1
|
Puhlmann LM, Vrtička P, Linz R, Valk SL, Papassotiriou I, Chrousos GP, Engert V, Singer T. Serum BDNF Increase After 9-Month Contemplative Mental Training Is Associated With Decreased Cortisol Secretion and Increased Dentate Gyrus Volume: Evidence From a Randomized Clinical Trial. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100414. [PMID: 39896238 PMCID: PMC11786774 DOI: 10.1016/j.bpsgos.2024.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/06/2024] [Accepted: 11/04/2024] [Indexed: 02/04/2025] Open
Abstract
Background In this study, we investigated whether mindfulness- and meditation-based mental training that improves stress regulation can upregulate BDNF (brain-derived neurotrophic factor), an important promoter of hippocampal neuroplasticity, and examined cortisol reduction as a mediating pathway. Methods In a randomized clinical trial, 332 healthy adults were randomly assigned to one of the 3 training cohorts or a passive control cohort. Training participants completed up to three 3-month-long modules targeting attention-based mindfulness, socio-affective skills, or socio-cognitive skills. We examined change in serum BDNF levels after each 3-month training interval; evaluated whether training effects were linked to reduced cortisol release in the long-term, diurnally, and when acutely stress-induced; and explored associations with hippocampal volume changes. Results In the combined training cohorts, BDNF increased significantly and cumulatively after 3-, 6-, and 9-month training relative to the pretraining baseline (3 month: t 516 = 3.57 [estimated increase: 1353 pg/mL], 6 month: t 516 = 3.45 [1557 pg/mL], 9 month: t 516 = 3.45 [2276 pg/mL]; all ps < .001). After 9 months, training cohort BDNF was not higher than control cohort BDNF, which displayed unexplained variance. However, moderated mediation analysis showed that only training effects, and not control cohort BDNF change, were partially mediated by simultaneously reduced long-term cortisol release (3-month averages) measured in hair (15.1% mediation, p = .021). Individually greater BDNF increase after training correlated with more reduced long-term and stress-induced cortisol release. Moreover, greater BDNF increase after 9 months of training correlated with dentate gyrus volume increase (t 108 = 2.09, p = .039). Conclusions Longitudinal contemplative training may promote a neurobiological pathway from stress reduction to increased BDNF levels to enhanced hippocampal volume. However, single serum BDNF measurements can be unreliable for assessing long-term neurotrophic effects in healthy adults. Future studies should investigate nonspecific BDNF measurement effects before considering application in preventive health care.
Collapse
Affiliation(s)
- Lara M.C. Puhlmann
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Pascal Vrtička
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, United Kingdom
| | - Roman Linz
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sofie L. Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, Aghia Sophia Children’s Hospital, Athens, Greece
| | - George P. Chrousos
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Aghia Sophia Children’s Hospital, Athens, Greece
| | - Veronika Engert
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute for Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
- German Center for Mental Health, partner site Halle-Jena-Magdeburg, Jena, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying Mental Health, Halle-Jena-Magdeburg, Jena, Germany
| | - Tania Singer
- Social Neuroscience Laboratory, Max Planck Society, Berlin, Germany
| |
Collapse
|
2
|
Goodman EJ, Biltz RG, Packer JM, DiSabato DJ, Swanson SP, Oliver B, Quan N, Sheridan JF, Godbout JP. Enhanced fear memory after social defeat in mice is dependent on interleukin-1 receptor signaling in glutamatergic neurons. Mol Psychiatry 2024; 29:2321-2334. [PMID: 38459193 PMCID: PMC11412902 DOI: 10.1038/s41380-024-02456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/10/2024]
Abstract
Chronic stress is associated with increased anxiety, cognitive deficits, and post-traumatic stress disorder. Repeated social defeat (RSD) in mice causes long-term stress-sensitization associated with increased microglia activation, monocyte accumulation, and enhanced interleukin (IL)-1 signaling in endothelia and neurons. With stress-sensitization, mice have amplified neuronal, immune, and behavioral responses to acute stress 24 days later. This is clinically relevant as it shares key aspects with post-traumatic stress disorder. The mechanisms underlying stress-sensitization are unclear, but enhanced fear memory may be critical. The purpose of this study was to determine the influence of microglia and IL-1R1 signaling in neurons in the development of sensitization and increased fear memory after RSD. Here, RSD accelerated fear acquisition, delayed fear extinction, and increased cued-based freezing at 0.5 day. The enhancement in contextual fear memory after RSD persisted 24 days later. Next, microglia were depleted with a CSF1R antagonist prior to RSD and several parameters were assessed. Microglia depletion blocked monocyte recruitment to the brain. Nonetheless, neuronal reactivity (pCREB) and IL-1β RNA expression in the hippocampus and enhanced fear memory after RSD were microglial-independent. Because IL-1β RNA was prominent in the hippocampus after RSD even with microglia depletion, IL-1R1 mediated signaling in glutamatergic neurons was assessed using neuronal Vglut2+/IL-1R1-/- mice. RSD-induced neuronal reactivity (pCREB) in the hippocampus and enhancement in fear memory were dependent on neuronal IL-1R1 signaling. Furthermore, single-nuclei RNA sequencing (snRNAseq) showed that RSD influenced transcription in specific hippocampal neurons (DG neurons, CA2/3, CA1 neurons) associated with glutamate signaling, inflammation and synaptic plasticity, which were neuronal IL-1R1-dependent. Furthermore, snRNAseq data provided evidence that RSD increased CREB, BDNF, and calcium signaling in DG neurons in an IL-1R1-dependent manner. Collectively, increased IL-1R1-mediated signaling (monocytes/microglia independent) in glutamatergic neurons after RSD enhanced neuronal reactivity and fear memory.
Collapse
Affiliation(s)
- Ethan J Goodman
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Rebecca G Biltz
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jonathan M Packer
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Damon J DiSabato
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Samuel P Swanson
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Braeden Oliver
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Ning Quan
- Department of Biomedical Science, Brain Institute, Florida Atlantic University, Boca Raton, FL, USA
| | - John F Sheridan
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| | - Jonathan P Godbout
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Harada H, Mori M, Murata Y, Kohno Y, Terada K, Ohe K, Enjoji M. Divergent effects of chronic continuous and intermittent social defeat stress on emotional behaviors: Impact on phosphorylated CREB and BDNF protein levels in the rat hippocampus. Neurosci Lett 2024; 835:137851. [PMID: 38838971 DOI: 10.1016/j.neulet.2024.137851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Chronic psychosocial stress stands as a significant heterogeneous risk factor for psychiatric disorders. The brain's physiological response to such stress varies based on the frequency and intensity of stress episodes. However, whether stress episodes divergently could affect hippocampal cyclic AMP response element-binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling remains unclear, a key regulator of psychiatric symptoms. We aimed to assess how two distinct patterns of social defeat stress exposure impact anxiety- and depression-like behaviors, fear, and hippocampal CREB-BDNF signaling in adult male rats. To explore this, adult male Sprague-Dawley rats were subjected to psychosocial stress using a Resident/Intruder paradigm for ten consecutive days (continuous social defeat stress: [CS]) or ten social defeat stress over the course of 21 days (intermittent social defeat stress [IS]). Behavioral tests (including novelty-suppressed feeding test, forced swimming test, and contextually conditioned fear) were conducted. Protein expression levels of phosphorylated CREB and BDNF in the dorsal and ventral hippocampi were examined. CS led to heightened anxiety-like behavior, fear, and increased levels of phosphorylated CREB in both the dorsal and ventral hippocampi. Conversely, IS resulted in increased anxiety-like behavior and behavioral despair alongside decreased levels of phosphorylated CREB and BDNF, particularly in the dorsal hippocampus. These findings indicate that chronic psychosocial stress divergently affects hippocampal CREB-BDNF signaling and emotional regulation depending on the stress episode. Such insights could enhance our understanding of the molecular basis of the heterogeneity of psychiatric disorders and facilitate the development of innovative treatment approaches to patients with psychiatric disorders.
Collapse
Affiliation(s)
- Hiroyoshi Harada
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yuri Kohno
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazuki Terada
- Department of Human Physiology and Pathology, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
4
|
Bommaraju S, Dhokne MD, Arun EV, Srinivasan K, Sharma SS, Datusalia AK. An insight into crosstalk among multiple signalling pathways contributing to the pathophysiology of PTSD and depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110943. [PMID: 38228244 DOI: 10.1016/j.pnpbp.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Post-traumatic stress disorder (PTSD) and depressive disorders represent two significant mental health challenges with substantial global prevalence. These are debilitating conditions characterized by persistent, often comorbid, symptoms that severely impact an individual's quality of life. Both PTSD and depressive disorders are often precipitated by exposure to traumatic events or chronic stress. The profound impact of PTSD and depressive disorders on individuals and society necessitates a comprehensive exploration of their shared and distinct pathophysiological features. Although the activation of the stress system is essential for maintaining homeostasis, the ability to recover from it after diminishing the threat stimulus is also equally important. However, little is known about the main reasons for individuals' differential susceptibility to external stressful stimuli. The solution to this question can be found by delving into the interplay of stress with the cognitive and emotional processing of traumatic incidents at the molecular level. Evidence suggests that dysregulation in these signalling cascades may contribute to the persistence and severity of PTSD and depressive symptoms. The treatment strategies available for this disorder are antidepressants, which have shown good efficiency in normalizing symptom severity; however, their efficacy is limited in most individuals. This calls for the exploration and development of innovative medications to address the treatment of PTSD. This review delves into the intricate crosstalk among multiple signalling pathways implicated in the development and manifestation of these mental health conditions. By unravelling the complexities of crosstalk among multiple signalling pathways, this review aims to contribute to the broader knowledge base, providing insights that could inform the development of targeted interventions for individuals grappling with the challenges of PTSD and depressive disorders.
Collapse
Affiliation(s)
- Sumadhura Bommaraju
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - Mrunali D Dhokne
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - E V Arun
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - Krishnamoorthy Srinivasan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India; Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Uttar Pradesh (UP) 226002, India.
| |
Collapse
|
5
|
Porporatti AL, Schroder ÂGD, Lebel A, Moreau N, Misery L, Alajbeg I, Braud A, Boucher Y. Is burning mouth syndrome associated with stress? A meta-analysis. J Oral Rehabil 2023; 50:1279-1315. [PMID: 37332081 DOI: 10.1111/joor.13536] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/04/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Some studies have shown burning mouth syndrome (BMS) as comorbid psychosocial and psychiatric disorders, and as well, pointed at stress as a major risk factor. OBJECTIVE The aim of this meta-analysis was to answer the following question: 'Is there an association between BMS and stress, compared to healthy controls?' METHODS Two reviewers searched for the effect of stress in BMS and published on five main databases and three from the grey literature. Various questionnaires and biomarkers were analysed. Of the 2489 selected articles, 30 met the inclusion criteria. Studies englobed questionnaires, such as Perceived Stress Questionnaire, Lipp Stress Symptoms Inventory, Holmes-Rahe scale, Depression, Anxiety, and Stress Scale (DASS-21), Recent Experience Test; and various biomarkers, such as cortisol, opiorphin, IgA, α-amylase and interleukins. RESULTS In all studies with questionnaires, stress was significantly increased in the BMS group vs. control. Patients with BMS presented 25.73% higher cortisol levels, 28.17% higher IgA levels and 40.62% higher α-amylase levels than controls. Meta-analysis found that BMS subjects presented 3.01 nmoL/L [0.53; 5.50] higher cortisol levels, 84.35 kU/L [15.00; 153.71] higher α-amylase levels, 29.25 mg/mL [9.86; 48.64] higher IgA levels and 258.59 pg/mL [59.24; 457.94] higher IL-8 levels than control. No differences were found for opiorphin concentration in ng/mL [-0.96; 2.53]. For interleukins, no differences were founded for IL-1 β, IL-2, IL-4, IL-6, IL-8, IL-10 and TNF-α. CONCLUSION Based on the available evidence, this meta-analysis suggests more stress factors in questionnaire-based studies, and higher levels of cortisol, α-amylase, IgA and IL-8 biomarkers in BMS subjects than controls.
Collapse
Affiliation(s)
- André Luís Porporatti
- Laboratoire de Neurobiologie Oro-Faciale (EA 7543), Université Paris Cité, France and GHPS Assistance Publique Hôpitaux de Paris, Paris, France
| | | | - Ashley Lebel
- Laboratoire de Neurobiologie OroFaciale, Université Paris Cité, France and GHPS Assistance Publique Hôpitaux de Paris, Paris, France
| | - Nathan Moreau
- Laboratoire de Neurobiologie Oro-Faciale (EA 7543), Université Paris Cité and Hôpital Bretonneau (AP-HP), Paris, France
| | | | | | - Adeline Braud
- Laboratoire de Neurobiologie Oro-Faciale (EA 7543), Université Paris Cité, France and GHPS Assistance Publique Hôpitaux de Paris, Paris, France
| | - Yves Boucher
- Laboratoire de Neurobiologie Oro-Faciale (EA 7543), Université Paris Cité, France and GHPS Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
6
|
Wei MD, Huang YY, Zeng Y, Lan YX, Lu K, Wang Y, Chen WY. Homocysteine Modulates Social Isolation-Induced Depressive-Like Behaviors Through BDNF in Aged Mice. Mol Neurobiol 2023; 60:4924-4934. [PMID: 37198386 PMCID: PMC10191402 DOI: 10.1007/s12035-023-03377-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023]
Abstract
Social isolation is an unpleasant experience associated with an increased risk of mental disorders. Exploring whether these experiences affect behaviors in aged people is particularly important, as the elderly is very likely to suffer from periods of social isolation during their late-life. In this study, we analyzed the depressive-like behaviors, plasma concentrations of homocysteine (Hcy), and brain-derived neurotropic factor (BDNF) levels in aged mice undergoing social isolation. Results showed that depressive-like behavioral performance and decreased BDNF level were correlated with increased Hcy levels that were detected in 2-month isolated mice. Elevated Hcy induced by high methionine diet mimicked the depressive-like behaviors and BDNF downregulation in the same manner as social isolation, while administration of vitamin B complex supplements to reduce Hcy alleviated the depressive-like behaviors and BDNF reduction in socially isolated mice. Altogether, our results indicated that Hcy played a critical role in social isolation-induced depressive-like behaviors and BDNF reduction, suggesting the possibility of Hcy as a potential therapeutic target and vitamin B intake as a potential value in the prevention of stress-induced depression.
Collapse
Affiliation(s)
- Mei-Dan Wei
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Ya-Yan Huang
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Ying Zeng
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Yan-Xian Lan
- Department of Pharmacy, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China
| | - Kun Lu
- Department of Pediatric Orthopaedic, Zhengzhou Orthopaedics Hospital, Zhengzhou, 450052, Henan, China
| | - Yan Wang
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Wen-Ying Chen
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| |
Collapse
|
7
|
Premoli M, Fyke W, Bellocchio L, Lemaire V, Wolley-Roberts M, Bontempi B, Pietropaolo S. Early Administration of the Phytocannabinoid Cannabidivarin Prevents the Neurobehavioral Abnormalities Associated with the Fmr1-KO Mouse Model of Fragile X Syndrome. Cells 2023; 12:1927. [PMID: 37566006 PMCID: PMC10416983 DOI: 10.3390/cells12151927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Phytocannabinoids, including the non-addictive cannabis component cannabidivarin (CBDV), have been reported to hold therapeutic potential in several neurodevelopmental disorders (NDDs). Nonetheless, the therapeutic value of phytocannabinoids for treating Fragile X syndrome (FXS), a major NDD, remains unexplored. Here, we characterized the neurobehavioral effects of CBDV at doses of 20 or 100 mg/kg in the Fmr1-knockout (Fmr1-KO) mouse model of FXS using two temporally different intraperitoneal regimens: subchronic 10-day delivery during adulthood (Study 1: rescue treatment) or chronic 5-week delivery at adolescence (Study 2: preventive treatment). Behavioral tests assessing FXS-like abnormalities included anxiety, locomotor, cognitive, social and sensory alterations. Expression of inflammatory and plasticity markers was investigated in the hippocampus and prefrontal cortex. When administered during adulthood (Study 1), the effects of CBDV were marginal, rescuing at the lower dose only the acoustic hyper-responsiveness of Fmr1-KO mice and at both doses their altered hippocampal expression of neurotrophins. When administered during adolescence (Study 2), CBDV at both doses prevented the cognitive, social and acoustic alterations of adult Fmr1-KO mice and modified the expression of several inflammatory brain markers in both wild-type littermates and mutants. These findings warrant the therapeutic potential of CBDV for preventing neurobehavioral alterations associated with FXS, highlighting the relevance of its early administration.
Collapse
Affiliation(s)
- Marika Premoli
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - William Fyke
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
- Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Group Endocannabinoids and Neuroadaptation, University of Bordeaux, 33077 Bordeaux, France
| | - Valerie Lemaire
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
| | | | - Bruno Bontempi
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
| | | |
Collapse
|
8
|
Nelson ML, Pfeifer JA, Hickey JP, Collins AE, Kalisch BE. Exploring Rosiglitazone's Potential to Treat Alzheimer's Disease through the Modulation of Brain-Derived Neurotrophic Factor. BIOLOGY 2023; 12:1042. [PMID: 37508471 PMCID: PMC10376118 DOI: 10.3390/biology12071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/24/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that debilitates over 55 million individuals worldwide. Currently, treatments manage and alleviate its symptoms; however, there is still a need to find a therapy that prevents or halts disease progression. Since AD has been labeled as "type 3 diabetes" due to its similarity in pathological hallmarks, molecular pathways, and comorbidity with type 2 diabetes mellitus (T2DM), there is growing interest in using anti-diabetic drugs for its treatment. Rosiglitazone (RSG) is a peroxisome proliferator-activated receptor-gamma agonist that reduces hyperglycemia and hyperinsulinemia and improves insulin signaling. In cellular and rodent models of T2DM-associated cognitive decline and AD, RSG has been reported to improve cognitive impairment and reverse AD-like pathology; however, results from human clinical trials remain consistently unsuccessful. RSG has also been reported to modulate the expression of brain-derived neurotrophic factor (BDNF), a protein that regulates neuroplasticity and energy homeostasis and is implicated in both AD and T2DM. The present review investigates RSG's limitations and potential therapeutic benefits in pre-clinical models of AD through its modulation of BDNF expression.
Collapse
Affiliation(s)
- Mackayla L Nelson
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Julia A Pfeifer
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jordan P Hickey
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andrila E Collins
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bettina E Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
9
|
Musacchio S, Kallenbach MD, Huber DL, Raff H, Johnson BD, Leddy J, McCrea MA, Meier TB, Nelson LD. Salivary Cortisol Dynamics After Mild Traumatic Brain Injury. J Head Trauma Rehabil 2023; 38:E318-E327. [PMID: 36696236 PMCID: PMC10329977 DOI: 10.1097/htr.0000000000000855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To assess mild traumatic brain injury (mTBI)-related alterations in baseline (resting) salivary cortisol and cortisol reactivity to cognitive and exercise stressors, which are frequently encountered during mTBI rehabilitation and recovery. SETTING Persons with mTBI were recruited from a level 1 trauma center emergency department. Uninjured controls (UCs) were recruited from the community. PARTICIPANTS Participants were 37 individuals with mTBI and 24 UCs. All patients with mTBI were enrolled at 7 ± 3 days post-injury, met the American Congress of Rehabilitation Medicine definition of mTBI, and had no acute intracranial findings on clinical neuroimaging (if performed). DESIGN A prospective cohort study design was used. All participants provided saliva samples 10 times during each of 2 visits spaced 3 weeks apart (1 week and 1 month post-injury for the mTBI group). Each visit included baseline saliva sampling and sampling to evaluate reactivity to a cognitive stressor (Paced Auditory Serial Addition Test) and physical stressor (Buffalo Concussion Treadmill Test [BCTT]). MAIN OUTCOME MEASURE Natural log-transformed salivary cortisol was measured by enzyme immunoassay. Cortisol was predicted using a linear mixed-effects model by group (mTBI and UC), visit (1 week and 1 month), and saliva sample. RESULTS Mean salivary cortisol was higher in the mTBI group (1.67 nmol/L [95% CI 1.42-1.72]) than in controls (1.30 nmol/L [1.12-1.47]), without an mTBI × time interaction. At 1 week, the mTBI group had greater cortisol reactivity in response to the BCTT. CONCLUSIONS Higher cortisol in individuals with mTBI at 1 week and 1 month post-injury extends previous findings into the subacute recovery period. Furthermore, the mTBI group demonstrated a greater cortisol response to mild-to-moderate aerobic exercise (BCTT) at 1 week post-injury. Given the increasing role of exercise in mTBI rehabilitation, further research is warranted to replicate these findings and identify the clinical implications, if any, of enhanced hypothalamic-pituitary-adrenal axis responses to exercise in civilians with recent mTBI.
Collapse
Affiliation(s)
- Sophia Musacchio
- Departments of Neurosurgery (Ms Musacchio, Mx Kallenbach, Mr Huber, and Drs McCrea, Meier, and Nelson) and Medicine, Surgery, and Physiology (Dr Raff), Medical College of Wisconsin, Milwaukee; Endocrine Research Laboratory, Aurora St Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, Wisconsin (Dr Raff); Department of Kinesiology, Indiana University, Bloomington (Dr Johnson); and UBMD Orthopaedics and Sports Medicine, and SUNY Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York (Dr Leddy)
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Serra MP, Sanna F, Boi M, Trucas M, Fernández-Teruel A, Corda MG, Giorgi O, Quartu M. Effects of Tail Pinch on BDNF and trkB Expression in the Hippocampus of Roman Low- (RLA) and High-Avoidance (RHA) Rats. Int J Mol Sci 2023; 24:ijms24119498. [PMID: 37298449 DOI: 10.3390/ijms24119498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
In this article, we describe the effects of tail pinch (TP), a mild acute stressor, on the levels of brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor B (trkB) proteins in the hippocampus (HC) of the outbred Roman High- (RHA) and Low-Avoidance (RLA) rats, one of the most validated genetic models for the study of fear/anxiety- and stress-related behaviors. Using Western blot (WB) and immunohistochemistry assays, we show for the first time that TP induces distinct changes in the levels of BDNF and trkB proteins in the dorsal (dHC) and ventral (vHC) HC of RHA and RLA rats. The WB assays showed that TP increases BDNF and trkB levels in the dHC of both lines but induces opposite changes in the vHC, decreasing BDNF levels in RHA rats and trkB levels in RLA rats. These results suggest that TP may enhance plastic events in the dHC and hinder them in the vHC. Immunohistochemical assays, carried out in parallel to assess the location of changes revealed by the WB, showed that, in the dHC, TP increases BDNF-like immunoreactivity (LI) in the CA2 sector of the Ammon's horn of both Roman lines and in the CA3 sector of the Ammon's horn of RLA rats while, in the dentate gyrus (DG), TP increases trkB-LI in RHA rats. In contrast, in the vHC, TP elicits only a few changes, represented by decreases of BDNF- and trkB-LI in the CA1 sector of the Ammon's horn of RHA rats. These results support the view that the genotypic/phenotypic features of the experimental subjects influence the effects of an acute stressor, even as mild as TP, on the basal BDNF/trkB signaling, leading to different changes in the dorsal and ventral subdivisions of the HC.
Collapse
Affiliation(s)
- Maria Pina Serra
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Francesco Sanna
- Department of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy
| | - Marianna Boi
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Marcello Trucas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Legal Medicine, Institute of Neuroscience, School of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Maria Giuseppa Corda
- Department of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy
| | - Marina Quartu
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| |
Collapse
|
11
|
Ding Y, Liu C, Zhang Y. Aging-related histone modification changes in brain function. IBRAIN 2023; 9:205-213. [PMID: 37786548 PMCID: PMC10528785 DOI: 10.1002/ibra.12106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 10/04/2023]
Abstract
Aging can be defined as a decline of physiological function that is more difficult to reverse, characterized by the loss of the physiological integrity of tissues, organs, and cells of an organism over time. Normal aging is associated with structural and functional changes in the brain, involving neuronal apoptosis, synaptic structure, neurotransmission, and metabolism alterations, leading to impairment in sleep, cognitive functions, memory, learning, and motor and sensory systems. Histone modification is a significant aging-related epigenetic change that influences synaptic and mitochondrial function and immune and stress responses in the brain. This review discusses the changes in histone modifications that occur during brain aging, specifically methylation and acetylation, and the associated changes in gene transcription and protein expression. We observed that genes related to synaptic and mitochondrial function are downregulated in the aging brain, while genes related to immune response and inflammatory functions are upregulated.
Collapse
Affiliation(s)
- Yanwen Ding
- Department of AnesthesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Chengxi Liu
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
| | - Yi Zhang
- Department of AnesthesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
12
|
Rahman MM, Islam MR, Supti FA, Dhar PS, Shohag S, Ferdous J, Shuvo SK, Akter A, Hossain MS, Sharma R. Exploring the Therapeutic Effect of Neurotrophins and Neuropeptides in Neurodegenerative Diseases: at a Glance. Mol Neurobiol 2023:10.1007/s12035-023-03328-5. [PMID: 37052791 DOI: 10.1007/s12035-023-03328-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophins and neuropeptides are the essential regulators of peripheral nociceptive nerves that help to induce, sensitize, and maintain pain. Neuropeptide has a neuroprotective impact as it increases trophic support, regulates calcium homeostasis, and reduces excitotoxicity and neuroinflammation. In contrast, neurotrophins target neurons afflicted by ischemia, epilepsy, depression, and eating disorders, among other neuropsychiatric conditions. Neurotrophins are reported to inhibit neuronal death. Strategies maintained for "brain-derived neurotrophic factor (BDNF) therapies" are to upregulate BDNF levels using the delivery of protein and genes or compounds that target BDNF production and boosting BDNF signals by expanding with BDNF mimetics. This review discusses the mechanisms of neurotrophins and neuropeptides against acute neural damage as well as highlighting neuropeptides as a potential therapeutic agent against Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), and Machado-Joseph disease (MJD), the signaling pathways affected by neurotrophins and their receptors in both standard and diseased CNS systems, and future perspectives that can lead to the potent application of neurotrophins and neuropeptides in neurodegenerative diseases (NDs).
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
13
|
Antidepressant-like effect of endogenous SO 2 on depression caused by chronic unpredictable mild stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1325-1336. [PMID: 36729188 DOI: 10.1007/s00210-023-02405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/23/2023] [Indexed: 02/03/2023]
Abstract
Sulfur dioxide (SO2) is a toxic gas with harmful effects on various organs. However, recent studies have confirmed the protective effect of SO2 on ischemic heart disease, atherosclerosis, and lung infections. Therefore, the present study was designed to investigate the effect of endogenous SO2 on depression. The chronic unpredictable mild stress (CUMS) model was performed to cause depression. Depression-like behaviors in animals were determined using an open-field test, forced swimming test, and sucrose consumption. Animal spatial learning and memory were also assessed using the Morris water maze. Besides, the oxidative status of the hippocampus and serum corticosterone level were evaluated. A reduction in the tendency to consume sucrose, mobility, and curiosity, as well as learning and memory disorders were observed in CUMS animals. Depressed animals treated with SO2 revealed a significant improvement in behavioral and cognitive functions. SO2 also reduced neuronal damage and lipid peroxidation of the hippocampus and serum corticosterone level in the CUMS group. Various shreds of evidence support a mutual relationship between inflammation and depression; also, growing studies show the role of oxidative stress in the pathogenesis of mood-related disorders such as depression. This study indicated that increased hippocampal malondialdehyde (MDA) and serum corticosterone levels can be due to the existence of oxidative stress and possible activation of inflammatory processes. SO2 donors diminished MDA and corticosterone levels in depressed animals. According to the study results, SO2 may be able to reduce tissue damage and eventually behavioral disorders caused by depression by lowering oxidative stress and inflammation.
Collapse
|
14
|
Larosa A, Wong TP. The hippocampus in stress susceptibility and resilience: Reviewing molecular and functional markers. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110601. [PMID: 35842073 DOI: 10.1016/j.pnpbp.2022.110601] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Understanding the individual variability that comes with the likelihood of developing stress-related psychopathologies is of paramount importance when addressing mechanisms of their neurobiology. This article focuses on the hippocampus as a region that is highly influenced by chronic stress exposure and that has strong ties to the development of related disorders, such as depression and post-traumatic stress disorder. We first outline three commonly used animal models that have been used to separate animals into susceptible and resilient cohorts. Next, we review molecular and functional hippocampal markers of susceptibility and resilience. We propose that the hippocampus plays a crucial role in the differences in the processing and storage of stress-related information in animals with different stress susceptibilities. These hippocampal markers not only help us attain a more comprehensive understanding of the various facets of stress-related pathophysiology, but also could be targeted for the development of new treatments.
Collapse
Affiliation(s)
- Amanda Larosa
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Dept. of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
15
|
Serra MP, Sanna F, Boi M, Poddighe L, Secci L, Trucas M, Fernández-Teruel A, Corda MG, Giorgi O, Quartu M. Acute Stress Induces Different Changes on the Expression of BDNF and trkB in the Mesocorticolimbic System of Two Lines of Rats Differing in Their Response to Stressors. Int J Mol Sci 2022; 23:ijms232314995. [PMID: 36499323 PMCID: PMC9737305 DOI: 10.3390/ijms232314995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The present work was undertaken to investigate the effects of acute forced swimming (FS) on the levels of brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (trkB) proteins in: the ventral tegmental area (VTA); the nucleus accumbens (Acb) shell and core compartments; and the anterior cingulate (ACg), prelimbic (PL) and infralimbic (IL) territories of the prefrontal cortex of genetic models of vulnerability (RLA, Roman low-avoidance rats) and resistance (RHA, Roman high-avoidance rats) to stress-induced depression. We report for the first time that FS induced very rapid and distinct changes in the levels of BDNF and trkB proteins in different areas of the mesocorticolimbic system of RHA and RLA rats. Thus, (1) in the VTA and Acb core, FS elicited a significant increase of both BDNF- and trkB-LI in RHA but not RLA rats, whereas in the Acb shell no significant changes in BDNF- and trkB-LI across the line and treatment were observed; (2) in RLA rats, the basal levels of BDNF-LI in the IL/PL cortex and of trkB-LI in the ACg cortex were markedly lower than those of RHA rats; moreover, BDNF- and trkB-LI in the IL/PL and ACg cortex were increased by FS in RLA rats but decreased in their RHA counterparts. These results provide compelling evidence that the genetic background influences the effects of stress on BDNF/trkB signaling and support the view that the same stressor may impact differently on the expression of BDNF in discrete brain areas.
Collapse
Affiliation(s)
- Maria Pina Serra
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Francesco Sanna
- Department of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Marianna Boi
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Laura Poddighe
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Lorenzo Secci
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Marcello Trucas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Maria Giuseppa Corda
- Department of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Marina Quartu
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
- Correspondence: ; Tel.: +39-070-675-4084
| |
Collapse
|
16
|
Jeoung SW, Park HS, Ryoo ZY, Cho DH, Lee HS, Ryu HY. SUMOylation and Major Depressive Disorder. Int J Mol Sci 2022; 23:8023. [PMID: 35887370 PMCID: PMC9316168 DOI: 10.3390/ijms23148023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Since the discovery of the small ubiquitin-like modifier (SUMO) protein in 1995, SUMOylation has been considered a crucial post-translational modification in diverse cellular functions. In neurons, SUMOylation has various roles ranging from managing synaptic transmitter release to maintaining mitochondrial integrity and determining neuronal health. It has been discovered that neuronal dysfunction is a key factor in the development of major depressive disorder (MDD). PubMed and Google Scholar databases were searched with keywords such as 'SUMO', 'neuronal plasticity', and 'depression' to obtain relevant scientific literature. Here, we provide an overview of recent studies demonstrating the role of SUMOylation in maintaining neuronal function in participants suffering from MDD.
Collapse
Affiliation(s)
- Seok-Won Jeoung
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| | - Hyun-Sun Park
- Department of Biochemistry, Inje University College of Medicine, Busan 50834, Korea;
| | - Zae Young Ryoo
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Dong-Hyung Cho
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Hyun-Shik Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
17
|
Tartt AN, Mariani MB, Hen R, Mann JJ, Boldrini M. Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications. Mol Psychiatry 2022; 27:2689-2699. [PMID: 35354926 PMCID: PMC9167750 DOI: 10.1038/s41380-022-01520-y] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) was previously hypothesized to be a disease of monoamine deficiency in which low levels of monoamines in the synaptic cleft were believed to underlie depressive symptoms. More recently, however, there has been a paradigm shift toward a neuroplasticity hypothesis of depression in which downstream effects of antidepressants, such as increased neurogenesis, contribute to improvements in cognition and mood. This review takes a top-down approach to assess how changes in behavior and hippocampal-dependent circuits may be attributed to abnormalities at the molecular, structural, and synaptic level. We conclude with a discussion of how antidepressant treatments share a common effect in modulating neuroplasticity and consider outstanding questions and future perspectives.
Collapse
Affiliation(s)
| | | | - Rene Hen
- Departments of Psychiatry, Columbia University, New York, NY, USA
- Neuroscience, Columbia University, New York, NY, USA
- Pharmacology, Columbia University, New York, NY, USA
- Integrative Neuroscience, NYS Psychiatric Institute, New York, NY, USA
| | - J John Mann
- Departments of Psychiatry, Columbia University, New York, NY, USA
- Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA
| | - Maura Boldrini
- Departments of Psychiatry, Columbia University, New York, NY, USA.
- Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
18
|
The Impact of Chronic Unpredictable Mild Stress-Induced Depression on Spatial, Recognition and Reference Memory Tasks in Mice: Behavioral and Histological Study. Behav Sci (Basel) 2022; 12:bs12060166. [PMID: 35735376 PMCID: PMC9219659 DOI: 10.3390/bs12060166] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
Depression-induced cognitive impairment has recently been given more attention in research. However, the relationship between depression and different types of memory is still not clear. Chronic unpredictable mild stress (CUMS) is a commonly used animal model of depression in which animals are exposed to chronic unpredictable environmental and psychological stressors, which mimics daily human life stressors. This study investigated the impact of different durations of CUMS on various types of memory (short- and long-term spatial memory and recognition memory) and investigated CUMS’ impact on the ultrastructural level by histological assessment of the hippocampus and prefrontal cortex. Twenty male C57BL/J6 mice (6 weeks old, 21.8 ± 2 g) were randomly divided into two groups (n = 10): control and CUMS (8 weeks). A series of behavioral tasks were conducted twice at weeks 5–6 (early CUMS) and weeks 7–8 (late CUMS). A tail-suspension test (TST), forced swimming test (FST), elevated zero maze (EZM), elevated plus maze (EPM), open field test (OFT), and sucrose-preference test (SPT) were used to assess anxiety and depressive symptoms. The cognitive function was assessed by the novel object recognition test (NORT; for recognition memory), Y-maze (for short-term spatial memory), and Morris water maze (MWM: for long-term spatial memory) with a probe test (for reference memory). Our data showed that 8 weeks of CUMS increased the anxiety level, reported by a significant increase in anxiety index in both EPM and EZM and a significant decrease in central preference in OFT, and depression was reported by a significant increase in immobility in the TST and FST and sucrose preference in the SPT. Investigating the impact of CUMS on various types of memory, we found that reference memory is the first memory to be affected in early CUMS. In late CUMS, all types of memory were impaired, and this was consistent with the abnormal histological features of the memory-related areas in the brain (hippocampus and prefrontal cortex).
Collapse
|
19
|
Tan P, Xue T, Wang Y, Hu Z, Su J, Yang R, Ji J, Ye M, Chen Z, Huang C, Lu X. Hippocampal NR6A1 impairs CREB-BDNF signaling and leads to the development of depression-like behaviors in mice. Neuropharmacology 2022; 209:108990. [PMID: 35183538 DOI: 10.1016/j.neuropharm.2022.108990] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/20/2022]
Abstract
Chronic stress exposure is a risk factor that can induce the development of depression-like behaviors by impairing the hippocampal cyclic adenosine monophosphate-response element binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling, but its underlying mechanisms remain largely unknown. We identified an orphan receptor that can suppress the activity of CREB, nuclear receptor sub-family 6, group A, member 1 (NR6A1), in mouse brain neurons. Given the critical role of the impaired CREB-BDNF signaling in depression, we speculate that the neuronal NR6A1 may mediate the pathogenesis of depression. Results showed that chronic unpredictable stress (CUS) markedly increased the expression levels of hippocampal NR6A1 protein, which reduced hippocampal CREB phosphorylation and BDNF protein expression. Overexpression of hippocampal NR6A1 in stress-naïve mice simulated chronic stress, inducing depression-like behaviors in the tail suspension test, forced swimming test, and sucrose preference test, and impairing the hippocampal CREB-BDNF signaling cascade. Genetic knockdown of hippocampal NR6A1 did not affect mouse behaviors but prevented the CUS-induced depression-like behaviors in mice and impairment in hippocampal CREB-BDNF signaling. Furthermore, genetic knockdown of hippocampal CREB or BDNF abrogated the preventive effect of hippocampal NR6A1 down-regulation on CUS-induced depression-like behaviors in mice. Collectively, these results for the first time identified a nuclear expression of NR6A1 in mouse brain neurons, and showed that the abnormally increased NR6A1 protein in the hippocampus in mice treated with or without chronic stress can impair the CREB-BDNF signaling cascade and lead to the development of depression-like behaviors. Hippocampal NR6A1 could be a novel target for the development of antidepressants.
Collapse
Affiliation(s)
- Pingping Tan
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Ting Xue
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Yue Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhichao Hu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Jianbin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Jiangsu Province, #20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Jianlin Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Minxiu Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
20
|
Joshi A, Akhtar A, Saroj P, Kuhad A, Sah SP. Antidepressant-like effect of sodium orthovanadate in a mouse model of chronic unpredictable mild stress. Eur J Pharmacol 2022; 919:174798. [DOI: 10.1016/j.ejphar.2022.174798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/17/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023]
|
21
|
Choi J, Kwon HJ, Seoh JY, Han PL. Hyperoxygenation Ameliorates Stress-induced Neuronal and Behavioral Deficits. Exp Neurobiol 2021; 30:415-429. [PMID: 34983882 PMCID: PMC8752323 DOI: 10.5607/en21029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
Hyperoxygenation therapy remediates neuronal injury and improves cognitive function in various animal models. In the present study, the optimal conditions for hyperoxygenation treatment of stress-induced maladaptive changes were investigated. Mice exposed to chronic restraint stress (CRST) produce persistent adaptive changes in genomic responses and exhibit depressive-like behaviors. Hyperoxygenation treatment with 100% O2 (HO2) at 2.0 atmospheres absolute (ATA) for 1 h daily for 14 days in CRST mice produces an antidepressive effect similar to that of the antidepressant imipramine. In contrast, HO2 treatment at 2.0 ATA for 1 h daily for shorter duration (3, 5, or 7 days), HO2 treatment at 1.5 ATA for 1 h daily for 14 days, or hyperbaric air treatment at 2.0 ATA (42% O2) for 1 h daily for 14 days is ineffective or less effective, indicating that repeated sufficient hyperoxygenation conditions are required to reverse stress-induced maladaptive changes. HO2 treatment at 2.0 ATA for 14 days restores stress-induced reductions in levels of mitochondrial copy number, stress-induced attenuation of synaptophysin-stained density of axon terminals and MAP-2-staining dendritic processes of pyramidal neurons in the hippocampus, and stress-induced reduced hippocampal neurogenesis. These results suggest that HO2 treatment at 2.0 ATA for 14 days is effective to ameliorate stress-induced neuronal and behavioral deficits.
Collapse
Affiliation(s)
- Juli Choi
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hye-Jin Kwon
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Ju-Young Seoh
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07985, Korea.,Central Research Laboratory, GI Biome, Inc., Seongnam 13201, Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
22
|
Analysis of Antidepressant-like Effects and Action Mechanisms of GSB-106, a Small Molecule, Affecting the TrkB Signaling. Int J Mol Sci 2021; 22:ijms222413381. [PMID: 34948177 PMCID: PMC8704497 DOI: 10.3390/ijms222413381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
Induction of BDNF-TrkB signaling is associated with the action mechanisms of conventional and fast-acting antidepressants. GSB-106, developed as a small dimeric dipeptide mimetic of BDNF, was previously shown to produce antidepressant-like effects in the mouse Porsolt test, tail suspension test, Nomura water wheel test, in the chronic social defeat stress model and in the inflammation-induced model of depression. In the present study, we evaluated the effect of chronic per os administration of GSB-106 to Balb/c mice under unpredictable chronic mild stress (UCMS). It was observed for the first time that long term GSB-106 treatment (1 mg/kg, 26 days) during ongoing UCMS procedure ameliorated the depressive-like behaviors in mice as indicated by the Porsolt test. In addition, chronic per os administration of GSB-106 resulted in an increase in BDNF levels, which were found to be decreased in the prefrontal cortex and hippocampus of mice after UCMS. Furthermore, prolonged GSB-106 treatment was accompanied by an increase in the content of pTrkB706/707 in the prefrontal cortex and by a pronounced increase in the level of pTrkB816 in both studied brain structures of mice subjected to UCMS procedure. In summary, the present data show that chronic GSB-106 treatment produces an antidepressant-like effect in the unpredictable chronic mild stress model, which is likely to be associated with the regulation of the BDNF-TrkB signaling.
Collapse
|
23
|
Tian P, Chen Y, Qian X, Zou R, Zhu H, Zhao J, Zhang H, Wang G, Chen W. Pediococcus acidilactici CCFM6432 mitigates chronic stress-induced anxiety and gut microbial abnormalities. Food Funct 2021; 12:11241-11249. [PMID: 34704999 DOI: 10.1039/d1fo01608c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The discovery of psychobiotics has improved the therapeutic choices available for clinical mental disorders and shows promise for regulating mental health in people by combining the properties of food and medicine. A Pediococcus acidilactici strain CCFM6432 was previously isolated and its mood-regulating effect was investigated in this study. Viable bacteria were given to chronically stressed mice for five weeks, and then the behavioral, neurobiological, and gut microbial changes were determined. CCFM6432 significantly reduced stress-induced anxiety-like behaviors, mitigated hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, and reversed the abnormal expression of hippocampal phosphorylated CREB and the c-Fos protein. In particular, CCFM6432 improved the gut microbial composition by inhibiting the over-proliferated pathogenic bacteria (e.g., Escherichia-shigella) and promoting beneficial bacteria growth (e.g., Bifidobacterium). Lactic acid, rather than bacteriocin, was further confirmed as the key compound that determined the antimicrobial activity of CCFM6432. Collectively, these results first proved the psychobiotic potential of the Pediococcus acidilactici strain. Ingestion of CCFM6432, or fermented food containing it, may facilitate mental health management in daily life, especially during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Renying Zou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Huiyue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
24
|
Berezovskaya AS, Tyganov SA, Nikolaeva SD, Naumova AA, Merkulyeva NS, Shenkman BS, Glazova MV. Dynamic Foot Stimulations During Short-Term Hindlimb Unloading Prevent Dysregulation of the Neurotransmission in the Hippocampus of Rats. Cell Mol Neurobiol 2021; 41:1549-1561. [PMID: 32683580 PMCID: PMC11448613 DOI: 10.1007/s10571-020-00922-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022]
Abstract
Spaceflight and simulated microgravity both affect learning and memory, which are mostly controlled by the hippocampus. However, data about molecular alterations in the hippocampus in real or simulated microgravity conditions are limited. Adult Wistar rats were recruited in the experiments. Here we analyzed whether short-term simulated microgravity caused by 3-day hindlimb unloading (HU) will affect the glutamatergic and GABAergic systems of the hippocampus and how dynamic foot stimulation (DFS) to the plantar surface applied during HU can contribute in the regulation of hippocampus functioning. The results demonstrated a decreased expression of vesicular glutamate transporters 1 and 2 (VGLUT1/2) in the hippocampus after 3 days of HU, while glutamate decarboxylase 67 (GAD67) expression was not affected. HU also significantly induced Akt signaling and transcriptional factor CREB that are supposed to activate the neuroprotective mechanisms. On the other hand, DFS led to normalization of VGLUT1/2 expression and activity of Akt and CREB. Analysis of exocytosis proteins revealed the inhibition of SNAP-25, VAMP-2, and syntaxin 1 expression in DFS group proposing attenuation of excitatory neurotransmission. Thus, we revealed that short-term HU causes dysregulation of glutamatergic system of the hippocampus, but, at the same time, stimulates neuroprotective Akt-dependent mechanism. In addition, most importantly, we demonstrated positive effect of DFS on the hippocampus functioning that probably depends on the regulation of neurotransmitter exocytosis.
Collapse
Affiliation(s)
- Anna S Berezovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia
| | - Sergey A Tyganov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana D Nikolaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia
| | - Natalia S Merkulyeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Boris S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., 194223, St.Petersburg, Russia.
| |
Collapse
|
25
|
Sun Y, Zhang H, Wu Z, Yu X, Yin Y, Qian S, Wang Z, Huang J, Wang W, Liu T, Xue W, Chen G. Quercitrin Rapidly Alleviated Depression-like Behaviors in Lipopolysaccharide-Treated Mice: The Involvement of PI3K/AKT/NF-κB Signaling Suppression and CREB/BDNF Signaling Restoration in the Hippocampus. ACS Chem Neurosci 2021; 12:3387-3396. [PMID: 34469122 DOI: 10.1021/acschemneuro.1c00371] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Quercitrin (Qc) is a well-known flavonoid compound that exerts anti-inflammation effects on various diseases. The present study aimed to investigate the antidepressant-like response of Qc and its underlying mechanisms concerning neuroinflammation and neuroplasticity in mice with lipopolysaccharide (LPS)-induced depression-like behaviors. The results showed a single dose of Qc (10 mg/kg) produced an antidepressant-like effect at 2 h postadministration and lasted for at least 3 days. The expressions of neuroplasticity signaling molecules of pCREB/BDNF/PSD95/Synapsin1 were upregulated at 2 h, and ERK signaling was upregulated for 3 days in the hippocampus after a single administration of Oc or ketamine. A 5-day treatment of LPS led to depression-like behaviors, including reduced sucrose preference and increased immobility in the tail suspension test or forced swim test, which were all reversed by a single dose of Qc. In LPS-treated mice, Qc reduced the levels of inflammation-related factors including IL-10, IL-1β, and TNF-α in serum, as well as the activations of PI3K/AKT/NF-κB and MEK/ERK pathways in the hippocampus. Moreover, Qc restored the expressions of pCREB/BDNF/PSD95/Synapsin1 signaling in the hippocampus that were impaired by LPS. LY294002, a PI3K inhibitor, but not PD98059, a MEK inhibitor, produced effects similar to Qc. LY294002 also restored the expressions of pCREB/BDNF/PSD95/Synapsin1 signaling in the hippocampus impaired by LPS. Additionally, subeffective doses of Qc and LY294002 induced behavioral and molecular synergism. Together, the depression-like behaviors in LPS-treated mice were alleviated by a single dose of Qc likely via inhibition of the activations PI3K/AKT/NF-κB inflammation signaling and subsequent improvement of neuroplasticity.
Collapse
Affiliation(s)
- Yan Sun
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, China
| | - Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, China
| | - Zhangjie Wu
- Center for Translational Systems Biology and Neuroscience, Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinlang Yu
- Center for Translational Systems Biology and Neuroscience, Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Yin
- Center for Translational Systems Biology and Neuroscience, Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shiyu Qian
- Center for Translational Systems Biology and Neuroscience, Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziying Wang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, China
| | - Jiaru Huang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, China
| | - Wei Wang
- Center for Translational Systems Biology and Neuroscience, Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tao Liu
- Center for Translational Systems Biology and Neuroscience, Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenda Xue
- Center for Translational Systems Biology and Neuroscience, Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou 510632, China
| |
Collapse
|
26
|
Haloperidol and aripiprazole impact on the BDNF and glucocorticoid receptor levels in the rat hippocampus and prefrontal cortex: effect of the chronic mild stress. Endocr Regul 2021; 55:153-162. [PMID: 34523299 DOI: 10.2478/enr-2021-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Objective. Changes in the brain derived neurotrophic factor (BDNF) and glucocorticoid receptor (GR) expression in the prefrontal cortex (PFC) and hippocampus (HIP) are associated with psychiatric diseases and stress response. Chronic mild stress (CMS) may alter BDNF as well as GR levels in both the PFC and the HIP. The aim of the present study was to find out whether chronic treatment with a typical antipsychotic haloperidol (HAL) and an atypical antipsychotic aripiprazole (ARI) may modify the CMS effect on the BDNF and GR expression in the above-mentioned structures. Methods. The rats were exposed to CMS for 3 weeks and from the 7th day of CMS injected with vehicle (VEH), HAL (1 mg/kg) or ARI (10 mg/kg) for 4 weeks. BDNF and GR mRNA levels were established in the PFC and the HIP by Real Time PCR, whereas, PFC and HIP samples were obtained by punching them from 500 µm thick frozen sections. C-Fos immunoreactivity was analyzed in the PFC and the HIP on 30 µm thick paraformaldehyde fixed sections. Weight gain and corticosterone (CORT) levels were also measured. Results. The CMS and HAL suppressed the BDNF and GR mRNA levels in the PFC. In the HIP, CMS elevated BDNF mRNA levels that were suppressed by HAL and ARI treatments. The CMS decreased the c-Fos immunoreactivity in the PFC in both HAL- and ARI-treated animals. In the HIP, HAL increased the c-Fos immunoreactivity that was again diminished in animals exposed to CMS. Stressed animals gained markedly less weight until the 7th day of CMS, however, later their weight gain did not differ from the unstressed ones or was even higher in CMS+HAL group. Un-stressed HAL and ARI animals gained less weight than the VEH ones. Neither CMS nor HAL/ARI affected the plasma CORT levels. Conclusion. The present data indicate that HAL and ARI in the doses 1 mg/kg or 10 mg/kg, respectively, does not modify the effect of the CMS preconditioning on the BDNF and GR mRNA levels in the PFC or the HIP. However, HAL seems to modify the CMS effect on the HIP activation.
Collapse
|
27
|
Bakhtiari-Dovvombaygi H, Izadi S, Zare M, Asgari Hassanlouei E, Dinpanah H, Ahmadi-Soleimani SM, Beheshti F. Vitamin D3 administration prevents memory deficit and alteration of biochemical parameters induced by unpredictable chronic mild stress in rats. Sci Rep 2021; 11:16271. [PMID: 34381124 PMCID: PMC8357828 DOI: 10.1038/s41598-021-95850-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to investigate the effects of vitamin D3 (Vit D) administration on memory function, hippocampal level of amyloid-beta (Aβ), brain-derived neurotrophic factor (BDNF) and oxidative stress status in a rat model of unpredictable chronic mild stress (UCMS). Vit D was intraperitoneally administered at doses of 100, 1000, and 10,000 IU/kg. Animals were subjected to UCMS for a total period of 4 weeks. Memory function was assessed using morris water maze (MWM) and passive avoidance (PA) tests. Biochemical markers were measured to reveal the status of oxidative stress and antioxidant defense system. In addition, the levels of Aβ and BDNF were measured in hippocampal region. In the UCMS group, latency to find the platform was greater and the time spent in target quadrant (MWM test) as well as the latency to enter the dark compartment (PA test), were less than the vehicle group. Hippocampal malondialdehyde (MDA) and Aβ concentrations in the UCMS group were higher than the vehicle group. Hippocampal level of thiol and BDNF plus the activities of catalase and superoxide dismutase (SOD) were reduced in UCMS group compared to the control subjects (i.e. vehicle group). Interestingly, Vit D treatment supplementation reversed the mentioned effects of UCMS. Our findings indicated that Vit D administration improves UCMS-induced impairment of learning and memory through prevention of adverse effects on Aβ, BDNF and oxidative stress parameters.
Collapse
Affiliation(s)
- Hossein Bakhtiari-Dovvombaygi
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Saeed Izadi
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mostafa Zare
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | | - Hossein Dinpanah
- Department of Emergency Medicine, 9 Dey Educational Hospital, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - S Mohammad Ahmadi-Soleimani
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran. .,Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran. .,Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
28
|
Effects of datumetine on hippocampal NMDAR activity. Toxicol Rep 2021; 8:1131-1142. [PMID: 34150523 PMCID: PMC8190477 DOI: 10.1016/j.toxrep.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/16/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
The usage (abuse) of Datura metel is becoming increasingly worrisome among the Nigerian populace especially among the youth considering its side effects such as hallucination. This work was designed to identify the phytochemicals in datura plant that potentially interact with NMDAR as it affects the electrical and memory activities of the brain. Ligand-protein interaction was assessed using autodock vina to identify phytochemicals that can interact with NMDAR. Datumetine was found to have the best interaction fit with NMDAR at both allosteric and orthosteric binding sites. Furthermore, using electrophysiological, behavioural and western blotting techniques, it was observed that the administration of datumetine positively modulates the NMDAR current by prolonging burst duration and interspike interval, induces seizures in C57BL/6 mice. Acute exposure leads to memory deficit on NOR and Y-maze test while immunoblotting results showed increased expression of GluN1 and CamKIIα while pCamKIIα-T286, CREB and BDNF were downregulated. The results showed that the memory deficit seen in datura intoxication is possibly the effects of datumetine on NMDAR.
Collapse
|
29
|
Amigo J, Garro-Martinez E, Vidal Casado R, Compan V, Pilar-Cuéllar F, Pazos A, Díaz A, Castro E. 5-HT 4 Receptors Are Not Involved in the Effects of Fluoxetine in the Corticosterone Model of Depression. ACS Chem Neurosci 2021; 12:2036-2044. [PMID: 33974408 PMCID: PMC8459452 DOI: 10.1021/acschemneuro.1c00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
![]()
Clinical
and preclinical studies report the implication of 5-hydroxytryptamine
4 receptors (5-HT4Rs) in depression and anxiety. Here,
we tested whether the absence of 5-HT4Rs influences the response to
the antidepressant fluoxetine in mice subjected to chronic corticosterone
administration, an animal model of depression and anxiety. Therefore,
the effects of chronic administration of fluoxetine in corticosterone-treated
wild-type (WT) and 5-HT4R knockout (KO) mice were evaluated
in the open-field and novelty suppressed feeding tests. As 5-HT1A receptor (5-HT1AR) and brain-derived neurotrophic
factor (BDNF) are critically involved in depression and anxiety, we
further evaluated 5-HT1A receptor functionality by [35S]GTPγS autoradiography and BDNF mRNA expression by in situ hybridization techniques. We found that 5-HT4R KO and WT mice displayed anxiety- and depressive-like behavior
following chronic administration of corticosterone, as evidenced in
the open-field and novelty suppressed feeding tests. In the open-field,
a decreased central activity was observed in naïve and
corticosterone-treated mice of both genotypes following chronic fluoxetine
administration. In the novelty suppressed feeding test, a predictive
paradigm of antidepressant activity, chronic treatment with fluoxetine
reverted the latency to eat in both genotypes. The antidepressant
also potentiated the corticosterone-induced desensitization of the
5-HT1AR in the dorsal raphe nucleus. Further, chronic fluoxetine
increased BDNF mRNA expression in the dentate gyrus of the hippocampus
in corticosterone-treated mice of both genotypes. Therefore, our findings
indicate that the behavioral effects of fluoxetine in the corticosterone
model of depression and anxiety appear not to be dependent on 5-HT4Rs.
Collapse
Affiliation(s)
- Josep Amigo
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Emilio Garro-Martinez
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rebeca Vidal Casado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Fuencisla Pilar-Cuéllar
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angel Pazos
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alvaro Díaz
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Castro
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
30
|
Brain-Derived Neurotrophic Factor/Tropomyosin Receptor Kinase B Signaling Controls Excitability and Long-Term Depression in Oval Nucleus of the BNST. J Neurosci 2021; 41:435-445. [PMID: 33234610 DOI: 10.1523/jneurosci.1104-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 01/02/2023] Open
Abstract
Dysregulation of proteins involved in synaptic plasticity is associated with pathologies in the CNS, including psychiatric disorders. The bed nucleus of the stria terminalis (BNST), a brain region of the extended amygdala circuit, has been identified as the critical hub responsible for fear responses related to stress coping and pathologic systems states. Here, we report that one particular nucleus, the oval nucleus of the BNST (ovBNST), is rich in brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) receptor. Whole-cell patch-clamp recordings of neurons from male mouse ovBNST in vitro showed that the BDNF/TrkB interaction causes a hyperpolarizing shift of the membrane potential from resting value, mediated by an inwardly rectifying potassium current, resulting in reduced neuronal excitability in all major types of ovBNST neurons. Furthermore, BDNF/TrkB signaling mediated long-term depression (LTD) at postsynaptic sites in ovBNST neurons. LTD of ovBNST neurons was prevented by a BDNF scavenger or in the presence of TrkB inhibitors, indicating the contribution to LTD induction. Our data identify BDNF/TrkB signaling as a critical regulator of synaptic activity in ovBNST, which acts at postsynaptic sites to dampen excitability at short and long time scales. Given the central role of ovBNST in mediating maladaptive behaviors associated with stress exposure, our findings suggest a synaptic entry point of the BDNF/TrkB system for adaptation to stressful environmental encounters.
Collapse
|
31
|
Matheson K, Asokumar A, Anisman H. Resilience: Safety in the Aftermath of Traumatic Stressor Experiences. Front Behav Neurosci 2020; 14:596919. [PMID: 33408619 PMCID: PMC7779406 DOI: 10.3389/fnbeh.2020.596919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
The relationship between adverse experiences and the emergence of pathology has often focused on characteristics of the stressor or of the individual (stressor appraisals, coping strategies). These features are thought to influence multiple biological processes that favor the development of mental and physical illnesses. Less often has attention focused on the aftermath of traumatic experiences, and the importance of safety and reassurance that is necessary for longer-term well-being. In some cases (e.g., post-traumatic stress disorder) this may be reflected by a failure of fear extinction, whereas in other instances (e.g., historical trauma), the uncertainty about the future might foster continued anxiety. In essence, the question becomes one of how individuals attain feelings of safety when it is fully understood that the world is not necessarily a safe place, uncertainties abound, and feelings of agency are often illusory. We consider how individuals acquire resilience in the aftermath of traumatic and chronic stressors. In this respect, we review characteristics of stressors that may trigger particular biological and behavioral coping responses, as well as factors that undermine their efficacy. To this end, we explore stressor dynamics and social processes that foster resilience in response to specific traumatic, chronic, and uncontrollable stressor contexts (intimate partner abuse; refugee migration; collective historical trauma). We point to resilience factors that may comprise neurobiological changes, such as those related to various stressor-provoked hormones, neurotrophins, inflammatory immune, microbial, and epigenetic processes. These behavioral and biological stress responses may influence, and be influenced by, feelings of safety that come about through relationships with others, spiritual and place-based connections.
Collapse
Affiliation(s)
- Kimberly Matheson
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada.,The Royal Ottawa's Institute of Mental Health Research, Ottawa, ON, Canada
| | - Ajani Asokumar
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Hymie Anisman
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada.,The Royal Ottawa's Institute of Mental Health Research, Ottawa, ON, Canada
| |
Collapse
|
32
|
Pathophysiology of Depression and Novel Sources of Phytochemicals for its Treatment – A Systematic Review. ACTA MEDICA BULGARICA 2020. [DOI: 10.2478/amb-2020-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The rising burden of depression, which will soon be the second most common cause of disability in the world, is requesting new ways to treat and prevent it. Due to high number of significant adverse drug reactions of the conventional treatment, the modern pharmaceutical industry is more often turning their focus to novel plant-based solutions. We performed literature research based on standard literature search engines – PubMed, Google Scholar, Science Direct. A standard set of keywords related to our topic e.g. “Depression”, “Mesembrine type alkaloids”, “Narcissus” was used. The review describes the classical monoamine theory of depression and connects it with the newly found biochemical, genetic and morphological alterations associated with the major depressive disorder. The purpose of this review is to highlight the most important aspects of the pathophysiology of depression and to explore the possibilities to use mesembrine-like alkaloids isolated from Narcissus cv. Hawera in its treatment. We describe their effect on brain biochemistry and possible future investigations.
Collapse
|
33
|
Wu L, Zhang T, Chen K, Lu C, Liu XF, Zhou JL, Huang YK, Yan H, Chen Y, Zhang CJ, Li JF, Shi SQ, Ren P, Huang X. Rapid antidepressant‐like effect of Fructus Aurantii depends on cAMP‐response element binding protein/Brain‐derived neurotrophic facto by mediating synaptic transmission. Phytother Res 2020; 35:404-414. [DOI: 10.1002/ptr.6812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Lei Wu
- Department of Pharmacy Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
- Institute of TCM‐Related Comorbid Depression Nanjing University of Chinese Medicine Nanjing China
| | - Tian Zhang
- Institute of TCM‐Related Comorbid Depression Nanjing University of Chinese Medicine Nanjing China
| | - Ken Chen
- Institute of TCM‐Related Comorbid Depression Nanjing University of Chinese Medicine Nanjing China
| | - Chao Lu
- Department of Pharmacy Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - Xiang Fei Liu
- Institute of TCM‐Related Comorbid Depression Nanjing University of Chinese Medicine Nanjing China
| | - Jia Ling Zhou
- Institute of TCM‐Related Comorbid Depression Nanjing University of Chinese Medicine Nanjing China
| | - Yun Ke Huang
- Institute of TCM‐Related Comorbid Depression Nanjing University of Chinese Medicine Nanjing China
- Department Of Gynaecology and Obstetrics Fudan University Medical School Shanghai China
| | - Han Yan
- Institute of TCM‐Related Comorbid Depression Nanjing University of Chinese Medicine Nanjing China
| | - Ying Chen
- Institute of TCM‐Related Comorbid Depression Nanjing University of Chinese Medicine Nanjing China
| | - Chun Jie Zhang
- Institute of TCM‐Related Comorbid Depression Nanjing University of Chinese Medicine Nanjing China
| | - Jun Feng Li
- Institute of TCM‐Related Comorbid Depression Nanjing University of Chinese Medicine Nanjing China
| | - Shao Qi Shi
- Institute of TCM‐Related Comorbid Depression Nanjing University of Chinese Medicine Nanjing China
| | - Ping Ren
- Institute of TCM‐Related Comorbid Depression Nanjing University of Chinese Medicine Nanjing China
- Department of Geriatrics Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing China
| | - Xi Huang
- Institute of TCM‐Related Comorbid Depression Nanjing University of Chinese Medicine Nanjing China
| |
Collapse
|
34
|
Notaras M, van den Buuse M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol Psychiatry 2020; 25:2251-2274. [PMID: 31900428 DOI: 10.1038/s41380-019-0639-2] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is widely accepted for its involvement in resilience and antidepressant drug action, is a common genetic locus of risk for mental illnesses, and remains one of the most prominently studied molecules within psychiatry. Stress, which arguably remains the "lowest common denominator" risk factor for several mental illnesses, targets BDNF in disease-implicated brain regions and circuits. Altered stress-related responses have also been observed in animal models of BDNF deficiency in vivo, and BDNF is a common downstream intermediary for environmental factors that potentiate anxiety- and depressive-like behavior. However, BDNF's broad functionality has manifested a heterogeneous literature; likely reflecting that BDNF plays a hitherto under-recognized multifactorial role as both a regulator and target of stress hormone signaling within the brain. The role of BDNF in vulnerability to stress and stress-related disorders, such as posttraumatic stress disorder (PTSD), is a prominent example where inconsistent effects have emerged across numerous models, labs, and disciplines. In the current review we provide a contemporary update on the neurobiology of BDNF including new data from the behavioral neuroscience and neuropsychiatry literature on fear memory consolidation and extinction, stress, and PTSD. First we present an overview of recent advances in knowledge on the role of BDNF within the fear circuitry, as well as address mounting evidence whereby stress hormones interact with endogenous BDNF-TrkB signaling to alter brain homeostasis. Glucocorticoid signaling also acutely recruits BDNF to enhance the expression of fear memory. We then include observations that the functional common BDNF Val66Met polymorphism modulates stress susceptibility as well as stress-related and stress-inducible neuropsychiatric endophenotypes in both man and mouse. We conclude by proposing a BDNF stress-sensitivity hypothesis, which posits that disruption of endogenous BDNF activity by common factors (such as the BDNF Val66Met variant) potentiates sensitivity to stress and, by extension, vulnerability to stress-inducible illnesses. Thus, BDNF may induce plasticity to deleteriously promote the encoding of fear and trauma but, conversely, also enable adaptive plasticity during extinction learning to suppress PTSD-like fear responses. Ergo regulators of BDNF availability, such as the Val66Met polymorphism, may orchestrate sensitivity to stress, trauma, and risk of stress-induced disorders such as PTSD. Given an increasing interest in personalized psychiatry and clinically complex cases, this model provides a framework from which to experimentally disentangle the causal actions of BDNF in stress responses, which likely interact to potentiate, produce, and impair treatment of, stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia. .,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia. .,Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
35
|
Huang C, Chen JT. Chronic retinoic acid treatment induces affective disorders by impairing the synaptic plasticity of the hippocampus. J Affect Disord 2020; 274:678-689. [PMID: 32664002 DOI: 10.1016/j.jad.2020.05.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/18/2020] [Accepted: 05/17/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND More and more people are suffering from depression in modern society. It is believed that the development of depression results from alterations in synaptic transmission, especially in the hippocampus. Animal experiments and clinical studies have demonstrated that retinoids are essential components in hippocampal synaptic plasticity, and they have a close relationship with depression. However, it is still unclear how excessive retinoic acid (RA) causes depression and what synaptic and molecular mechanisms underlie it. METHODS Behavioral, electrophysiological, and molecular approaches were employed to characterize the effects of RA on depression and synaptic plasticity. RA was continuously administered intracerebroventricularly through an osmotic pump. RESULTS RA treatment induced depression-like behaviors, as evidenced by decreased sucrose preference and increased immobile duration in both the forced swim test and the tail suspension test. RA administration also induced anxiety-like behaviors, indicated by decreased duration in the open arms of the elevated plus maze and the central of the open field. RA treatment decreased the neuronal excitability of the hippocampus either by changing the excitatory/inhibitory receptor balance or by promoting the synthesis of inhibitory neurotransmitters. Moreover, long-term potentiation was decreased in both the excitatory postsynaptic potential and the population spike in RA-treated rats, presumably a consequence of the reduced glur1 transcript level. LIMITATIONS The mechanism of how excess RA affects the hippocampal gene expression and synaptic plasticity requires further study. CONCLUSIONS RA treatment can induce depression-like behavior in rats and impair hippocampal plasticity. Thus, improving synaptic plasticity in the hippocampus may ameliorate the affective disorders caused by excessive RA.
Collapse
Affiliation(s)
- Chuan Huang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Ju-Tao Chen
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
36
|
Ghasemzadeh Z, Sardari M, Javadi P, Rezayof A. Expression analysis of hippocampal and amygdala CREB-BDNF signaling pathway in nicotine-induced reward under stress in rats. Brain Res 2020; 1741:146885. [PMID: 32417176 DOI: 10.1016/j.brainres.2020.146885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
Extensive research has shown that individuals are more sensitive to develop addiction and drug taking under stress state. The present study includes an expression analysis to identify the possible role of hippocampal and amygdala CREB (cAMP response element-binding protein) and BDNF (Brain-derived neurotrophic factor) activation in nicotine-induced conditioned place preference (CPP) under exposure to acute or sub-chronic stress. Using western-blot technique, CREB phosphorylation was shown to increase in the hippocampus and the amygdala following nicotine-induced CPP. The hippocampal level of BDNF was increased following nicotine administration and in the nicotine-treated animals exposed to acute stress. In animals exposed to acute stress, the amygdala ratios of the pCREB/CREB decreased, while pre-treatment of the animals with nicotine (0.1 mg/kg) decreased this ratio only in the hippocampus. Sub-chronic stress decreased the pCREB/CREB ratios in the hippocampus and the amygdala. Interestingly, sub-chronic stress-induced increase of nicotine reward only decreased the hippocampal pCREB/CREB ratio. The levels of BDNF in the hippocampus and the amygdala decreased under acute stress. Acute stress-induced increase of nicotine reward increased BDNF levels in the hippocampus. Moreover, the animals' exposure to the CPP apparatus without any drug administration increased the ratios of pCREB/tCREB and BDNF/β-actin in the targeted sites. In summary, the present study indicate that the alterations of the ratio of pCREB/CREB and also the level of BDNF in the hippocampus may be critical for enhancing nicotine reward under stress condition. The evidence from this study suggests the distinct roles of the hippocampus and the amygdala in mediating nicotine reward under stress.
Collapse
Affiliation(s)
- Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Parastoo Javadi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
37
|
Capurro V, Lanfranco M, Summa M, Porceddu PF, Ciampoli M, Margaroli N, Durando L, Garrone B, Ombrato R, Tongiani S, Reggiani A. The mood stabilizing properties of AF3581, a novel potent GSK-3β inhibitor. Biomed Pharmacother 2020; 128:110249. [PMID: 32470749 DOI: 10.1016/j.biopha.2020.110249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 01/14/2023] Open
Abstract
Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzymeand highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients. Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders. In the present study we further investigated the role of GSK-3β in bipolar disorders by studying AF3581, the prototype of a novel class of ATP-competitive GSK-3β inhibitors having the common N-[(1- alkylpiperidin-4-yl) methyl]-1H-indazole-3-carboxamide scaffold. Based on previous studies, AF3581 inhibits GSK-3β in the nanomolar range on purified human enzyme and highly selective with respect to other kinases. Current study demonstrates that the compound has efficacy both in the chronic mild stress paradigm of depression (mimicking the down phase of bipolar disorder) and on mice aggressiveness in the resident intruder model (mimicking the up phase). These findings underline the importance of aberrant GSK-3β activity in the development/ maintenance of mood oscillation in this peculiar pathological condition. Moreover, the present work also suggests a therapeutic potential for selective GSK-3 β inhibitors in the management of bipolar disorders patients.
Collapse
Affiliation(s)
- Valeria Capurro
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| | - Massimiliano Lanfranco
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Maria Summa
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Pier Francesca Porceddu
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Mariasole Ciampoli
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Natasha Margaroli
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Lucia Durando
- Angelini Pharma S.p.A., Viale Amelia, 70-00181, Rome, Italy
| | | | | | | | - Angelo Reggiani
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| |
Collapse
|
38
|
Steffke EE, Kirca D, Mazei-Robison MS, Robison AJ. Serum- and glucocorticoid-inducible kinase 1 activity reduces dendritic spines in dorsal hippocampus. Neurosci Lett 2020; 725:134909. [PMID: 32169587 DOI: 10.1016/j.neulet.2020.134909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
The hippocampus has a well-known role in mediating learning and memory, and its function can be directly regulated by both stress and glucocorticoid receptor activation. Hippocampal contributions to learning are thought to be dependent on changes in the plasticity of synapses within specific subregions, and these functional changes are accompanied by morphological changes in the number and shape of dendritic spines, the physical correlates of these glutamatergic synapses. Serum- and glucocorticoid-inducible kinase 1 (SGK1) regulates dendritic spine morphology in the prefrontal cortex, and modulation of SGK1 expression in mouse hippocampus regulates learning. However, the role of SGK1 in dendritic spine morphology within the CA1 and dentate gyrus regions of the hippocampus are unknown. Thus, herpes simplex viral vectors expressing GFP and various SGK1 constructs, including wild type SGK1, a catalytically inactive version of SGK1 (K127Q), and a phospho-defective version of SGK1 (S78A), were infused into the hippocampus of adult mice and confocal fluorescent microscopy was used to visualize dendritic spines. We show that increasing expression of SGK1 in the dentate gyrus increased the total number of spines, driven primarily by an increase in mushroom spines, while decreasing SGK1 activity (K127Q) in the CA1 region increased the total number of dendritic spines, driven by a significant increase in mushroom and stubby spines. The differential effects of SGK1 in these regions may be mediated by the interactions of SGK1 with multiple pathways required for spine formation and stability. As the formation of mature synapses is a crucial component of learning and memory, this indicates that SGK1 is a potential target in the pathway underlying stress-associated changes in cognition and memory.
Collapse
Affiliation(s)
- Emily E Steffke
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, United States
| | - Deniz Kirca
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, United States
| | | | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
39
|
Li XX, Yu Y, Lang XY, Jiang CY, Lan R, Qin XY. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-d-glucoside Restores BDNF-TrkB and FGF2-Akt Signaling Axis to Attenuate Stress-induced Depression. Neuroscience 2020; 430:25-33. [DOI: 10.1016/j.neuroscience.2020.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 11/29/2022]
|
40
|
Oh HM, Lee JS, Kim SW, Oh YT, Kim WY, Lee SB, Cho YR, Jeon YJ, Cho JH, Son CG. Uwhangchungsimwon, A Standardized Herbal Drug, Exerts an Anti-Depressive Effect in a Social Isolation Stress-Induced Mouse Model. Front Pharmacol 2020; 10:1674. [PMID: 32082167 PMCID: PMC7005224 DOI: 10.3389/fphar.2019.01674] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/23/2019] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Uwhangchungsimwon (UCW) is one of the most representative standardized herbal drugs for the treatment of central nervous system diseases, including mood disorders, and has been used for over 600 years in Korea and China. In spite of the long clinical application of UCW, no experimental evidence for its use against depressive disorders exists. Here, we performed an animal study to investigate the anti-depressive effect of UCW and the underlying mechanisms. METHODS A social isolation-induced depressive-like model was produced using C57BL/6J male mice by housing the mice individually for 31 days, and the mice underwent daily oral administration of distilled water, UCW (100, 200, 400 mg/kg) or fluoxetine (20 mg/kg) during the final 17 days. A tail suspension test (TST), forced swimming test (FST), and open field test (OFT) were used to explore the effects of UCW on depressive-like behaviors. 5-Hydroxytryptamine (5-HT) was measured in the dorsal raphe nuclei (DRN) using immunofluorescence. The serum corticosterone level was measured with its receptor and catecholamine, along with cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in the hippocampus. RESULTS Social isolation stress effectively induced depressive-like behaviors, and UCW treatment significantly improved the symptoms of depressive-like behavior in the FST, TST, and OFT. The isolation stress-induced depletion of 5-HT was significantly ameliorated by UCW treatment. UCW also attenuated the activation of the glucocorticoid receptor (GR) and the elevated serum corticosterone level, as well as the hippocampal levels of dopamine and norepinephrine. Dexametasone-derived translocation of GR was inhibited by UCW treatment in PC12 cells and HT22 cells. In addition, alterations of tryptophan hydroxylase 2 (TPH2), BDNF, and CREB in the protein analyses were notably regulated by UCW treatment. CONCLUSIONS These results provide animal-based evidence for the anti-depressive effect of UCW, and its underlying mechanisms may involve regulating the serotonergic system, the hypothalamic-pituitary-adrenal (HPA) axis, and neurotrophin.
Collapse
Affiliation(s)
- Hyeon-Muk Oh
- College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Jin-Seok Lee
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| | - Seo-Woo Kim
- College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Young-Taeck Oh
- College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Won-Yong Kim
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| | - Sung-Bae Lee
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| | - Yong-Rae Cho
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| | - Yoo-Jin Jeon
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| | - Jung-Hyo Cho
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| |
Collapse
|
41
|
Puryear CB, Brooks J, Tan L, Smith K, Li Y, Cunningham J, Todtenkopf MS, Dean RL, Sanchez C. Opioid receptor modulation of neural circuits in depression: What can be learned from preclinical data? Neurosci Biobehav Rev 2020; 108:658-678. [DOI: 10.1016/j.neubiorev.2019.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
|
42
|
Sari DCR, Arfian N, Tranggono U, Setyaningsih WAW, Romi MM, Emoto N. Centella asiatica (Gotu kola) ethanol extract up-regulates hippocampal brain-derived neurotrophic factor (BDNF), tyrosine kinase B (TrkB) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) signaling in chronic electrical stress model in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:1218-1224. [PMID: 31998466 PMCID: PMC6885393 DOI: 10.22038/ijbms.2019.29012.7002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 07/03/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Impairment of hippocampus function as a center for memory processing occurs due to stress. Centella asiatica L. (Gotu kola) is known to improve memory, intelligence, and neural protection although the precise mechanism is not well understood. This study aimed to investigate the effects of ethanol extracts of C. asiatica toward MAPK expression as down-stream signaling of brain-derived neurotrophic factor (BDNF). MATERIALS AND METHODS We performed a chronic electrical stress model on 20 male Sprague Dawley rats (2 months-old, 180-200 g). Rats were divided into four groups: normal control group (Control) which received distilled water, and three treatment groups receiving oral Gotu kola ethanol extracts in oral doses of 150 mg/kg BW (CeA150), 300 mg/kg BW (CeA300), and 600 mg/kg BW (CeA600) over four weeks. Memory acquisition was assessed with Morris water maze. Hippocampus was harvested, then extracted for protein and RNA analysis. MAPK proteins (p38, ERK1/2, JNK) were measured using Western blot, meanwhile, BDNF and TrkB receptor were analyzed with real-time PCR (RT-PCR). RESULTS CeA600 group revealed improvement of memory performance as shown by reduction in time and distance parameters compared to control during escape latency test. This finding associated with significant elevation of hippocampal BDNF protein and mRNA level with up-regulation of TrkB mRNA expression in CeA600 group compared to control. Western-blot analysis showed significant up-regulation of ERK1/2 protein level in CeA600 group (P<0.05) compare to control. CONCLUSION BDNF signaling through TrkB and ERK1/2 pathway contributes significantly to amelioration of memory performance after C. asiatica treatment in electrical stress model.
Collapse
Affiliation(s)
- Dwi Cahyani Ratna Sari
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nur Arfian
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Untung Tranggono
- Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Muhammad Mansyur Romi
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Noriaki Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
43
|
Kobayashi Y, Segi-Nishida E. Search for factors contributing to resistance to the electroconvulsive seizure treatment model using adrenocorticotrophic hormone-treated mice. Pharmacol Biochem Behav 2019; 186:172767. [PMID: 31491434 DOI: 10.1016/j.pbb.2019.172767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022]
Abstract
Approximately one third of patients with depression remain treatment resistant with existing antidepressants, suggesting that the currently-available antidepressants cannot induce appropriate responses in the brains of all patients. Long-term exposure to adrenocorticotrophic hormone (ACTH) has been proposed as a model that mimics at least some aspects of clinical treatment-resistant depression in rodents. The purpose of this study was to explore potential causes of antidepressant treatment resistance using the chronic ACTH-treated mouse model. We subjected ACTH-treated mice to a rodent model of electroconvulsive therapy, i.e., electroconvulsive seizure (ECS), which induces various molecular and cellular changes, including in gene expression and adult neurogenesis in the hippocampus. First, behavioral effect of repeated ECS in the forced swim test (FST) was examined. In our experimental setting, ACTH-treated mice showed resistance to the antidepressant-like effect of ECS in the FST. We then examined which cellular and molecular changes induced by ECS were attenuated by ACTH administration. Chronic ACTH treatment suppressed the increase of gene expression such as of Bdnf, Npy, and Drd1 induced by ECS in the hippocampus. In contrast, there was no difference in ECS-induced promotion of the early neurogenetic process in the hippocampus between ACTH-treated and control mice. Our results suggest the possibility that impaired neuromodulation and monoamine signaling in the hippocampus are among the factors contributing to antidepressant treatment resistance.
Collapse
Affiliation(s)
- Yurika Kobayashi
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Japan
| | - Eri Segi-Nishida
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Japan.
| |
Collapse
|
44
|
Antidepressant-like activity of hyperforin and changes in BDNF and zinc levels in mice exposed to chronic unpredictable mild stress. Behav Brain Res 2019; 372:112045. [PMID: 31220487 DOI: 10.1016/j.bbr.2019.112045] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 12/27/2022]
Abstract
Chronic unpredictable mild stress (CUMS) - a rodent model of depression mimics a variety of neurochemical and behavioral alterations similar to those seen in human depression. This study evaluated the antidepressant activity of hyperforin in the CUMS model using fluoxetine (FLX) as a reference drug. The antidepressant-like effects of hyperforin and FLX were evaluated in the tail suspension test (TST), forced swim test (FST), and splash test (SPT). CUMS induced an increase in immobility time in mice (pro-depressive effects) in the FST and TST. CUMS-induced changes were reversed by chronic treatment with hyperforin (2.5 and 5 mg/kg), as well as FLX (10 mg/kg). SPT results revealed a decrease in the frequency and duration of grooming in stressed mice. These effects were normalized by hyperforin (5 mg/kg) and FLX treatment. Hyperforin (2.5 mg/kg) only reversed the CUMS-induced deficits related to the frequency of grooming. CUMS also caused a decrease in zinc concentration in the frontal cortex (FC) and hippocampus (Hp) of mice; hyperforin (2.5 mg/kg) increased zinc concentration in the Hp of control rats. CUMS also induced a decrease in BDNF protein levels in the FC and Hp, while decreasing the pCREB/CREB ratio only in the Hp. Hyperforin (2.5 and 5 mg/kg) reversed the CUMS-induced reduction of BDNF only in the Hp. Our results demonstrate the antidepressant-like activity of hyperforin in the CUMS model in mice and the possible involvement of hippocampal BDNF/zinc alterations in this activity.
Collapse
|
45
|
Harman MF, Martín MG. Epigenetic mechanisms related to cognitive decline during aging. J Neurosci Res 2019; 98:234-246. [PMID: 31045277 DOI: 10.1002/jnr.24436] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/04/2019] [Accepted: 04/12/2019] [Indexed: 12/12/2022]
Abstract
Cognitive decline is a hallmark of the aging nervous system, characterized by increasing memory loss and a deterioration of mental capacity, which in turn creates a favorable context for the development of neurodegenerative diseases. One of the most detrimental alterations that occur at the molecular level in the brain during aging is the modification of the epigenetic mechanisms that control gene expression. As a result of these epigenetic-driven changes in the transcriptome most of the functions of the brain including synaptic plasticity, learning, and memory decline with aging. The epigenetic mechanisms altered during aging include DNA methylation, histone modifications, nucleosome remodeling, and microRNA-mediated gene regulation. In this review, we examine the current evidence concerning the changes of epigenetic modifications together with the molecular mechanisms underlying impaired neuronal gene transcription during aging. Herein, we discuss the alterations of DNA methylation pattern that occur in old neurons. We will also describe the most prominent age-related histone posttranslational modifications in the brain since changes in acetylation and methylation of specific lysine residues on H3 and H4 are associated to functional decline in the old. In addition, we discuss the role that changes in the levels of certain miRNAs would play in cognitive decline with aging. Finally, we provide an overview about the mechanisms either extrinsic or intrinsic that would trigger epigenetic changes in the aging brain, and the consequences of these changes, i.e., altered transcriptional profile and reactivation of transposable elements in old brain.
Collapse
Affiliation(s)
- María F Harman
- Instituto Ferreyra, INIMEC-CONICET-UNC, Córdoba, Argentina.,Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mauricio G Martín
- Instituto Ferreyra, INIMEC-CONICET-UNC, Córdoba, Argentina.,Facultad de Ciencias Exactas Físicas y Naturales, Cátedra de Química Orgánica, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
46
|
Sosanya NM, Garza TH, Stacey W, Crimmins SL, Christy RJ, Cheppudira BP. Involvement of brain-derived neurotrophic factor (BDNF) in chronic intermittent stress-induced enhanced mechanical allodynia in a rat model of burn pain. BMC Neurosci 2019; 20:17. [PMID: 31014242 PMCID: PMC6480655 DOI: 10.1186/s12868-019-0500-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 04/10/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Reports show that stressful events before injury exacerbates post-injury pain. The mechanism underlying stress-induced heightened thermal pain is unclear. Here, we examined the effects of chronic intermittent stress (CIS) on nociceptive behaviors and brain-derived nerve growth factor (BDNF) system in the prefrontal cortex (PFC) and hypothalamus of rats with and without thermal injury. RESULTS Unstressed rats showed transient mechanical allodynia during stress exposure. Stressed rats with thermal injury displayed persistent exacerbated mechanical allodynia (P < 0.001). Increased expression of BDNF mRNA in the PFC (P < 0.05), and elevated TrkB and p-TrkB (P < 0.05) protein levels in the hypothalamus were observed in stressed rats with thermal injury but not in stressed or thermally injured rats alone. Furthermore, administration of CTX-B significantly reduced stress-induced exacerbated mechanical allodynia in thermally injured rats (P < 0.001). CONCLUSION These results indicate that BDNF-TrkB signaling in PFC and hypothalamus contributes to CIS-induced exacerbated mechanical allodynia in thermal injury state.
Collapse
Affiliation(s)
- Natasha M Sosanya
- Battlefield Pain Management Research Group, United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - Thomas H Garza
- Battlefield Pain Management Research Group, United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - Winfred Stacey
- Battlefield Pain Management Research Group, United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - Stephen L Crimmins
- Battlefield Pain Management Research Group, United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - Robert J Christy
- Battlefield Pain Management Research Group, United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - Bopaiah P Cheppudira
- Battlefield Pain Management Research Group, United States Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA.
| |
Collapse
|
47
|
Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J. Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neurosci Biobehav Rev 2019; 99:101-116. [DOI: 10.1016/j.neubiorev.2018.12.002] [Citation(s) in RCA: 461] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
|
48
|
Villas Boas GR, Boerngen de Lacerda R, Paes MM, Gubert P, Almeida WLDC, Rescia VC, de Carvalho PMG, de Carvalho AAV, Oesterreich SA. Molecular aspects of depression: A review from neurobiology to treatment. Eur J Pharmacol 2019; 851:99-121. [PMID: 30776369 DOI: 10.1016/j.ejphar.2019.02.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Major depressive disorder (MDD), also known as unipolar depression, is one of the leading causes of disability and disease worldwide. The signs and symptoms are low self‑esteem, anhedonia, feeling of worthlessness, sense of rejection and guilt, suicidal thoughts, among others. This review focuses on studies with molecular-based approaches involving MDD to obtain an integrated, more detailed and comprehensive view of the brain changes produced by this disorder and its treatment and how the Central Nervous System (CNS) produces neuroplasticity to orchestrate adaptive defensive behaviors. This article integrates affective neuroscience, psychopharmacology, neuroanatomy and molecular biology data. In addition, there are two problems with current MDD treatments, namely: 1) Low rates of responsiveness to antidepressants and too slow onset of therapeutic effect; 2) Increased stress vulnerability and autonomy, which reduces the responses of currently available treatments. In the present review, we encourage the prospection of new bioactive agents for the development of treatments with post-transduction mechanisms, neurogenesis and pharmacogenetics inducers that bring greater benefits, with reduced risks and maximized access to patients, stimulating the field of research on mood disorders in order to use the potential of preclinical studies. For this purpose, improved animal models that incorporate the molecular and anatomical tools currently available can be applied. Besides, we encourage the study of drugs that do not present "classical application" as antidepressants, (e.g., the dissociative anesthetic ketamine and dextromethorphan) and drugs that have dual action mechanisms since they represent potential targets for novel drug development more useful for the treatment of MDD.
Collapse
Affiliation(s)
- Gustavo Roberto Villas Boas
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil; Faculty of Health Sciences, Federal University of Grande Dourados, Dourados Rodovia Dourados, Itahum Km 12, Cidade Universitaria, Caixa. postal 364, CEP 79804-970, Dourados, Mato Grosso do Sul, Brazil.
| | - Roseli Boerngen de Lacerda
- Department of Pharmacology of the Biological Sciences Center, Federal University of Paraná, Jardim das Américas, Caixa. postal 19031, CEP 81531-990, Curitiba, Paraná, Brazil.
| | - Marina Meirelles Paes
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil.
| | - Priscila Gubert
- Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil.
| | - Wagner Luis da Cruz Almeida
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil.
| | - Vanessa Cristina Rescia
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil.
| | - Pablinny Moreira Galdino de Carvalho
- Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil.
| | - Adryano Augustto Valladao de Carvalho
- Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil.
| | - Silvia Aparecida Oesterreich
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados Rodovia Dourados, Itahum Km 12, Cidade Universitaria, Caixa. postal 364, CEP 79804-970, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
49
|
Variations in Hippocampal White Matter Diffusivity Differentiate Response to Electroconvulsive Therapy in Major Depression. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:300-309. [PMID: 30658916 DOI: 10.1016/j.bpsc.2018.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/03/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is an effective treatment for severe depression and is shown to increase hippocampal volume and modulate hippocampal functional connectivity. Whether variations in hippocampal structural connectivity occur with ECT and relate to clinical response is unknown. METHODS Patients with major depression (n = 36, 20 women, age 41.49 ± 13.57 years) underwent diffusion magnetic resonance imaging at baseline and after ECT. Control subjects (n = 32, 17 women, age 39.34 ± 12.27 years) underwent scanning twice. Functionally defined seeds in the left and right anterior hippocampus and probabilistic tractography were used to extract tract volume and diffusion metrics (fractional anisotropy and axial, radial, and mean diffusivity). Statistical analyses determined effects of ECT and time-by-response group interactions (>50% change in symptoms before and after ECT defined response). Differences between baseline measures across diagnostic groups and in association with treatment outcome were also examined. RESULTS Significant effects of ECT (all p < .01) and time-by-response group interactions (all p < .04) were observed for axial, radial, and mean diffusivity for right, but not left, hippocampal pathways. Follow-up analyses showed that ECT-related changes occurred in responders only (all p < .01) as well as in relation to change in mood examined continuously (all p < .004). Baseline measures did not relate to symptom change or differ between patients and control subjects. All measures remained stable across time in control subjects. No significant effects were observed for fractional anisotropy and volume. CONCLUSIONS Structural connectivity of hippocampal neural circuits changed with ECT and distinguished treatment responders. The findings suggested neurotrophic, glial, or inflammatory response mechanisms affecting axonal integrity.
Collapse
|
50
|
Zhang H, Chen Z, Zhong Z, Gong W, Li J. Total saponins from the leaves of Panax notoginseng inhibit depression on mouse chronic unpredictable mild stress model by regulating circRNA expression. Brain Behav 2018; 8:e01127. [PMID: 30298999 PMCID: PMC6236231 DOI: 10.1002/brb3.1127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/06/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Total saponins from the leaves of Panax notoginseng saponins (SLPN) could inhibit development of depression, but the underlying mechanisms remains unclear. This study aimed to address the roles of circular RNAs in depression inhibition by SLPN. METHODS The mouse chronic unpredictable mild stress (CUMS) model was established, which were confirmed by mouse weight, forced swimming test (FST) and tail suspension test (TST). Effects of SLPN on depression were evaluated in CUMS through these same assays. Circular RNA profiles in mouse ventral medial prefrontal cortex (VMPC) and hippocampus of CUMS mice were determined by high-through sequencing, followed by confirmation via qRT-PCR. Overexpression of mmu_circ_0001223 was done by transfection of PC12 cell through lentiviral system. Protein abundances of cAMP response element binding protein 1(CREB1) and brain-derived neurotrophic factor (BDNF) were evaluated by western blotting. RESULTS Mouse body weight, immobility time in FST and immobility time in TST of CUMS mice were significantly recovered by SLPN treatment. A large number of circular RNAs were differentially expressed in the ventral medial prefrontal cortex (VMPC) and hippocampus tissues of CUMS mice. Among them, mmu_circ_0001223 expression was greatly decreased in CUMS mice, but significantly elevated by SLPN treatment. The protein levels of CREB1 and BDNF were also remarkably promoted in CUMS mice by treatment of SLPN. Overexpression of mmu_circ_0001223 enhanced CREB1 and BDNF protein levels in PC12 cells. CONCLUSION SLPN regulate the expression of large number circular RNAs in CUMS mice, which might be important mediators of SLPN's anti-depression effects.
Collapse
Affiliation(s)
- Hualin Zhang
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China
| | - Ziming Chen
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China
| | - Zhiyong Zhong
- Guangdong Medical Laboratory Animal Center, Guangzhou, China
| | - Weifan Gong
- School of Pharmaceutical Sciences, South-central University for Nationalities, Wuhan, China
| | - Jun Li
- School of Pharmaceutical Sciences, South-central University for Nationalities, Wuhan, China
| |
Collapse
|