectively. Significant degradation of Δ(8)-THC was not observed within the study period at the pH values studied, except for at pH 1.2. Transcorneal permeation of Δ(8)-THC was dramatically improved in the presence of CDs. The results demonstrate that CDs significantly increase aqueous solubility, stability, and transcorneal permeation of Δ(8)-THC. Thus, topical ophthalmic formulations containing Δ(8)-THC and modified beta CDs may show markedly improved ocular bioavailability.
Collapse
|
20
|
Borges BC, Rorato R, Avraham Y, da Silva LECM, Castro M, Vorobiav L, Berry E, Antunes-Rodrigues J, Elias LLK. Leptin resistance and desensitization of hypophagia during prolonged inflammatory challenge. Am J Physiol Endocrinol Metab 2011; 300:E858-69. [PMID: 21343543 DOI: 10.1152/ajpendo.00558.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute exposure to bacterial lipopolysaccharide (LPS) is a potent inducer of immune response as well as hypophagia. Nevertheless, desensitization of responses to LPS occurs during long-term exposure to endotoxin. We induced endotoxin tolerance, injecting repeated (6LPS) LPS doses compared with single (1LPS) treatment. 1LPS, but not 6LPS group, showed decreased food intake and body weight, which was associated with an increased plasma leptin and higher mRNA expression of OB-Rb, MC4R, and SOCS3 in the hypothalamus. Hypophagia induced by 1LPS was associated with lower levels of 2-arachidonoylglycerol (2-AG), increased number of p-STAT3 neurons, and decreased AMP-activated protein kinase (AMPK) activity. Desensitization of hypophagia in the 6LPS group was related to high 2-AG, with no changes in p-STAT3 or increased p-AMPK. Leptin decreased food intake, body weight, 2-AG levels, and AMPK activity and enhanced p-STAT3 in control rats. However, leptin had no effects on 2-AG, p-STAT3, or p-AMPK in the 1LPS and 6LPS groups. Rats treated with HFD to induce leptin resistance showed neither hypophagia nor changes in p-STAT3 after 1LPS, suggesting that leptin and LPS recruit a common signaling pathway in the hypothalamus to modulate food intake reduction. Desensitization of hypophagia in response to repeated exposure to endotoxin is related to an inability of leptin to inhibit AMPK phosphorylation and 2-AG production and activate STAT3. SOCS3 is unlikely to underlie this resistance to leptin signaling in the endotoxin tolerance. The present model of prolonged inflammatory challenge may contribute to further investigations on mechanisms of leptin resistance.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/physiology
- Body Weight/drug effects
- Body Weight/physiology
- Cyclic AMP-Dependent Protein Kinases/physiology
- Diet
- Dietary Fats/pharmacology
- Eating/drug effects
- Eating/physiology
- Endocannabinoids
- Endotoxins/pharmacology
- Gas Chromatography-Mass Spectrometry
- Glycerides/physiology
- Immunohistochemistry
- Inflammation/chemically induced
- Inflammation/physiopathology
- Interleukin-10/biosynthesis
- Interleukin-10/genetics
- Leptin/blood
- Leptin/physiology
- Lipopolysaccharides/pharmacology
- Male
- Phosphorylation
- Rats
- Rats, Wistar
- Receptor, Melanocortin, Type 4/biosynthesis
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/physiology
- Receptors, Interleukin-10/biosynthesis
- Receptors, Interleukin-10/genetics
- Receptors, Leptin/biosynthesis
- Receptors, Leptin/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- STAT3 Transcription Factor/biosynthesis
- STAT3 Transcription Factor/genetics
- Signal Transduction/physiology
- Suppressor of Cytokine Signaling 3 Protein
- Suppressor of Cytokine Signaling Proteins/biosynthesis
- Suppressor of Cytokine Signaling Proteins/genetics
Collapse
Affiliation(s)
- Beatriz C Borges
- Avenida Bandeirantes, 3900, 14049-900, Ribeirao Preto, Sao Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Farrimond JA, Mercier MS, Whalley BJ, Williams CM. Cannabis sativa and the endogenous cannabinoid system: therapeutic potential for appetite regulation. Phytother Res 2011; 25:170-88. [PMID: 21213357 DOI: 10.1002/ptr.3375] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/06/2010] [Accepted: 10/09/2010] [Indexed: 01/12/2023]
Abstract
The herb Cannabis sativa (C. sativa) has been used in China and on the Indian subcontinent for thousands of years as a medicine. However, since it was brought to the UK and then the rest of the western world in the late 19th century, its use has been a source of controversy. Indeed, its psychotropic side effects are well reported but only relatively recently has scientific endeavour begun to find valuable uses for either the whole plant or its individual components. Here, we discuss evidence describing the endocannabinoid system, its endogenous and exogenous ligands and their varied effects on feeding cycles and meal patterns. Furthermore we also critically consider the mounting evidence which suggests non-Δ(9) tetrahydrocannabinol phytocannabinoids play a vital role in C. sativa-induced feeding pattern changes. Indeed, given the wide range of phytocannabinoids present in C. sativa and their equally wide range of intra-, inter- and extra-cellular mechanisms of action, we demonstrate that non-Δ(9) tetrahydrocannabinol phytocannabinoids retain an important and, as yet, untapped clinical potential.
Collapse
Affiliation(s)
- Jonathan A Farrimond
- School of Pharmacy, University of Reading, Reading, UK; School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK.
| | | | | | | |
Collapse
|
22
|
Activity-based anorexia in C57/BL6 mice: effects of the phytocannabinoid, Delta9-tetrahydrocannabinol (THC) and the anandamide analogue, OMDM-2. Eur Neuropsychopharmacol 2010; 20:622-31. [PMID: 20471226 DOI: 10.1016/j.euroneuro.2010.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 03/27/2010] [Accepted: 04/02/2010] [Indexed: 01/08/2023]
Abstract
The activity-based anorexia (ABA) paradigm is one of the few animal models of human anorexia nervosa. We present here the translation of this approach to C57/BL6 mice, a common background for genetically modified mice, and investigate the effects of the cannabinoid agonist, Delta(9)-tetrahydrocannabinol (THC) and the endocannabinoid uptake inhibitor, OMDM-2 in this model. The ABA paradigm was optimised so that food-restricted wheel-running mice displayed anorexia, reduced body weight and disrupted activity and circadian cycles. These conditions produced a murine ABA model with a defined stage and stability to allow for pharmacological intervention. Daily Delta(9)-THC (0.5 mg/kg) decreased survival in the ABA animals but increased feeding in the survivors, OMDM-2 (3 mg/kg) increased food intake, but not sufficiently to reverse weight loss. The effects of this model on endocannabinoid tone in the brain remain to be determined. Since the endocannabinoid system may be implicated in anorexia nervosa and in view of the positive modulation by cannabinoids of some aspects of ABA in this study, further investigation of the effects of cannabinoids in ABA is warranted.
Collapse
|
23
|
Influence of intracerebroventricular or intraperitoneal administration of cannabinoid receptor agonist (WIN 55,212-2) and inverse agonist (AM 251) on the regulation of food intake and hypothalamic serotonin levels. Br J Nutr 2009; 101:1569-78. [PMID: 19245736 DOI: 10.1017/s0007114508083530] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effect of intracerebroventricular or intraperitoneal administration of cannabinoid receptor agonist WIN 55,212-2 or inverse agonist AM 251 on food intake and extracellular levels of serotonin and acetic acid 5-hydroxy-indol from presatiated rats was studied. Compared to the vehicle-injected control, the intracerebroventricular administration of WIN 55,212-2 was associated with a significant increase in food intake, whereas the administration of AM 251 caused a significant reduction in this respect. These results were accompanied by considerable reductions or increases in serotonin and acetic acid 5-hydroxy-indol levels compared to the vehicle-injected control and the baseline values for the different experimental groups studied. Intraperitoneal administration of WIN 55,212-2 at doses of 1 and 2 mg/kg promoted hyperphagia up to 6 h after injection, whereas administration of a higher dose (5 mg/kg) significantly inhibited food intake and motor behaviour in partially satiated rats. Administration of any of the AM 251 doses studied (0.5, 1, 2, 5 mg/kg) led to a significant decrease in the amount of food ingested from 2 h after the injection, compared to the vehicle-injected control group, with the most striking effect being observed when the 5 mg/kg dose was injected.
Collapse
|
24
|
López-Moreno JA, González-Cuevas G, Moreno G, Navarro M. The pharmacology of the endocannabinoid system: functional and structural interactions with other neurotransmitter systems and their repercussions in behavioral addiction. Addict Biol 2008; 13:160-87. [PMID: 18422831 DOI: 10.1111/j.1369-1600.2008.00105.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Addiction is a chronic, recurring and complex disorder. It is characterized by anomalous behaviors that are linked to permanent or long-lasting neurobiological alterations. Furthermore, the endocannabinoid system has a crucial role in mediating neurotransmitter release as one of the main neuromodulators of the mammalian central nervous system. The purpose of the present review is to instruct readers about the functional and structural interactions between the endocannabinoid system and the main neurotransmitter systems of the central nervous system in the context of drug addiction. With this aim, we have systematically reviewed the main findings of most of the existing literature that explores cross-talk in the five brain areas that are most traditionally implicated in addiction: amygdala, prefrontal cortex, nucleus accumbens, hippocampus and ventral tegmental area (VTA). The neurotransmission systems influenced by the pharmacology of the endocannabinoid system in these brain areas, which are reviewed here, are gamma-aminobutyric acid (GABA), glutamate, the main biogenic amines (dopamine, noradrenaline and serotonin), acetylcholine and opioids. We show that all of these neurotransmitter systems can be modulated differentially in each brain area by the activation or deactivation of cannabinoid CB1 brain receptors. Specifically, most of the studies relate to the hippocampus and nucleus accumbens. Moreover, the neurotransmitter with the fewest number of related studies is acetylcholine (excepting in the hippocampus), whereas there is a large number that evaluates GABA, glutamate and dopamine. Finally, we propose a possible interpretation of the role of the endocannabinoid system in the phenomenon of addiction.
Collapse
Affiliation(s)
- José Antonio López-Moreno
- Department of Psychobiology, Faculty of Psychology, Campus de Somosaguas, Complutense University of Madrid, Spain.
| | | | | | | |
Collapse
|
25
|
Arias Horcajadas F. Cannabinoids in eating disorders and obesity. Mol Neurobiol 2007; 36:113-28. [PMID: 17952656 DOI: 10.1007/s12035-007-0018-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 03/28/2007] [Indexed: 10/23/2022]
Abstract
Cannabinoid system is a crucial mechanism in regulating food intake and energy metabolism. It is involved in central and peripheral mechanisms regulating such behavior, interacting with many other signaling systems with a role in metabolic regulation. Cannabinoid agonists promote food intake, and soon a cannabinoid antagonist, rimonabant, will be marketed for the treatment of obesity. It not only causes weight loss, but also alleviates metabolic syndrome. We present a review of current knowledge on this subject, along with data from our own research: genetic studies on this system in eating disorders and obesity and studies locating cannabinoid receptors in areas related to food intake. Such studies suggest cannabinoid hyperactivity in obesity, and this excessive activity may have prognostic implications.
Collapse
|
26
|
Thuijl HV, Kola B, Korbonits M. Appetite and Metabolic Effects of Ghrelin and Cannabinoids: Involvement of AMP-Activated Protein Kinase. GHRELIN 2007; 77:121-48. [DOI: 10.1016/s0083-6729(06)77006-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
de Lago E, Ortega-Gutiérrez S, Ramos JA, López Rodríguez ML, Fernández-Ruiz J. Neurochemical effects of the endocannabinoid uptake inhibitor UCM707 in various rat brain regions. Life Sci 2006; 80:979-88. [PMID: 17173937 DOI: 10.1016/j.lfs.2006.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Revised: 10/17/2006] [Accepted: 11/19/2006] [Indexed: 11/26/2022]
Abstract
To date, UCM707, (5Z,8Z,11Z,14Z)-N-(3-furylmethyl)eicosa-5,8,11,14-tetraenamide, has the highest potency and selectivity in vitro and in vivo as inhibitor of the endocannabinoid uptake. Its biochemical, pharmacological and therapeutic properties have been intensely studied recently, but the information on its capability to modify neurotransmitter activity, which obviously underlies the above properties, is still limited. In the present study, we conducted a time-course experiment in rats aimed at examining the neurochemical effects of UCM707 in several brain regions following a subchronic administration (5 injections during 2.5 days) of this inhibitor in a dose of 5 mg/kg weight. In the hypothalamus, the administration of UCM707 did not modify GABA contents but reduced norepinephrine levels at 5 h after administration, followed by an increase at 12 h. Similar trends were observed for dopamine, whereas serotonin content remained elevated at 1 and, in particular, 5 and 12 h after administration. In the case of the basal ganglia, UCM707 reduced GABA content in the substantia nigra but only at longer (5 or 12 h) times after administration. There were no changes in serotonin content, but a marked reduction in its metabolite 5HIAA was recorded in the substantia nigra. The same pattern was found for dopamine, contents of which were not altered by UCM707 in the caudate-putamen, but its major metabolite DOPAC exhibited a marked decrease at 5 h. In the cerebellum, UCM707 reduced GABA, serotonin and norepinephrine content, but only the reduction found for norepinephrine at 5 h reached statistical significance. The administration of UCM707 did not modify the contents of these neurotransmitters in the hippocampus and the frontal cortex. Lastly, in the case of limbic structures, the administration of UCM707 markedly reduced dopamine content in the nucleus accumbens at 5 h, whereas GABA content remained unchanged in this structure and also in the ventral-tegmental area and the amygdala. By contrast, norepinephrine and serotonin content increased at 5 h in the nucleus accumbens, but not in the other two limbic structures. In summary, UCM707 administered subchronically modified the contents of serotonin, GABA, dopamine and/or norepinephrine with a pattern strongly different in each brain region. So, changes in GABA transmission (decrease) were restricted to the substantia nigra, but did not appear in other regions, whereas dopamine transmission was also altered in the caudate-putamen and the nucleus accumbens. By contrast, norepinephrine and serotonin were altered by UCM707 in the hypothalamus, cerebellum (only norepinephrine), and nucleus accumbens, exhibiting biphasic effects in some cases.
Collapse
Affiliation(s)
- Eva de Lago
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
28
|
Wiley JL, Burston JJ, Leggett DC, Alekseeva OO, Razdan RK, Mahadevan A, Martin BR. CB1 cannabinoid receptor-mediated modulation of food intake in mice. Br J Pharmacol 2006; 145:293-300. [PMID: 15778743 PMCID: PMC1576140 DOI: 10.1038/sj.bjp.0706157] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1 Marijuana's appetite-increasing effects have long been known. Recent research suggests that the CB(1) cannabinoid receptor antagonist SR141716A may suppress appetite. This study represents a further, systematic investigation of the role of CB(1) cannabinoid receptors in the pharmacological effects of cannabinoids on food intake. 2 Mice were food-restricted for 24 h and then allowed access to their regular rodent chow for 1 h. Whereas the CB(1) antagonist SR141716A dose-dependently decreased food consumption at doses that did not affect motor activity, Delta(9)-tetrahydrocannabinol (Delta(9)-THC) increased food consumption at doses that had no effect on motor activity. O-3259 and O-3257, structural analogs of SR141716A, produced effects similar to those of the parent compound. 3 Amphetamine (a known anorectic) and diazepam (a benzodiazepine and CNS depressant) decreased food consumption, but only at doses that also increased or decreased motor activity, respectively. The CB(2) cannabinoid receptor antagonist SR144528 and the nonpsychoactive cannabinoid cannabidiol did not affect food intake nor activity. 4 SR141716A decreased feeding in wild-type mice, but lacked pharmacological activity in CB(1) knockout mice; however, basal food intake was lower in CB(1) knockout mice. Amphetamine decreased feeding in both mouse genotypes. 5 These results suggest that SR141716A may affect the actions of endogenous cannabinoids in regulating appetite or that it may have effects of its own aside from antagonism of cannabinoid effects (e.g., decreased feeding behavior and locomotor stimulation). In either case, these results strongly suggest that CB(1) receptors may play a role in regulation of feeding behavior.
Collapse
MESH Headings
- Animals
- Dose-Response Relationship, Drug
- Dronabinol/chemistry
- Dronabinol/pharmacology
- Eating/drug effects
- Eating/physiology
- Female
- Male
- Mice
- Mice, Inbred ICR
- Mice, Knockout
- Piperidines/chemistry
- Piperidines/pharmacology
- Pyrazoles/chemistry
- Pyrazoles/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/physiology
- Rimonabant
Collapse
Affiliation(s)
- Jenny L Wiley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA 23298-0613, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The discovery of cannabinoid receptors, together with the development of selective cannabinoid receptor antagonists, has encouraged a resurgence of cannabinoid pharmacology. With the identification of endogenous agonists, such as anandamide, scientists have sought to uncover the biological role of endocannabinoid systems; initially guided by the long-established actions of cannabis and exogenous cannabinoids such as delta9-tetrahydrocannabinol (THC). In particular, considerable research has examined endocannabinoid involvement in appetite, eating behaviour and body weight regulation. It is now confirmed that endocannabinoids, acting at brain CB1 cannabinoid receptors, stimulate appetite and ingestive behaviours, partly through interactions with more established orexigenic and anorexigenic signals. Key structures such as the nucleus accumbens and hypothalamic nuclei are sensitive sites for the hyperphagic actions of these substances, and endocannabinoid activity in these regions varies in relation to nutritional status and feeding expression. Behavioural studies indicate that endocannabinoids increase eating motivation by enhancing the incentive salience and hedonic evaluation of ingesta. Moreover, there is strong evidence of an endocannabinoid role in energy metabolism and fuel storage. Recent developments point to potential clinical benefits of cannabinoid receptor antagonists in the management of obesity, and of agonists in the treatment of other disorders of eating and body weight regulation.
Collapse
Affiliation(s)
- T C Kirkham
- School of Psychology, University of Liverpool, Liverpool, England.
| |
Collapse
|
30
|
Järbe TUC, DiPatrizio NV. Delta9-THC induced hyperphagia and tolerance assessment: interactions between the CB1 receptor agonist delta9-THC and the CB1 receptor antagonist SR-141716 (rimonabant) in rats. Behav Pharmacol 2006; 16:373-80. [PMID: 16148441 DOI: 10.1097/00008877-200509000-00009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study examined effects of the CB1 receptor antagonist/inverse agonist SR-141716 and the CB1 receptor agonist delta9-tetrahydrocannabinol (delta9-THC) on feeding behavior in male Sprague-Dawley rats. Rats were housed individually with free access to regular pelletized laboratory chow [after a 2 weeks handling phase, animals had access to regular chow for 21 h (Study 1) or 22 h (Study 2); high-fat powder food for 3 h in Study 1 and 2 h in Study 2, respectively], and free access to water. Animals were maintained on a reversed 12-h light/dark cycle (dark beginning at noon). Rats were habituated to this type of feeding and light/dark schedule for 3 weeks until a stable baseline for food intake was achieved. In Study 1, animals were examined after administration of delta9-THC alone (dose range 0.1-1.8 mg/kg), SR-141716 alone (dose range 0.03-0.3 mg/kg), and the two drugs combined; injections were given i.p. at the beginning of the second hour after presenting the high-fat diet and drugs were given twice weekly. There was a dose-related increase in high-fat diet intake, peaking at 0.56-1 mg/kg delta9-THC. SR-141716 alone suppressed the high-fat diet intake below control levels. A combination of 0.3 mg/kg SR-141716 and 0.56 mg/kg delta9-THC counteracted the effects on consumption of either drug alone. In Study 2, experimental rats were treated initially with 0.56 mg/kg delta9-THC for six consecutive days; controls received vehicle. Attenuation of the hyperphagia (high-fat diet) was evident after the second injection. Increasing doses of delta9-THC (1 and 1.8 mg/kg, for two and three consecutive days, respectively) did not reinstate the initial hyperphagia. In conclusion, low-to-moderate doses of delta9-THC produced hyperphagia (to a high-fat food source), which was antagonized by SR-141716. SR-141716 singly suppressed intake of the high-fat diet. Delta9-THC-induced hyperphagia dissipated rapidly upon chronic treatment; however, it is unclear whether this reflects pharmacological tolerance or the emergence of a conditioned taste aversion in Study 2.
Collapse
Affiliation(s)
- T U C Järbe
- Temple University, Department of Psychology, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
31
|
|
32
|
Cooper SJ. Endocannabinoids and food consumption: comparisons with benzodiazepine and opioid palatability-dependent appetite. Eur J Pharmacol 2005; 500:37-49. [PMID: 15464019 DOI: 10.1016/j.ejphar.2004.07.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 01/22/2023]
Abstract
The endocannabinoid system consists of several endogenous lipids, including anandamide and 2-arachidonoyl-glycerol (2-AG), and constitute a retrograde signalling system, which modulates neurotransmitter release and synaptic plasticity. Specific brain-type cannabinoid receptors (CB(1)) are widely distributed in the central nervous system, and are localized presynaptically. Mounting evidence, reviewed here, indicates that cannabinoids can act to increase food consumption, and cannabinoid CB(1) receptor antagonists/inverse agonists reduce food intake and suppress operant responding for food rewards. Hence, endocannabinoids provide the first example of a retrograde signalling system, which is strongly implicated in the control of food intake. Benzodiazepine and opioid palatability-dependent appetite are well-established processes supported by several sources of convergent evidence; they provide pharmacological benchmarks against which to evaluate the endocannabinoids. To date, evidence that endocannabinoids specifically modulate palatability as an affective evaluative process is insufficient and not compelling. Endocannabinoids may have important clinical utility in the treatment of human obesity and forms of eating disorders.
Collapse
Affiliation(s)
- Steven J Cooper
- Kissileff Laboratory for the Study of Human Ingestive Behaviour, School of Psychology, University of Liverpool, Liverpool L69 7ZA, UK.
| |
Collapse
|
33
|
Avraham Y, Menachem AB, Okun A, Zlotarav O, Abel N, Mechoulam R, Berry EM. Effects of the endocannabinoid noladin ether on body weight, food consumption, locomotor activity, and cognitive index in mice. Brain Res Bull 2005; 65:117-23. [PMID: 15763177 DOI: 10.1016/j.brainresbull.2004.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 11/30/2004] [Accepted: 12/08/2004] [Indexed: 10/25/2022]
Abstract
We have investigated the effect of 2-arachidonylglyceryl-ether (Noladin) on food consumption, weight, activity, and cognitive function in mice during diet restriction for 17 days and subsequent ad libitum feeding for 32 days. Female Sabra mice were given food for 2.5 h/day (equal to 60% diet restriction), received Noladin (0.001, 0.01, 0.1 mg/(kg day) intraperitonially (i.p.)) with or without the CB1 antagonist SR141716A (1 mg/kg i.p.) during days 3-17. Noladin (0.001 mg/kg) significantly increased food consumption without a change in body weight, probably due to increased activity and there was no change in cognitive function. A higher dose (0.1 mg/kg) did not affect food consumption, but increased activity and slightly decreased weight 32 days after termination of Noladin administration; however, cognitive deterioration was observed. At all doses tested, Noladin did not affect weight during the diet-restriction period, whereas the CB1 antagonist (with or without Noladin) caused a very significant decline in weight in this phase. Weight catch-up was observed 1 month after administration of Noladin was discontinued. Weight at day 32 after the termination of Noladin (0.1 mg/(kg day)) treatment was 5% less than control. Female C57BL/6 mice (same protocol, with 0.001 mg/(kg day) Noladin) gave similar results to 0.1 mg/kg in Sabra mice as regards weight. CB1 antagonist treatment caused very significant decline in both weight and food consumption; cognition and activity were unchanged. These results indicate that Noladin has a significant dose-dependent effect on food consumption, cognition and weight maintenance after weight loss. Low doses of Noladin may possibly allow an increase in food intake without a gain in weight after dieting. Thus, Noladin could be of potential clinical benefit in treating disorders of body weight. Noladin seems to signal food consumption and weight through CB1 receptors based on effects observed with the CB1 antagonist, while the cognition and activity are probably mediated by non-cannabinoid receptors.
Collapse
Affiliation(s)
- Yosefa Avraham
- Department of Human Nutrition and Metabolism and Braun School of Public Health, Hebrew University Hadassah Medical School, Ein Kerem Campus, P.O. Box 12272, Jerusalem 91120, Israel.
| | | | | | | | | | | | | |
Collapse
|