1
|
Liu P, Lin T, Fischer H, Feifel D, Ebner NC. Effects of four-week intranasal oxytocin administration on large-scale brain networks in older adults. Neuropharmacology 2024; 260:110130. [PMID: 39182569 DOI: 10.1016/j.neuropharm.2024.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/18/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Oxytocin (OT) is a crucial modulator of social cognition and behavior. Previous work primarily examined effects of acute intranasal oxytocin administration (IN-OT) in younger males on isolated brain regions. Not well understood are (i) chronic IN-OT effects, (ii) in older adults, (iii) on large-scale brain networks, representative of OT's wider-ranging brain mechanisms. To address these research gaps, 60 generally healthy older adults (mean age = 70.12 years, range = 55-83) were randomly assigned to self-administer either IN-OT or placebo twice daily via nasal spray over four weeks. Chronic IN-OT reduced resting-state functional connectivity (rs-FC) of both the right insula and the left middle cingulate cortex with the salience network but enhanced rs-FC of the left medial prefrontal cortex with the default mode network as well as the left thalamus with the basal ganglia-thalamus network. No significant chronic IN-OT effects were observed for between-network rs-FC. However, chronic IN-OT increased selective rs-FC of the basal ganglia-thalamus network with the salience network and the default mode network, indicative of more specialized, efficient communication between these networks. Directly comparing chronic vs. acute IN-OT, reduced rs-FC of the right insula with the salience network and between the default mode network and the basal ganglia-thalamus network, and greater selective rs-FC of the salience network with the default mode network and the basal ganglia-thalamus network, were more pronounced after chronic than acute IN-OT. Our results delineate the modulatory role of IN-OT on large-scale brain networks among older adults.
Collapse
Affiliation(s)
- Peiwei Liu
- Department of Psychology, University of Florida, Gainesville, FL, 32611, USA.
| | - Tian Lin
- Department of Psychology, University of Florida, Gainesville, FL, 32611, USA
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, SE-106 91, Sweden; Stockholm University Brain Imaging Centre (SUBIC), Stockholm University, Stockholm, SE-106 91, Sweden; Aging Research Centre, Karolinska Institute, Stockholm, SE-171 77, Stockholm, Sweden
| | - David Feifel
- Department of Psychiatry, University of California, San Diego, CA, 92093, USA
| | - Natalie C Ebner
- Department of Psychology, University of Florida, Gainesville, FL, 32611, USA; Institute on Aging, University of Florida, Gainesville, FL, 32611, USA; Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
2
|
Yates JR. Pharmacological Treatments for Methamphetamine Use Disorder: Current Status and Future Targets. Subst Abuse Rehabil 2024; 15:125-161. [PMID: 39228432 PMCID: PMC11370775 DOI: 10.2147/sar.s431273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
The illicit use of the psychostimulant methamphetamine (METH) is a major concern, with overdose deaths increasing substantially since the mid-2010s. One challenge to treating METH use disorder (MUD), as with other psychostimulant use disorders, is that there are no available pharmacotherapies that can reduce cravings and help individuals achieve abstinence. The purpose of the current review is to discuss the molecular targets that have been tested in assays measuring the physiological, the cognitive, and the reinforcing effects of METH in both animals and humans. Several drugs show promise as potential pharmacotherapies for MUD when tested in animals, but fail to produce long-term changes in METH use in dependent individuals (eg, modafinil, antipsychotic medications, baclofen). However, these drugs, plus medications like atomoxetine and varenicline, may be better served as treatments to ameliorate the psychotomimetic effects of METH or to reverse METH-induced cognitive deficits. Preclinical studies show that vesicular monoamine transporter 2 inhibitors, metabotropic glutamate receptor ligands, and trace amine-associated receptor agonists are efficacious in attenuating the reinforcing effects of METH; however, clinical studies are needed to determine if these drugs effectively treat MUD. In addition to screening these compounds in individuals with MUD, potential future directions include increased emphasis on sex differences in preclinical studies and utilization of pharmacogenetic approaches to determine if genetic variances are predictive of treatment outcomes. These future directions can help lead to better interventions for treating MUD.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY, USA
| |
Collapse
|
3
|
Nisbett KE. Moxie begets MOXI: The journey to a novel hypothesis about Mu-opioid and OXytocin system Interactions. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 19:100244. [PMID: 39104824 PMCID: PMC11298892 DOI: 10.1016/j.cpnec.2024.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
This narrative review summarizes the early life of the author, Khalin E. Nisbett, and highlights the factors that led to her career in research and her development of two novel research hypotheses: the Mu-opioid and OXytocin system Interaction (MOXI) hypothesis and Mu-Opioid receptor antagonist and OXytocin receptor Agonist In Combination (MOXAIC) treatment hypothesis. Notably, Nisbett's career began in the era after countless studies demonstrated that oxytocin is not just a female neurotransmitter and not just a female reproductive hormone, an era in which researchers are exploring the role of oxytocin in emotion regulation, social interaction, and cognitive processing across both sexes. As such, the previously held perspective that oxytocin is "just a female hormone" did not impede Nisbett's ideas. Intrigued by science, emotion regulation, and social interaction, she began to explore the role of oxytocin and opioids in emotion regulation. On the heels of earlier theories, such as the Tend-and-Befriend theory and Opioid Theory of Social Attachment, she began to develop the MOXI hypothesis, which postulates that the μ-opioid receptor and oxytocin systems interact to mediate social interaction and emotion regulation. In this narrative review, Nisbett summarizes two studies that explored (i) the role of oxytocin in anxiety- and depression-like behavior and (ii) the effect of opioid receptor blockade on the anxiolytic-like effect of oxytocin, which led to a revision of the MOXI hypothesis and postulation of the Mu-Opioid receptor antagonist and OXytocin receptor Agonist In Combination (MOXAIC) treatment hypothesis. Nisbett also discusses several limitations of these hypotheses and her current research interests and aspirations.
Collapse
Affiliation(s)
- Khalin E. Nisbett
- Graduate Program in Neuroscience, Graduate College, University of Illinois Chicago, Chicago, IL, 60607, USA
- Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, 21224, USA
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| |
Collapse
|
4
|
Sethi MK, Maccioni R, Hogan JD, Kawamura T, Repunte-Canonigo V, Chen J, Zaia J, Sanna PP. Comprehensive Glycomic and Proteomic Analysis of Mouse Striatum and Lateral Hypothalamus Following Repeated Exposures to Cocaine or Methamphetamine. Mol Cell Proteomics 2024; 23:100803. [PMID: 38880242 PMCID: PMC11324981 DOI: 10.1016/j.mcpro.2024.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024] Open
Abstract
Substance use disorder is a major concern, with few therapeutic options. Heparan sulfate (HS) and chondroitin sulfate (CS) interact with a plethora of growth factors and their receptors and have profound effects on cellular signaling. Thus, targeting these dynamic interactions might represent a potential novel therapeutic modality. In the present study, we performed mass spectrometry-based glycomic and proteomic analysis to understand the effects of cocaine and methamphetamine (METH) on HS, CS, and the proteome of two brain regions critically involved in drug addiction: the lateral hypothalamus and the striatum. We observed that cocaine and METH significantly alter HS and CS abundances as well as sulfate contents and composition. In particular, repeated METH or cocaine treatments reduced CS 4-O-sulfation and increased CS 6-O-sulfation. Since C4S and C6S exercise differential effects on axon growth, regeneration, and plasticity, these changes likely contribute to drug-induced neural plasticity in these brain regions. Notably, we observed that restoring these alterations by increasing CS 4-0 levels in the lateral hypothalamus by adeno-associated virus delivery of an shRNA to arylsulfatase B (N-acetylgalactosamine-4-sulfatase) ameliorated anxiety and prevented the expression of preference for cocaine in a novelty induced conditioned place preference test during cocaine withdrawal. Finally, proteomics analyses revealed a number of aberrant proteins in METH- and cocaine-treated versus saline-treated mice, including myelin proteolipid protein, calcium/calmodulin-dependent protein kinase type II subunit alpha, synapsin-2, tenascin-R, calnexin, annexin A7, hepatoma-derived growth factor, neurocan, and CSPG5, and oxidative phosphorylation among the top perturbed pathway. Taken together, these data support the role of HS, CS, and associated proteins in stimulants abuse and suggest that manipulation of HSPGs can represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Manveen K Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Riccardo Maccioni
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - John D Hogan
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Tomoya Kawamura
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Jihuan Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, Massachusetts, USA; Bioinformatics Program, Boston University, Boston, Massachusetts, USA.
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
5
|
Chang HM, Chen C, Lu ML, Jou S, Santos VHJ, Goh KK. The interplay of childhood trauma, oxytocin, and impulsivity in predicting the onset of methamphetamine use. CHILD ABUSE & NEGLECT 2024; 147:106579. [PMID: 38048654 DOI: 10.1016/j.chiabu.2023.106579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Childhood trauma is associated with substance use disorders, including methamphetamine use disorder (MUD). Oxytocin, involved in social bonding, stress regulation, and reward processing, may influence addiction vulnerability and impulsivity in individuals with a history of childhood trauma. OBJECTIVE To investigate the relationships among childhood trauma, oxytocin levels, impulsivity, and the age of first methamphetamine use in individuals with MUD. PARTICIPANTS AND SETTING The study included 298 male participants (148 individuals with MUD and 150 healthy controls) from both probation offices and psychiatric clinics. METHODS Childhood trauma was assessed using the Childhood Trauma Questionnaire-Short Form (CTQ-SF), impulsivity with the Barratt Impulsiveness Scale-11 (BIS-11), and plasma oxytocin levels were obtained. RESULTS Individuals with MUD exhibited higher levels of childhood trauma, impulsivity, and lower plasma oxytocin levels compared to healthy controls. Childhood trauma was associated with a younger age of first methamphetamine use, higher impulsivity, and lower oxytocin levels among individuals with MUD. Plasma oxytocin levels partially mediated the relationship between childhood trauma and both the age of first methamphetamine use and impulsivity. Serial mediation analysis demonstrated that oxytocin levels and impulsivity sequentially mediated the relationship between childhood trauma and the age of first methamphetamine use. CONCLUSIONS The findings reveal the complex interplay among childhood trauma, oxytocin, impulsivity, and methamphetamine use, emphasizing the importance of considering these factors in prevention and intervention strategies for MUD. Future research should explore oxytocin and impulsivity-focused interventions to mitigate the effects of childhood trauma and reduce MUD development risk.
Collapse
Affiliation(s)
- Hu-Ming Chang
- Department of Addiction Sciences, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chenyi Chen
- Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Mind, Brain and Consciousness, College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; The Innovative and Translational Research Center for Brain Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Mong-Liang Lu
- Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Susyan Jou
- Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate School of Criminology, National Taipei University, Taipei, Taiwan
| | - Vitor Hugo Jesus Santos
- Department of Psychiatry and Mental Health, Faculty of Health Sciences (FCS-UBI), Cova da Beira University Hospital Center, Covilhã, Portugal
| | - Kah Kheng Goh
- Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei, Taiwan; The Innovative and Translational Research Center for Brain Consciousness, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Penrod RD, Taniguchi M, Kearns AM, Hopkins JL, Reichel CM. Differential Roles of Oxytocin Receptors in the Prefrontal Cortex and Nucleus Accumbens on Cocaine Self-Administration and Reinstatement of Cued Cocaine Seeking in Male Rats. Int J Neuropsychopharmacol 2023; 26:817-827. [PMID: 37875346 PMCID: PMC10726405 DOI: 10.1093/ijnp/pyad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Little is known about the specific roles of cortical and accumbal oxytocin receptors in drug use disorders. To better understand the importance of the endogenous oxytocin system in cocaine relapse behavior, we developed an adeno-associated viral vector-expressing short hairpin (sh) RNAs to selectively degrade the rat oxytocin receptor (OxyR) mRNA in vivo. METHODS Male (Sprague-Dawley) rats received bilateral infusions of the shRNA for the oxytocin receptor (shOxyR) or an shRNA control virus into the prefrontal cortex (PFC) or the nucleus accumbens core (NAc). Rats self-administered cocaine on an escalating FR ratio for 14 days, lever responding was extinguished, and rats were tested for cued and cocaine-primed reinstatement of drug seeking. RESULTS OxyR knockdown in the PFC delayed the acquisition of lever pressing on an fixed ratio 1 schedule of reinforcement. All rats eventually acquired the same level of lever pressing and discrimination, and there were no differences in extinction. OxyR knockdown in the NAc had no effect during acquisition. In both the PFC and NAc, the shOxyR decreased cued reinstatement relative to shRNA control virus but was without effect during drug-primed reinstatement. OxyR knockdown in the PFC increased chamber activity during a social interaction task. CONCLUSIONS This study provides critical new information about how endogenous OxyRs function to affect drug seeking in response to different precipitators of relapse. The tool developed to knockdown OxyRs in rat could provide important new insights that aid development of oxytocin-based therapeutics to reduce return-to-use episodes in people with substance use disorder and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rachel D Penrod
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Angela M Kearns
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jordan L Hopkins
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Carmela M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
7
|
Wu R, Xu Z, Song Z, Tai F. Providing or receiving alloparental care promote partner preference and alter central oxytocin and dopamine systems in adult mandarin voles. Horm Behav 2023; 152:105366. [PMID: 37116234 DOI: 10.1016/j.yhbeh.2023.105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/15/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
Juveniles of cooperative breeding species usually remain in the natal area and provide care to younger siblings, a behavior considered one form of alloparenting in the natural condition. Previous studies have demonstrated the effects of providing or receiving alloparental care on adult behaviors, including anxiety-like behavior, social interaction, and parental behavior, but little is known about the influences on species-typical bonding behaviors, such as pair-bond formation. In this study, we explored this concept using socially monogamous mandarin voles (Lasiopodomys mandarinus). As the oxytocin (OT) and dopamine systems are involved in alloparental and pair-bonding behaviors, we also examined the levels of central OT and tyrosine hydroxylase (TH), as well as OT receptor (OTR) and dopamine D1-type and D2-type receptors (D1R and D2R) mRNA expression in the nucleus accumbens (NAcc) and amygdala to investigate the underlying mechanisms. Our results show that mandarin voles providing alloparental care to younger siblings displayed facilitation of partner preference formation, lower levels of OT expression in the paraventricular nucleus of the hypothalamus (PVN) and lateral hypothalamus (LH), and increased OTR and D2R mRNA expression in the NAcc compared to controls. Individuals receiving alloparental care also demonstrated facilitation of partner preference formation in adult voles. Additionally, alloparental care enhanced OT expression in the PVN, anterior medial preoptic nucleus (MPOAa), medial amygdala (MeA), and TH expression in the ventral tegmental area (VTA) and zona incerta (ZI). Furthermore, males displayed decreased D1R mRNA expression in the NAcc, whereas females showed slightly increased D2R expression in the amygdala. These results demonstrate that providing or received alloparental care can promote partner preference formation in monogamous species and that these changes are associated with altered OT and dopamine levels and their receptors in specific brain regions.
Collapse
Affiliation(s)
- Ruiyong Wu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| | - Zedong Xu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhenzhen Song
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| |
Collapse
|
8
|
Liu Y, Pan Y, Curtis TJ, Wang Z. Amphetamine exposure alters behaviors, and neuronal and neurochemical activation in the brain of female prairie voles. Neuroscience 2022; 498:73-84. [PMID: 35798262 PMCID: PMC9420825 DOI: 10.1016/j.neuroscience.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Previous studies have shown that 3-day d-amphetamine (AMPH) treatment effectively induced conditioned place preferences (CPP) and impaired pair bonding behaviors in prairie voles (Microtus ochrogaster). Using this established animal model and treatment regimen, we examined the effects of the demonstrated threshold rewarding dose of AMPH on various behaviors and their potential underlying neurochemical systems in the brain of female prairie voles. Our data show that 3-day AMPH injections (0.2 mg/kg/day) impaired social recognition and decreased depressive-like behavior in females without affecting their locomotion and anxiety-like behaviors. AMPH treatment also decreased neuronal activation indicated by the labeling of the early growth response protein 1 (Egr-1) as well as the number of neurons double-labeled for Egr-1 and corticotrophin-releasing hormone (CRH) in the dentate gyrus (DG) of the hippocampus and paraventricular nucleus of the hypothalamus (PVN) in the brain. Further, AMPH treatment decreased the number of neurons double-labeled for Egr-1 and tyrosine hydroxylase (TH) but did not affect oxytocinergic neurons in the PVN or cell proliferation and neurogenesis markers in the DG. These data not only demonstrate potential roles of the brain CRH and dopamine systems in mediating disrupted social recognition and depressive-like behaviors by AMPH in female prairie voles, but also further confirm the utility of the prairie vole model for studying interactions between psychostimulants and social behaviors.
Collapse
Affiliation(s)
- Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Yongliang Pan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Thomas J Curtis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
9
|
Yaw AM, Glass JD, Prosser RA, Caldwell HK. Paternal Cocaine in Mice Alters Social Behavior and Brain Oxytocin Receptor Density in First Generation Offspring. Neuroscience 2022; 485:65-77. [PMID: 35063583 PMCID: PMC8866213 DOI: 10.1016/j.neuroscience.2022.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022]
Abstract
It is well established that the damaging effects of drugs of abuse, such as cocaine, can extend beyond the user to their offspring. While most preclinical models of the generational effects of cocaine abuse have focused on maternal effects, we, and others, report distinct effects on offspring sired by fathers treated with cocaine prior to breeding. However, little is known about the effects of paternal cocaine use on first generation (F1) offspring's social behaviors. Here, we expand upon our model of oral self-administered paternal cocaine use to address the idea that paternal cocaine alters first generation offspring social behaviors through modulation of the oxytocin system. F1 cocaine-sired males displayed unaltered social recognition vs. non-cocaine sired controls but showed increased investigation times that were not related to altered olfaction. Paternal cocaine did not alter F1 male-aggression behavior or depression-like behaviors, but cocaine-sired males did display decreased anxiety-like behaviors. Female F1 behavior was similarly examined, but there were no effects of paternal cocaine. Cocaine-sired male mice also exhibited localized oxytocin receptor expression differences vs. controls in several brain regions regulating social behavior. These results provide evidence for effects of paternal cocaine exposure on social behaviors in male offspring with associated alterations in central oxytocin transmission.
Collapse
Affiliation(s)
- Alexandra M Yaw
- School of Biomedical Sciences, Kent State Univ., Kent, OH 44242, United States; Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Brain Health Research Institute, Kent State University, Kent, OH, United States
| | - J David Glass
- School of Biomedical Sciences, Kent State Univ., Kent, OH 44242, United States
| | - Rebecca A Prosser
- Department of Biochemistry & Cellular and Molecular Biology, and the NeuroNET Research Center, Univ. of Tennessee, Knoxville, TN 37996, United States
| | - Heather K Caldwell
- School of Biomedical Sciences, Kent State Univ., Kent, OH 44242, United States; Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Brain Health Research Institute, Kent State University, Kent, OH, United States.
| |
Collapse
|
10
|
Azadbakht A, Salehi M, Maracy MR, Banafshe HR. The Effects of Oxytocin on Craving, Mental Health Parameters, and Stress Hormones in Methamphetamine-Dependent Patients Undergoing Matrix Treatment Model: A Randomized, Double-Blind Clinical Trial. Eur Addict Res 2022; 28:340-349. [PMID: 35917806 DOI: 10.1159/000525443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/11/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Methamphetamine (METH) dependence is an increasing public health problem with a wide range of mental and physical adverse effects. Recent studies report that oxytocin (OXT) has potential therapeutic properties in drug dependence. Hence, the present study was designed to evaluate the effects of OXT on craving, mental health (depression and anxiety), and stress hormones (ACTH and cortisol) in METH-dependent patients undergoing matrix treatment model (MTM), an intensive outpatient approach for stimulant abuse treatment. METHODS This randomized placebo-controlled clinical trial was conducted in 42 METH-dependent patients undergoing MTM to receive either intranasal OXT 40 IU (n = 21) or normal saline as placebo (n = 21) for 4 weeks. Clinical and biochemical parameters were measured at baseline and end of trials in METH-dependent patients. RESULTS Our findings indicated that OXT administration for 4 weeks is associated with a significant improvement in the craving and depression scores, respectively (p < 0.001 and p < 0.001), but there was no significant difference for anxiety scores compared with the placebo group. In addition, OXT administration significantly decreased cortisol (p < 0.001) and ACTH levels (p < 0.002). CONCLUSIONS These findings suggest that OXT can be considered as a new potential therapeutic for the treatment of METH-dependent patients undergoing MTM. Further studies are required to explore the effectiveness and safety of OXT.
Collapse
Affiliation(s)
- Abbas Azadbakht
- Department of Addiction Studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrdad Salehi
- Department of Psychiatry, Behavioral Sciences Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Maracy
- Department of Epidemiology and Biostatistics, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Reza Banafshe
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
Le Roux M, Möller M, Harvey BH. Prolonged efavirenz exposure reduces peripheral oxytocin and vasopressin comparable to known drugs of addiction in male Sprague Dawley rats. IBRO Neurosci Rep 2021; 11:56-63. [PMID: 34939063 PMCID: PMC8664698 DOI: 10.1016/j.ibneur.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 03/03/2021] [Accepted: 06/22/2021] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Several drugs of abuse (DOA) are capable of modulating neurohypophysial hormones, such as oxytocin (OT) and vasopressin (VP), potentially resulting in the development of psychological abnormalities, such as cognitive dysfunction, psychoses, and affective disorders. Efavirenz (EFV), widely used in Africa and globally to treat HIV, induces diverse neuropsychiatric side effects while its abuse has become a global concern. The actions of EFV may involve neurohypophysial system (NS) disruption like that of known DOA. This study investigated whether sub-chronic EFV exposure, at a previously-determined rewarding dose, alters peripheral OT and VP levels versus that of a control, ∆9-tetrahydrocannabinol (∆9-THC), methamphetamine (MA) and cocaine. MATERIALS AND METHODS To simulate the conditions under which reward-driven behavior had previously been established for EFV, male Sprague Dawley rats (n = 16/exposure) received intraperitoneal vehicle (control) or drug administration across an alternating sixteen-day dosing protocol. Control administration (saline/olive oil; 0.2 ml) occurred on odd-numbered and drug administration (EFV: 5 mg/kg, ∆9-THC: 0.75 mg/kg, MA: 1 mg/kg, or cocaine: 20 mg/kg) on even-numbered days followed by euthanasia, trunk blood collection and plasma extraction for neuropeptide assay. Effect of drug exposure on peripheral OT and VP levels was assessed versus controls and quantified using specific ELISA kits. Statistical significance was determined by Kruskal-Wallis ANOVA, with p < 0.05. Ethics approval: NWU-00291-17-A5. RESULTS Delta-9-THC reduced OT and VP plasma levels (p < 0.0001, p = 0.0141; respectively), cocaine reduced plasma OT (p = 0.0023), while MA reduced plasma VP levels (p = 0.0001), all versus control. EFV reduced OT and VP plasma levels (p < 0.0001; OT and VP) versus control, and similar to ∆9-THC. CONCLUSION EFV markedly affects the NS in significantly reducing both plasma OT and VP equivalent to DOA. Importantly, EFV has distinct effects on peripheral OT and VP levels when assessed within the context of drug dependence. The data highlights a possible new mechanism underlying previously documented EFV-induced effects in rats, and whereby EFV may induce neuropsychiatric adverse effects clinically; also providing a deeper understanding of the suggested abuse-potential of EFV.
Collapse
Key Words
- 5-HT, 5-hydroxytryptamine (serotonin)
- ADH, antidiuretic hormone
- AEA, N-arachidonoylethanolamine (anandamide)
- ANOVA, one-way analysis of variance
- ARRIVE, animal research: reporting of in vivo experiments (guidelines)
- ARV, antiretroviral
- Ach, acetylcholine
- CB, cannabinoid
- CNS, central nervous system
- CPP, conditioned place preference
- Cocaine
- DA, dopamine
- DAT, dopamine transporter
- DOA‘s, drug(s) of abuse
- ECS, endocannabinoid system
- EFV, efavirenz
- ELISA, enzyme-linked immunosorbent assay
- Efavirenz
- GABA, gamma-aminobutyric acid
- Glu, glutamate
- HIV, human immunodeficiency virus
- HNS, hypothalamic neurohypophysial system
- HPA, hypothalamic-pituitary-adrenal (axis)
- IP, intraperitoneal
- IV, intravenous
- M, muscarinic
- MA, methamphetamine
- MAO, monoamine oxidase
- Methamphetamine
- NAc, nucleus accumbens
- NE, norepinephrine
- NO, nitric oxide
- NPAE, neuropsychiatric adverse effect
- OT, oxytocin
- OTR, oxytocin receptor
- Oxytocin
- PND, postnatal day
- PVN, paraventricular nucleus
- SC, subcutaneous
- SD, Sprague Dawley (rat)
- SEM, standard error of the mean
- SERT, serotonin transporter
- SON, supraoptic nucleus
- VMAT, vesicular monoamine transporter
- VP, vasopressin
- VPR, vasopressin receptor
- Vasopressin
- cART, combined antiretroviral therapy
- ∆9-THC, delta-9-tetrahydrocannabinol
- ∆9-tetrahydrocannabinol
Collapse
Affiliation(s)
- Mandi Le Roux
- Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa
- Centre of Excellence for Pharmaceutical Sciences (PharmaCenTM), School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Marisa Möller
- Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa
- Centre of Excellence for Pharmaceutical Sciences (PharmaCenTM), School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Brian H. Harvey
- Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa
- Centre of Excellence for Pharmaceutical Sciences (PharmaCenTM), School of Pharmacy, North-West University, Potchefstroom, South Africa
| |
Collapse
|
12
|
Li C, Wang H, Wang M, Chen C, Bai F, Ban M, Wu C. Oxytocin Attenuates Methamphetamine-Induced Apoptosis via Oxytocin Receptor in Rat Hippocampal Neurons. Front Pharmacol 2021; 12:639571. [PMID: 34483895 PMCID: PMC8415150 DOI: 10.3389/fphar.2021.639571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/29/2021] [Indexed: 11/15/2022] Open
Abstract
Methamphetamine (METH) is a highly neurotoxic psychoactive substance that can directly damage the central nervous system through prolonged use. Oxytocin (OT) has attracted much attention because of its neuroprotective effect. The purpose of this study was to investigate whether OT is neuroprotective against METH-induced damage in rat hippocampal neurons. Our results revealed that pre-incubation with OT significantly prevented the damage of METH to hippocampal neurons, including the decrease of mitochondrial membrane potential and the increase of ROS (reactive oxygen species). OT pre-incubation attenuated the up-regulation of Cleaved-Caspase-3 expression and the down-regulation of Bcl-2/Bax expression induced by METH. Pre-incubation with OT prevented the decrease in oxytocin receptor density and P-CREB (phosphorylation of cAMP-response element binding) expression induced by METH in rat hippocampal neurons. Moreover, Pre-incubation of atosiban (ATO) significantly prevented these changes. In conclusion, our study proved that pre-administration of OT could significantly attenuate hippocampal neuron apoptosis induced by METH. Oxytocin receptor activation is involved in the preventive effect of OT on METH-induced apoptosis in rat hippocampal neurons.
Collapse
Affiliation(s)
- Chunli Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Haipeng Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Min Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunyun Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Fei Bai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Mengqi Ban
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
13
|
Che X, Cai J, Liu Y, Xu T, Yang J, Wu C. Oxytocin signaling in the treatment of drug addiction: Therapeutic opportunities and challenges. Pharmacol Ther 2021; 223:107820. [PMID: 33600854 DOI: 10.1016/j.pharmthera.2021.107820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Drug addiction is one of the leading causes of mortality worldwide. Despite great advances were achieved in understanding the neurobiology of drug addiction, the therapeutic options are severely limited, with poor effectiveness and serious side effects. The neuropeptide oxytocin (OXT) is well known for its effects on uterine contraction, sexual/maternal behaviors, social affiliation, stress and learning/memory by interacting with the OXT receptor and other neuromodulators. Emerging evidence suggests that the acute or chronic exposure to drugs can affect the OXT system. Additionally, OXT administration can ameliorate a wide range of abused drug-induced neurobehavioral changes. Overall, OXT not only suppresses drug reward in the binge stage of drug addiction, but also reduces stress responses and social impairments during the withdrawal stage and, finally, prevents drug/cue/stress-induced reinstatement. More importantly, clinical studies have also shown that OXT can exert beneficial effects on reducing substance use disorders of a series of drugs, such as heroin, cocaine, alcohol, cannabis and nicotine. Thus, the present review focuses on the role of OXT in treating drug addiction, including the preclinical and clinical therapeutic potential of OXT and its analogs on the neurobiological perspectives of drugs, to provide a better insight of the efficacy of OXT as a clinical addiction therapeutic agent.
Collapse
Affiliation(s)
- Xiaohang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Screening of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Pharmacodynamics Evaluation of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Jialing Cai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Screening of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Pharmacodynamics Evaluation of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Tianyu Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Screening of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Pharmacodynamics Evaluation of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China.
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Screening of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China; Key Laboratory of New Drug Pharmacodynamics Evaluation of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, PR China.
| |
Collapse
|
14
|
Effah F, de Gusmão Taveiros Silva NK, Camarini R, Joly F, Rabot S, Bombail V, Bailey A. Region-specific sex modulation of central oxytocin receptor by gut microbiota: An ontogenic study. Dev Neurobiol 2021; 81:149-163. [PMID: 33389811 DOI: 10.1002/dneu.22805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 01/14/2023]
Abstract
Oxytocin (OT) is a developmentally important neuropeptide recognized to play a dominant role in social functioning and stress-related behaviors, in a sex-dependent manner. Nonetheless, the underlining factors driving OT and OT receptor (OTR) early brain development remain unclear. Recent evidence highlight the critical influence of gut microbiota and its bidirectional interaction with the brain on neurodevelopment via the gut microbiota-brain axis. Therefore, we aimed to determine the impact of gut microbiota on the OTR system of the rat brain at different developmental stages in a pilot study. Quantitative OTR [125 I]-OVTA autoradiographic binding was carried out in the forebrain of male and female conventional (CON) and germ-free (GF) rats at postnatal days (PND) 8, 22, and 116-150. OTR binding was also assessed in the eyes of PND 1 and PND 4 GF female rats. Significant "microbiota × sex × region" interaction and age-dependent effects on OTR binding were demonstrated. Microbiota status influenced OTR levels in males but not females with higher levels of OTR observed in GF versus CON rats in the cingulate, prelimbic, and lateral/medial/ventral orbital cortex, and septum across all age groups, while sex differences were observed in GF, but not in CON rats. Interestingly, OTRs present in the eyes of CON rats were abolished in GF rats. This is the first study to uncover a sex-specific role of gut microbiota on the central OTR system, which may have implications in understanding the developmental neuroadaptations critical for behavioral regulation and the etiology of certain neurodevelopmental disorders.
Collapse
Affiliation(s)
- Felix Effah
- Pharmacology Section, St George's University of London, London, UK
| | | | - Rosana Camarini
- Pharmacology Department, Universidade de Sao Paulo, São Paulo, Brazil
| | - Fatima Joly
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sylvie Rabot
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vincent Bombail
- UMR PNCA, AgroParisTech, INRAE, Université Paris-Saclay, Paris, France
| | - Alexis Bailey
- Pharmacology Section, St George's University of London, London, UK
| |
Collapse
|
15
|
Wang Z, Mao K, Du W, Cai M, Zhang Z, Li X. Diluted concentrations of methamphetamine in surface water induce behavior disorder, transgenerational toxicity, and ecosystem-level consequences of fish. WATER RESEARCH 2020; 184:116164. [PMID: 32688152 DOI: 10.1016/j.watres.2020.116164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/16/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Methamphetamine (METH) has been recognized as an emerging organic contaminant as it was widely detected in the aquatic environment via wastewater effluent discharge. However, the ecological hazard posed by METH at environmentally relevant concentrations was remained unclear. In this study, adult medaka fish were exposed to METH at environmental levels (0.05, 0.2, 0.5, 5 μg L-1) and high level (25 and 100 μg L-1) for 90 days to investigate its effect on ecologically behavioral functions, histopathology, bioconcentration, and transgenerational toxicity. The significant increase of locomotion activity, total distance, and max velocity of adult medaka were observed at low METH levels (0.2-0.5 μg L-1), while it markedly decreased at high levels (25-100 μg L-1). This effect may increase the predation risk of the fish. The significant alteration on the relative expressions of the genes (cacna1c, oxtr, erk1, and c-fos), as well as the contents of the proteins (oxytocin (OXT) and protein kinase A (PKA)) involved in Voltage Dependent Calcium Channel (VDCC) and Mitogen-Activated Protein Kinase (MAPK) signaling channel induced by METH could partly elucidate the underlying mechanisms of the changes of the behavioral traits. METH could induce obvious minimal gliosis, neuronal loss, and necrotic in brain tissues. Additionally, the significant increase of hepatic-somatic index (HSI) of male medaka at 0.2-5 μg L-1 groups, and the decrease of female medaka at 100 μg L-1 group indicated male fish was more susceptible to METH. Nephric-somatic index (NSI) of medaka markedly declined induced by METH at 0.05-100 μg L-1. The bioconcentration factor (BCF) (0.4-5.8) in medaka fish revealed the bioconcentration potential of METH in fish. This study for the first time demonstrated METH could induced the development defects of larvae in F1 generation at environmentally relevant concentrations, thereby resulting in a significant decrease in the capacity of fish to produce offspring. Meanwhile, the RQ values (>1) of METH in river in China, USA, and Australia showed a high teratogenic risk level, suggesting the ecosystem-levels consequence posed by METH should be concerned.
Collapse
Affiliation(s)
- Zhenglu Wang
- Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, Jiangsu 210098, PR China; College of Oceanography, Hohai University, Nanjing, Jiangsu 210098, PR China; Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Wei Du
- School of Geographical Sciences, East China Normal University, Shanghai 200241, PR China
| | - Min Cai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Zhaobin Zhang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xiqing Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
16
|
Fan X, Yang J, Dong Y, Hou Y, Liu S, Wu C. Oxytocin inhibits methamphetamine-associated learning and memory alterations by regulating DNA methylation at the Synaptophysin promoter. Addict Biol 2020; 25:e12697. [PMID: 30585381 DOI: 10.1111/adb.12697] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/26/2018] [Accepted: 10/17/2018] [Indexed: 01/02/2023]
Abstract
Methamphetamine (METH) causes memory changes, but the underlying mechanisms are poorly understood. Epigenetic mechanisms, including DNA methylation, can potentially cause synaptic changes in the brain. Oxytocin (OT) plays a central role in learning and memory, but little is known of the impact of OT on METH-associated memory changes. Here, we explored the role of OT in METH-induced epigenetic alterations that underlie spatial and cognitive memory changes. METH (2.0 mg/kg, i.p.) was administered to male C57BL/6 mice once every other day for 8 days. OT (2.5 μg, i.c.v.) or aCSF was given prior to METH. Spatial and cognitive memory were assessed. In Hip and PFC, synaptic structures and proteins were examined, levels of DNA methyltransferases (DNMTs) and methyl CpG binding protein 2 (MECP2) were determined, and the DNA methylation status at the Synaptophysin (Syn) promoter was assessed. METH enhanced spatial memory, decreased synapse length, downregulated DNMT1, DNMT3A, DNMT3B, and MECP2, and induced DNA hypomethylation at the Syn promoter in Hip. In contrast, METH reduced cognitive memory, increased synapse thickness, upregulated DNMT1, DNMT3A, and MECP2, and induced DNA hypermethylation at the Syn promoter in PFC. OT pretreatment specifically ameliorated METH-induced learning and memory alterations, normalized synapse structures, and regulated DNMTs and MECP2 to reverse the DNA methylation status changes at the Syn promoter in Hip and PFC. DNA methylation is an important gene regulatory mechanism underlying METH-induced learning and memory alterations. OT can potentially be used to specifically manipulate METH-related memory changes.
Collapse
Affiliation(s)
- Xin‐Yu Fan
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Jing‐Yu Yang
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Ying‐Xu Dong
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Ying Hou
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Shuai Liu
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Chun‐Fu Wu
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| |
Collapse
|
17
|
Fan XY, Shi G, Zhao P. Methylation in Syn and Psd95 genes underlie the inhibitory effect of oxytocin on oxycodone-induced conditioned place preference. Eur Neuropsychopharmacol 2019; 29:1464-1475. [PMID: 31735530 DOI: 10.1016/j.euroneuro.2019.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/02/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Oxycodone (Oxy) is one of the most effective analgesics in medicine, but is associated with the development of dependence. Recent studies demonstrating epigenetic changes in the brain after exposure to opiates have provided an insight into possible mechanisms underlying addiction. Oxytocin (OT), an endogenous neuropeptide well known for preventing drug abuse, is a promising pharmacotherapy to counteract addiction. Therefore, we explored the mechanism of Oxy addiction and the role of OT in Oxy-induced epigenetic alterations. In this study, drug-induced changes in conditioned place preference (CPP), i.e. the expression of synaptic proteins and synaptic density in the ventral tegmental area (VTA) were measured. We also sought to identify DNA methyltransferases (DNMTs), ten-eleven translocations (TETs), global 5-methylcytosine (5-mC), and DNA methylation of two genes implicated in plasticity (Synaptophysin, Syn; Post-synaptic density protein 95, Psd95). Oxy (3.0 mg/kg, i.p.) induced CPP acquisition in Sprague-Dawley rats. Oxy down-regulated DNMT1 and up-regulated TET1-3, leading to a decrease in global 5-mC levels and differential demethylation at exon 1 of Syn and exon 2 of Psd95. These changes in DNA methylation of Syn and Psd95 elevated the expression of synaptic proteins (SYN, PSD95) and synaptic density in the VTA. Pretreatment with OT (2.5 µg, i.c.v.) via its receptor specifically blocked Oxy CPP, normalized synaptic density, and regulated DNMT1 and TET2-3 causing reverse of DNA demethylation of Syn and Psd95. DNA methylation is an important gene regulation mechanism underlying Oxy CPP, and OT - via its receptor - could specifically inhibit Oxy addiction.
Collapse
Affiliation(s)
- Xin-Yu Fan
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, 110004, Shenyang, China
| | - Guang Shi
- Department of Neurology, Liaoning Provincial People's Hospital, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, 110004, Shenyang, China.
| |
Collapse
|
18
|
Burmester V, Gibson EL, Butler G, Bailey A, Terry P. Oxytocin reduces post-stress sweet snack intake in women without attenuating salivary cortisol. Physiol Behav 2019; 212:112704. [PMID: 31628930 DOI: 10.1016/j.physbeh.2019.112704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Intranasal oxytocin produces anorectic effects on snack intake in men when tested in the absence of deprivation-induced hunger, but its effects on food intake in women without eating disorders have not been reported. Oxytocin may reduce food intake by reducing stress eating, since it inhibits ACTH release. The present study adopted a double-blind, repeated measures and fully concealed crossover protocol in which 38 women self-administered 24 IU of oxytocin or placebo intranasally, ate lunch, and underwent two consecutive stress tests. Snack intake was assessed 15-20 min after lunch, via a sham taste test. Salivary cortisol was measured throughout the test period every 15 min. Oxytocin significantly reduced sweet fatty snack intake independently of any effect on salivary cortisol, which declined over time at a similar rate after either drug or placebo. Ratings of sweet taste were slightly reduced by oxytocin, but only in self-reported stress eaters. These results differ from previous studies with men that found an effect of oxytocin on postprandial cortisol levels. However, previous research assayed the less active form of plasma cortisol and did not control for protein intake, which can drive elevated cortisol. The finding that oxytocin reduces snack intake in females after acute stress has important implications for appetite regulation and its treatment in obese people and in those with eating disorders.
Collapse
Affiliation(s)
- V Burmester
- Department of Psychology, School of Law, Social and Behavioural Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | - E L Gibson
- Department of Psychology, Whitelands College, University of Roehampton, London SW15 4JD, UK
| | - G Butler
- Department of Psychology, School of Law, Social and Behavioural Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | - A Bailey
- Institute of Medical and Biomedical Education, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - P Terry
- Department of Psychology, School of Law, Social and Behavioural Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK.
| |
Collapse
|
19
|
Oxytocin treatment in the prelimbic cortex reduces relapse to methamphetamine-seeking and is associated with reduced activity in the rostral nucleus accumbens core. Pharmacol Biochem Behav 2019; 183:64-71. [DOI: 10.1016/j.pbb.2019.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022]
|
20
|
Abstract
The neuropeptide Oxytocin (ΟΤ) is involved as a neurohormone, a neurotransmitter, or a neuromodulator in an extensive range of central and peripheral effects, complex emotional and social human behaviors, memory and learning processes. It is implicated in homeostatic, neuroadaptive processes associated with stress responses and substance use via interactions with the hypothalamic-pituitary-adrenal (HPA) axis and the dopamine mesolimbic reward stress system. This chapter reviews the preclinical and clinical literature on the complicated relationships between endogenous and exogenous opioids and ΟΤ systems and attempts to highlight key findings to date on the effectiveness of intranasal OT administration to treat opioid use disorders. OΤ seems to attenuate, even inhibit, the development of opioid use disorders in preclinical models but is still under clinical research as a promising pharmacological agent in the treatment of opioid use related behaviors. Evidence suggests a role for OT as an adjunctive or stand-alone treatment of behavioral, cognitive and emotional deficits associated with substance use, which may be responsible for seeking behavior and relapse. The mechanisms by which oxytocin acts to reverse the neural substrates of these deficits, partially due to substance induced alterations of the endogenous OT system, and thus modify the behavioral response to substance use are discussed. Other clinically relevant issues are also discussed.
Collapse
|
21
|
Holubová A, Poništ S, Jurčovičová J, Šlamberová R. Different Oxytocin Responses to Acute Methamphetamine Treatment in Juvenile Female Rats Perinatally Exposed to Stress and/or Methamphetamine Administration. Front Physiol 2019; 10:305. [PMID: 30984017 PMCID: PMC6447659 DOI: 10.3389/fphys.2019.00305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/07/2019] [Indexed: 01/08/2023] Open
Abstract
Methamphetamine (MA) is an addictive psychostimulant, often abused by drug-addicted women during pregnancy. The offspring of drug-addicted mothers are often exposed to perinatal stressors. The present study examines the effect of perinatal stressors and drug exposure on plasma oxytocin (OXY) levels in female progeny. Rat mothers were divided into three groups according to drug treatment during pregnancy: intact controls (C); saline (SA, s.c., 1 ml/kg); and MA (s.c., 5 mg/kg). Litters were divided into four groups according to postnatal stressors lasting from PD1 to 21: non-stressed controls (N); maternal separation (S); maternal cold-water stress (W); and maternal separation plus cold-water stress (SW). On postnatal day 30, acute MA or SA was administrated 1 h before the rats were sacrificed. Trunk blood was collected and plasma OXY was measured by specific ELISA after extraction. Our results showed that acute MA administration significantly increases plasma OXY levels in juvenile female rats; this effect was observed in prenatally intact rats only. Prenatal exposure of rats to mild stressor of daily SA injection prevented both acute MA-induced OXY stimulation and also stress-induced OXY inhibition. Although postnatal MA and stress exposure exert opposite effects on OXY release in juvenile rats, our data point out the modulatory role of prenatal mild stress in OXY response to postnatal stressors or MA treatment.
Collapse
Affiliation(s)
- Anna Holubová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Silvester Poništ
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Jurčovičová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
22
|
Alavijeh MM, Vaezi G, Khaksari M, Hojati V. Berberine hydrochloride attenuates voluntary methamphetamine consumption and anxiety-like behaviors via modulation of oxytocin receptors in methamphetamine addicted rats. Physiol Behav 2019; 206:157-165. [PMID: 30922821 DOI: 10.1016/j.physbeh.2019.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/01/2019] [Accepted: 03/23/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Methamphetamine (METH) addiction is recognized as one of the major public health concerns, with no approved pharmacological agents for treatment. Berberine hydrochloride, an isoquinoline alkaloid in plants, induces antipsychotic and anxiolytic effects. Hence, we hypothesized that berberine may modulate the METH-induced rewarding effects. MATERIALS AND METHODS In this study, three groups of rat including control (N = 10), METH + vehicle (N = 10), and METH + berberine (N = 10) were kept in separate cages one day before expriments. METH (20 mg/L) was dissolved in tap water inside a bottle, while there was only tap water in the control bottle. Two groups received free METH solutions for two weeks (up to 12 mg/kg). Afterwards, they were abstianced for three weeks. Only one group received 100 mg/kg/day of berberine. After three weeks, locomotor activity and anxiety (elevated plus maze test) were evaluated, then the two-bottles choice model was used for one week to evaluate drug preferences. Finally, the brain of rats was removed for evaluation of oxytocin receptor expression via immunofluorescence staining method. RESULTS The results showed that METH preference was lower in the berberine + METH group during drug intake compared to the METH group (P < .05). During withdrawal, berberine reduced anxiety-like behaviors (P < .05) and decreased locomotor activity versus the METH group (P < .001). Also, berberine increased numbers of oxytocin receptors in comparison with the METH group (P < .01). CONCLUSION Considering the modulation of oxytocin receptors, berberine may be considered as a potential therapeutic agent for METH addiction.
Collapse
Affiliation(s)
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
23
|
Stauffer CS, Moschetto JM, McKernan SM, Hsiang E, Borsari B, Woolley JD. Oxytocin-enhanced motivational interviewing group therapy for methamphetamine use disorder in men who have sex with men: study protocol for a randomized controlled trial. Trials 2019; 20:145. [PMID: 30791944 PMCID: PMC6385415 DOI: 10.1186/s13063-019-3225-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
Background The prevalence of methamphetamine use disorder (MUD) in the United States has risen dramatically in the past four decades and is concentrated in populations such as men who have sex with men (MSM). Despite the public health consequences of MUD, there are no FDA-approved psychopharmacological treatments. Psychosocial treatment alone has been shown to reduce methamphetamine use, but high attrition rates limit treatment efficacy. Promising findings from animal models of MUD using exogenous oxytocin, a social neuropeptide, have set the stage for translational work. Along with unique anti-addiction effects, oxytocin holds a primary role in enhancing social salience and modulating stress. In humans, oxytocin administration, combined with evidence-based psychosocial interventions, may act synergistically to improve addiction treatment outcomes and improve retention rates in current MUD treatment. Methods/design We are conducting a randomized, double-blind, placebo-controlled trial of oxytocin-enhanced motivational interviewing group therapy (MIGT). Oxytocin or placebo 40 IU is administered intranasally in conjunction with six, weekly MIGT sessions. We will recruit 50 MSM, initiating treatment for MUD from specialized community health programs in San Francisco, CA, USA. Individuals will be randomized (1:1) to receive six, weekly sessions of MIGT with or without oxytocin. Our primary outcome is session attendance. Other outcomes of interest include: measures of group cohesion, anxiety, psychophysiology, and stimulant craving and use. Discussion This will be the first study of oxytocin’s effects in humans with MUD. Findings from this novel protocol will attempt to bridge existing animal data with the need for innovative clinical treatments for MUD, inform the growing field of pharmacologically-enhanced psychotherapy, and help to elucidate mechanisms behind oxytocin’s potential anti-addiction effects. Trial registration ClinicalTrials.gov, ID: NCT02881177. Registered on 26 August 2016. Electronic supplementary material The online version of this article (10.1186/s13063-019-3225-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher S Stauffer
- University of California, San Francisco, San Francisco VA Medical Center, San Francisco, CA, USA.
| | | | | | - Elaine Hsiang
- University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Brian Borsari
- University of California, San Francisco, San Francisco VA Medical Center, San Francisco, CA, USA
| | - Joshua D Woolley
- University of California, San Francisco, San Francisco VA Medical Center, San Francisco, CA, USA
| |
Collapse
|
24
|
Ferrer-Pérez C, Castro-Zavala A, Luján MÁ, Filarowska J, Ballestín R, Miñarro J, Valverde O, Rodríguez-Arias M. Oxytocin prevents the increase of cocaine-related responses produced by social defeat. Neuropharmacology 2018; 146:50-64. [PMID: 30448423 DOI: 10.1016/j.neuropharm.2018.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022]
Abstract
The neuropeptide oxytocin (OXT) plays a critical role in the regulation of social and emotional behaviors. OXT plays a role in stress response and in drug reward, but to date no studies have evaluated its implication in the long-lasting increase of the motivational effects of cocaine induced by repeated social defeat (RSD). During the social defeat procedure, 1 mg/kg of OXT was administered 30 min before each episode of RSD. Three weeks after the last defeat, the effects of cocaine on the conditioned place preference (CPP), locomotor sensitization and the self-administration (SA) paradigms were evaluated. The influence of OXT on the levels of BDNF in the prefrontal cortex (PFC), striatum and hippocampus was also measured. Our results confirm that raising the levels of OXT during social defeat stress can block the long-lasting effects of this type of stress. OXT counteracts the anxiety induced by social defeat and modifies BDNF levels in all the structures we have studied. Moreover, OXT prevents RSD-induced increases in the motivational effects of cocaine. Administration of OXT before each social defeat blocked the social defeat-induced increment in the conditioned rewarding effects of cocaine in the CPP, favored the extinction of cocaine-associated memories in both the CPP and SA, and decreased reinstatement of cocaine-seeking behavior in the SA. In conclusion, the long-lasting effects of RSD are counteracted by administering OXT prior to stress, and changes in BDNF expression may underlie these protective effects.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Unit of Research on Psychobiology of Drug Dependence, Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Health and Experimental Sciences, University Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Miguel Ángel Luján
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Health and Experimental Sciences, University Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Joanna Filarowska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Raúl Ballestín
- Unit of Research on Psychobiology of Drug Dependence, Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - José Miñarro
- Unit of Research on Psychobiology of Drug Dependence, Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Olga Valverde
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Health and Experimental Sciences, University Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Marta Rodríguez-Arias
- Unit of Research on Psychobiology of Drug Dependence, Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain.
| |
Collapse
|
25
|
Brancato A, Cannizzaro C. Mothering under the influence: how perinatal drugs of abuse alter the mother-infant interaction. Rev Neurosci 2018; 29:283-294. [PMID: 29194045 DOI: 10.1515/revneuro-2017-0052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/16/2017] [Indexed: 12/26/2022]
Abstract
Although drug-abusing women try to moderate their drug and alcohol use during pregnancy, they often relapse at a time when childcare needs are high and maternal bonding is critical to an infant's development. In the clinical setting, the search for the neural basis of drug-induced caregiving deficits is complex due to several intervening variables. Rather, the preclinical studies that control for drug dose and regimen, as well as for gestational and postpartum environment, allow a precise determination of the effects of drugs on maternal behaviour. Given the relevance of the issue, this review will gather reports on the phenotypic correlates of maternal behaviour in preclinical studies, and focus on the detrimental consequences on the mother-infant interaction exerted by the perinatal use of alcohol, nicotine, cannabis, cocaine and stimulants and opiates. The drug-induced disruptions of this maternal repertoire are associated with adverse maternal and infant outcomes. A comprehensive overview will help promote the refinement of the treatment approaches toward maternal drug use disorders and maternal misbehaviour, in favour of augmented parenting resiliency.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Sciences for Health Promotion and Mother and Child Care 'G. D'Alessandro', University of Palermo, via del Vespro 129, I-90127 Palermo, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care 'G. D'Alessandro', University of Palermo, via del Vespro 129, I-90127 Palermo, Italy
| |
Collapse
|
26
|
Zanos P, Keyworth H, Georgiou P, Hambsch B, Otte DM, Kitchen I, Zimmer A, Bailey A. Chronic nicotine administration restores brain region specific upregulation of oxytocin receptor binding levels in a G72 mouse model of schizophrenia. Eur J Neurosci 2018; 50:2255-2263. [DOI: 10.1111/ejn.14155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/07/2018] [Accepted: 08/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Panos Zanos
- Department of Biochemistry and Physiology Faculty of Health and Medical Sciences University of Surrey Guildford Surrey UK
- Department of Psychiatry School of Medicine University of Maryland Baltimore Maryland USA
| | - Helen Keyworth
- Department of Biochemistry and Physiology Faculty of Health and Medical Sciences University of Surrey Guildford Surrey UK
| | - Polymnia Georgiou
- Department of Biochemistry and Physiology Faculty of Health and Medical Sciences University of Surrey Guildford Surrey UK
- Department of Psychiatry School of Medicine University of Maryland Baltimore Maryland USA
| | - Boris Hambsch
- GKM Gesellschaft für Therapieforschung mbH Lessingstraße München Germany
| | - David M. Otte
- Institute for Molecular Psychiatry Medical Faculty University of Bonn Bonn Germany
| | - Ian Kitchen
- Department of Biochemistry and Physiology Faculty of Health and Medical Sciences University of Surrey Guildford Surrey UK
| | - Andreas Zimmer
- Institute for Molecular Psychiatry Medical Faculty University of Bonn Bonn Germany
| | - Alexis Bailey
- Department of Biochemistry and Physiology Faculty of Health and Medical Sciences University of Surrey Guildford Surrey UK
- Institute of Medical and Biomedical Education St George's University of London London SW17 0RE UK
| |
Collapse
|
27
|
Baracz SJ, Everett NA, Cornish JL. The impact of early life stress on the central oxytocin system and susceptibility for drug addiction: Applicability of oxytocin as a pharmacotherapy. Neurosci Biobehav Rev 2018; 110:114-132. [PMID: 30172802 DOI: 10.1016/j.neubiorev.2018.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Early life trauma is strongly associated with an increased vulnerability to abuse illicit drugs and the impairment of neural development. This includes alterations to the development of the oxytocin system, which plays a pivotal role in the regulation of social behaviours and emotion. Dysregulation of this important system also contributes to increased susceptibility to develop drug addiction. In this review, we provide an overview of the animal models of early life stress that are widely used, and discuss the impact that early life stress has on drug-taking behaviour in adolescence and adulthood in both sexes. We link this to the changes that early life stress has on the endogenous oxytocin system, and how exogenously administered oxytocin may help to re-establish functioning of the system, and in turn, reduce drug-taking behaviour.
Collapse
Affiliation(s)
- Sarah J Baracz
- Department of Psychology, Macquarie University, North Ryde, NSW, 2109, Australia.
| | - Nicholas A Everett
- Department of Psychology, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jennifer L Cornish
- Department of Psychology, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
28
|
Zanos P, Georgiou P, Weber C, Robinson F, Kouimtsidis C, Niforooshan R, Bailey A. Oxytocin and opioid addiction revisited: old drug, new applications. Br J Pharmacol 2018; 175:2809-2824. [PMID: 28378414 PMCID: PMC6016632 DOI: 10.1111/bph.13757] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/01/2017] [Accepted: 02/13/2017] [Indexed: 12/28/2022] Open
Abstract
Opioid addiction has devastating health and socio-economic consequences, and current pharmacotherapy is limited and often accompanied by side effects, thus novel treatment is warranted. Traditionally, the neurohypophyseal peptide oxytocin (OT) is known for its effects on mediating reward, social affiliation and bonding, stress and learning and memory. There is now strong evidence that OT is a possible candidate for the treatment of drug addiction and depression-addiction co-morbidities. This review summarizes and critically discusses the preclinical evidence surrounding the consequences of pharmacological manipulation of the oxytocinergic system on opioid addiction-related processes, as well as the effects of opioids on the OT system at different stages of the addiction cycle. The mechanisms underlying the effects of OT on opioid addiction, including OT' interaction with the monoaminergic, glutamatergic, opioidergic systems and its effect on the amygdala, the hypothalamic-pituitary-adrenal axis and on memory consolidation of traumatic memories, are also reviewed. We also review clinical evidence on the effects of intranasal OT administration on opioid-dependent individuals and discuss the therapeutic potential along with the limitations that accompany OT-based pharmacotherapies. Review of these studies clearly indicates that the OT system is profoundly affected by opioid use and abstinence and points towards the OT system as an important target for developing pharmacotherapies for the treatment of opioid addiction and co-existing affective disorders, thereby preventing relapse. Therefore, there is a clear need for clinical studies assessing the efficacy of OT-based pharmacotherapies in opioid addiction. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Panos Zanos
- School of Biosciences and Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Polymnia Georgiou
- School of Biosciences and Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Carol Weber
- School of Biosciences and Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Fiona Robinson
- Surrey and Borders Partnership NHS Foundation TrustChertseySurreyUK
| | | | | | - Alexis Bailey
- School of Biosciences and Medicine, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- Institute of Medical and Biomedical EducationSt George's University of LondonLondonUK
| |
Collapse
|
29
|
Rae M, Zanos P, Georgiou P, Chivers P, Bailey A, Camarini R. Environmental enrichment enhances conditioned place preference to ethanol via an oxytocinergic-dependent mechanism in male mice. Neuropharmacology 2018; 138:267-274. [PMID: 29908241 DOI: 10.1016/j.neuropharm.2018.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/20/2018] [Accepted: 06/10/2018] [Indexed: 02/01/2023]
Abstract
Environmental conditions, such as stress and environmental enrichment (EE), influence predisposition to alcohol use/abuse; however, the underlying mechanisms remain unknown. To assess the effect of environmental conditions on the initial rewarding effects of alcohol, we examined conditioned place-preference (CPP) to alcohol following exposure to EE in mice. Since social context is a major factor contributing to initial alcohol-drinking, we also assessed the impact of EE on the levels of the "social neuropeptide" oxytocin (OT) and its receptor, OTR. Finally, we assessed the effect of pharmacological manipulations of the oxytocinergic system on EE-induced alcohol CPP. While EE increased sociability and reduced anxiety-like behaviors, it caused a ∼3.5-fold increase in alcohol reward compared to controls. EE triggered profound neuroadaptations of the oxytocinergic system; it increased hypothalamic OT levels and decreased OTR binding in the prefrontal cortex and olfactory nuclei of the brain. Repeated administration of the OT analogue carbetocin (6.4 mg/kg/day) mimicked the behavioral effects of EE on ethanol CPP and induced similar brain region-specific alterations of OTR binding as those observed following EE. Conversely, repeated administration of the OTR antagonist L,369-899 (5 mg/kg/day) during EE exposure, but not during the acquisition of alcohol CPP, reversed the pronounced EE-induced ethanol rewarding effect. These results demonstrate for the first time, a stimulatory effect of environmental enrichment exposure on alcohol reward via an oxytocinergic-dependent mechanism, which may predispose to alcohol abuse. This study offers a unique prospective on the neurobiological understanding of the initial stages of alcohol use/misuse driven by complex environmental-social interplay.
Collapse
Affiliation(s)
- Mariana Rae
- Departamento de Farmacologia, Universidade de São Paulo, São Paulo, Brazil; Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Panos Zanos
- Department of Psychiatry, University of Maryland, Baltimore, School of Medicine, Baltimore, USA; Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Polymnia Georgiou
- Department of Psychiatry, University of Maryland, Baltimore, School of Medicine, Baltimore, USA; Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Priti Chivers
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Alexis Bailey
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK; Institute of Medical and Biomedical Education, St George's University of London, London, UK
| | - Rosana Camarini
- Departamento de Farmacologia, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
30
|
Everett NA, McGregor IS, Baracz SJ, Cornish JL. The role of the vasopressin V1A receptor in oxytocin modulation of methamphetamine primed reinstatement. Neuropharmacology 2018; 133:1-11. [DOI: 10.1016/j.neuropharm.2017.12.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022]
|
31
|
Oxytocin Reduces Alcohol Cue-Reactivity in Alcohol-Dependent Rats and Humans. Neuropsychopharmacology 2018; 43:1235-1246. [PMID: 29090683 PMCID: PMC5916348 DOI: 10.1038/npp.2017.257] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/08/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022]
Abstract
Approved pharmacological treatments for alcohol use disorder are limited in their effectiveness, and new drugs that can easily be translated into the clinic are warranted. One of those candidates is oxytocin because of its interaction with several alcohol-induced effects. Alcohol-dependent rats as well as post-mortem brains of human alcoholics and controls were analyzed for the expression of the oxytocin system by qRT-PCR, in situ hybridization, receptor autoradiography ([125I]OVTA binding), and immunohistochemistry. Alcohol self-administration and cue-induced reinstatement behavior was measured after intracerebroventricular injection of 10 nM oxytocin in dependent rats. Here we show a pronounced upregulation of oxytocin receptors in brain tissues of alcohol-dependent rats and deceased alcoholics, primarily in frontal and striatal areas. This upregulation stems most likely from reduced oxytocin expression in hypothalamic nuclei. Pharmacological validation showed that oxytocin reduced cue-induced reinstatement response in dependent rats-an effect that was not observed in non-dependent rats. Finally, a clinical pilot study (German clinical trial number DRKS00009253) using functional magnetic resonance imaging in heavy social male drinkers showed that intranasal oxytocin (24 IU) decreased neural cue-reactivity in brain networks similar to those detected in dependent rats and humans with increased oxytocin receptor expression. These studies suggest that oxytocin might be used as an anticraving medication and thus may positively affect treatment outcomes in alcoholics.
Collapse
|
32
|
Abstract
There is growing interest in the use of oxytocin (OT) as a potential treatment for alcohol and other substance-use disorders. OT is a neuropeptide that modulates adaptive processes associated with addiction including reward, tolerance, associative learning, memory, and stress responses. OT exerts its effects through interactions with the hypothalamic-pituitary-adrenal axis and multiple neurotransmitter systems including the dopamine mesolimbic reward and corticotrophin-releasing factor stress systems. The effects of OT on stress systems are of high interest, given the strong link between stress, drug use and relapse, and known dysregulation of hypothalamic-pituitary-adrenal-axis activity associated with substance-use disorders. At the same time, the OT system is itself altered by acute or chronic drug exposure. This review summarizes the preclinical and clinical literature on the OT system and its relevance to drug and alcohol addiction. In addition, findings from recent clinical trials conducted in participants with cocaine, cannabis, or alcohol use disorder are included and evidence that OT may help to normalize blunted stress responses, and attenuate withdrawal-associated hypercortisolism, negative mood, and withdrawal symptoms is summarized.
Collapse
|
33
|
Bowen MT, Neumann ID. Rebalancing the Addicted Brain: Oxytocin Interference with the Neural Substrates of Addiction. Trends Neurosci 2017; 40:691-708. [PMID: 29128108 DOI: 10.1016/j.tins.2017.10.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022]
Abstract
Drugs that act on the brain oxytocin (OXT) system may provide a much-needed treatment breakthrough for substance-use disorders. Targeting the brain OXT system has the potential to treat addiction to all major classes of addictive substance and to intervene across all stages of the addiction cycle. Emerging evidence suggests that OXT is able to interfere with such a wide range of addictive behaviours for such a wide range of addictive substances by rebalancing core neural systems that become dysregulated over the course of addiction. By improving our understanding of these interactions between OXT and the neural substrates of addiction, we will not only improve our understanding of addiction, but also our ability to effectively treat these devastating disorders.
Collapse
Affiliation(s)
- Michael T Bowen
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, NSW, Australia; The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia
| | - Inga D Neumann
- Regensburg Center of Neuroscience, Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
34
|
Westenbroek C, Perry AN, Jagannathan L, Becker JB. Effect of social housing and oxytocin on the motivation to self-administer methamphetamine in female rats. Physiol Behav 2017; 203:10-17. [PMID: 29055749 DOI: 10.1016/j.physbeh.2017.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/06/2017] [Accepted: 10/17/2017] [Indexed: 12/15/2022]
Abstract
Social housing has been shown to attenuate the motivation for cocaine in female, but not male rats. Here we investigate the potential mechanisms mediating the effect of social housing on the response to methamphetamine (METH). Female rats were individually or socially (pair) housed. The dopamine (DA) response to an acute METH infusion (0.3mg/kg, i.v.) was investigated using in vivo microdialysis in the nucleus accumbens with or without oxytocin (OT; 0.3mg/kg, i.p.) 30min prior to METH. The effects of social housing and OT on self-administered METH (0.06mg/kg/inf) was investigated. The METH-induced DA response was higher in individually housed compared to socially-housed females. On the other hand, individually housed females had a significantly higher breaking point (BP) than socially-housed females. Two weeks of OT treatment reduced BP in both groups. Reinstatement to METH was more pronounced in isolates compared to socially-housed females. More of the socially-housed females had very low BP than did the individually housed females. OT was most effective in reducing BP in females with moderate to high BP, irrespective of housing conditions. These data show that social housing attenuates escalation of METH intake and reinstatement of METH seeking in female rats, and that chronic OT treatment can reduce motivation for METH.
Collapse
Affiliation(s)
- Christel Westenbroek
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam N Perry
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lakshmikripa Jagannathan
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jill B Becker
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
35
|
Bomann AC, Jørgensen MB, Bo S, Nielsen M, Gede LB, Elfving B, Simonsen E. The neurobiology of social deficits in female patients with borderline personality disorder: The importance of oxytocin. Personal Ment Health 2017; 11:91-100. [PMID: 28397403 DOI: 10.1002/pmh.1369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 03/01/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Social deficits and emotional dysregulation have been suggested as explanations for the relational difficulties experienced by patients with borderline personality disorder (BPD). The neuropeptide oxytocin (OXT) is a possible neurobiological underpinning of these adversities, and this study examines possible correlations between BPD symptomatology and serum OXT. METHODS Thirty-eight female participants (BPD group n = 18, matched control group n = 20) with a mean age of 29.5 years (standard deviation 9.2) were assessed for personality disorders, general psychopathology, childhood trauma and perceived stress. OXT was measured in serum samples. RESULTS We found no significant difference between patient and control group in terms of OXT levels. However, post hoc analysis showed a relationship in the patient group between civil status and OXT (p < 0.05), indicating higher levels of OXT for patients in a romantic relationship. DISCUSSION The idea of OXT as a pro-social love hormone is perhaps too simplistic, and factors like attachment style, exposure to trauma and psychiatric disorders must be considered in order to understand its diverse functions. CONCLUSIONS Contrary to our expectations, we did not find lower serum OXT levels in the BPD group. However, BPD patients in a romantic relationship had higher levels of serum OXT than single BPD patients. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anne Cathrine Bomann
- Psychiatric Research Unit, Region Zealand, Faelledvej 6, 4200, Slagelse, Denmark
| | - Martin Balslev Jørgensen
- Institute for Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Edel Sauntes Alle 10, 2100, Copenhagen, Denmark.,Psychiatric Centre Copenhagen, Edel Sauntes Alle 10, 2100, Copenhagen, Denmark
| | - Sune Bo
- Psychiatric Research Unit, Region Zealand, Faelledvej 6, 4200, Slagelse, Denmark
| | - Marianne Nielsen
- Department of Biomedical Laboratory Science, Center for Nursing and Bioanalysis, University College Zealand, Parkvej 190, 4700, Naestved, Denmark
| | - Lene Bjerring Gede
- Psychiatric Research Unit, Region Zealand, Faelledvej 6, 4200, Slagelse, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240, Risskov, Denmark
| | - Erik Simonsen
- Psychiatric Research Unit, Region Zealand, Faelledvej 6, 4200, Slagelse, Denmark.,Institute for Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Edel Sauntes Alle 10, 2100, Copenhagen, Denmark
| |
Collapse
|
36
|
Fang QQ, Wang JL, Tai FD. Effects of cocaine on aggression and associated central ERα and oxytocin expression in ovariectomized and intact mandarin voles. THE EUROPEAN ZOOLOGICAL JOURNAL 2017. [DOI: 10.1080/11250003.2017.1281354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Q. Q. Fang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan, China
| | - J. L. Wang
- College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan, China
| | - F. D. Tai
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
37
|
Ponzoni L, Braida D, Bondiolotti G, Sala M. The Non-Peptide Arginine-Vasopressin v 1a Selective Receptor Antagonist, SR49059, Blocks the Rewarding, Prosocial, and Anxiolytic Effects of 3,4-Methylenedioxymethamphetamine and Its Derivatives in Zebra Fish. Front Psychiatry 2017; 8:146. [PMID: 28855876 PMCID: PMC5557732 DOI: 10.3389/fpsyt.2017.00146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/27/2017] [Indexed: 01/23/2023] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) and its derivatives, 2,5-dimethoxy-4-bromo-amphetamine hydrobromide (DOB) and para-methoxyamphetamine (PMA), are recreational drugs whose pharmacological effects have recently been attributed to serotonin 5HT2A/C receptors. However, there is growing evidence that the oxytocin (OT)/vasopressin system can modulate some the effects of MDMA. In this study, MDMA (2.5-10 mg/kg), DOB (0.5 mg/kg), or PMA (0.005, 0.1, or 0.25 mg/kg) were administered intramuscularly to adult zebra fish, alone or in combination with the V1a vasopressin antagonist, SR49059 (0.01-1 ng/kg), before carrying out conditioned place preference (CPP), social preference, novel tank diving, and light-dark tests in order to evaluate subsequent rewarding, social, and emotional-like behavior. The combination of SR49059 and each drug progressively blocked: (1) rewarding behavior as measured by CPP in terms of time spent in drug-paired compartment; (2) prosocial effects measured on the basis of the time spent in the proximity of a nacre fish picture; and (3) anxiolytic effects in terms of the time spent in the upper half of the novel tank and in the white compartment of the tank used for the light-dark test. Antagonism was obtained at SR49059 doses which, when given alone, did not change motor function. In comparison with a control group, receiving vehicle alone, there was a three to five times increase in the brain release of isotocin (the analog of OT in fish) after treatment with the most active doses of MDMA (10 mg/kg), DOB (0.5 mg/kg), and PMA (0.1 mg/kg) as evaluated by means of bioanalytical reversed-phase high-performance liquid chromatography. Taken together, these findings show that the OT/vasopressin system is involved in the rewarding, prosocial, and anxiolytic effects of MDMA, DOB, and PMA in zebra fish and underline the association between this system and the behavioral alterations associated with disorders related to substance abuse.
Collapse
Affiliation(s)
| | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Gianpietro Bondiolotti
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Mariaelvina Sala
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| |
Collapse
|
38
|
Georgiou P, Zanos P, Hourani S, Kitchen I, Bailey A. Cocaine abstinence induces emotional impairment and brain region-specific upregulation of the oxytocin receptor binding. Eur J Neurosci 2016; 44:2446-2454. [PMID: 27453431 DOI: 10.1111/ejn.13348] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 01/01/2023]
Abstract
The key problem in treating cocaine addiction is the maintenance of a drug-free state as negative emotional symptoms during abstinence often trigger relapse. The mechanisms underpinning the emotional dysregulation during abstinence are currently not well-understood. There is evidence suggesting a role of the neuropeptide oxytocin in the modulation of drug addiction processes. However, its involvement during long-term abstinence from cocaine use remains unclear. In this study, we aimed to behaviourally characterize a mouse model of long-term cocaine withdrawal and assess the effect of chronic cocaine administration and long-term cocaine abstinence on the central oxytocinergic system and the hypothalamic-pituitary-adrenal axis. Fourteen-day escalating-dose cocaine administration (3 × 15-30 mg/kg/day) and 14-day withdrawal increased plasma corticosterone levels and oxytocin receptor (OTR) binding in piriform cortex, lateral septum and amygdala. A specific cocaine withdrawal-induced increase in OTR binding was observed in the medial septum. These biochemical alterations occurred concomitantly with the emergence of memory impairment, contextual psychomotor sensitization and an anhedonic and anxiogenic phenotype during withdrawal. Our study established a clear relationship between cocaine abstinence and emotional impairment in a novel translationally relevant model of cocaine withdrawal and demonstrated for the first time brain region-specific neuroadaptations of the oxytocin system, which may contribute to abstinence-induced negative emotional state.
Collapse
Affiliation(s)
- Polymnia Georgiou
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Panos Zanos
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Susanna Hourani
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | - Ian Kitchen
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | - Alexis Bailey
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK.
- Institute of Medical and Biomedical Education, St George's University of London, London, SW17 0R, UK.
| |
Collapse
|
39
|
Baracz SJ, Cornish JL. The neurocircuitry involved in oxytocin modulation of methamphetamine addiction. Front Neuroendocrinol 2016; 43:1-18. [PMID: 27546878 DOI: 10.1016/j.yfrne.2016.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/14/2016] [Accepted: 08/11/2016] [Indexed: 12/13/2022]
Abstract
The role of oxytocin in attenuating the abuse of licit and illicit drugs, including the psychostimulant methamphetamine, has been examined with increased ferocity in recent years. This is largely driven by the potential application of oxytocin as a pharmacotherapy. However, the neural mechanisms by which oxytocin modulates methamphetamine abuse are not well understood. Recent research identified an important role for the accumbens core and subthalamic nucleus in this process, which likely involves an interaction with dopamine, glutamate, GABA, and vasopressin. In addition to providing an overview of methamphetamine, the endogenous oxytocin system, and the effects of exogenous oxytocin on drug abuse, we propose a neural circuit through which exogenous oxytocin modulates methamphetamine abuse, focusing on its interaction with neurochemicals within the accumbens core and subthalamic nucleus. A growing understanding of exogenous oxytocin effects at a neurochemical and neurobiological level will assist in its evaluation as a pharmacotherapy for drug addiction.
Collapse
Affiliation(s)
- Sarah J Baracz
- School of Psychology, University of Sydney, Sydney, NSW 2109, Australia; Department of Psychology, Macquarie University, North Ryde, NSW 2109, Australia.
| | - Jennifer L Cornish
- Department of Psychology, Macquarie University, North Ryde, NSW 2109, Australia.
| |
Collapse
|
40
|
Hostetler CM, Phillips TJ, Ryabinin AE. Methamphetamine Consumption Inhibits Pair Bonding and Hypothalamic Oxytocin in Prairie Voles. PLoS One 2016; 11:e0158178. [PMID: 27380172 PMCID: PMC4933333 DOI: 10.1371/journal.pone.0158178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/10/2016] [Indexed: 11/18/2022] Open
Abstract
Methamphetamine (MA) abuse has been linked to violence, risk-taking behaviors, decreased sexual inhibition, and criminal activity. It is important to understand mechanisms underlying these drug effects for prevention and treatment of MA-associated social problems. Previous studies have demonstrated that experimenter-administered amphetamine inhibits pair bonding and increases aggression in monogamous prairie voles. It is not currently known whether similar effects on social behaviors would be obtained under conditions during which the drug is voluntarily (actively) administered. The current study investigated whether MA drinking affects pair bonding and what neurocircuits are engaged. In Experiment 1, we exposed male and female voles to 4 days each of 20 and 40 mg/L MA under a continuous 2-bottle choice (2BC) procedure. Animals were housed either singly or in mesh-divided cages with a social partner. Voles consumed MA in a drinking solution, but MA drinking was not affected by either sex or housing condition. In Experiment 2, we investigated whether MA drinking disrupts social bonding by measuring aggression and partner preference formation following three consecutive days of 18-hour/day access to 100 mg/L MA in a 2BC procedure. Although aggression toward a novel opposite-sex animal was not affected by MA exposure, partner preference was inhibited in MA drinking animals. Experiment 3 examined whether alterations in hypothalamic neuropeptides provide a potential explanation for the inhibition of partner preference observed in Experiment 2. MA drinking led to significant decreases in oxytocin, but not vasopressin, in the paraventricular nucleus of the hypothalamus. These experiments are the first investigation into how voluntary pre-exposure to MA affects the development of social attachment in a socially monogamous species and identify potential neural circuits involved in these effects.
Collapse
Affiliation(s)
- Caroline M. Hostetler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
- Veterans Affairs Portland Health Care System, Portland, Oregon, United States of America
- * E-mail:
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
- Veterans Affairs Portland Health Care System, Portland, Oregon, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
41
|
Wright SR, Zanos P, Georgiou P, Yoo JH, Ledent C, Hourani SM, Kitchen I, Winsky-Sommerer R, Bailey A. A critical role of striatal A2A R-mGlu5 R interactions in modulating the psychomotor and drug-seeking effects of methamphetamine. Addict Biol 2016; 21:811-25. [PMID: 25975203 DOI: 10.1111/adb.12259] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Addiction to psychostimulants is a major public health problem with no available treatment. Adenosine A2A receptors (A2A R) co-localize with metabotropic glutamate 5 receptors (mGlu5 R) in the striatum and functionally interact to modulate behaviours induced by addictive substances, such as alcohol. Using genetic and pharmacological antagonism of A2A R in mice, we investigated whether A2A R-mGlu5 R interaction can regulate the locomotor, stereotypic and drug-seeking effect of methamphetamine and cocaine, two drugs that exhibit distinct mechanism of action. Genetic deletion of A2A R, as well as combined administration of sub-threshold doses of the selective A2A R antagonist (SCH 58261, 0.01 mg/kg, i.p.) with the mGlu5 R antagonist, 3-((2-methyl-4-thiazolyl)ethynyl)pyridine (0.01 mg/kg, i.p.), prevented methamphetamine- but not cocaine-induced hyperactivity and stereotypic rearing behaviour. This drug combination also prevented methamphetamine-rewarding effects in a conditioned-place preference paradigm. Moreover, mGlu5 R binding was reduced in the nucleus accumbens core of A2A R knockout (KO) mice supporting an interaction between these receptors in a brain region crucial in mediating addiction processes. Chronic methamphetamine, but not cocaine administration, resulted in a significant increase in striatal mGlu5 R binding in wild-type mice, which was absent in the A2A R KO mice. These data are in support of a critical role of striatal A2A R-mGlu5 R functional interaction in mediating the ambulatory, stereotypic and reinforcing effects of methamphetamine but not cocaine-induced hyperlocomotion or stereotypy. The present study highlights a distinct and selective mechanistic role for this receptor interaction in regulating methamphetamine-induced behaviours and suggests that combined antagonism of A2A R and mGlu5 R may represent a novel therapy for methamphetamine addiction.
Collapse
Affiliation(s)
- Sherie R. Wright
- Sleep, Chronobiology and Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Panos Zanos
- Sleep, Chronobiology and Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Polymnia Georgiou
- Sleep, Chronobiology and Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Ji-Hoon Yoo
- Sleep, Chronobiology and Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Catherine Ledent
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire; Université Libre de Bruxelles; Belgium
| | - Susanna M. Hourani
- Sleep, Chronobiology and Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Ian Kitchen
- Sleep, Chronobiology and Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Raphaelle Winsky-Sommerer
- Sleep, Chronobiology and Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Alexis Bailey
- Sleep, Chronobiology and Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| |
Collapse
|
42
|
Georgiou P, Zanos P, Garcia-Carmona JA, Hourani S, Kitchen I, Laorden ML, Bailey A. Methamphetamine abstinence induces changes in μ-opioid receptor, oxytocin and CRF systems: Association with an anxiogenic phenotype. Neuropharmacology 2016; 105:520-532. [DOI: 10.1016/j.neuropharm.2016.02.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/14/2016] [Accepted: 02/14/2016] [Indexed: 01/08/2023]
|
43
|
Baracz SJ, Parker LM, Suraev AS, Everett NA, Goodchild AK, McGregor IS, Cornish JL. Chronic Methamphetamine Self-Administration Dysregulates Oxytocin Plasma Levels and Oxytocin Receptor Fibre Density in the Nucleus Accumbens Core and Subthalamic Nucleus of the Rat. J Neuroendocrinol 2016; 28. [PMID: 26563756 DOI: 10.1111/jne.12337] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 10/14/2015] [Accepted: 11/07/2015] [Indexed: 01/18/2023]
Abstract
The neuropeptide oxytocin attenuates reward and abuse for the psychostimulant methamphetamine (METH). Recent findings have implicated the nucleus accumbens (NAc) core and subthalamic nucleus (STh) in oxytocin modulation of acute METH reward and relapse to METH-seeking behaviour. Surprisingly, the oxytocin receptor (OTR) is only modestly involved in both regions in oxytocin attenuation of METH-primed reinstatement. Coupled with the limited investigation of the role of the OTR in psychostimulant-induced behaviours, we primarily investigated whether there are cellular changes to the OTR in the NAc core and STh, as well as changes to oxytocin plasma levels, after chronic METH i.v. self-administration (IVSA) and after extinction of drug-taking. An additional aim was to examine whether changes to central corticotrophin-releasing factor (CRF) and plasma corticosterone levels were also apparent because of the interaction of oxytocin with stress-regulatory mechanisms. Male Sprague-Dawley rats were trained to lever press for i.v. METH (0.1 mg/kg/infusion) under a fixed-ratio 1 schedule or received yoked saline infusions during 2-h sessions for 20 days. An additional cohort of rats underwent behavioural extinction for 15 days after METH IVSA. Subsequent to the last day of IVSA or extinction, blood plasma was collected for enzyme immunoassay, and immunofluorescence was conducted on NAc core and STh coronal sections. Rats that self-administered METH had higher oxytocin plasma levels, and decreased OTR-immunoreactive (-IR) fibres in the NAc core than yoked controls. In animals that self-administered METH and underwent extinction, oxytocin plasma levels remained elevated, OTR-IR fibre density increased in the STh, and a trend towards normalisation of OTR-IR fibre density was evident in the NAc core. CRF-IR fibre density in both brain regions and corticosterone plasma levels did not change across treatment groups. These findings demonstrate that oxytocin systems, both centrally within the NAc core and STh, as well as peripherally through plasma measures, are dysregulated after METH abuse.
Collapse
Affiliation(s)
- S J Baracz
- Department of Psychology, Macquarie University, North Ryde, NSW, Australia
- School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - L M Parker
- Australian School of Advanced Medicine, Macquarie University, North Ryde, NSW, Australia
- ARC Center of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, NSW, Australia
| | - A S Suraev
- School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - N A Everett
- Department of Psychology, Macquarie University, North Ryde, NSW, Australia
| | - A K Goodchild
- Australian School of Advanced Medicine, Macquarie University, North Ryde, NSW, Australia
| | - I S McGregor
- School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - J L Cornish
- Department of Psychology, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
44
|
Hicks C, Cornish JL, Baracz SJ, Suraev A, McGregor IS. Adolescent pre-treatment with oxytocin protects against adult methamphetamine-seeking behavior in female rats. Addict Biol 2016; 21:304-15. [PMID: 25402719 DOI: 10.1111/adb.12197] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The neuropeptide oxytocin (OT), given acutely, reduces self-administration of the psychostimulant drug methamphetamine (METH). Additionally, chronic OT administration to adolescent rats reduces levels of alcohol consumption in adulthood, suggesting developmental neuroplasticity in the OT system relevant to addiction-related behaviors. Here, we examined whether OT exposure during adolescence might subsequently inhibit METH self-administration in adulthood. Female Sprague-Dawley rats were administered vehicle or OT (1 mg/kg, i.p.) once daily from postnatal days (PND) 28 to 37 (adolescence). At PND 62 (adulthood), rats were trained to self-administer METH (intravenous, i.v.) in daily 2-hour sessions for 10 days under a fixed ratio 1 (FR1) reinforcement schedule, followed by determination of dose-response functions (0.01-0.3 mg/kg/infusion, i.v.) under both FR1 and progressive ratio (PR) schedules of reinforcement. Responding was then extinguished, and relapse to METH-seeking behavior assessed following priming doses of non-contingent METH (0.1-1 mg/kg, i.p.). Finally, plasma was collected to determine pre-treatment effects on OT and corticosterone levels. Results showed that OT pre-treatment did not significantly inhibit the acquisition of METH self-administration or FR1 responding. However, rats pre-treated with OT responded significantly less for METH under a PR reinforcement schedule, and showed reduced METH-primed reinstatement with the 1 mg/kg prime. Plasma OT levels were also significantly higher in OT pre-treated rats. These results confirm earlier observations that adolescent OT exposure can subtly, yet significantly, inhibit addiction-relevant behaviors in adulthood.
Collapse
Affiliation(s)
- Callum Hicks
- School of Psychology; University of Sydney; Australia
| | | | | | | | | |
Collapse
|
45
|
Ferland CL, Reichel CM, McGinty JF. Effects of oxytocin on methamphetamine-seeking exacerbated by predator odor pre-exposure in rats. Psychopharmacology (Berl) 2016; 233:1015-24. [PMID: 26700240 PMCID: PMC5003622 DOI: 10.1007/s00213-015-4184-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/03/2015] [Indexed: 01/13/2023]
Abstract
RATIONALE The endogenous oxytocin system has emerged as an inhibitor of drug-seeking and stress in preclinical models. OBJECTIVES The goal of this study was to examine whether systemic oxytocin administration attenuated methamphetamine (METH)-seeking in rats pre-exposed to a predator odor threat. METHODS In Experiment 1, rats were exposed for 5 days to the predator odor, 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), or saline before METH self-administration began. After extinction training, rats were injected with 1 mg/kg, ip oxytocin (OXT) or saline 30 min before a cue-induced reinstatement test followed by re-extinction and a TMT-induced reinstatement test. In Experiment 2, TMT pre-exposure was followed by 10 days of 1 mg/kg OXT or saline injections before METH self-administration, extinction, and a TMT-induced reinstatement test. RESULTS In Experiment 1, TMT pre-exposed rats that were injected with saline 30 min before reinstatement exhibited greater drug-seeking induced by conditioned cues or TMT than that exhibited by saline pre-exposed rats. A single injection of OXT 30 min before reinstatement suppressed METH-seeking in both saline- and TMT pre-exposed rats. In Experiment 2, TMT pre-exposed rats that received saline injections for 10 days prior to METH self-administration exhibited enhanced drug-seeking induced by TMT during stress-induced reinstatement. OXT injections for 10 days prior to METH self-administration blocked only the stress-induced exacerbation of drug-seeking in TMT pre-exposed rats. CONCLUSIONS These results support further research on the development of oxytocin as a novel therapeutic drug that has enduring effects on drug-seeking exacerbated by stress.
Collapse
Affiliation(s)
| | | | - Jacqueline F. McGinty
- Correspondence: Jacqueline McGinty, Dept. of Neuroscience, Medical University of South Carolina, 173 Ashley Ave MSC 510, Charleston, SC 29425 USA, Tel: 843-792-9036, Fax: 843-792-4423,
| |
Collapse
|
46
|
Abstract
The neuropeptide oxytocin plays a role in reward, stress, social affiliation, learning, and memory processes. As such, there is increasing interest in oxytocin as a potential treatment for addictions. The endogenous oxytocin system is itself altered by short- or long-term exposure to drugs of abuse. A large number of preclinical studies in rodents have investigated the effect of oxytocin administration on various drug-induced behaviors to determine whether oxytocin can reverse the neuroadaptations occurring with repeated drug and alcohol use. In addition, the mechanisms by which oxytocin acts to modify the behavioral response to drugs of abuse are beginning to be understood. More recently, a few small clinical studies have been conducted in cocaine, cannabis, and alcohol dependence. This review summarizes the preclinical as well as clinical literature to date on the oxytocin system and its relevance to drug and alcohol addiction.
Collapse
|
47
|
Georgiou P, Zanos P, Ehteramyan M, Hourani S, Kitchen I, Maldonado R, Bailey A. Differential regulation of mGlu5 R and ΜOPr by priming- and cue-induced reinstatement of cocaine-seeking behaviour in mice. Addict Biol 2015; 20:902-12. [PMID: 25522112 DOI: 10.1111/adb.12208] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The key problem for the treatment of drug addiction is relapse to drug use after abstinence that can be triggered by drug-associated cues, re-exposure to the drug itself and stress. Understanding the neurobiological mechanisms underlying relapse is essential in order to develop effective pharmacotherapies for its prevention. Given the evidence implicating the metabotropic glutamate receptor 5 (mGlu5 R), μ-opioid receptor (MOPr), κ-opioid receptor (ΚOPr) and oxytocin receptor (OTR) systems in cocaine addiction and relapse, our aim was to assess the modulation of these receptors using a mouse model of cue- and priming-induced reinstatement of cocaine seeking. Male mice were trained to self-administer cocaine (1 mg/kg/infusion, i.v.) and were randomized into different groups: (1) cocaine self-administration; (2) cocaine extinction; (3) cocaine-primed (10 mg/kg i.p.); or (4) cue-induced reinstatement of cocaine seeking. Mice undergoing the same protocols but receiving saline instead of cocaine were used as controls. Quantitative autoradiography of mGlu5 R, MOPr, KOPr and OTR showed a persistent cocaine-induced upregulation of the mGlu5 R and OTR in the lateral septum and central amygdala, respectively. Moreover, a downregulation of mGlu5 R and MOPr was observed in the basolateral amygdala and striatum, respectively. Further, we showed that priming- but not cue-induced reinstatement upregulates mGlu5 R and MOPr binding in the nucleus accumbens core and basolateral amygdala, respectively, while cue- but not priming-induced reinstatement downregulates MOPr binding in caudate putamen and nucleus accumbens core. This is the first study to provide direct evidence of reinstatement-induced receptor alterations that are likely to contribute to the neurobiological mechanisms underpinning relapse to cocaine seeking.
Collapse
Affiliation(s)
- Polymnia Georgiou
- Sleep, Chronobiology & Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Panos Zanos
- Sleep, Chronobiology & Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Mazdak Ehteramyan
- Department of Experimental and Health Sciences; University of Pompeu Fabra; Spain
| | - Susanna Hourani
- Sleep, Chronobiology & Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Ian Kitchen
- Sleep, Chronobiology & Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| | - Rafael Maldonado
- Department of Experimental and Health Sciences; University of Pompeu Fabra; Spain
| | - Alexis Bailey
- Sleep, Chronobiology & Addiction Group; School of Biosciences and Medicine; Faculty of Health and Medical Sciences; University of Surrey; UK
| |
Collapse
|
48
|
Baracz SJ, Everett NA, Cornish JL. The Involvement of Oxytocin in the Subthalamic Nucleus on Relapse to Methamphetamine-Seeking Behaviour. PLoS One 2015; 10:e0136132. [PMID: 26284529 PMCID: PMC4540453 DOI: 10.1371/journal.pone.0136132] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/31/2015] [Indexed: 12/11/2022] Open
Abstract
The psychostimulant methamphetamine (METH) is an addictive drug of abuse. The neuropeptide oxytocin has been shown to modulate METH-related reward and METH-seeking behaviour. Recent findings implicated the subthalamic nucleus (STh) as a key brain region in oxytocin modulation of METH-induced reward. However, it is unclear if oxytocin acts in this region to attenuate relapse to METH-seeking behaviour, and if this action is through the oxytocin receptor. We aimed to determine whether oxytocin pretreatment administered into the STh would reduce reinstatement to METH use in rats experienced at METH self-administration, and if this could be reversed by the co-administration of the oxytocin receptor antagonist desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT. Male Sprague Dawley rats underwent surgery to implant an intravenous jugular vein catheter and bilateral microinjection cannulae into the STh under isoflourane anaesthesia. Rats were then trained to self-administer intravenous METH (0.1 mg/kg/infusion) by lever press during 2-hour sessions under a fixed ratio 1 schedule for 20 days. Following extinction of lever press activity, the effect of microinjecting saline, oxytocin (0.2 pmol, 0.6 pmol, 1.8 pmol, 3.6 pmol) or co-administration of oxytocin (3.6 pmol) and desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT (3 nmol) into the STh (200 nl/side) was examined on METH-primed reinstatement (1 mg/kg; i.p.). We found that local administration of the highest oxytocin dose (3.6 pmol) into the STh decreased METH-induced reinstatement and desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT had a non-specific effect on lever press activity. These findings highlight that oxytocin modulation of the STh is an important modulator of relapse to METH abuse.
Collapse
Affiliation(s)
- Sarah Jane Baracz
- Department of Psychology, Macquarie University, Sydney, Australia, 2109
| | | | | |
Collapse
|
49
|
Abstract
Many drugs, including alcohol and stimulants, demonstrably increase sociability and verbal interaction and are recreationally consumed in social settings. One drug, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), seems to produce its prosocial effects by increasing plasma oxytocin levels, and the oxytocin system has been implicated in responses to several other drugs of abuse. Here, we sought to investigate the effects of 2 other "social" drugs on plasma oxytocin levels--methamphetamine and alcohol. Based on their shared capacity to enhance sociability, we hypothesized that both methamphetamine and alcohol would increase plasma oxytocin levels. In study 1, 11 healthy adult volunteers attended 3 sessions during which they received methamphetamine (10 mg or 20 mg) or placebo under double-blind conditions. Subjective drug effects, cardiovascular effects, and plasma oxytocin levels were measured at regular intervals throughout the sessions. In study 2, 8 healthy adult volunteers attended a single session during which they received 1 beverage containing placebo, and then a beverage containing alcohol (0.8 g/kg). Subjective effects, breath alcohol levels, and plasma oxytocin levels were measured at regular intervals. Both methamphetamine and alcohol produced their expected physiological and subjective effects, but neither of these drugs increased plasma oxytocin levels. The neurobiological mechanisms mediating the prosocial effects of drugs such as alcohol and methamphetamine remain to be identified.
Collapse
|
50
|
Zanos P, Georgiou P, Metaxas A, Kitchen I, Winsky-Sommerer R, Bailey A. Region-specific up-regulation of oxytocin receptor binding in the brain of mice following chronic nicotine administration. Neurosci Lett 2015; 600:33-7. [PMID: 26037668 DOI: 10.1016/j.neulet.2015.05.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/18/2015] [Accepted: 05/24/2015] [Indexed: 12/25/2022]
Abstract
Nicotine addiction is considered to be the main preventable cause of death worldwide. While growing evidence indicates that the neurohypophysial peptide oxytocin can modulate the addictive properties of several abused drugs, the regulation of the oxytocinergic system following nicotine administration has so far received little attention. Here, we examined the effects of long-term nicotine or saline administration on the central oxytocinergic system using [(125)I]OVTA autoradiographic binding in mouse brain. Male, 7-week old C57BL6J mice were treated with either nicotine (7.8 mg/kg daily; rate of 0.5 μl per hour) or saline for a period of 14-days via osmotic minipumps. Chronic nicotine administration induced a marked region-specific upregulation of the oxytocin receptor binding in the amygdala, a brain region involved in stress and emotional regulation. These results provide direct evidence for nicotine-induced neuroadaptations in the oxytocinergic system, which may be involved in the modulation of nicotine-seeking as well as emotional consequence of chronic drug use.
Collapse
Affiliation(s)
- Panos Zanos
- Sleep, Chronobiology & Addiction Group, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH Surrey, UK
| | - Polymnia Georgiou
- Sleep, Chronobiology & Addiction Group, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH Surrey, UK
| | - Athanasios Metaxas
- Sleep, Chronobiology & Addiction Group, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH Surrey, UK
| | - Ian Kitchen
- Sleep, Chronobiology & Addiction Group, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH Surrey, UK
| | - Raphaelle Winsky-Sommerer
- Sleep, Chronobiology & Addiction Group, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH Surrey, UK
| | - Alexis Bailey
- Sleep, Chronobiology & Addiction Group, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH Surrey, UK.
| |
Collapse
|