1
|
Tang L, Xu N, Huang M, Yi W, Sang X, Shao M, Li Y, Hao ZZ, Liu R, Shen Y, Yue F, Liu X, Xu C, Liu S. A primate nigrostriatal atlas of neuronal vulnerability and resilience in a model of Parkinson's disease. Nat Commun 2023; 14:7497. [PMID: 37980356 PMCID: PMC10657376 DOI: 10.1038/s41467-023-43213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023] Open
Abstract
The degenerative process in Parkinson's disease (PD) causes a progressive loss of dopaminergic neurons (DaNs) in the nigrostriatal system. Resolving the differences in neuronal susceptibility warrants an amenable PD model that, in comparison to post-mortem human specimens, controls for environmental and genetic differences in PD pathogenesis. Here we generated high-quality profiles for 250,173 cells from the substantia nigra (SN) and putamen (PT) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonian macaques and matched controls. Our primate model of parkinsonism recapitulates important pathologic features in nature PD and provides an unbiased view of the axis of neuronal vulnerability and resistance. We identified seven molecularly defined subtypes of nigral DaNs which manifested a gradient of vulnerability and were confirmed by fluorescence-activated nuclei sorting. Neuronal resilience was associated with a FOXP2-centered regulatory pathway shared between PD-resistant DaNs and glutamatergic excitatory neurons, as well as between humans and nonhuman primates. We also discovered activation of immune response common to glial cells of SN and PT, indicating concurrently activated pathways in the nigrostriatal system. Our study provides a unique resource to understand the mechanistic connections between neuronal susceptibility and PD pathophysiology, and to facilitate future biomarker discovery and targeted cell therapy.
Collapse
Affiliation(s)
- Lei Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Nana Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Mengyao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wei Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Mingting Shao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ye Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ruifeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuhui Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Feng Yue
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, 570228, China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China.
| |
Collapse
|
2
|
Balbi M, Bonanno G, Bonifacino T, Milanese M. The Physio-Pathological Role of Group I Metabotropic Glutamate Receptors Expressed by Microglia in Health and Disease with a Focus on Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:5240. [PMID: 36982315 PMCID: PMC10048889 DOI: 10.3390/ijms24065240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Microglia cells are the resident immune cells of the central nervous system. They act as the first-line immune guardians of nervous tissue and central drivers of neuroinflammation. Any homeostatic alteration that can compromise neuron and tissue integrity could activate microglia. Once activated, microglia exhibit highly diverse phenotypes and functions related to either beneficial or harmful consequences. Microglia activation is associated with the release of protective or deleterious cytokines, chemokines, and growth factors that can in turn determine defensive or pathological outcomes. This scenario is complicated by the pathology-related specific phenotypes that microglia can assume, thus leading to the so-called disease-associated microglia phenotypes. Microglia express several receptors that regulate the balance between pro- and anti-inflammatory features, sometimes exerting opposite actions on microglial functions according to specific conditions. In this context, group I metabotropic glutamate receptors (mGluRs) are molecular structures that may contribute to the modulation of the reactive phenotype of microglia cells, and this is worthy of exploration. Here, we summarize the role of group I mGluRs in shaping microglia cells' phenotype in specific physio-pathological conditions, including some neurodegenerative disorders. A significant section of the review is specifically focused on amyotrophic lateral sclerosis (ALS) since it represents an entirely unexplored topic of research in the field.
Collapse
Affiliation(s)
- Matilde Balbi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
3
|
Huang SY, Su ZY, Han YY, Liu L, Shang YJ, Mai ZF, Zeng ZW, Li CH. Cordycepin improved the cognitive function through regulating adenosine A 2A receptors in MPTP induced Parkinson's disease mice model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154649. [PMID: 36634379 DOI: 10.1016/j.phymed.2023.154649] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Parkinson's disease (PD), the most common neurodegenerative disorder, primarily affects dopaminergic neurons in the substantia nigra (SN). In addition to severe motor dysfunction, PD patients appear apparent cognitive impairments in the late stage. Cognitive dysfunction is accompanied by synaptic transmission damage in the hippocampus. Cordycepin has been reported to alleviate cognitive impairments in neurodegenerative diseases. PURPOSE The study aimed to estimate the protection roles of cordycepin on cognitive dysfunction in PD model and explore the potential mechanisms. METHODS 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to establish the PD model in vivo and in vitro experiments. In the in vivo experiments, the C57BL / 6 mice were intraperitoneally injected with MPTP and intragastric administration with cordycepin. Open field test (OFT) was used to estimate the exercise ability. Spontaneous alternation behavioral (SAB) and morris water maze (MWM) tests were used to evaluate the learning and memory abilities. The hippocampal slices from C57BL / 6 and Kunming mice in the in vitro experiments were used to record field excitatory postsynaptic potential (fEPSP) by electrophysiological methods. Western blotting was used to examine the level of tyrosine hydroxylase (TH) in the in vivo experiments and the levels of adenosine A1 and A2A receptors (A1R and A2AR) in the in vitro experiments, respectively. The drugs of MPTP, cordycepin, DPCPX and SCH58261 were perfused through dissolving in artificial cerebrospinal fluid. RESULTS Cordycepin could significantly reduce the impairments on motor, exploration, spatial learning and memory induce by MPTP. MPTP reduced the amplitude of LTP in hippocampal CA1 area but cordycepin could improve LTP amplitudes. Cordycepin at dosage of 20 mg/kg also increased the TH level in SN. In the in vitro experiments, MPTP inhibited synaptic transmission in hippocampal Schaffer-CA1 pathway with a dose-dependent relationship, while cordycepin could reverse the inhibition of synaptic transmission. Furthermore, the roles of cordycepin on synaptic transmission could been attenuated in the presence of the antagonists of A1R and A2AR, DPCPX and SCH58261, respectively. Interestingly, the level of A2AR rather than A1R in hippocampus was significantly decreased in the cordycepin group as compared to the control. CONCLUSION The present study has showed that cordycepin could improve cognitive function in the PD model induced by MPTP through regulating the adenosine A2A receptors. These findings were helpful to provide a new strategy for the dementia caused by Parkinson's disease.
Collapse
Affiliation(s)
- Shu-Yi Huang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zong-Ying Su
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuan-Yuan Han
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Li Liu
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ying-Jie Shang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zi-Fan Mai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhi-Wei Zeng
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
4
|
Weerasinghe-Mudiyanselage PD, Kang S, Kim JS, Moon C. Therapeutic Approaches to Non-Motor Symptoms of Parkinson's Disease: A Current Update on Preclinical Evidence. Curr Neuropharmacol 2023; 21:560-577. [PMID: 36200159 PMCID: PMC10207906 DOI: 10.2174/1570159x20666221005090126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being classified as a movement disorder, Parkinson's disease (PD) is characterized by a wide range of non-motor symptoms that significantly affect the patients' quality of life. However, clear evidence-based therapy recommendations for non-motor symptoms of PD are uncommon. Animal models of PD have previously been shown to be useful for advancing the knowledge and treatment of motor symptoms. However, these models may provide insight into and assess therapies for non-motor symptoms in PD. This paper highlights non-motor symptoms in preclinical models of PD and the current position regarding preclinical therapeutic approaches for these non-motor symptoms. This information may be relevant for designing future preclinical investigations of therapies for nonmotor symptoms in PD.
Collapse
Affiliation(s)
- Poornima D.E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
5
|
Chisari M, Barraco M, Bucolo C, Ciranna L, Sortino MA. Purinergic ionotropic P2X7 and metabotropic glutamate mGlu 5 receptors crosstalk influences pro-inflammatory conditions in microglia. Eur J Pharmacol 2022; 938:175389. [PMID: 36435235 DOI: 10.1016/j.ejphar.2022.175389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022]
Abstract
Microglia represent the resident immune system in the brain. They mediate neuroinflammatory processes and have been described as important regulators of homeostasis in the central nervous system (CNS). Among several players and mechanisms contributing to microglial function in inflammation, ATP and glutamate have been shown to be involved in microgliosis. In this study, we focused on receptor subtypes that respond to these neurotransmitters, purinergic ionotropic P2X7 receptor and metabotropic glutamate mGlu5 receptor. We found that both receptors are functionally expressed in a murine microglia cell line, BV2 cells, and we performed patch-clamp experiments to measure purinergic ionotropic P2X7 receptor ion flux in control condition and after metabotropic glutamate mGlu5 receptor activation. The selective purinergic ionotropic P2X7 receptor agonist, 2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate (BzATP, 100 μM), elicited a robust current that was prevented by the selective purinergic ionotropic P2X7 receptor antagonist A438079 (10 μM). When BV2 cells were acutely stimulated with the selective metabotropic glutamate mGlu5 agonist, (RS)-2-chloro-5-hydroxyphenylglycine (CHPG, 200 μM), purinergic ionotropic P2X7 receptor current was increased. This positive modulation was prevented by the selective metabotropic glutamate mGlu5 receptor antagonist 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP, 1 μM). Moreover, nitric oxide synthesis elicited by purinergic ionotropic P2X7 receptor activation was enhanced by metabotropic glutamate mGlu5 receptor co-stimulation. Taken together, our results suggest an important crosstalk between ATP and glutamate in inflammation. Pro-inflammatory effects mediated by purinergic ionotropic P2X7 receptor might be exacerbated by simultaneous exposure of microglia to ATP and glutamate, suggesting new pharmacological targets to modulate neuroinflammation.
Collapse
Affiliation(s)
- Mariangela Chisari
- Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Italy.
| | - Michele Barraco
- Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Italy; PhD Program in Neuroscience, University of Catania, Italy
| | - Claudio Bucolo
- Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Italy
| | - Lucia Ciranna
- Dept. of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Maria Angela Sortino
- Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Italy
| |
Collapse
|
6
|
Lin CL, Zheng TL, Tsou SH, Chang HM, Tseng LH, Yu CH, Hung CS, Ho YJ. Amitriptyline Improves Cognitive and Neuronal Function in a Rat Model that Mimics Dementia with Lewy Bodies. Behav Brain Res 2022; 435:114035. [PMID: 35926562 DOI: 10.1016/j.bbr.2022.114035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/09/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022]
Abstract
Dementia with Lewy bodies (DLB), a highly prevalent neurodegenerative disorder, causes motor and cognitive deficits. The main pathophysiologies of DLB are glutamate excitotoxicity and accumulation of Lewy bodies comprising α-synuclein (α-syn) and β-amyloid (Aβ). Amitriptyline (AMI) promotes expression of glutamate transporter-1 and glutamate reuptake. In this study, we measured the effects of AMI on behavioral and neuronal function in a DLB rat model. We used rivastigmine (RIVA) as a positive control. To establish the DLB rat model, male Wistar rats were stereotaxically injected with recombinant adenoassociated viral vector with the SNCA gene (10μg/10μL) and Aβ (5μg/2.5μL) into the left ventricle and prefrontal cortex, respectively. AMI (10mg/kg/day, i.p.), RIVA (2mg/kg/day, i.p.), or saline was injected intraperitoneally after surgery. From the 29th day, behavioral tests were performed to evaluate the motor and cognitive functions of the rats. Immunohistochemical staining was used to assess neuronal changes. We measured the α-syn level, number of newborn cells, and neuronal density in the hippocampus and in the nigrostriatal dopaminergic system. The DLB group exhibited deficit in object recognition. Both the AMI and RIVA treatments reversed these deficits. Histologically, the DLB rats exhibited cell loss in the substantia nigra pars compacta and in the hippocampal CA1 area. AMI reduced this cell loss, but RIVA did not. In addition, the DLB rats exhibited a lower number of newborn cells and higher α-syn levels in the dentate gyrus (DG). AMI did not affect α-syn accumulation but recovered neurogenesis in the DG of the rats, whereas RIVA reversed the α-syn accumulation but did not affect neurogenesis in the rats. We suggest that AMI may have potential for use in the treatment of DLB.
Collapse
Affiliation(s)
- Chih-Li Lin
- Institute of Medicine, Department of Medical Research, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC
| | - Ting-Lin Zheng
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC
| | - Sing-Hua Tsou
- Institute of Medicine, Department of Medical Research, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC
| | - Hung-Ming Chang
- Department of Anantomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - Li-Ho Tseng
- Graduate School of Environmental Management, Tajen University, Pingtung 907, Taiwan, ROC
| | - Ching-Han Yu
- Department of Pysiology, School of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC.
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei 10581, Taiwan, ROC.
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC.
| |
Collapse
|
7
|
Budgett RF, Bakker G, Sergeev E, Bennett KA, Bradley SJ. Targeting the Type 5 Metabotropic Glutamate Receptor: A Potential Therapeutic Strategy for Neurodegenerative Diseases? Front Pharmacol 2022; 13:893422. [PMID: 35645791 PMCID: PMC9130574 DOI: 10.3389/fphar.2022.893422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 01/13/2023] Open
Abstract
The type 5 metabotropic glutamate receptor, mGlu5, has been proposed as a potential therapeutic target for the treatment of several neurodegenerative diseases. In preclinical neurodegenerative disease models, novel allosteric modulators have been shown to improve cognitive performance and reduce disease-related pathology. A common pathological hallmark of neurodegenerative diseases is a chronic neuroinflammatory response, involving glial cells such as astrocytes and microglia. Since mGlu5 is expressed in astrocytes, targeting this receptor could provide a potential mechanism by which neuroinflammatory processes in neurodegenerative disease may be modulated. This review will discuss current evidence that highlights the potential of mGlu5 allosteric modulators to treat neurodegenerative diseases, including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Furthermore, this review will explore the role of mGlu5 in neuroinflammatory responses, and the potential for this G protein-coupled receptor to modulate neuroinflammation.
Collapse
Affiliation(s)
- Rebecca F Budgett
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | - Sophie J Bradley
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Sosei Heptares, Cambridge, United Kingdom
| |
Collapse
|
8
|
Azam S, Jakaria M, Kim J, Ahn J, Kim IS, Choi DK. Group I mGluRs in Therapy and Diagnosis of Parkinson’s Disease: Focus on mGluR5 Subtype. Biomedicines 2022; 10:biomedicines10040864. [PMID: 35453614 PMCID: PMC9032558 DOI: 10.3390/biomedicines10040864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs; members of class C G-protein-coupled receptors) have been shown to modulate excitatory neurotransmission, regulate presynaptic extracellular glutamate levels, and modulate postsynaptic ion channels on dendritic spines. mGluRs were found to activate myriad signalling pathways to regulate synapse formation, long-term potentiation, autophagy, apoptosis, necroptosis, and pro-inflammatory cytokines release. A notorious expression pattern of mGluRs has been evident in several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and schizophrenia. Among the several mGluRs, mGluR5 is one of the most investigated types of considered prospective therapeutic targets and potential diagnostic tools in neurodegenerative diseases and neuropsychiatric disorders. Recent research showed mGluR5 radioligands could be a potential tool to assess neurodegenerative disease progression and trace respective drugs’ kinetic properties. This article provides insight into the group I mGluRs, specifically mGluR5, in the progression and possible therapy for PD.
Collapse
Affiliation(s)
- Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (S.A.); (M.J.); (J.K.); (J.A.)
| | - Md. Jakaria
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (S.A.); (M.J.); (J.K.); (J.A.)
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - JoonSoo Kim
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (S.A.); (M.J.); (J.K.); (J.A.)
| | - Jaeyong Ahn
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (S.A.); (M.J.); (J.K.); (J.A.)
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
- Correspondence: (I.-S.K.); (D.-K.C.); Tel.: +82-43-840-3905 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.)
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (S.A.); (M.J.); (J.K.); (J.A.)
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
- Correspondence: (I.-S.K.); (D.-K.C.); Tel.: +82-43-840-3905 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.)
| |
Collapse
|
9
|
Prevention of L-Dopa-Induced Dyskinesias by MPEP Blockade of Metabotropic Glutamate Receptor 5 Is Associated with Reduced Inflammation in the Brain of Parkinsonian Monkeys. Cells 2022; 11:cells11040691. [PMID: 35203338 PMCID: PMC8870609 DOI: 10.3390/cells11040691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Proinflammatory markers were found in brains of Parkinson’s disease (PD) patients. After years of L-Dopa symptomatic treatment, most PD patients develop dyskinesias. The relationship between inflammation and L-Dopa-induced dyskinesias (LID) is still unclear. We previously reported that MPEP (a metabotropic glutamate receptor 5 antagonist) reduced the development of LID in de novo MPTP-lesioned monkeys. We thus investigated if MPEP reduced the brain inflammatory response in these MPTP-lesioned monkeys and the relationship to LID. The panmacrophage/microglia marker Iba1, the phagocytosis-related receptor CD68, and the astroglial protein GFAP were measured by Western blots. The L-Dopa-treated dyskinetic MPTP monkeys had increased Iba1 content in the putamen, substantia nigra, and globus pallidus, which was prevented by MPEP cotreatment; similar findings were observed for CD68 contents in the putamen and globus pallidus. There was a strong positive correlation between dyskinesia scores and microglial markers in these regions. GFAP contents were elevated in MPTP + L-Dopa-treated monkeys among these brain regions and prevented by MPEP in the putamen and subthalamic nucleus. In conclusion, these results showed increased inflammatory markers in the basal ganglia associated with LID and revealed that MPEP inhibition of glutamate activity reduced LID and levels of inflammatory markers.
Collapse
|
10
|
Fan Y, Han J, Zhao L, Wu C, Wu P, Huang Z, Hao X, Ji Y, Chen D, Zhu M. Experimental Models of Cognitive Impairment for Use in Parkinson's Disease Research: The Distance Between Reality and Ideal. Front Aging Neurosci 2021; 13:745438. [PMID: 34912207 PMCID: PMC8667076 DOI: 10.3389/fnagi.2021.745438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Cognitive impairment is one of the key non-motor symptoms of PD, affecting both mortality and quality of life. However, there are few experimental studies on the pathology and treatments of PD with mild cognitive impairment (PD-MCI) and PD dementia (PDD) due to the lack of representative models. To identify new strategies for developing representative models, we systematically summarized previous studies on PD-MCI and PDD and compared differences between existing models and diseases. Our initial search identified 5432 articles, of which 738 were duplicates. A total of 227 articles met our inclusion criteria and were included in the analysis. Models fell into three categories based on model design: neurotoxin-induced, transgenic, and combined. Although the neurotoxin-induced experimental model was the most common type that was used during every time period, transgenic and combined experimental models have gained significant recent attention. Unfortunately, there remains a big gap between ideal and actual experimental models. While each model has its own disadvantages, there have been tremendous advances in the development of PD models of cognitive impairment, and almost every model can verify a hypothesis about PD-MCI or PDD. Finally, our proposed strategies for developing novel models are as follows: a set of plans that integrate symptoms, biochemistry, neuroimaging, and other objective indicators to judge and identify that the novel model plays a key role in new strategies for developing representative models; novel models should simulate different clinical features of PD-MCI or PDD; inducible α-Syn overexpression and SH-SY5Y-A53T cellular models are good candidate models of PD-MCI or PDD.
Collapse
Affiliation(s)
- Yaohua Fan
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jiajun Han
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijun Zhao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chunxiao Wu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peipei Wu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zifeng Huang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaoqian Hao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - YiChun Ji
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dongfeng Chen
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Meiling Zhu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Gu L, Luo WY, Xia N, Zhang JN, Fan JK, Yang HM, Wang MC, Zhang H. Upregulated mGluR5 induces ER stress and DNA damage by regulating the NMDA receptor subunit NR2B. J Biochem 2021; 171:349-359. [PMID: 34908130 DOI: 10.1093/jb/mvab140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/06/2021] [Indexed: 11/12/2022] Open
Abstract
Dysfunction caused by mGluR5 expression or activation is an important mechanism in the development of Parkinson's disease (PD). Early clinical studies on mGluR5 negative allosteric modulators have shown some limitations. It is therefore necessary to find a more specific approach to block mGluR5-mediated neurotoxicity. Here, we determined the role of NMDA receptor subunit NR2B in mGluR5-mediated ER stress and DNA damage. In vitro study, rotenone-induced ER stress and DNA damage were accompanied by an increase in mGluR5 expression, and overexpressed or activated mGluR5 with agonist CHPG induced ER stress and DNA damage, while blocking mGluR5 with antagonist MPEP alleviated the effect. Furthermore, the damage caused by CHPG was blocked by NMDA receptor antagonist MK-801. Additionally, rotenone or CHPG increased the p-Src and p-NR2B, which was inhibited by MPEP. Blocking p-Src or NR2B with PP2 or CP101,606 alleviated CHPG-induced ER stress and DNA damage. Overactivation of mGluR5 accompanied with the increase of p-Src and p-NR2B in the ER stress and DNA damage was found in rotenone-induced PD rat model. These findings suggest a new mechanism wherein mGluR5 induces ER stress and DNA damage through the NMDA receptor and propose NR2B as the molecular target for therapeutic strategy for PD.
Collapse
Affiliation(s)
- Li Gu
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Wen-Yuan Luo
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ning Xia
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.,Department of neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jian-Nan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Jing-Kai Fan
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hui-Min Yang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Meng-Chen Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
12
|
Li HH, Lin PJ, Wang WH, Tseng LH, Tung H, Liu WY, Lin CL, Liu CH, Liao WC, Hung CS, Ho YJ. Treatment effects of the combination of ceftriaxone and valproic acid on neuronal and behavioural functions in a rat model of epilepsy. Exp Physiol 2021; 106:1814-1828. [PMID: 34086374 DOI: 10.1113/ep089624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/03/2021] [Indexed: 01/29/2023]
Abstract
NEW FINDINGS What is the central question of this study? Imbalance of activities between GABAergic and glutamatergic systems is involved in epilepsy. It is not known whether simultaneously increasing GABAergic and decreasing glutamatergic activity using valproic acid and ceftriaxone, respectively, leads to better seizure control. What is the central question of this study? Ceftriaxone suppressed seizure and cognitive deficits and restored neuronal density and the number of newborn cells in the hippocampus in a rat model of epilepsy. Combined treatment with ceftriaxone and valproic acid showed additive effects in seizure suppression. ABSTRACT The pathophysiology of epilepsy is typically considered as an imbalance between inhibitory GABA and excitatory glutamate neurotransmission. Valproic acid (Val), a GABA agonist, is one of the first-line antiepileptic drugs in the treatment of epilepsy, but it exhibits adverse effects. Ceftriaxone (CEF) elevates expression of glutamate transporter-1, enhances the reuptake of synaptic glutamate, increases the number of newborn cells and exhibits neuroprotective effects in animal studies. In this study, we evaluated effects of the combination of CEF and Val on behavioural and neuronal measures in a rat epilepsy model. Male Wistar rats were injected i.p. with pentylenetetrazol (35 mg/kg, every other day for 13 days) to induce the epilepsy model. Ceftriaxone (10 or 50 mg/kg), Val (50 or 100 mg/kg) or the combination of CEF and Val were injected daily after the fourth pentylenetetrazol injection for seven consecutive days. Epileptic rats exhibited seizure and impairments in motor and cognitive functions. Treatment with CEF and Val reduced the seizure and enhanced motor and cognitive functions in a dose-dependent manner. The combination of CEF (10 mg/kg) and Val (50 mg/kg) improved behaviours considerably. Histologically, compared with control animals, epileptic rats exhibited lower neuronal density and a reduction in hippocampal newborn cells but higher apoptosis in the basolateral amygdala, all of which were restored by the treatment with CEF, Val or the combination of CEF and Val. The study findings demonstrated that the combination of low doses of CEF and Val has beneficial effects on seizure suppression, neuroprotection and improvement in motor and cognitive functions in epilepsy.
Collapse
Affiliation(s)
- Hsin-Hua Li
- Department of Medical Research, Institute of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Pin-Jiun Lin
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Wei-Han Wang
- Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Li-Ho Tseng
- Graduate School of Environmental Management, Tajen University, Pingtung, Taiwan, Republic of China
| | - Hsin Tung
- Division of Epilepsy, Center of Faculty Development, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Wen-Yuan Liu
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Chih-Li Lin
- Department of Medical Research, Institute of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Chiung-Hui Liu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei, Taiwan, Republic of China
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| |
Collapse
|
13
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2020; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
14
|
Iovino L, Tremblay ME, Civiero L. Glutamate-induced excitotoxicity in Parkinson's disease: The role of glial cells. J Pharmacol Sci 2020; 144:151-164. [PMID: 32807662 DOI: 10.1016/j.jphs.2020.07.011] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamate transmission efficiency depends on the correct functionality and expression of a plethora of receptors and transporters, located both on neurons and glial cells. Of note, glutamate reuptake by dedicated transporters prevents its accumulation at the synapse as well as non-physiological spillover. Indeed, extracellular glutamate increase causes aberrant synaptic signaling leading to neuronal excitotoxicity and death. Moreover, extrasynaptic glutamate diffusion is strongly associated with glia reaction and neuroinflammation. Glutamate-induced excitotoxicity is mainly linked to an impaired ability of glial cells to reuptake and respond to glutamate, then this is considered a common hallmark in many neurodegenerative diseases, including Parkinson's disease (PD). In this review, we discuss the function of astrocytes and microglia in glutamate homeostasis, focusing on how glial dysfunction causes glutamate-induced excitotoxicity leading to neurodegeneration in PD.
Collapse
Affiliation(s)
- L Iovino
- Department of Biology, University of Padova, Italy
| | - M E Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, Canada
| | - L Civiero
- Department of Biology, University of Padova, Italy; IRCCS San Camillo Hospital, Venice, Italy.
| |
Collapse
|
15
|
Rahman MS, Yang J, Luan Y, Qiu Z, Zhang J, Lu H, Chen X, Liu Y. Attenuation of Acute Intracerebral Hemorrhage-Induced Microglial Activation and Neuronal Death Mediated by the Blockade of Metabotropic Glutamate Receptor 5 In Vivo. Neurochem Res 2020; 45:1230-1243. [PMID: 32140955 DOI: 10.1007/s11064-020-03006-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/21/2020] [Accepted: 02/29/2020] [Indexed: 12/12/2022]
Abstract
The activation of microglia in response to intracerebral hemorrhagic stroke is one of the principal components of the progression of this disease. It results in the formation of pro-inflammatory cytokines that lead to neuronal death, a structural deterioration that, in turn interferes with functional recovery. Metabotropic glutamate receptor 5 (mGluR5) is highly expressed in reactive microglia and is involved in the pathological processes of brain disorders, but its role in intracerebral hemorrhage (ICH) remains unknown. We hypothesized that mGluR5 regulates microglial activation and ICH maintenance. In this study, collagenase-induced ICH mice received a single intraperitoneal injection of the mGluR5 antagonist-, MTEP, or vehicle 2 h after injury. We found that acute ICH upregulated mGluR5 and microglial activation. mGluR5 was highly localized in reactive microglia in the peri-hematomal cortex and striatum on days 3 and 7 post-ICH. The MTEP-mediated pharmacological inhibition of mGluR5 in vivo resulted in the substantial attenuation of acute microglial activation and IL-6, and TNF-α release. We also showed that the blockade of mGluR5 markedly reduced cell apoptosis, and neurodegeneration and markedly elevated neuroprotection. Furthermore, the MTEP-mediated inhibition of mGluR5 significantly reduced the lesion volume and improved functional recovery. Taken together, our results demonstrate that ICH injury enhances mGluR5 expression in the acute and subacute stages and that mGluR5 is highly localized in reactive microglia. The blockade of mGluR5 reduces ICH-induced acute microglial activation, provides neuroprotection and promotes neurofunctional recovery after ICH. The inhibition of mGluR5 may be a relevant therapeutic target for intracerebral hemorrhagic stroke.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China.,Department of Anatomy and Histology, Patuakhali Science and Technology University, Dhaka, Bangladesh
| | - Jianbo Yang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Zhengguo Qiu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, Shaanxi, People's Republic of China
| | - Jianshui Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
16
|
Bian G, Liu J, Guo Y, Yang Y, Li L, Qiao H, Li W, Xu T, Zhang Q. Kv7.2 subunit-containing M-type potassium channels in the lateral habenula are involved in the regulation of working memory in parkinsonian rats. Neuropharmacology 2020; 168:108012. [PMID: 32067988 DOI: 10.1016/j.neuropharm.2020.108012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
Abstract
Although the lateral habenula (LHb) is involved in the regulation of multiple brain functions and this region expresses abundant M-type potassium channel (M-channel) subunits Kv7.2 and Kv7.3, the role of M-channels in regulating working memory is unclear, particularly in Parkinson's disease (PD). Here we tested the effects of activation and blockade of LHb M-channels on working memory by the T-maze rewarded alternation test in rats with unilateral 6-hydroxydopamine lesions of the substantia nigra compacta (SNc). The SNc lesion induced working memory impairment, increased the firing rate of LHb neurons, decreased dopamine (DA) level in the ventral medial prefrontal cortex (vmPFC) and reduced the expression of Kv7.2 subunit in the LHb. Intra-LHb injection of M-channel activator retigabine induced enhancement of working memory in SNc sham-lesioned and SNc-lesioned rats; conversely, the injection of M-channel blocker XE-991 impaired working memory in the two groups of rats. However, doses producing significant effects in SNc-lesioned rats were higher than those in SNc sham-lesioned rats. Further, intra-LHb injection of retigabine decreased the firing rate of LHb neurons and increased release of DA and serotonin (5-HT) in the vmPFC, while XE-991 increased the firing rate and decreased DA and 5-HT release in the two groups of rats. Compared with SNc sham-lesioned rats, the duration of M-channel activation and blockade action on the firing rate of the neurons and release of DA and 5-HT was significantly shortened in SNc-lesioned rats, which was consistent with reduced expression of Kv7.2 subunit in the LHb after lesioning the SNc. Collectively, these findings suggest involvement of LHb Kv7.2 subunit-containing M-channels in working memory impairment in SNc-lesioned rats, and that enhanced or impaired working memory after activation or blockade of M-channels in the LHb is related to the changes in the firing activity of LHb neurons and DA and 5-HT release in the vmPFC.
Collapse
Affiliation(s)
- Guanyun Bian
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yaxin Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Libo Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hongfei Qiao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wenjuan Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Tian Xu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qiaojun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
17
|
Ledonne A, Mercuri NB. On the Modulatory Roles of Neuregulins/ErbB Signaling on Synaptic Plasticity. Int J Mol Sci 2019; 21:ijms21010275. [PMID: 31906113 PMCID: PMC6981567 DOI: 10.3390/ijms21010275] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
Neuregulins (NRGs) are a family of epidermal growth factor-related proteins, acting on tyrosine kinase receptors of the ErbB family. NRGs play an essential role in the development of the nervous system, since they orchestrate vital functions such as cell differentiation, axonal growth, myelination, and synapse formation. They are also crucially involved in the functioning of adult brain, by directly modulating neuronal excitability, neurotransmission, and synaptic plasticity. Here, we provide a review of the literature documenting the roles of NRGs/ErbB signaling in the modulation of synaptic plasticity, focusing on evidence reported in the hippocampus and midbrain dopamine (DA) nuclei. The emerging picture shows multifaceted roles of NRGs/ErbB receptors, which critically modulate different forms of synaptic plasticity (LTP, LTD, and depotentiation) affecting glutamatergic, GABAergic, and DAergic synapses, by various mechanisms. Further, we discuss the relevance of NRGs/ErbB-dependent synaptic plasticity in the control of brain processes, like learning and memory and the known involvement of NRGs/ErbB signaling in the modulation of synaptic plasticity in brain’s pathological conditions. Current evidence points to a central role of NRGs/ErbB receptors in controlling glutamatergic LTP/LTD and GABAergic LTD at hippocampal CA3–CA1 synapses, as well as glutamatergic LTD in midbrain DA neurons, thus supporting that NRGs/ErbB signaling is essential for proper brain functions, cognitive processes, and complex behaviors. This suggests that dysregulated NRGs/ErbB-dependent synaptic plasticity might contribute to mechanisms underlying different neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, Santa Lucia Foundation, Via del Fosso di Fiorano, no 64, 00143 Rome, Italy;
- Correspondence: ; Tel.: +3906-501703160; Fax: +3906-501703307
| | - Nicola B. Mercuri
- Department of Experimental Neuroscience, Santa Lucia Foundation, Via del Fosso di Fiorano, no 64, 00143 Rome, Italy;
- Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier no 1, 00133 Rome, Italy
| |
Collapse
|
18
|
Foffani G, Trigo‐Damas I, Pineda‐Pardo JA, Blesa J, Rodríguez‐Rojas R, Martínez‐Fernández R, Obeso JA. Focused ultrasound in Parkinson's disease: A twofold path toward disease modification. Mov Disord 2019; 34:1262-1273. [DOI: 10.1002/mds.27805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Guglielmo Foffani
- CINACHospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU‐San Pablo Madrid Spain
- Hospital Nacional de Parapléjicos Toledo Spain
| | - Inés Trigo‐Damas
- CINACHospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU‐San Pablo Madrid Spain
- CIBERNEDInstituto de Salud Carlos III Madrid Spain
| | - José A. Pineda‐Pardo
- CINACHospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU‐San Pablo Madrid Spain
- CIBERNEDInstituto de Salud Carlos III Madrid Spain
| | - Javier Blesa
- CINACHospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU‐San Pablo Madrid Spain
- CIBERNEDInstituto de Salud Carlos III Madrid Spain
| | - Rafael Rodríguez‐Rojas
- CINACHospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU‐San Pablo Madrid Spain
- CIBERNEDInstituto de Salud Carlos III Madrid Spain
| | - Raul Martínez‐Fernández
- CINACHospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU‐San Pablo Madrid Spain
- CIBERNEDInstituto de Salud Carlos III Madrid Spain
| | - José A. Obeso
- CINACHospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU‐San Pablo Madrid Spain
- CIBERNEDInstituto de Salud Carlos III Madrid Spain
| |
Collapse
|
19
|
Luo WY, Xing SQ, Zhu P, Zhang CG, Yang HM, Van Halm-Lutterodt N, Gu L, Zhang H. PDZ Scaffold Protein CAL Couples with Metabotropic Glutamate Receptor 5 to Protect Against Cell Apoptosis and Is a Potential Target in the Treatment of Parkinson's Disease. Neurotherapeutics 2019; 16:761-783. [PMID: 31073978 PMCID: PMC6694344 DOI: 10.1007/s13311-019-00730-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Targeting mGluR5 has been an attractive strategy to modulate glutamate excitotoxicity for neuroprotection. Although human clinical trials using mGluR5 negative allosteric modulators (NAMs) have included some disappointments, recent investigations have added several more attractive small molecules to this field, providing a promise that the identification of more additional strategies to modulate mGluR5 activity might be potentially beneficial for the advancement of PD treatment. Here, we determined the role of the interacting partner CAL (cystic fibrosis transmembrane conductance regulator-associated ligand) in mGluR5-mediated protection in vitro and in vivo. In astroglial C6 cells, CAL deficiency blocked (S)-3, 5-dihydroxyphenylglycine (DHPG)-elicited p-AKT and p-ERK1/2, subsequently prevented group I mGluRs-mediated anti-apoptotic protection, which was blocked by receptor antagonist 1-aminoindan-1, 5-dicarboxylic acid (AIDA), and PI3K or MEK inhibitor LY294002 or U0126. In rotenone-treated MN9D cells, both CAL and mGluR5 expressions were decreased in a time- and dose-dependent manner, and the correlation between these 2 proteins was confirmed by lentivirus-delivered CAL overexpression and knockdown. Moreover, CAL coupled with mGluR5 upregulated mGluR5 protein expression by inhibition of ubiquitin-proteasome-dependent degradation to suppress mGluR5-mediated p-JNK and to protect against cell apoptosis. Additionally, CAL also inhibited rotenone-induced glutamate release to modulate mGluR5 activity. Furthermore, in the rotenone-induced rat model of PD, AAV-delivered CAL overexpression attenuated behavioral deficits and dopaminergic neuronal death, while CAL deficiency aggravated rotenone toxicity. On the other hand, the protective effect of the mGluR5 antagonist MPEP was weakened by knocking down CAL. In vivo experiments also confirmed that CAL inhibited ubiquitination-proteasome-dependent degradation to modulate mGluR5 expression and JNK phosphorylation. Our findings show that CAL protects against cell apoptosis via modulating mGluR5 activity, and may be a new molecular target for an effective therapeutic strategy for PD.
Collapse
Affiliation(s)
- Wen Yuan Luo
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Su Qian Xing
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Ping Zhu
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Chen Guang Zhang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China
| | - Hui Min Yang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Nicholas Van Halm-Lutterodt
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100069, China
- Department of Orthopaedics and Neurosurgery, Keck Medical Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Li Gu
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
20
|
Ho YJ, Shen MS, Tai CH, Li HH, Chen JH, Liao WC, Chiu PY, Lee IY, Lin CL, Hung CS. Use of Ceftriaxone in Treating Cognitive and Neuronal Deficits Associated With Dementia With Lewy Bodies. Front Neurosci 2019; 13:507. [PMID: 31178684 PMCID: PMC6543807 DOI: 10.3389/fnins.2019.00507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/02/2019] [Indexed: 01/08/2023] Open
Abstract
Dementia with Lewy bodies (DLB) is caused by accumulation of Lewy bodies, destruction of mitochondria, and excess of glutamate in synapses, which eventually leads to excitotoxicity, neurodegeneration, and cognitive impairments. Ceftriaxone (CEF) reduces excitotoxicity by increasing glutamate transporter 1 expression and glutamate reuptake. We investigated whether CEF can prevent cognitive decline and neurological deficits and increase neurogenesis in DLB rats. Male Wistar rats infused with viral vector containing human alpha-synuclein (α-syn) gene, SNCA, in the lateral ventricle were used as a rat model of DLB. CEF (100 mg/kg/day, i.p.) was injected in these rats for 27 days. The active avoidance test and object recognition test was performed. Finally, the brains of all the rats were immunohistochemically stained to measure α-syn, neuronal density, and newborn cells in the hippocampus and substantia nigra. The results revealed that DLB rats had learning and object recognition impairments and exhibited cell loss in the nigrostriatal dopaminergic system, and hippocampal CA1, and dentate gyrus (DG). Additionally, DLB rats had fewer newborn cells in the DG and substantia nigra pars reticulata and more α-syn immune-positive cells in the DG. Treatment with CEF improved cognitive function, reduced cell loss, and increased the number of newborn cells in the brain. To our knowledge, this is the first study showing that CEF prevents loss of neurogenesis in the brain of DLB rats. CEF may therefore has clinical potential for treating DLB.
Collapse
Affiliation(s)
- Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital - Chung Shan Medical University, Taichung, Taiwan
| | - Mei-Shiuan Shen
- Department of Psychology, Chung Shan Medical University Hospital - Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Hwei Tai
- Department of Neurology, College of Medicine, National Taiwan University Hospital - National Taiwan University, Taipei, Taiwan
| | - Hsin-Hua Li
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jian-Horng Chen
- School of Physical Therapy, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Chieh Liao
- Department of Anatomy - Department of Pediatrics, Faculty of Medicine, Chung Shan Medical University Hospital - Chung Shan Medical University, Taichung, Taiwan
| | - Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - I-Yen Lee
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Muddapu VR, Mandali A, Chakravarthy VS, Ramaswamy S. A Computational Model of Loss of Dopaminergic Cells in Parkinson's Disease Due to Glutamate-Induced Excitotoxicity. Front Neural Circuits 2019; 13:11. [PMID: 30858799 PMCID: PMC6397878 DOI: 10.3389/fncir.2019.00011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/05/2019] [Indexed: 01/04/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease associated with progressive and inexorable loss of dopaminergic cells in Substantia Nigra pars compacta (SNc). Although many mechanisms have been suggested, a decisive root cause of this cell loss is unknown. A couple of the proposed mechanisms, however, show potential for the development of a novel line of PD therapeutics. One of these mechanisms is the peculiar metabolic vulnerability of SNc cells compared to other dopaminergic clusters; the other is the SubThalamic Nucleus (STN)-induced excitotoxicity in SNc. To investigate the latter hypothesis computationally, we developed a spiking neuron network-model of SNc-STN-GPe system. In the model, prolonged stimulation of SNc cells by an overactive STN leads to an increase in ‘stress' variable; when the stress in a SNc neuron exceeds a stress threshold, the neuron dies. The model shows that the interaction between SNc and STN involves a positive-feedback due to which, an initial loss of SNc cells that crosses a threshold causes a runaway-effect, leading to an inexorable loss of SNc cells, strongly resembling the process of neurodegeneration. The model further suggests a link between the two aforementioned mechanisms of SNc cell loss. Our simulation results show that the excitotoxic cause of SNc cell loss might initiate by weak-excitotoxicity mediated by energy deficit, followed by strong-excitotoxicity, mediated by a disinhibited STN. A variety of conventional therapies were simulated to test their efficacy in slowing down SNc cell loss. Among them, glutamate inhibition, dopamine restoration, subthalamotomy and deep brain stimulation showed superior neuroprotective-effects in the proposed model.
Collapse
Affiliation(s)
| | - Alekhya Mandali
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - V Srinivasa Chakravarthy
- Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT-Madras, Chennai, India
| | | |
Collapse
|
22
|
Crowley EK, Nolan YM, Sullivan AM. Exercise as a therapeutic intervention for motor and non-motor symptoms in Parkinson's disease: Evidence from rodent models. Prog Neurobiol 2018; 172:2-22. [PMID: 30481560 DOI: 10.1016/j.pneurobio.2018.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/25/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterised by degeneration of dopaminergic neurons of the nigrostriatal pathway, which leads to the cardinal motor symptoms of the disease - tremor, rigidity and postural instability. A number of non-motor symptoms are also associated with PD, including cognitive impairment, mood disturbances and dysfunction of gastrointestinal and autonomic systems. Current therapies provide symptomatic relief but do not halt the disease process, so there is an urgent need for preventative strategies. Lifestyle interventions such as aerobic exercise have shown potential to lower the risk of developing PD and to alleviate both motor and non-motor symptoms. However, there is a lack of large-scale randomised clinical trials that have employed exercise in PD patients. This review will focus on the evidence from studies on rodent models of PD, for employing exercise as an intervention for both motor and non-motor symptoms.
Collapse
Affiliation(s)
- E K Crowley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Y M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - A M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
23
|
Ledonne A, Mercuri NB. mGluR1-Dependent Long Term Depression in Rodent Midbrain Dopamine Neurons Is Regulated by Neuregulin 1/ErbB Signaling. Front Mol Neurosci 2018; 11:346. [PMID: 30327588 PMCID: PMC6174199 DOI: 10.3389/fnmol.2018.00346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/04/2018] [Indexed: 11/22/2022] Open
Abstract
Increasing evidence demonstrates that the neurotrophic factor Neuregulin 1 (NRG1) and its receptors, ErbB tyrosine kinases, modulate midbrain dopamine (DA) transmission. We have previously reported that NRG1/ErbB signaling is essential for proper metabotropic glutamate receptors 1 (mGluR1) functioning in midbrain DA neurons, thus the functional interaction between ErbB receptors and mGluR1 regulates neuronal excitation and in vivo striatal DA release. While it is widely recognized that mGluR1 play a pivotal role in long-term modifications of synaptic transmission in several brain areas, specific mGluR1-dependent forms of synaptic plasticity in substantia nigra pars compacta (SNpc) DA neurons have not been described yet. Here, first we aimed to detect and characterize mGluR1-dependent glutamatergic long-term depression (LTD) in SNpc DA neurons. Second, we tested the hypothesis that endogenous ErbB signaling, by affecting mGluR1, fine-tunes glutamatergic synaptic plasticity in DA cells. We found that either pharmacological or synaptic activation of mGluR1 causes an LTD of AMPAR-mediated transmission in SNpc DA neurons from mice and rat slices, which is reliant on endogenous NRG1/ErbB signaling. Indeed, LTD is counteracted by a broad spectrum ErbB inhibitor. Moreover, the intracellular injection of pan-ErbB- or ErbB2 inhibitors inside DA neurons reduces mGluR1-dependent LTD, suggesting an involvement of ErbB2/ErbB4-containing receptors. Interestingly, exogenous NRG1 fosters LTD expression during minimal mGluRI activation. These results enlarge our cognizance on mGluR1 relevance in the induction of a novel form of long-term synaptic plasticity in SNpc DA neurons and describe a new NRG1/ErbB-dependent mechanism shaping glutamatergic transmission in DA cells. This might have important implications either in DA-dependent behaviors and learning/memory processes or in DA-linked diseases.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
24
|
Ceftriaxone Treatment for Neuronal Deficits: A Histological and MEMRI Study in a Rat Model of Dementia with Lewy Bodies. Behav Neurol 2018; 2018:4618716. [PMID: 30154934 PMCID: PMC6092970 DOI: 10.1155/2018/4618716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/22/2018] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is characterized by neuronal deficits and α-synuclein inclusions in the brain. Ceftriaxone (CEF), a β-lactam antibiotic, has been suggested as a therapeutic agent in several neurodegenerative disorders for its abilities to counteract glutamate-mediated toxicity and to block α-synuclein polymerization. By using manganese-enhanced magnetic resonance imaging (MEMRI) and immunohistochemistry, we measured the effects of CEF on neuronal activity and α-synuclein accumulation in the brain in a DLB rat model. The data showed that CEF corrected neuronal density and activity in the hippocampal CA1 area, suppressed hyperactivity in the subthalamic nucleus, and reduced α-synuclein accumulation, indicating that CEF is a potential agent in the treatment of DLB.
Collapse
|
25
|
Huang YY, Zhang Q, Zhang JN, Zhang YN, Gu L, Yang HM, Xia N, Wang XM, Zhang H. Triptolide up-regulates metabotropic glutamate receptor 5 to inhibit microglia activation in the lipopolysaccharide-induced model of Parkinson's disease. Brain Behav Immun 2018; 71:93-107. [PMID: 29649522 DOI: 10.1016/j.bbi.2018.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/27/2018] [Accepted: 04/07/2018] [Indexed: 12/11/2022] Open
Abstract
Metabotropic glutamate receptor (mGlu)5 regulates microglia activation, which contributes to inflammation. However, the role of mGlu5 in neuroinflammation associated with Parkinson's disease (PD) remains unclear. Triptolide (T10) exerts potent immunosuppressive and anti-inflammatory effects and protects neurons by inhibiting microglia activation. In this study, we investigated the role of mGlu5 in the anti-inflammatory effect of T10 in a lipopolysaccharide (LPS)-induced PD model. In cultured BV2 cells and primary microglia, blocking mGlu5 activity or knocking down its expression abolished T10-inhibited release of proinflammatory cytokines induced by LPS. Moreover, T10 up-regulated mGlu5 expression decreased by LPS through enhancing mRNA expression and protein stability. T10 also reversed the reduction in mGlu5 membrane localization and modulated receptor-mediated mitogen-activated protein kinase activity induced by LPS. Pharmacological inhibition of signaling molecules increased nitric oxide level and inducible nitric oxide synthase (iNOS), tumor necrosis factor-α, and interleukin (IL)-1β and -6 transcript levels that were downregulated by treatment with T10. Consistent with these in vitro findings, blocking mGlu5 attenuated the anti-inflammatory effects of T10 in an LPS-induced PD model and blocked the decreases in the number and morphology of ionized calcium binding adaptor molecule 1-positive microglia and LPS-induced iNOS protein expression caused by T10 treatment. Besides, mGlu5 mediated the effect of T10 on microglia-induced astrocyte activation in vitro and in vivo. The findings provide evidence for a novel mechanism by which mGlu5 regulates T10-inhibited microglia activation via modulating protein expression of the receptor and its intracellular signaling. The study might contribute to the biological effects of Chinese herbs as an approach for protecting against neurotoxicity in PD.
Collapse
Affiliation(s)
- Yi-Ying Huang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Qian Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Jian-Nan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Ya-Nan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Li Gu
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Hui-Min Yang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Ning Xia
- Burke Medical Research Institute, Weill Cornell Medicine, White Plains, NY, 10605, USA
| | - Xiao-Min Wang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
26
|
Beneventano M, Spampinato SF, Merlo S, Chisari M, Platania P, Ragusa M, Purrello M, Nicoletti F, Sortino MA. Shedding of Microvesicles from Microglia Contributes to the Effects Induced by Metabotropic Glutamate Receptor 5 Activation on Neuronal Death. Front Pharmacol 2017; 8:812. [PMID: 29170640 PMCID: PMC5684115 DOI: 10.3389/fphar.2017.00812] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/26/2017] [Indexed: 01/08/2023] Open
Abstract
Metabotropic glutamate (mGlu) receptor 5 is involved in neuroinflammation and has been shown to mediate reduced inflammation and neurotoxicity and to modify microglia polarization. On the other hand, blockade of mGlu5 receptor results in inhibition of microglia activation. To dissect this controversy, we investigated whether microvesicles (MVs) released from microglia BV2 cells could contribute to the communication between microglia and neurons and whether this interaction was modulated by mGlu5 receptor. Activation of purinergic ionotropic P2X7 receptor with the stable ATP analog benzoyl-ATP (100 μM) caused rapid MVs shedding from BV2 cells. Ionic currents through P2X7 receptor increased in BV2 cells pretreated for 24 h with the mGlu5 receptor agonist CHPG (200 μM) as by patch-clamp recording. This increase was blunted when microglia cells were activated by exposure to lipopolysaccharide (LPS; 0.1 μg/ml for 6 h). Accordingly, a greater amount of MVs formed after CHPG treatment, an effect prevented by the mGlu5 receptor antagonist MTEP (100 μM), as measured by expression of flotillin, a membrane protein enriched in MVs. Transferred MVs were internalized by SH-SY5Y neurons where they did not modify neuronal death induced by a low concentration of rotenone (0.1 μM for 24 h), but significantly increased rotenone neurotoxicity when shed from CHPG-treated BV2 cells. miR146a was increased in CHPG-treated MVs, an effect concealed in MVs from LPS-activated BV2 cells that showed per se an increase in miRNA146a levels. The present data support a role for microglia-shed MVs in mGlu5-mediated modulation of neuronal death and identify miRNAs as potential critical mediators of this interaction.
Collapse
Affiliation(s)
- Martina Beneventano
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Simona F Spampinato
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sara Merlo
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariangela Chisari
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Paola Platania
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Michele Purrello
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.,I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Maria Angela Sortino
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
27
|
Du CX, Liu J, Guo Y, Zhang L, Zhang QJ. Lesions of the lateral habenula improve working memory performance in hemiparkinsonian rats. Neurosci Lett 2017; 662:162-166. [PMID: 29054431 DOI: 10.1016/j.neulet.2017.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 11/19/2022]
Abstract
The lateral habenula (LHb) is an important structure involved in various brain functions, because it controls the activity of dopaminergic and serotonergic systems in the midbrain. The impairment of working memory commonly occurs in Parkinson's disease; however, it is not clear whether the LHb involves in the regulation of working memory in rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB). In this study, we found that the MFB lesions in rats decreased choice accuracy as measured by the T-maze rewarded alternation test compared to control rats, indicating the induction of working memory impairment, and decreased dopamine (DA) levels in the medial prefrontal cortex (mPFC), hippocampus and amygdala. Further, rats in the MFB and LHb lesion group showed increased choice accuracy compared to rats in the MFB lesion group, indicating the enhancement of working memory after lesioning the LHb. Neurochemical results found that lesions of the LHb increased DA levels in the mPFC, hippocampus and amygdala in the MFB and LHb lesion group, as well as serotonin (5-HT) level in the mPFC. These findings suggest that DA depletion plays a key role in working memory impairment, and lesions of the LHb improve working memory in the MFB-lesioned rats, which involves in increases in the levels of DA and 5-HT in the mPFC, hippocampus and amygdala. Additionally, the present results may have implications for improving our understanding of the neuropathology and/or treatment of PD.
Collapse
Affiliation(s)
- Cheng Xue Du
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Qiao Jun Zhang
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
28
|
Neuroprotective effects of ceftriaxone treatment on cognitive and neuronal deficits in a rat model of accelerated senescence. Behav Brain Res 2017; 330:8-16. [DOI: 10.1016/j.bbr.2017.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
|
29
|
Tangeretin inhibits neurodegeneration and attenuates inflammatory responses and behavioural deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease dementia in rats. Inflammopharmacology 2017; 25:471-484. [DOI: 10.1007/s10787-017-0348-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/31/2017] [Indexed: 12/28/2022]
|
30
|
Hsieh MH, Meng WY, Liao WC, Weng JC, Li HH, Su HL, Lin CL, Hung CS, Ho YJ. Ceftriaxone reverses deficits of behavior and neurogenesis in an MPTP-induced rat model of Parkinson's disease dementia. Brain Res Bull 2017; 132:129-138. [PMID: 28576659 DOI: 10.1016/j.brainresbull.2017.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/22/2017] [Accepted: 05/23/2017] [Indexed: 12/29/2022]
Abstract
Hyperactivity of the glutamatergic system is involved in excitotoxicity and neurodegeneration in Parkinson's disease (PD) so that glutamatergic modulation maybe a potential therapeutic target for PD. Ceftriaxone (CEF) has been reported to increase glutamate uptake by increasing glutamate transporter expression and has been demonstrated neuroprotective effects in animal study. The aim of this study was to determine the effects of CEF on behavior and neurogenesis in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model. MPTP was stereotaxically injected into the substantia nigra pars compacta (SNc) of male Wistar rats. Starting on the same day after MPTP lesioning (day 0), the rats were injected daily with either CEF or saline for 14days and underwent a T-maze test on days 8-10 and an object recognition test on days 12-14, then the brain was taken for histological evaluation on day 15. The results showed that MPTP lesioning resulted in decreased motor function, working memory, and object recognition and reduced neurogenesis in the substantial nigra and dentate gyrus of the hippocampus. These behavioral and neuronal changes were prevented by CEF treatment. To our knowledge, this is the first study showing that CEF prevents loss of neurogenesis in the brain of PD rats. CEF may therefore have clinical potential in the treatment of PD.
Collapse
Affiliation(s)
- Ming-Hong Hsieh
- Department of Psychiatry, Chung Shan Medical University Hospital, Department of Psychiatry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Wan-Yun Meng
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan, ROC
| | - Jun-Cheng Weng
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Hsin-Hua Li
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Hong-Lin Su
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan, ROC
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei 10341, Taiwan, ROC.
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| |
Collapse
|
31
|
Liu Y, Liu L, Ying XX, Wei WJ, Han C, Liu Y, Han CH, Leng AJ, Ma JY, Liu J. Dried Rehmannia root protects against glutamate-induced cytotoxity to PC12 cells through energy metabolism-related pathways. Neural Regen Res 2017; 12:1338-1346. [PMID: 28966650 PMCID: PMC5607830 DOI: 10.4103/1673-5374.213556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rehmannia has been shown to be clinically effective in treating neurodegenerative diseases; however, the neuroprotective mechanisms remain unclear. In this study, we established a model of neurodegenerative disease using PC12 cytotoxic injury induced by glutamate. The cells were treated with 20 mM glutamate in the absence or presence of water extracts of dried Rehmannia root of varying concentrations (70%, 50% and 30%). The different concentrations of Rehmannia water extract significantly increased the activity of glutamate-injured cells, reduced the release of lactate dehydrogenase, inhibited apoptosis, increased the concentrations of NADH, NAD and ATP in cells, ameliorated mitochondrial membrane potential, and reduced the levels of light chain 3. Taken together, our findings demonstrate that Rehmannia water extracts exert a cytoprotective effect against glutamate-induced PC12 cell injury via energy metabolism-related pathways.
Collapse
Affiliation(s)
- Yong Liu
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.,Department of Traditional Chinese Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Lei Liu
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xi-Xiang Ying
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Wen-Juan Wei
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Chao Han
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yang Liu
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Chun-Hui Han
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.,Traditional Chinese Medicine Pharmacy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ai-Jing Leng
- Traditional Chinese Medicine Pharmacy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jing-Yun Ma
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jing Liu
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
32
|
Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol Res 2017; 115:179-191. [DOI: 10.1016/j.phrs.2016.11.013] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
|
33
|
Bruno V, Caraci F, Copani A, Matrisciano F, Nicoletti F, Battaglia G. The impact of metabotropic glutamate receptors into active neurodegenerative processes: A "dark side" in the development of new symptomatic treatments for neurologic and psychiatric disorders. Neuropharmacology 2016; 115:180-192. [PMID: 27140693 DOI: 10.1016/j.neuropharm.2016.04.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/22/2016] [Accepted: 04/28/2016] [Indexed: 12/17/2022]
Abstract
Metabotropic glutamate (mGlu) receptor ligands are under clinical development for the treatment of CNS disorders with high social and economic burden, such as schizophrenia, major depressive disorder (MDD), and Parkinson's disease (PD), and are promising drug candidates for the treatment of Alzheimer's disease (AD). So far, clinical studies have shown symptomatic effects of mGlu receptor ligands, but it is unknown whether these drugs act as disease modifiers or, at the opposite end, they accelerate disease progression by enhancing neurodegeneration. This is a fundamental issue in the treatment of PD and AD, and is also an emerging theme in the treatment of schizophrenia and MDD, in which neurodegeneration is also present and contribute to disease progression. Moving from in vitro data and preclinical studies, we discuss the potential impact of drugs targeting mGlu2, mGlu3, mGlu4 and mGlu5 receptor ligands on active neurodegeneration associated with AD, PD, schizophrenia, and MDD. We wish to highlight that our final comments on the best drug candidates are not influenced by commercial interests or by previous or ongoing collaborations with drug companies. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Valeria Bruno
- Department of Physiology and Pharmacology, University Sapienza, 00185 Rome, Italy; I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy.
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; I.R.C.C.S. Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, 94018 Troina, Italy
| | - Agata Copani
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; National Research Council, Institute of Biostructure and Bioimaging (IBB-CNR), 95126 Catania, Italy
| | - Francesco Matrisciano
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University Sapienza, 00185 Rome, Italy; I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy
| | | |
Collapse
|
34
|
Litim N, Morissette M, Di Paolo T. Metabotropic glutamate receptors as therapeutic targets in Parkinson's disease: An update from the last 5 years of research. Neuropharmacology 2016; 115:166-179. [PMID: 27055772 DOI: 10.1016/j.neuropharm.2016.03.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
Disturbance of glutamate neurotransmission in Parkinson's disease (PD) and l-DOPA induced dyskinesia (LID) is well documented. This review focuses on advances during the past five years on pharmacological modulation of metabotropic glutamate (mGlu) receptors in relation to anti-parkinsonian activity, LID attenuation, and neuroprotection. Drug design and characterization have led to the development of orthosteric agonists binding the same site as glutamate and Positive and Negative Allosteric modulators (PAMs and NAMs) binding sites different from the orthosteric site and offering subtype selectivity. Inhibition of group I (mGlu1 and mGlu5) receptors with NAMs and activation of group II (mGlu2 and 3 receptors) and group III (mGlu 4, 7 and 8 receptors) with PAMs and orthosteric agonists have shown their potential to inhibit glutamate release and attenuate excitotoxicity. Earlier and recent studies have led to the development of mGlu5 receptors NAMs to reduce LID and for neuroprotection, mGlu3 receptor agonists for neuroprotection while mGlu4 receptor PAMs and agonists for antiparkinsonian effects and neuroprotection. Furthermore, homo- and heterodimers of mGlu receptors are documented and highlight the complexity of the functioning of these receptors. Research on partial allosteric modulators and biased mGlu receptor allosteric modulators offer new glutamatergic drugs with better therapeutic effects and less off target adverse activity. Thus these various mGlu receptor targets will enable the development of novel drugs with improved clinical effects for normalization of glutamate transmission, treat PD and LID relief. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Nadhir Litim
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada
| | - Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Canada; Faculty of Pharmacy, Laval University, Quebec City, Canada.
| |
Collapse
|
35
|
Weng JC, Tikhonova MA, Chen JH, Shen MS, Meng WY, Chang YT, Chen KH, Liang KC, Hung CS, Amstislavskaya TG, Ho YJ. Ceftriaxone prevents the neurodegeneration and decreased neurogenesis seen in a Parkinson's disease rat model: An immunohistochemical and MRI study. Behav Brain Res 2016; 305:126-39. [PMID: 26940602 DOI: 10.1016/j.bbr.2016.02.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/19/2016] [Accepted: 02/26/2016] [Indexed: 02/06/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) is a widely used technique for detecting neuronal activity in the brain of a living animal. Ceftriaxone (CEF) has been shown to have neuroprotective effects in neurodegenerative diseases. The present study was aimed at clarifying whether, in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) rat model, the known CEF-induced neuronal protection was accompanied by neurogenesis and decreased loss of neuronal activity. After MPTP lesioning (day 0), the rats were treated with CEF (100mg/kg/day, i.p.) or saline for 15 days. They were then injected with MnCl2 (40mg/kg, i.p.) on day 13 and underwent a brain MRI scan on day 14, then the brain was taken for histological evaluation on day 15. The results showed that MPTP lesioning resulted in decreased neuronal activity and density in the nigrostriatal dopaminergic (DAergic) system and the hippocampal CA1, CA3, and dentate gyrus (DG) areas and reduced neurogenesis in the DG, but in hyperactivity in the subthalamic nucleus (STN). These neuronal changes were prevented by CEF treatment. Positive correlations between MEMRI R1 values and neuronal density in the hippocampus were evidenced. Neuronal densities in the hippocampus and SNc were positively correlated. In addition, the R1 value of the STN showed a positive correlation with its neuronal activity but showed a negative correlation with the density of DAergic neurons in the SNc. Therefore, MEMRI R1 value may serve as a good indicator for PD severity and the effect of treatment. To our knowledge, this is the first study showing that CEF prevents loss of neuronal activity and neurogenesis in the brain of PD rats. CEF may therefore have clinical potential in the treatment of PD.
Collapse
Affiliation(s)
- Jun-Cheng Weng
- Department of Medical Imaging and Radiological Sciences, Department of Medical Imaging, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Maria A Tikhonova
- Laboratory of Experimental Models of Neurodegenerative Processes, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine", Novosibirsk 630117, Russia
| | - Jian-Horng Chen
- School of Physical Therapy, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Mei-Shiuan Shen
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Wan-Yun Meng
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Yen-Ting Chang
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Ke-Hsin Chen
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Keng-Chen Liang
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan, ROC; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei 10341, Taiwan, ROC.
| | - Tamara G Amstislavskaya
- Laboratory of Experimental Models of Emotional Pathology, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine", Novosibirsk 630117, Russia.
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| |
Collapse
|
36
|
Dutta D, Mohanakumar KP. Tea and Parkinson's disease: Constituents of tea synergize with antiparkinsonian drugs to provide better therapeutic benefits. Neurochem Int 2015; 89:181-90. [DOI: 10.1016/j.neuint.2015.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
|
37
|
Huang CK, Chang YT, Amstislavskaya TG, Tikhonova MA, Lin CL, Hung CS, Lai TJ, Ho YJ. Synergistic effects of ceftriaxone and erythropoietin on neuronal and behavioral deficits in an MPTP-induced animal model of Parkinson's disease dementia. Behav Brain Res 2015; 294:198-207. [PMID: 26296668 DOI: 10.1016/j.bbr.2015.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/09/2015] [Accepted: 08/13/2015] [Indexed: 12/26/2022]
Abstract
Both ceftriaxone (CEF) and erythropoietin (EPO) show neuroprotection and cognitive improvement in neurodegenerative disease. The present study was aimed at clarifying whether combined treatment with CEF and EPO (CEF+EPO) had superior neuroprotective and behavioral effects than treatment with CEF or EPO alone in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) rat model. The rats were injected with CEF (5 mg/kg/day), EPO (100 IU/kg/day), or CEF+EPO after MPTP lesioning and underwent the bar-test, T-maze test, and object recognition test, then the brains were taken for histological evaluation. MPTP lesioning resulted in deficits in working memory and in object recognition, but the cognitive deficits were markedly reduced or eliminated in rats treated with CEF or CEF+EPO, with the combination having a greater effect. Lesioning also caused neurodegeneration in the nigrostriatal dopaminergic system and the hippocampal CA1 area and these changes were reduced or eliminated by treatment with CEF, EPO, or CEF+EPO, with the combination having a greater effect than single treatment in the densities of DAergic terminals in the striatum and neurons in the hippocampal CA1 area. Thus, compared to treatment with CEF or EPO alone, combined treatment with CEF+EPO had a greater inhibitory effect on the lesion-induced behavioral and neuronal deficits. To our knowledge, this is the first study showing a synergistic effect of CEF and EPO on neuroprotection and improvement in cognition in a PD rat model. Combined CEF and EPO treatment may have clinical potential for the treatment of the dementia associated with PD.
Collapse
Affiliation(s)
- Chiu-Ku Huang
- Department of Pharmacy, Tainan Municipal Hospital, Tainan 701, Taiwan, ROC
| | - Yen-Ting Chang
- School of Psychology, Chung Shan Medical University, Taichung 402, Taiwan, ROC; Department of Psychiatry, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Tamara G Amstislavskaya
- Laboratory of Experimental Models of Emotional Pathology, Scientific Research Institute of Physiology and Basic Medicine, Federal State Budgetary Scientific Institution, Novosibirsk 630117, Russia
| | - Maria A Tikhonova
- Laboratory of Experimental Models of Neurodegenerative Processes, Scientific Research Institute of Physiology and Basic Medicine, Federal State Budgetary Scientific Institution, Novosibirsk 630117, Russia
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei 10341, Taiwan, ROC.
| | - Te-Jen Lai
- Department of Psychiatry, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC; Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| | - Ying-Jui Ho
- School of Psychology, Chung Shan Medical University, Taichung 402, Taiwan, ROC; Department of Psychiatry, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| |
Collapse
|
38
|
Lindemann L, Porter RH, Scharf SH, Kuennecke B, Bruns A, von Kienlin M, Harrison AC, Paehler A, Funk C, Gloge A, Schneider M, Parrott NJ, Polonchuk L, Niederhauser U, Morairty SR, Kilduff TS, Vieira E, Kolczewski S, Wichmann J, Hartung T, Honer M, Borroni E, Moreau JL, Prinssen E, Spooren W, Wettstein JG, Jaeschke G. Pharmacology of Basimglurant (RO4917523, RG7090), a Unique Metabotropic Glutamate Receptor 5 Negative Allosteric Modulator in Clinical Development for Depression. J Pharmacol Exp Ther 2015; 353:213-33. [DOI: 10.1124/jpet.114.222463] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
39
|
Possible role of GABA-B receptor modulation in MPTP induced Parkinson's disease in rats. ACTA ACUST UNITED AC 2015; 67:211-7. [DOI: 10.1016/j.etp.2014.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 10/23/2014] [Accepted: 12/04/2014] [Indexed: 01/27/2023]
|
40
|
Ceftriaxone prevents and reverses behavioral and neuronal deficits in an MPTP-induced animal model of Parkinson's disease dementia. Neuropharmacology 2014; 91:43-56. [PMID: 25499022 DOI: 10.1016/j.neuropharm.2014.11.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/05/2014] [Accepted: 11/28/2014] [Indexed: 01/24/2023]
Abstract
Glutamatergic hyperactivity plays an important role in the pathophysiology of Parkinson's disease (PD). Ceftriaxone increases expression of glutamate transporter 1 (GLT-1) and affords neuroprotection. This study was aimed at clarifying whether ceftriaxone prevented, or reversed, behavioral and neuronal deficits in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model. Male Wistar rats were injected daily with either ceftriaxone starting 5 days before or 3 days after MPTP lesioning (day 0) or saline and underwent a bar-test on days 1-7, a T-maze test on days 9-11, and an object recognition test on days 12-14, then the brains were taken for histological evaluation on day 15. Dopaminergic degeneration in the substantia nigra pars compacta and striatum was observed on days 3 and 15. Motor dysfunction in the bar test was observed on day 1, but disappeared by day 7. In addition, lesioning resulted in deficits in working memory in the T-maze test and in object recognition in the object recognition task, but these were not observed in rats treated pre- or post-lesioning with ceftriaxone. Lesioning also caused neurodegeneration in the hippocampal CA1 area and induced glutamatergic hyperactivity in the subthalamic nucleus, and both changes were suppressed by ceftriaxone. Increased GLT-1 expression and its co-localization with astrocytes were observed in the striatum and hippocampus in the ceftriaxone-treated animals. To our knowledge, this is the first study showing a relationship between ceftriaxone-induced GLT-1 expression, neuroprotection, and improved cognition in a PD rat model. Ceftriaxone may have clinical potential for the prevention and treatment of dementia associated with PD.
Collapse
|
41
|
Li LB, Zhang L, Sun YN, Han LN, Wu ZH, Zhang QJ, Liu J. Activation of serotonin2A receptors in the medial septum-diagonal band of Broca complex enhanced working memory in the hemiparkinsonian rats. Neuropharmacology 2014; 91:23-33. [PMID: 25486618 DOI: 10.1016/j.neuropharm.2014.11.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/11/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
Abstract
Serotonin2A (5-HT2A) receptors are highly expressed in the medial septum-diagonal band of Broca complex (MS-DB), especially in parvalbumin (PV)-positive neurons linked to hippocampal theta rhythm, which is involved in cognition. Cognitive impairments commonly occur in Parkinson's disease. Here we performed behavioral, electrophysiological, neurochemical and immunohistochemical studies in rats with complete unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB) to assess the importance of dopamine (DA) depletion and MS-DB 5-HT2A receptors for working memory. The MFB lesions resulted in working memory impairment and decreases in firing rate and density of MS-DB PV-positive neurons, peak frequency of hippocampal theta rhythm, and DA levels in septohippocampal system and medial prefrontal cortex (mPFC) compared to control rats. Intra-MS-DB injection of high affinity 5-HT2A receptor agonist TCB-2 enhanced working memory, increased firing rate of PV-positive neurons and peak frequency of hippocampal theta rhythm, elevated DA levels in the hippocampus and mPFC, and decreased 5-HT level in the hippocampus in control and lesioned rats. Compared to control rats, the duration of the excitatory effect produced by TCB-2 on the firing rate of PV-positive neurons was markedly shortened in lesioned rats, indicating dysfunction of 5-HT2A receptors. These findings suggest that unilateral lesions of the MFB in rats induced working memory deficit, and activation of MS-DB 5-HT2A receptors enhanced working memory, which may be due to changes in the activity of septohippocampal network and monoamine levels in the hippocampus and mPFC.
Collapse
Affiliation(s)
- Li-Bo Li
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yi-Na Sun
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ling-Na Han
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhong-Heng Wu
- Department of Rehabilitation Medicine, the Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Qiao-Jun Zhang
- Department of Rehabilitation Medicine, the Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
42
|
Kim JY, Son MH, Choi K, Baek DJ, Ko MK, Lim EJ, Pae AN, Keum G, Lee JK, Cho YS, Choo H, Lee YW, Moon BS, Lee BC, Lee HY, Min SJ. Synthesis and In vivo Evaluation of 5-Methoxy-2-(phenylethynyl)quinoline (MPEQ) and [11C]MPEQ Targeting Metabotropic Glutamate Receptor 5 (mGluR5). B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.8.2304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Activation of mGluR5 attenuates NMDA-induced neurotoxicity through disruption of the NMDAR-PSD-95 complex and preservation of mitochondrial function in differentiated PC12 cells. Int J Mol Sci 2014; 15:10892-907. [PMID: 24941251 PMCID: PMC4100187 DOI: 10.3390/ijms150610892] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/16/2014] [Accepted: 05/30/2014] [Indexed: 01/05/2023] Open
Abstract
Glutamate-mediated toxicity is implicated in various neuropathologic conditions, and activation of ionotropic and metabotropic glutamate receptors is considered to be the most important mechanism. It has been reported that pharmacological saturation of metabotropic glutamate receptors (mGluRs) can facilitate N-methyl-d-aspartate receptor (NMDAR) related signaling cascades, but the mechanism leading to mGluR-NMDAR interactions in excitotoxic neuronal injury has remained unidentified. In the present study, we investigated the role of mGluR5 in the regulation of N-methyl-d-aspartate (NMDA)-induced excitotoxicity in differentiated PC12 cells. We found that activation of mGluR5 with the specific agonist R,S-2-chloro-5-hydroxyphenylglycine (CHPG) increased cell viability and inhibited lactate dehydrogenase (LDH) release in a dose-dependent manner. CHPG also inhibited an increase in the Bax/Bcl-2 ratio, attenuated cleavage of caspase-9 and caspase-3, and reduced apoptotic cell death after NMDA treatment. The NMDA-induced mitochondrial dysfunction, as indicated by mitochondrial reactive oxygen species (ROS) generation, collapse of mitochondrial membrane potential (MMP), and cytochrome c release, was also partly prevented by CHPG treatment. Furthermore, CHPG blocked the NMDA-induced interaction of NMDAR with postsynaptic density protein-95 (PSD-95), but had no effects on intracellular calcium concentrations. All these results indicated that activation of mGluR5 protects differentiated PC12 cells from NMDA-induced neuronal excitotoxicity by disrupting NMDAR-PSD-95 interaction, which might be an ideal target for investigating therapeutic strategies in various neurological diseases where excitotoxicity may contribute to their pathology.
Collapse
|
44
|
Overk CR, Cartier A, Shaked G, Rockenstein E, Ubhi K, Spencer B, Price DL, Patrick C, Desplats P, Masliah E. Hippocampal neuronal cells that accumulate α-synuclein fragments are more vulnerable to Aβ oligomer toxicity via mGluR5--implications for dementia with Lewy bodies. Mol Neurodegener 2014; 9:18. [PMID: 24885390 PMCID: PMC4041038 DOI: 10.1186/1750-1326-9-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In dementia with Lewy bodies (DLB) abnormal interactions between α-synuclein (α-syn) and beta amyloid (Aβ) result in selective degeneration of neurons in the neocortex, limbic system and striatum. However, factors rendering these neurons selectively vulnerable have not been fully investigated. The metabotropic glutamate receptor 5 (mGluR5) has been shown to be up regulated in DLB and might play a role as a mediator of the neurotoxic effects of Aβ and α-syn in vulnerable neuronal populations. In this context, the main objective of the present study was to investigate the role of mGluR5 as a mediator of the neurotoxic effects of α-syn and Aβ in the hippocampus. RESULTS We generated double transgenic mice over-expressing amyloid precursor protein (APP) and α-syn under the mThy1 cassette and investigated the relationship between α-syn cleavage, Aβ, mGluR5 and neurodegeneration in the hippocampus. We found that compared to the single tg mice, the α-syn/APP tg mice displayed greater accumulation of α-syn and mGluR5 in the CA3 region of the hippocampus compared to the CA1 and other regions. This was accompanied by loss of CA3 (but not CA1) neurons in the single and α-syn/APP tg mice and greater loss of MAP 2 and synaptophysin in the CA3 in the α-syn/APP tg. mGluR5 gene transfer using a lentiviral vector into the hippocampus CA1 region resulted in greater α-syn accumulation and neurodegeneration in the single and α-syn/APP tg mice. In contrast, silencing mGluR5 with a lenti-shRNA protected neurons in the CA3 region of tg mice. In vitro, greater toxicity was observed in primary hippocampal neuronal cultures treated with Aβ oligomers and over-expressing α-syn; this effect was attenuated by down-regulating mGluR5 with an shRNA lentiviral vector. In α-syn-expressing neuronal cells lines, Aβ oligomers promoted increased intracellular calcium levels, calpain activation and α-syn cleavage resulting in caspase-3-dependent cell death. Treatment with pharmacological mGluR5 inhibitors such as 2-Methyl-6-(phenylethynyl)pyridine (MPEP) and 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) attenuated the toxic effects of Aβ in α-syn-expressing neuronal cells. CONCLUSIONS Together, these results support the possibility that vulnerability of hippocampal neurons to α-syn and Aβ might be mediated via mGluR5. Moreover, therapeutical interventions targeting mGluR5 might have a role in DLB.
Collapse
Affiliation(s)
- Cassia R Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Anna Cartier
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Gideon Shaked
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Kiren Ubhi
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Brian Spencer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Christina Patrick
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Paula Desplats
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
45
|
Ho SC, Hsu CC, Yu CH, Huang WN, Tikhonova MA, Ho MC, Hung CS, Amstislavskaya TG, Ho YJ. Measuring attention in a Parkinson's disease rat model using the 5-arm maze test. Physiol Behav 2014; 130:176-81. [PMID: 24690450 DOI: 10.1016/j.physbeh.2014.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
Twenty to thirty percent of patients with Parkinson's disease (PD) suffer from not only motor disorder, but also symptoms of dementia, named Parkinson's disease dementia (PDD). Cognitive deficits in PDD include memory, recognition, and attention. Although patients with PDD show fluctuation of internal attention when taking an attentional test, they perform better when provided with an external cue, indicating that they have normal external attention. We examined visuospatial attention in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD animal model using the 5-arm maze test. After an 8-day training period, followed by a 2-day pre-lesion test in the 5-arm maze, male Wistar rats received a microinfusion of MPTP into the substantia nigra pars compacta, while controls underwent a sham operation procedure. Nine days after MPTP lesioning, the rats underwent an open field test, followed by a 2-day post-lesion test in the maze. The results showed that: (1) no motor impairment was observed 9 days after MPTP lesioning; and (2) in the post-lesion 5-arm maze test, cue illumination lasting 0.5s resulted in a decrease in the percentage of correct responses compared to a 2 second cue in both the sham-operated and MPTP-lesioned groups and no difference was observed between these two groups. As far as we are aware, this is the first study examining visuospatial attention in the PD rat model using the 5-arm maze test. These results suggest that, as in patients with PDD, MPTP-induced PD rats show normal external attention function.
Collapse
Affiliation(s)
- Shih-Chun Ho
- School of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taiwan, ROC
| | - Chih-Chuan Hsu
- Department of Pediatrics, Tungs' Taichung Metrohabor Hospital, Taiwan, ROC
| | - Ching-Han Yu
- Department of Physiology, School of Medicine, Chung Shan Medical University, Taiwan, ROC
| | - Wen-Nung Huang
- School of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taiwan, ROC
| | - Maria A Tikhonova
- Laboratory of Biological Psychiatry, State Research Institute of Physiology and Fundamental Medicine, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, Russia
| | - Ming-Chou Ho
- School of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taiwan, ROC
| | - Ching-Sui Hung
- Department of Education and Research, Taipei City Hospital, Taiwan, ROC
| | - Tamara G Amstislavskaya
- Laboratory of Biological Psychiatry, State Research Institute of Physiology and Fundamental Medicine, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, Russia.
| | - Ying-Jui Ho
- School of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taiwan, ROC.
| |
Collapse
|
46
|
Ho SC, Hsu CC, Pawlak CR, Tikhonova MA, Lai TJ, Amstislavskaya TG, Ho YJ. Effects of ceftriaxone on the behavioral and neuronal changes in an MPTP-induced Parkinson's disease rat model. Behav Brain Res 2014; 268:177-84. [PMID: 24755306 DOI: 10.1016/j.bbr.2014.04.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 12/28/2022]
Abstract
Hyperactivity of the glutamatergic system is involved in excitotoxicity and neurodegeneration in Parkinson's disease (PD) and treatment with drugs modulating glutamatergic activity may have beneficial effects. Ceftriaxone has been reported to increase glutamate uptake by increasing glutamate transporter expression. The aim of this study was to determine the effects of ceftriaxone on working memory, object recognition, and neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model. MPTP was stereotaxically injected into the substantia nigra pars compacta (SNc) of male Wistar rats. Then, starting the next day (day 1), the rats were injected daily with either ceftriaxone (200 mg/kg/day, i.p.) or saline for 14 days and underwent a T-maze test on days 8-10 and an object recognition test on days 12-14. MPTP-lesioned rats showed impairments of working memory in the T-maze test and of recognition function in the object recognition test. The treatment of ceftriaxone decreased the above MPTP-induced cognitive deficits. Furthermore, this study provides evidence that ceftriaxone inhibits MPTP lesion-induced dopaminergic degeneration in the nigrostriatal system, microglial activation in the SNc, and cell loss in the hippocampal CA1 area. In conclusion, these data support the idea that hyperactivity of the glutamatergic system is involved in the pathophysiology of PD and suggest that ceftriaxone may be a promising pharmacological tool for the development of new treatments for the dementia associated with PD.
Collapse
Affiliation(s)
- Shih-Chun Ho
- School of Psychology, Chung Shan Medical University, Taichung, Taiwan, ROC; Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Chih-Chuan Hsu
- Department of Pediatrics, Tungs' Taichung Metrohabor Hospital, Taichung, Taiwan, ROC
| | - Cornelius Rainer Pawlak
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Mannheim, Germany
| | - Maria A Tikhonova
- Laboratory of Biological Psychiatry, State Research Institute of Physiology and Fundamental Medicine SB RAMS, Novosibirsk, Russia
| | - Te-Jen Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC; Department of Psychiatry, Chung Shan Medical University Hospital, Chung Shan Medical University, Taiwan, ROC
| | - Tamara G Amstislavskaya
- Laboratory of Biological Psychiatry, State Research Institute of Physiology and Fundamental Medicine SB RAMS, Novosibirsk, Russia.
| | - Ying-Jui Ho
- School of Psychology, Chung Shan Medical University, Taichung, Taiwan, ROC; Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, ROC.
| |
Collapse
|
47
|
Finlay C, Duty S. Therapeutic potential of targeting glutamate receptors in Parkinson's disease. J Neural Transm (Vienna) 2014; 121:861-80. [PMID: 24557498 DOI: 10.1007/s00702-014-1176-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/05/2014] [Indexed: 12/28/2022]
Abstract
Glutamate plays a complex role in many aspects of Parkinson's disease including the loss of dopaminergic neurons, the classical motor symptoms as well as associated non-motor symptoms and the treatment-related side effect, L-DOPA-induced dyskinesia. This widespread involvement opens up possibilities for glutamate-based therapies to provide a more rounded approach to treatment than is afforded by current dopamine replacement therapies. Beneficial effects of blocking postsynaptic glutamate transmission have already been noted in a range of preclinical studies using antagonists of NMDA receptors or negative allosteric modulators of metabotropic glutamate receptor 5 (mGlu5), while positive allosteric modulators of mGlu4 in particular, although at an earlier stage of investigation, also look promising. This review addresses each of the key features of Parkinson's disease in turn, summarising the contribution glutamate makes to that feature and presenting an up-to-date account of the potential for drugs acting at ionotropic or metabotropic glutamate receptors to provide relief. Whilst only a handful of these have progressed to clinical trials to date, notably NMDA and NR2B antagonists against motor symptoms and L-DOPA-induced dyskinesia, with mGlu5 negative allosteric modulators also against L-DOPA-induced dyskinesia, the mainly positive outcomes of these trials, coupled with supportive preclinical data for other strategies in animal models of Parkinson's disease and L-DOPA-induced dyskinesia, raise cautious optimism that a glutamate-based therapeutic approach will have significant impact on the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Clare Finlay
- Wolfson Centre for Age-Related Diseases, King's College London, WW1.28. Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| | | |
Collapse
|
48
|
Ambrosi G, Cerri S, Blandini F. A further update on the role of excitotoxicity in the pathogenesis of Parkinson’s disease. J Neural Transm (Vienna) 2014; 121:849-59. [DOI: 10.1007/s00702-013-1149-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/19/2013] [Indexed: 11/30/2022]
|
49
|
Luo P, Yang Y, Liu W, Rao W, Bian H, Li X, Chen T, Liu M, Zhao Y, Dai S, Yan X, Fei Z. Downregulation of postsynaptic density-95-interacting regulator of spine morphogenesis reduces glutamate-induced excitotoxicity by differentially regulating glutamate receptors in rat cortical neurons. FEBS J 2013; 280:6114-27. [PMID: 24103031 DOI: 10.1111/febs.12531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 09/08/2013] [Accepted: 09/12/2013] [Indexed: 01/03/2023]
Abstract
Glutamate-induced excitotoxicity is involved in many neurological diseases. Preso, a novel postsynaptic scaffold protein, mediates excitatory synaptic transmission and various synaptic functions. In this study, we investigated the role of Preso in the regulation of glutamate-induced excitotoxicity in rat cortical neurons. Knockdown of Preso with small interfering RNA improved neuronal viability and attenuated the elevation of lactate dehydrogenase (LDH) release after glutamate treatment. Downregulation of Preso also inhibited an increase in the BAX/Bcl-2 ratio and cleavage of caspase-9 and caspase-3. Although the expression and distribution of metabotropic glutamate receptor (mGluR) 1/5, NR1, NR2A and NR2B were not changed by knockdown of Preso, downregulation of Preso protected neurons from glutamate-induced excitotoxicity by inhibiting mGluR and N-methyl-D-aspartate receptor function. However, downregulation of Preso neither affected the expression of GluR1 and GluR2 nor influenced the function of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor after glutamate treatment. Furthermore, intracellular Ca(2+) was an important downstream effector of Preso in the regulation of excitotoxicity. These results suggest that expression of Preso promotes the induction of excitotoxicity by facilitating different glutamate receptor signaling pathways. Therefore, Preso might be a potential pharmacological target for preventing and treating neurological diseases.
Collapse
Affiliation(s)
- Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Managò F, Lopez S, Oliverio A, Amalric M, Mele A, De Leonibus E. Interaction between the mGlu receptors 5 antagonist, MPEP, and amphetamine on memory and motor functions in mice. Psychopharmacology (Berl) 2013. [PMID: 23192313 DOI: 10.1007/s00213-012-2925-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RATIONALE Metabotropic glutamate mGlu receptors 5 (mGluR5) receptors are abundant in corticolimbic circuitry where they modulate glutamate and dopamine signal transduction. OBJECTIVES In this study, we explored the hypothesis that mGluR5 antagonist, (2-methyl-6-(phenylethynyl)pyridine hydrochloride) (MPEP), facilitates dopamine-dependent effects on memory and motor functions. METHODS To this aim, we examined the effects of different doses (from 0 to 24 mg/kg) of the mGluR5 antagonist, MPEP, on the modulation of amphetamine-dependent behaviors, namely passive avoidance, locomotor activity, and rotation behavior in intact and dopamine-depleted CD1 male mice. RESULTS We demonstrated that a low dose (3 mg/kg) of MPEP, which is void of behavioral effects on its own, facilitates amphetamine-induced effects independently on the behavior measured both in naïve and in dopamine-lesioned mice; this synergistic effect is lost when higher doses of MPEP are used. CONCLUSION The results are discussed in terms of possible balance between dopamine and glutamate activity in regulating the proper fine tuning of information processing.
Collapse
Affiliation(s)
- Francesca Managò
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Università degli Studi di Roma "La Sapienza", Rome, Italy
| | | | | | | | | | | |
Collapse
|