1
|
Kruk-Slomka M, Dzik A, Biala G. The Effects of Indirect and Direct Modulation of Endocannabinoid System Function on Anxiety-Related Behavior in Mice Assessed in the Elevated Plus Maze Test. Molecules 2025; 30:867. [PMID: 40005177 PMCID: PMC11857936 DOI: 10.3390/molecules30040867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The endocannabinoid system (ECS) is one of the most important systems modulating functions in the body. The ECS, via cannabinoid (CB: CB1 and CB2) receptors, endocannabinoids occurring in the brain (e.g., anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) and enzymes degrading endocannabinoids in the brain (fatty-acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL)), plays a key role in the regulation of mood and anxiety. However, the effects of cannabinoid compounds on anxiety-related responses are complex and yield mixed results depending on the type of pharmacological manipulation (direct or indirect) of functions of the ECS, as well as the kinds of cannabinoids, dosage and procedure. METHODS The aim of this study was to determine and compare the influence of the direct (via CB receptors ligands) and indirect (via inhibition of enzymes degrading endocannabinoids in the brain) pharmacological modulation of ECS function on anxiety-like responses in mice in the elevated plus maze (EPM) test. For this purpose, in the first step of the experiments, we used selected ligands of CB1, CB1/CB2 and CB2 receptors to assess which types of CB receptors are involved in anxiety-related responses in mice. Next, we used inhibitors of FAAH (which breaks down AEA) or MAGL (which breaks down 2-AG) to assess which endocannabinoid is more responsible for anxiety-related behavior in mice. RESULTS The results of our presented research showed that an acute administration of CB1 receptor agonist oleamide (5-20 mg/kg) had no influence on anxiety-related responses and CB1 receptor antagonist AM 251 (0.25-3 mg/kg) had anxiogenic effects in the EPM test in mice. In turn, an acute administration of mixed CB1/CB2 receptor agonist WIN55,212-2 used at a dose of 1 mg/kg had an anxiolytic effect observed in mice in the EPM test. What is of interest is that both the acute administration of a CB2 receptor agonist (JWH 133 at the doses of 1 and 2 mg/kg) and antagonist (AM 630 at the doses of 0.5-2 mg/kg) had anxiogenic effects in this procedure. Moreover, we revealed that an acute administration of only FAAH inhibitor URB 597 (0.3 mg/kg) had an anxiolytic effect, while MAGL inhibitor JZL 184 (at any used doses (2-40 mg/kg)) after an acute injection had no influence on anxiety behavior in mice, as observed in the EPM test. CONCLUSIONS In our experiments, we confirmed the clearly significant involvement of the ECS in anxiety-related responses. In particular, the pharmacological indirect manipulation of ECS functions is able to elicit promising anxiolytic effects. Therefore, the ECS could be a potential target for novel anxiolytic drugs; however, further studies are needed.
Collapse
Affiliation(s)
- Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland;
- Experimental Medicine Center (OMD), Medical University of Lublin, Jaczewskiego 8D, 20-090 Lublin, Poland
| | - Agnieszka Dzik
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland;
- Experimental Medicine Center (OMD), Medical University of Lublin, Jaczewskiego 8D, 20-090 Lublin, Poland
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland;
- Experimental Medicine Center (OMD), Medical University of Lublin, Jaczewskiego 8D, 20-090 Lublin, Poland
| |
Collapse
|
2
|
Stanciu GD, Ababei DC, Solcan C, Uritu CM, Craciun VC, Pricope CV, Szilagyi A, Tamba BI. Exploring Cannabinoids with Enhanced Binding Affinity for Targeting the Expanded Endocannabinoid System: A Promising Therapeutic Strategy for Alzheimer's Disease Treatment. Pharmaceuticals (Basel) 2024; 17:530. [PMID: 38675490 PMCID: PMC11053678 DOI: 10.3390/ph17040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Despite decades of rigorous research and numerous clinical trials, Alzheimer's disease (AD) stands as a notable healthcare challenge of this century, with effective therapeutic solutions remaining elusive. Recently, the endocannabinoid system (ECS) has emerged as an essential therapeutic target due to its regulatory role in different physiological processes, such as neuroprotection, modulation of inflammation, and synaptic plasticity. This aligns with previous research showing that cannabinoid receptor ligands have the potential to trigger the functional structure of neuronal and brain networks, potentially impacting memory processing. Therefore, our study aims to assess the effects of prolonged, intermittent exposure (over 90 days) to JWH-133 (0.2 mg/kg) and an EU-GMP certified Cannabis sativa L. (Cannabixir® Medium Flos, 2.5 mg/kg) on recognition memory, as well as their influence on brain metabolism and modulation of the expanded endocannabinoid system in APP/PS1 mice. Chronic therapy with cannabinoid receptor ligands resulted in reduced anxiety-like behavior and partially reversed the cognitive deficits. Additionally, a reduction was observed in both the number and size of Aβ plaque deposits, along with decreased cerebral glucose metabolism, as well as a decline in the expression of mTOR and CB2 receptors. Furthermore, the study revealed enlarged astrocytes and enhanced expression of M1 mAChR in mice subjected to cannabinoid treatment. Our findings highlight the pivotal involvement of the extended endocannabinoid system in cognitive decline and pathological aspects associated with AD, presenting essential preclinical evidence to support the continued exploration and assessment of cannabinoid receptor ligands for AD treatment.
Collapse
Affiliation(s)
- Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Daniela-Carmen Ababei
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania;
| | - Cristina-Mariana Uritu
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Vlad-Constantin Craciun
- Department of Computer Science, “Alexandru Ioan Cuza” University of Iasi, 700506 Iasi, Romania;
| | - Cosmin-Vasilica Pricope
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine “Prof. Ostin C. Mungiu”—CEMEX, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (A.S.)
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
3
|
Yadav-Samudrala BJ, Gorman BL, Barmada KM, Ravula HP, Huguely CJ, Wallace ED, Peace MR, Poklis JL, Jiang W, Fitting S. Effects of acute cannabidiol on behavior and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Front Neurosci 2024; 18:1358555. [PMID: 38505774 PMCID: PMC10949733 DOI: 10.3389/fnins.2024.1358555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Background Some evidence suggests that cannabidiol (CBD) has potential to help alleviate HIV symptoms due to its antioxidant and anti-inflammatory properties. Here we examined acute CBD effects on various behaviors and the endocannabinoid system in HIV Tat transgenic mice. Methods Tat transgenic mice (female/male) were injected with CBD (3, 10, 30 mg/kg) and assessed for antinociception, activity, coordination, anxiety-like behavior, and recognition memory. Brains were taken to quantify endocannabinoids, cannabinoid receptors, and cannabinoid catabolic enzymes. Additionally, CBD and metabolite 7-hydroxy-CBD were quantified in the plasma and cortex. Results Tat decreased supraspinal-related nociception and locomotion. CBD and sex had little to no effects on any of the behavioral measures. For the endocannabinoid system male sex was associated with elevated concentration of the proinflammatory metabolite arachidonic acid in various CNS regions, including the cerebellum that also showed higher FAAH expression levels for Tat(+) males. GPR55 expression levels in the striatum and cerebellum were higher for females compared to males. CBD metabolism was altered by sex and Tat expression. Conclusion Findings indicate that acute CBD effects are not altered by HIV Tat, and acute CBD has no to minimal effects on behavior and the endocannabinoid system.
Collapse
Affiliation(s)
- Barkha J. Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin L. Gorman
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Karenna M. Barmada
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Havilah P. Ravula
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Caitlin J. Huguely
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - E. Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michelle R. Peace
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Yadav-Samudrala BJ, Gorman BL, Dodson H, Ramineni S, Wallace ED, Peace MR, Poklis JL, Jiang W, Fitting S. Effects of acute Δ 9-tetrahydrocannabinol on behavior and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Brain Res 2024; 1822:148638. [PMID: 37858856 PMCID: PMC10873064 DOI: 10.1016/j.brainres.2023.148638] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Cannabis use is highly prevalent especially among people living with HIV (PLWH). Activation of the anti-inflammatory and neuroprotective endocannabinoid system by phytocannabinoids, i.e. Δ9-tetrahydrocannabinol (THC), has been proposed to reduce HIV symptoms. However, THC's effects on HIV-related memory deficits are unclear. Using HIV-1 Tat transgenic mice, the current study investigates acute THC effects on various behavioral outcomes and the endocannabinoid system. For the rodent tetrad model, THC doses (1, 3, 10 mg/kg) induced known antinociceptive effects, with Tat induction increasing antinociceptive THC effects at 3 and 10 mg/kg doses. Only minor or no effects were noted for acute THC on body temperature, locomotor activity, and coordination. Increased anxiety-like behavior was found for females compared to males, but acute THC had no effect on anxiety. Object recognition memory was diminished by acute THC in Tat(-) females but not Tat(+) females, without affecting males. The endocannabinoid system and related lipids were not affected by acute THC, except for THC-induced decreases in CB1R protein expression levels in the spinal cord of Tat(-) mice. Female sex and Tat induction was associated with elevated 2-AG, AEA, AA, CB1R, CB2R, FAAH and/or MAGL expression in various brain regions. Further, AEA levels in the prefrontal cortex of Tat(+) females were negatively associated with object recognition memory. Overall, findings indicate that acute THC exerts differential effects on antinociception and memory, dependent on sex and HIV Tat expression, potentially in relation to an altered endocannabinoid system, which may be of relevance in view of potential cannabis-based treatment options for PLWH.
Collapse
Affiliation(s)
- Barkha J Yadav-Samudrala
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin L Gorman
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hailey Dodson
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shreya Ramineni
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - E Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michelle R Peace
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Justin L Poklis
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Gonçalves PFR, Nunes LED, Andrade BDS, Silva MOLD, Souza INDO, Assunção-Miranda I, Castro NG, Neves GA. Age-dependent memory impairment induced by co-exposure to nicotine and a synthetic cannabinoid in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110821. [PMID: 37442332 DOI: 10.1016/j.pnpbp.2023.110821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Co-use of marijuana and tobacco products is the second most common drug combination among adolescents. Nicotine (NIC) and cannabinoid use during adolescence induce similar detrimental changes, raising the hypothesis that simultaneous exposure could result in even more severe outcomes. Thus, we investigated whether the co-exposure to NIC and the synthetic cannabinoid WIN 55,212-2 (WIN) in adolescent mice causes behavioral outcomes different from those observed after exposure to a single drug. Male Swiss mice were exposed twice daily to NIC, WIN, or NIC + WIN during adolescence (PND28-47) or adulthood (PND70-89). Drug combination led to a greater reduction in weight gain in adolescent mice, while NIC-induced weight loss was observed in adults. During administration, NIC provoked hypothermia, and WIN produced hyperlocomotion in adolescent and adult mice. Animals exposed to NIC + WIN presented a profile of changes similar to those exposed to NIC. After drug exposure, changes in locomotion, thigmotaxis, social preference, prepulse inhibition, and working and recognition memory were evaluated. Adolescent but not adult mice exposed to NIC showed withdrawal-related hyperlocomotion unaffected by WIN co-administration. An age-specific impairment in object recognition memory was induced only by drug co-exposure during adolescence, which resolved spontaneously before reaching early adulthood. A transient decrease in hippocampal α7 nAChR subunit and CB1 receptor mRNA levels was induced by NIC exposure, which may be involved but is not enough to explain the memory impairment. Our work confirms the potential of NIC and cannabinoids association to aggravate some of the individual drug effects during critical neurodevelopmental periods.
Collapse
Affiliation(s)
- Patricia Felix Rolo Gonçalves
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Eduardo Duarte Nunes
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Brenda da Silva Andrade
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Isis Nem de Oliveira Souza
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iranaia Assunção-Miranda
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Newton Gonçalves Castro
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilda Angela Neves
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Penman SL, Roeder NM, Berthold EC, Senetra AS, Marion M, Richardson BJ, White O, Fearby NL, McCurdy CR, Hamilton J, Sharma A, Thanos PK. FABP5 is important for cognitive function and is an important regulator of the physiological effects and pharmacokinetics of acute Δ9 tetrahydrocannabinol inhalation in mice. Pharmacol Biochem Behav 2023; 231:173633. [PMID: 37716413 DOI: 10.1016/j.pbb.2023.173633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Fatty acid binding protein 5 (FABP5) interacts with the endocannabinoid system in the brain via intracellular transport of anandamide, as well as Δ9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis. Previous work has established the behavioral effects of genetic deletion of FABP5, but not in the presence of THC. The present study sought to further elucidate the role of FABP5 on the pharmacokinetic and behavioral response to THC through global deletion. Adult FABP5+/+ and FABP5-/- mice were tested for behavioral response to THC using Open Field (OF), Novel Object Recognition (NOR), T-Maze, Morris Water Maze (MWM), and Elevated Plus Maze (EPM). An additional cohort of mice was used to harvest blood, brains, and liver samples to measure THC and metabolites after acute administration of THC. Behavioral tests showed that some cognitive deficits from FABP5 deletion, particularly in MWM, were blocked by THC administration, while this was not observed in other measures of memory and anxiety (such as T-Maze and EPM). Measurement of THC and metabolites in blood serum and brain tissue through UPLC-MS/MS analysis showed that the pharmacokinetics of THC was altered by FABP5. The present study shows further evidence of the importance of FABP5 in cognitive function. Additionally, results showed that FABP5 is an important regulator of the physiological effects and pharmacokinetics of THC.
Collapse
Affiliation(s)
- Samantha L Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Nicole M Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Erin C Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Alexandria S Senetra
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Matthew Marion
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Brittany J Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Olivia White
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Nathan L Fearby
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Christopher R McCurdy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA; Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
7
|
Pintori N, Caria F, De Luca MA, Miliano C. THC and CBD: Villain versus Hero? Insights into Adolescent Exposure. Int J Mol Sci 2023; 24:ijms24065251. [PMID: 36982327 PMCID: PMC10048857 DOI: 10.3390/ijms24065251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Cannabis is the most used drug of abuse worldwide. It is well established that the most abundant phytocannabinoids in this plant are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). These two compounds have remarkably similar chemical structures yet vastly different effects in the brain. By binding to the same receptors, THC is psychoactive, while CBD has anxiolytic and antipsychotic properties. Lately, a variety of hemp-based products, including CBD and THC, have become widely available in the food and health industry, and medical and recreational use of cannabis has been legalized in many states/countries. As a result, people, including youths, are consuming CBD because it is considered “safe”. An extensive literature exists evaluating the harmful effects of THC in both adults and adolescents, but little is known about the long-term effects of CBD exposure, especially in adolescence. The aim of this review is to collect preclinical and clinical evidence about the effects of cannabidiol.
Collapse
Affiliation(s)
- Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Francesca Caria
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
- Correspondence: ; Tel.: +39-070-6758633
| | - Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Chronic exposure to a synthetic cannabinoid alters cerebral brain metabolism and causes long-lasting behavioral deficits in adult mice. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02607-8. [PMID: 36853560 PMCID: PMC10374737 DOI: 10.1007/s00702-023-02607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
In recent years, there has been growing evidence that cannabinoids have promising medicinal and pharmacological effects. However, the growing interest in medical cannabis highlights the need to better understand brain alterations linking phytocannabinoids or synthetic cannabinoids to clinical and behavioral phenotypes. Therefore, the aim of this study was to investigate the effects of long-term WIN 55,212-2 treatment-with and without prolonged abstinence-on cerebral metabolism and memory function in healthy wildtype mice. Adult C57BI/6J mice were divided into two treatment groups to study the acute effects of WIN 55,212-2 treatment as well the effects of WIN 55,212-2 treatment after an extended washout phase. We could demonstrate that 3 mg/kg WIN 55,212-2 treatment in early adulthood leads to a hypometabolism in several brain regions including the hippocampus, cerebellum, amygdala and midbrain, even after prolonged abstinence. Furthermore, prolonged acute WIN 55,212-2 treatment in 6-months-old mice reduced the glucose metabolism in the hippocampus and midbrain. In addition, Win 55,212-2 treatment during adulthood lead to spatial memory and recognition memory deficits without affecting anxiety behavior. Overall we could demonstrate that treatment with the synthetic CB1/CB2 receptor aganist Win 55,212-2 during adulthood causes persistent memory deficits, especially when mice were treated in early adulthood. Our findings highlight the risks of prolonged WIN 55,212-2 use and provide new insights into the mechanisms underlying the effects of chronic cannabinoid exposure on the brain and behavior.
Collapse
|
9
|
Iglesias LP, Bedeschi L, Aguiar DC, Asth L, Moreira FA. Effects of Δ 9-THC and Type-1 Cannabinoid Receptor Agonists in the Elevated Plus Maze Test of Anxiety: A Systematic Review and Meta-Analysis. Cannabis Cannabinoid Res 2023; 8:24-33. [PMID: 35984927 DOI: 10.1089/can.2022.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Δ9-THC (the main active compound from Cannabis sativa) and related cannabinoids have been used as drugs of abuse and as medications. They induce a complex set of emotional responses in humans and experimental animals, consisting of either anxiolysis or heightened anxiety. These discrepant effects pose a major challenge for data reproducibility and for developing new cannabinoid-based medicines. In this study, we review and analyze previous data on cannabinoids and anxiety-like behavior in experimental animals. Systematic review and meta-analysis on the effects of type-1 cannabinoid receptor agonists (full or partial, selective or not) in rodents exposed to the elevated plus maze, a widely used test of anxiety-like behavior. Cannabinoids tend to reduce anxiety-like behavior if administered at low doses. THC effects are moderated by the dose factor, with anxiolytic- and anxiogenic-like effects occurring at low-dose (0.075-1 mg/kg) and high-dose (1-10 mg/kg) ranges, respectively. However, some studies report no effect at all regardless of the dose tested. Finally, motor impairment represents a potential confounding factor when high doses are administered. The present analysis may contribute to elucidate the experimental factors underlying cannabinoid effects on anxiety-like behavior and facilitate data reproducibility in future studies.
Collapse
Affiliation(s)
- Lia P Iglesias
- Graduate School in Neuroscience; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Department of Pharmacology; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas Bedeschi
- Department of Pharmacology; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Daniele C Aguiar
- Graduate School in Neuroscience; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Department of Pharmacology; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Graduate School in Physiology and Pharmacology; Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Laila Asth
- Graduate School in Neuroscience; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Graduate School in Physiology and Pharmacology; Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Fabrício A Moreira
- Graduate School in Neuroscience; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Department of Pharmacology; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Graduate School in Physiology and Pharmacology; Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
10
|
Taylor A, Nweke A, Vincent V, Oke M, Kulkarni P, Ferris CF. Chronic exposure to inhaled vaporized cannabis high in Δ9-THC alters brain structure in adult female mice. Front Neurosci 2023; 17:1139309. [PMID: 36950131 PMCID: PMC10025305 DOI: 10.3389/fnins.2023.1139309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction The medical and recreational use of cannabis has increased in the United States. Its chronic use can have detrimental effects on the neurobiology of the brain-effects that are age-dependent. This was an exploratory study looking at the effects of chronically inhaled vaporized cannabis on brain structure in adult female mice. Methods Adult mice were exposed daily to vaporized cannabis (10.3% THC and 0.05% CBD) or placebo for 21 days. Following cessation of treatment mice were examined for changes in brain structure using voxel-based morphometry and diffusion weighted imaging MRI. Data from each imaging modality were registered to a 3D mouse MRI atlas with 139 brain areas. Results Mice showed volumetric changes in the forebrain particularly the prefrontal cortex, accumbens, ventral pallidum, and limbic cortex. Many of these same brain areas showed changes in water diffusivity suggesting alterations in gray matter microarchitecture. Discussion These data are consistent with much of the clinical findings on cannabis use disorder. The sensitivity of the dopaminergic system to the daily exposure of vaporized cannabis raises concerns for abuse liability in drug naïve adult females that initiate chronic cannabis use.
Collapse
Affiliation(s)
- Autumn Taylor
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Amanda Nweke
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Veniesha Vincent
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Marvellous Oke
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Craig F. Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
- Department of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
- *Correspondence: Craig F. Ferris,
| |
Collapse
|
11
|
Coleman JR, Madularu D, Ortiz RJ, Athanassiou M, Knudsen A, Alkislar I, Cai X, Kulkarni PP, Cushing BS, Ferris CF. Changes in brain structure and function following chronic exposure to inhaled vaporised cannabis during periadolescence in female and male mice: A multimodal MRI study. Addict Biol 2022; 27:e13169. [PMID: 35470553 DOI: 10.1111/adb.13169] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIMS Social norms and legality surrounding the use of medical and recreational cannabis are changing rapidly. The prevalence of cannabis use in adolescence is increasing. The aim of this study was to assess any sex-based neurobiological effects of chronically inhaled, vaporised cannabis on adolescent female and male mice. METHODS Female and male mice were exposed daily to vaporised cannabis (10.3% Δ-9-tetrahydrocannabinol [THC] and 0.05% cannabidiol [CBD]) or placebo from postnatal day 23 to day 51. Following cessation of treatment, mice were examined for changes in brain structure and function using noninvasive multimodal magnetic resonance imaging (MRI). Data from voxel-based morphometry, diffusion weighted imaging and rest state functional connectivity were registered to and analysed with a 3D mouse atlas with 139 brain areas. Following imaging, mice were tested for their preference for a novel object. RESULTS The effects were sexually dimorphic with females showing a unique distribution and inverse correlation between measures of fractional anisotropy and apparent diffusion coefficient localised to the forebrain and hindbrain. In contrast males displayed significant increased functional coupling with the thalamus, hypothalamus and brainstem reticular activating system as compared with controls. Cannabis males also presented with altered hippocampal coupling and deficits in cognitive function. CONCLUSION Chronic exposure to inhaled vaporised cannabis had significant effects on brain structure and function in early adulthood corroborating much of the literature. Females presented with changes in grey matter microarchitecture, while males showed altered functional connectivity in hippocampal circuitry and deficits in object recognition.
Collapse
Affiliation(s)
- James R. Coleman
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Dan Madularu
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Richard J. Ortiz
- Department of Biological Sciences University of Texas at El Paso El Paso Texas USA
| | - Maria Athanassiou
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal Montreal Québec Canada
| | - Alexa Knudsen
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Ilayda Alkislar
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Xuezhu Cai
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Praveen P. Kulkarni
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Bruce S. Cushing
- Department of Biological Sciences University of Texas at El Paso El Paso Texas USA
| | - Craig F. Ferris
- Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| |
Collapse
|
12
|
Dos(e)Age: Role of Dose and Age in the Long-Term Effect of Cannabinoids on Cognition. Molecules 2022; 27:molecules27041411. [PMID: 35209200 PMCID: PMC8876668 DOI: 10.3390/molecules27041411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Cannabis is still the most widely used illicit drug around the world. While its use has always been prevalent among adolescents, recent evidence suggests that its consumption is also increasing among other population groups, such as pregnant women and aged people. Given the known impact of cannabis on brain development and behavior, it is important to dissect the possible long-term impact of its use across different age groups, especially on measures of cognitive performance. Animal models of cannabinoid exposure have represented a fundamental tool to characterize the long-lasting consequences of cannabinoids on cognitive performance and helped to identify possible factors that could modulate cannabinoids effects in the long term, such as the age of exposure and doses administered. This scoping review was systematically conducted using PubMed and includes papers published from 2015 to December 2021 that examined the effects of cannabinoids, either natural or synthetic, on cognitive performance in animal models where exposure occurred in the prenatal period, during adolescence, or in older animals. Overall, available data clearly point to a crucial role of age in determining the long-term effect of cannabinoid on cognition, highlighting possible detrimental consequences during brain development (prenatal and adolescent exposure) and beneficial outcomes in old age. In contrast, despite the recent advances in the field, it appears difficult to clearly establish a possible role of dosage in the effects of cannabinoids on cognition, especially when the adolescent period is taken into account.
Collapse
|
13
|
Anxiety and cognitive-related effects of Δ 9-tetrahydrocannabinol (THC) are differentially mediated through distinct GSK-3 vs. Akt-mTOR pathways in the nucleus accumbens of male rats. Psychopharmacology (Berl) 2022; 239:509-524. [PMID: 34860284 DOI: 10.1007/s00213-021-06029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
RATIONALE Δ9-tetrahydrocannabinol (THC) is the primary psychoactive compound in cannabis and is responsible for cannabis-related neuropsychiatric side effects, including abnormal affective processing, cognitive and sensory filtering deficits and memory impairments. A critical neural region linked to the psychotropic effects of THC is the nucleus accumbens shell (NASh), an integrative mesocorticolimbic structure that sends and receives inputs from multiple brain areas known to be dysregulated in various disorders, including schizophrenia and anxiety-related disorders. Considerable evidence demonstrates functional differences between posterior vs. anterior NASh sub-regions in the processing of affective and cognitive behaviours influenced by THC. Nevertheless, the neuroanatomical regions and local molecular pathways responsible for these psychotropic effects are not currently understood. OBJECTIVES The objectives of this study were to characterize the effects of intra-accumbens THC in the anterior vs. posterior regions of the NASh during emotional memory formation, sensorimotor gating and anxiety-related behaviours. METHODS We performed an integrative series of translational behavioural pharmacological studies examining anxiety, sensorimotor gating and fear-related associative memory formation combined with regionally specific molecular signalling analyses in male Sprague Dawley rats. RESULTS We report that THC in the posterior NASh causes distortions in emotional salience attribution, impaired sensory filtering and memory retention and heightened anxiety, through a glycogen-synthase-kinase-3 (GSK-3)-β-catenin dependent signalling pathway. In contrast, THC in the anterior NASh produces anxiolytic effects via modulation of protein kinase B (Akt) phosphorylation states. CONCLUSIONS These findings reveal critical new insights into the neuroanatomical and molecular mechanisms associated with the differential neuropsychiatric side effects of THC in dissociable nucleus accumbens sub-regions.
Collapse
|
14
|
Murlanova K, Hasegawa Y, Kamiya A, Pletnikov MV. Cannabis effects on the adolescent brain. CANNABIS AND THE DEVELOPING BRAIN 2022:283-330. [DOI: 10.1016/b978-0-12-823490-7.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Silva MH. Chlorpyrifos and Δ 9 Tetrahydrocannabinol exposure and effects on parameters associated with the endocannabinoid system and risk factors for obesity. Curr Res Toxicol 2021; 2:296-308. [PMID: 34467221 PMCID: PMC8384771 DOI: 10.1016/j.crtox.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Marilyn Silva. Retired from a career in toxicology and risk assessment. Increased childhood and adult obesity are associated with chlorpyrifos (CPF), an organophosphate pesticide. Cannabis (Δ9Tetrahydrocannabinol: Δ9THC) use has increased globally with legalization. CPF applications on cannabis crops lacks federally regulated tolerances and may pose health risks through exposure during development and in adulthood. Both CPF and Δ9THC affect the endocannabinoid system (eCBS), a regulator of appetite, energy balance, and gut microbiota, which, if disrupted, increases risk for obesity and related diseases. CPF inhibits eCB metabolism and Δ9THC is a partial agonist/antagonist at the cannabinoid receptor (CB1R). Effects of each on obesogenic parameters were examined via literature search. Male rodents with CPF exposure showed increased body weights, dysbiosis, inflammation and oxidative stress, potentially associated with increased eCBs acting through the gut-microbiota-adipose-brain regulatory loop. Δ9THC generally decreased body weights via partial agonism at the CB1R, lowering levels of eCBs. Dysbiosis and/or oxidative stress associated inflammation occurred with CPF, but these parameters were not tested with Δ9THC. Database deficiencies included limited endpoints to compare between chemicals/age-groups, inter-study variables (dose ranges, dosing vehicle, rodent strain, treatment duration, etc.). CPF and Δ9THC were not tested together, but human co-chemical effects would depend on exposure ratio, subject age, exposure duration, and health status, among others. An overriding concern is that both chemicals are well-documented developmental neurotoxins in addition to their low dose effects on energy balance. A co-exposure risk assessment is warranted with increased use and lack of federal CPF regulation on cannabis.
Collapse
Affiliation(s)
- Marilyn H. Silva
- Retired from a career in toxicology and risk assessment 2437, Evenstar Lane, Davis, CA 95616, United States
| |
Collapse
|
16
|
Reversing the Psychiatric Effects of Neurodevelopmental Cannabinoid Exposure: Exploring Pharmacotherapeutic Interventions for Symptom Improvement. Int J Mol Sci 2021; 22:ijms22157861. [PMID: 34360626 PMCID: PMC8346164 DOI: 10.3390/ijms22157861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodevelopmental exposure to psychoactive compounds in cannabis, specifically THC, is associated with a variety of long-term psychopathological outcomes. This increased risk includes a higher prevalence of schizophrenia, mood and anxiety disorders, and cognitive impairments. Clinical and pre-clinical research continues to identify a wide array of underlying neuropathophysiological sequelae and mechanisms that may underlie THC-related psychiatric risk vulnerability, particularly following adolescent cannabis exposure. A common theme among these studies is the ability of developmental THC exposure to induce long-term adaptations in the mesocorticolimbic system which resemble pathological endophenotypes associated with these disorders. This narrative review will summarize recent clinical and pre-clinical evidence that has elucidated these THC-induced developmental risk factors and examine how specific pharmacotherapeutic interventions may serve to reverse or perhaps prevent these cannabis-related risk outcomes.
Collapse
|
17
|
Petrie GN, Nastase AS, Aukema RJ, Hill MN. Endocannabinoids, cannabinoids and the regulation of anxiety. Neuropharmacology 2021; 195:108626. [PMID: 34116110 DOI: 10.1016/j.neuropharm.2021.108626] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cannabis has been used for hundreds of years, with its ability to dampen feelings of anxiety often reported as a primary reason for use. Only recently has the specific role cannabinoids play in anxiety been thoroughly investigated. Here we discuss the body of evidence describing how endocannabinoids and exogenous cannabinoids are capable of regulating the generation and termination of anxiety states. Disruption of the endogenous cannabinoid (eCB) system following genetic manipulation, pharmacological intervention or stress exposure reliably leads to the generation of an anxiety state. On the other hand, upregulation of eCB signaling is capable of alleviating anxiety-like behaviors in multiple paradigms. When considering exogenous cannabinoid administration, cannabinoid receptor 1 (CB1) agonists have a biphasic, dose-dependent effect on anxiety such that low doses are anxiolytic while high doses are anxiogenic, a phenomenon that is evident in both rodent models and humans. Translational studies investigating a loss of function mutation in the gene for fatty acid amide hydrolase, the enzyme responsible for metabolizing AEA, have also shown that AEA signaling regulates anxiety in humans. Taken together, evidence reviewed here has outlined a convincing argument for cannabinoids being powerful regulators of both the manifestation and amelioration of anxiety symptoms, and highlights the therapeutic potential of targeting the eCB system for the development of novel classes of anxiolytics. This article is part of the special issue on 'Cannabinoids'.
Collapse
Affiliation(s)
- Gavin N Petrie
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Andrei S Nastase
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Robert J Aukema
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
18
|
Parks C, Jones BC, Moore BM, Mulligan MK. Sex and Strain Variation in Initial Sensitivity and Rapid Tolerance to Δ9-Tetrahydrocannabinol. Cannabis Cannabinoid Res 2020; 5:231-245. [PMID: 32923660 PMCID: PMC7480727 DOI: 10.1089/can.2019.0047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background and Objectives: For cannabis and other drugs of abuse, initial response and/or tolerance to drug effects can predict later dependence and problematic use. Our objective is to identify sex and genetic (strain) differences in initial response and rapid tolerance to Δ9–tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, between highly genetically divergent inbred mouse strains—C57BL/6J (B6) and DBA/2J (D2). Experimental Approach: Sex and strain responses relative to baseline were quantified following daily exposure (i.p.) to 10 mg/kg THC or vehicle (VEH) over the course of 5 days. Dependent measures included hypothermia (decreased body temperature) and ataxia (decreased spontaneous activity in the open field), and antinociception (increase in tail withdrawal latency to a thermal stimulus). Initial sensitivity to THC was defined as the difference in response between baseline and day 1. Rapid tolerance to THC was defined as the difference in response between days 1 and 2. Results: B6 exhibited greater THC-induced motor activity suppression and initial sensitivity to ataxia relative to the D2 strain. Females demonstrated greater levels of THC-induced hypothermia and initial sensitivity relative to males. Higher levels of THC-induced antinociception and initial sensitivity were observed for D2 relative to B6. Rapid tolerance to THC was observed for hypothermia and antinociception. Much less tolerance was observed for THC-induced ataxia. D2 exhibited rapid tolerance to THC-induced hypothermia and antinociception at time points associated with peak THC initial response. Likewise, at the peak initial THC response time point, females demonstrated greater levels of rapid tolerance to hypothermic effects relative to males. Conclusions: Both sex and genetic factors drive variation in initial response and rapid tolerance to the ataxic, antinociceptive, and hypothermic effects of THC. As these traits directly result from THC activation of the cannabinoid receptor 1, gene variants between B6 and D2 in cannabinoid signaling pathways are likely to mediate strain differences in response to THC.
Collapse
Affiliation(s)
- Cory Parks
- Department of Genetics, Genomics and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Byron C Jones
- Department of Genetics, Genomics and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Bob M Moore
- Department of Pharmaceutical Sciences, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
19
|
Millie LA, Boehm SL, Grahame NJ. Attentional set shifting in HAP3, LAP3, and cHAP mice is unaffected by either genetic differences in alcohol preference or an alcohol drinking history. Exp Clin Psychopharmacol 2020; 28:379-387. [PMID: 32150428 PMCID: PMC7390659 DOI: 10.1037/pha0000359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alcohol consumption may precede, or result from, behavioral inflexibility and contribute to individuals' difficulties ceasing drinking. Attentional set shifting tasks are an animal analog to a human behavioral flexibility task requiring recognition of a previous strategy as inappropriate, and the formation and maintenance of a novel strategy (Floresco, Block, & Tse, 2008). Abstinent individuals with alcohol use disorder, nonalcoholic individuals with a family history of alcoholism, and mice exposed to chronic-intermittent alcohol vapor show impaired behavioral flexibility (Gierski et al., 2013; Hu, Morris, Carrasco, & Kroener, 2015; Oscar-Berman et al., 2009). Behavioral flexibility deficits can be linked to frontal cortical regions connected to the striatum (Ragozzino, 2007), and alterations to the endocannabinoid system, implicated in drug seeking and consumption (Economidou et al., 2006; Serrano & Parsons, 2011), may affect these behaviors. Alcohol-preferring and nonpreferring rodents exhibit differences in CB1 receptor expression (CB1R; Hansson et al., 2007; Hungund & Basavarajappa, 2000), but whether dorsal striatal CB1Rs are important for other alcohol-related behaviors such as attentional set shifting tasks remains unclear. This study assesses whether selectively bred high (HAP) versus low alcohol-preferring mice differ in an operant attentional set shifting task or CB1R levels in the dorsal striatum and whether a history of voluntary alcohol consumption in crossed HAP mice exacerbates inflexibility. Contrary to our hypothesis, neither genetic differences in alcohol preference nor drinking affected set shifting. However, high alcohol-preferring mice-3 mice showed reduced levels of dorsal striatal CB1R compared with low alcohol-preferring-3 mice, suggesting that genetic differences in alcohol consumption may be mediated in part by striatal CB1R. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Lauren A Millie
- Department of Psychology, Indiana University-Purdue University Indianapolis
| | - Stephen L Boehm
- Department of Psychology, Indiana University-Purdue University Indianapolis
| | - Nicholas J Grahame
- Department of Psychology, Indiana University-Purdue University Indianapolis
| |
Collapse
|
20
|
Abstract
The global movement toward legalization of cannabis is resulting in an ever-increasing public perception that cannabis is safe. Cannabis is not the first drug to be available for nonmedical use, nor is it the first to have such an unfounded safety profile. The safety of long-term exposure to phytocannabinoids is misunderstood by, and under reported to, the general public. There is evidence to suggest that long-term use of recreational cannabis may be associated with an increased risk of undesirable side effects. This evidence warrants both appropriate caution from the general public and investment in further research by government and industry sectors that are profiting from the sale of these potent psychoactive agents. There is no doubt that these compounds have medical potential. However, in addition to the medical potential, we must also remain aware of the adverse health effects that are becoming synonymous with recreational cannabis use. This perspective highlights the privileged role that cannabis has as a perceived “safe drug” in society and summarizes some concerning side effects that are becoming associated with regular nonprescribed cannabis use.
Collapse
Affiliation(s)
- Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - James C Evans
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Escudero-Lara A, Argerich J, Cabañero D, Maldonado R. Disease-modifying effects of natural Δ9-tetrahydrocannabinol in endometriosis-associated pain. eLife 2020; 9:50356. [PMID: 31931958 PMCID: PMC6977967 DOI: 10.7554/elife.50356] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/26/2019] [Indexed: 12/28/2022] Open
Abstract
Endometriosis is a chronic painful disease highly prevalent in women that is defined by growth of endometrial tissue outside the uterine cavity and lacks adequate treatment. Medical use of cannabis derivatives is a current hot topic and it is unknown whether phytocannabinoids may modify endometriosis symptoms and development. Here we evaluate the effects of repeated exposure to Δ9-tetrahydrocannabinol (THC) in a mouse model of surgically-induced endometriosis. In this model, female mice develop mechanical hypersensitivity in the caudal abdomen, mild anxiety-like behavior and substantial memory deficits associated with the presence of extrauterine endometrial cysts. Interestingly, daily treatments with THC (2 mg/kg) alleviate mechanical hypersensitivity and pain unpleasantness, modify uterine innervation and restore cognitive function without altering the anxiogenic phenotype. Strikingly, THC also inhibits the development of endometrial cysts. These data highlight the interest of scheduled clinical trials designed to investigate possible benefits of THC for women with endometriosis. Endometriosis is a common disease in women caused by tissue that lines the uterus growing outside the uterine cavity on to other organs in the pelvis. This can cause a variety of symptoms including chronic pelvic pain, infertility, and pain during menstruation or sexual intercourse. These symptoms may contribute to anxiety, depression, loss of working ability and a reduced quality of life. Currently available treatments for endometriosis, including hormonal therapy and surgery, have a limited effect and can produce unwanted side effects. For example, women who undergo surgery to remove the growths may experience post-surgical pain or a recurrence. As a result, women with endometriosis often rely on self-management strategies like dietary changes or exercise. Although cannabis consumption has a large number of potential side effects and can lead to substance abuse, it has been shown to provide pain relief in some conditions. But it is unknown whether it could be useful for treating endometriosis. Now, Escudero-Lara et al. have created a mouse model that mimics some of the conditions of human endometriosis: pelvic pain, anxiety and memory impairments. The mice were treated with moderate doses of Δ9-tetrahydrocannabinol (THC), which is the main pain-relieving component of cannabis. The THC reduced pelvic pain and cognitive impairments in the mice with the endometriosis-like condition, but it had no effect on their anxious behavior. Escudero-Lara et al. also noticed that endometrial growths were also smaller in the treated mice indicating that THC may also inhibit endometriosis development. These experiments suggest that THC may be a useful treatment for patients with endometriosis. Clinical trials are already ongoing to test whether these findings translate to patients with the condition. Although THC and cannabis are readily available in some areas, Escudero-Lara et al. discourage using unregulated cannabis products due to the potential risks.
Collapse
Affiliation(s)
- Alejandra Escudero-Lara
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Josep Argerich
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Cabañero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
22
|
Escudero-Lara A, Argerich J, Cabañero D, Maldonado R. Disease-modifying effects of natural Δ9-tetrahydrocannabinol in endometriosis-associated pain. eLife 2020. [PMID: 31931958 DOI: 10.1101/715938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Endometriosis is a chronic painful disease highly prevalent in women that is defined by growth of endometrial tissue outside the uterine cavity and lacks adequate treatment. Medical use of cannabis derivatives is a current hot topic and it is unknown whether phytocannabinoids may modify endometriosis symptoms and development. Here we evaluate the effects of repeated exposure to Δ9-tetrahydrocannabinol (THC) in a mouse model of surgically-induced endometriosis. In this model, female mice develop mechanical hypersensitivity in the caudal abdomen, mild anxiety-like behavior and substantial memory deficits associated with the presence of extrauterine endometrial cysts. Interestingly, daily treatments with THC (2 mg/kg) alleviate mechanical hypersensitivity and pain unpleasantness, modify uterine innervation and restore cognitive function without altering the anxiogenic phenotype. Strikingly, THC also inhibits the development of endometrial cysts. These data highlight the interest of scheduled clinical trials designed to investigate possible benefits of THC for women with endometriosis.
Collapse
Affiliation(s)
- Alejandra Escudero-Lara
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Josep Argerich
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Cabañero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
23
|
Blest-Hopley G, Colizzi M, Giampietro V, Bhattacharyya S. Is the Adolescent Brain at Greater Vulnerability to the Effects of Cannabis? A Narrative Review of the Evidence. Front Psychiatry 2020; 11:859. [PMID: 33005157 PMCID: PMC7479242 DOI: 10.3389/fpsyt.2020.00859] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/06/2020] [Indexed: 01/01/2023] Open
Abstract
Cannabis use during the critical neurodevelopmental period of adolescence, may lead to brain structural, functional, and histological alterations that may underpin some of the longer-term behavioral and psychological harms associated with it. The endocannabinoid system performs a key regulatory and homeostatic role, that undergoes developmental changes during adolescence making it potentially more susceptible to the effects of exposure to cannabis during adolescence. Here, we synthesize evidence from human studies of adolescent cannabis users showing alterations in cognitive performance as well as in brain structure and function with relevant preclinical evidence to summarize the current state of knowledge. We also focus on the limited evidence that speaks to the hypothesis that cannabis use during adolescence, may pose a greater risk than use during adulthood, identify gaps in current evidence and suggest directions for new research. Existing literature is consistent with the association of cannabis use during adolescence and neurological changes. Adolescence cannabis users show altered functional connectivity within known functional circuits, that may underlie inefficient recruitment of brain regions, as largely increased functional activation has been observed compared to controls. This disruption in some cases may contribute to the development of adverse mental health conditions; increasing the chances or accelerating the onset, of their development. Preclinical evidence, further supports disruption from cannabis use being specific to the developmental period. Future studies are required to better investigate adolescent cannabis use with more accuracy using better defined groups or longitudinal studies and examine the permanency of these changes following caseation of use. Furthermore, research is required to identify heritable risk factors to cannabis use. There is a need for caution when considering the therapeutic potential of cannabis for adolescence and particularly in public discourse leading to potential trivialization of possible harm from cannabis use in adolescence. Current evidence indicates that adolescence is a sensitive period during which cannabis use may result in adverse neurocognitive effects that appear to show a level of permanency into adulthood.
Collapse
Affiliation(s)
- Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Marco Colizzi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.,Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Vincent Giampietro
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.,South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
24
|
Thorpe HHA, Hamidullah S, Jenkins BW, Khokhar JY. Adolescent neurodevelopment and substance use: Receptor expression and behavioral consequences. Pharmacol Ther 2019; 206:107431. [PMID: 31706976 DOI: 10.1016/j.pharmthera.2019.107431] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Adolescence is the transitional period between childhood and adulthood, during which extensive brain development occurs. Since this period also overlaps with the initiation of drug use, it is important to consider how substance use during this time might produce long-term neurobiological alterations, especially against the backdrop of developmental changes in neurotransmission. Alcohol, cannabis, nicotine, and opioids all produce marked changes in the expression and function of the neurotransmitter and receptor systems with which they interact. These acute and chronic alterations also contribute to behavioral consequences ranging from increased addiction risk to cognitive or neuropsychiatric behavioral dysfunctions. The current review provides an in-depth overview and update of the developmental changes in neurotransmission during adolescence, as well as the impact of drug exposure during this neurodevelopmental window. While most of these factors have been studied in animal models, which are the focus of this review, future longitudinal studies in humans that assess neural function and behavior will help to confirm pre-clinical findings. Furthermore, the neural changes induced by each drug should also be considered in the context of other contributing factors, such as sex. Further understanding of these consequences can help in the identification of novel approaches for preventing and reversing the neurobiological effects of adolescent substance use.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Shahnaza Hamidullah
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Bryan W Jenkins
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada.
| |
Collapse
|
25
|
Smoker MP, Hernandez M, Zhang Y, Boehm SL. Assessment of Acute Motor Effects and Tolerance Following Self-Administration of Alcohol and Edible ∆ 9 -Tetrahydrocannabinol in Adolescent Male Mice. Alcohol Clin Exp Res 2019; 43:2446-2457. [PMID: 31524960 DOI: 10.1111/acer.14197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/10/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cannabinoids and their principle psychoactive target, the cannabinoid type 1 receptor (CB1R), impact a number of alcohol-related properties, and although alcohol and cannabis are often co-used, particularly in adolescence, few animal models of this phenomenon exist. We modeled the co-use of alcohol and ∆9 -tetrahydrocannabinol (THC) in adolescent mice using ingestive methods popular during this developmental period in humans, namely binge-drinking and edible THC. With this model, we assessed levels of use, acute effects, and tolerance to each substance. METHODS Adolescent male C57BL/6J mice had daily, limited access to 1 of 2 edible doughs (THC or control), to 1 of 2 fluids (ethanol (EtOH) or water), and in 1 of 2 orders (dough-fluid or fluid-dough). Home cage locomotor activity was recorded both during access and after access. On the day following the final access session, a subset of mice were assessed for functional and metabolic tolerance to alcohol using accelerating rotarod and blood EtOH concentrations, respectively. The remaining mice were assessed for tolerance to THC-induced hypothermia, and whole-brain CB1R expression was assessed in all mice. RESULTS EtOH intake was on par with levels previously reported in adolescent mice. Edible THC was well-consumed, but consumption decreased at the highest dose provided. Locomotor activity increased following EtOH intake and decreased following edible THC consumption, and edible THC increased fluid intake in general. The use of alcohol produced neither functional nor metabolic tolerance to an alcohol challenge. However, the use of edible THC impaired subsequent drug-free rotarod performance and was associated with a reduction in THC's hypothermic effect. CONCLUSIONS Adolescent mice self-administered both alcohol and edible THC to a degree sufficient to acutely impact locomotor activity. However, only edible THC consumption had lasting effects during short-term abstinence. Thus, this adolescent co-use model could be used to explore sex differences in self-administration and the impact substance co-use might have on other domains such as mood and cognition.
Collapse
Affiliation(s)
- Michael P Smoker
- From the, Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| | - Maribel Hernandez
- From the, Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| | - Yanping Zhang
- From the, Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| | - Stephen L Boehm
- From the, Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
26
|
Andrade AK, Renda B, Murray JE. Cannabinoids, interoception, and anxiety. Pharmacol Biochem Behav 2019; 180:60-73. [DOI: 10.1016/j.pbb.2019.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/14/2019] [Accepted: 03/22/2019] [Indexed: 12/16/2022]
|
27
|
Kasten CR, Zhang Y, Boehm SL. Acute Cannabinoids Produce Robust Anxiety-Like and Locomotor Effects in Mice, but Long-Term Consequences Are Age- and Sex-Dependent. Front Behav Neurosci 2019; 13:32. [PMID: 30842732 PMCID: PMC6391357 DOI: 10.3389/fnbeh.2019.00032] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/04/2019] [Indexed: 11/17/2022] Open
Abstract
The rise in cannabinoid legalization and decriminalization in the US has been paired with an increase in adolescents that perceive marijuana as a “no risk” drug. However, a comprehensive review of human literature indicates that cannabinoid usage may have both beneficial and detrimental effects, with adolescent exposure being a critical window for harming cognitive development. Although the cannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are often used together for recreational and medical purposes, no study has previously observed the acute and long-lasting effects of THC+CBD in a battery of behavioral assays analogous to subjective human reports. The current study observed the acute and long-term effects of THC, CBD, and THC+CBD on object recognition memory, anxiety-like behavior, and activity levels in adolescent and adult mice of both sexes. Acute THC alone and in combination with CBD resulted in robust effects on anxiety-like and locomotor behavior. A history of repeated cannabinoid treatment followed by a period without drug administration resulted in minimal effects in these behavioral assays. Most notably, the strongest effects of repeated cannabinoid treatment were seen in adult females administered THC+CBD, which significantly impaired their object recognition. No effects of repeated cannabinoid history were present on hippocampal protein expression. These studies represent a detailed examination of age- and sex-effects of acute and repeated cannabinoid administration. However, the acute and long-term effects of THC with and without CBD on additional behaviors in adolescents and adults will need to be examined for a more complete picture of these drug effects.
Collapse
Affiliation(s)
- Chelsea R Kasten
- Department of Cell Biology and Anatomy, LSU Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Yanping Zhang
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, United States
| | - Stephen L Boehm
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, United States.,Indiana Alcohol Research Center, Indianapolis, IN, United States
| |
Collapse
|
28
|
Gorey C, Kuhns L, Smaragdi E, Kroon E, Cousijn J. Age-related differences in the impact of cannabis use on the brain and cognition: a systematic review. Eur Arch Psychiatry Clin Neurosci 2019; 269:37-58. [PMID: 30680487 PMCID: PMC6394430 DOI: 10.1007/s00406-019-00981-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/03/2019] [Indexed: 01/20/2023]
Abstract
The impact of cannabis on the adolescent compared to adult brain is of interest to researchers and society alike. From a theoretical perspective, adolescence represents a period of both risk and resilience to the harms of cannabis use and cannabis use disorders. The aim of this systematic review is to provide a critical examination of the moderating role of age on the relationship between cannabis use and cognition. To this end, we reviewed human and animal studies that formally tested whether age, adolescent or adult, changes the relationship between cannabis exposure and cognitive outcomes. While the results of this review do not offer a conclusive answer on the role of age, the novel review question, along with the inclusion of both human and animal work, has allowed for the formation of new hypotheses to be addressed in future work. First, general executive functioning seems to be more impaired in adolescent frequent cannabis users compared to adult frequent cannabis users. Second, age-effects may be most prominent among very heavy and dependent users. Third, craving and inhibitory control may not decrease as much post-intoxication in adolescents compared to adults. Lastly, adolescents' vulnerability to reduced learning following cannabis use may not persist after sustained abstinence. If these hypotheses prove correct, it could lead to important developments in policy and prevention efforts.
Collapse
Affiliation(s)
- Claire Gorey
- Department of Psychology, Addiction Development and Psychopathology (ADAPT) Research Center, University of Amsterdam, P.O. box 15916, 1001 NK, Amsterdam, The Netherlands
- Dynamics of Externalizing (DEXTER) Lab, Department of Psychology, University of South Florida, Tampa, FL, USA
| | - Lauren Kuhns
- Department of Psychology, Addiction Development and Psychopathology (ADAPT) Research Center, University of Amsterdam, P.O. box 15916, 1001 NK, Amsterdam, The Netherlands
- The Amsterdam Brain and Cognition Center (ABC), University of Amsterdam, Amsterdam, The Netherlands
| | - Eleni Smaragdi
- Department of Psychology, Addiction Development and Psychopathology (ADAPT) Research Center, University of Amsterdam, P.O. box 15916, 1001 NK, Amsterdam, The Netherlands
| | - Emese Kroon
- Department of Psychology, Addiction Development and Psychopathology (ADAPT) Research Center, University of Amsterdam, P.O. box 15916, 1001 NK, Amsterdam, The Netherlands
- The Amsterdam Brain and Cognition Center (ABC), University of Amsterdam, Amsterdam, The Netherlands
| | - Janna Cousijn
- Department of Psychology, Addiction Development and Psychopathology (ADAPT) Research Center, University of Amsterdam, P.O. box 15916, 1001 NK, Amsterdam, The Netherlands.
- The Amsterdam Brain and Cognition Center (ABC), University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Short-Term Genetic Selection for Adolescent Locomotor Sensitivity to Delta9-Tetrahydrocannabinol (THC). Behav Genet 2018; 48:224-235. [PMID: 29550900 DOI: 10.1007/s10519-018-9894-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
Cannabis use is linked to positive and negative outcomes. Identifying genetic targets of susceptibility to the negative effects of cannabinoid use is of growing importance. The current study sought to complete short-term selective breeding for adolescent sensitivity and resistance to the locomotor effects of a single 10 mg/kg THC dose in the open field. Selection for THC-locomotor sensitivity was moderately heritable, with the greatest estimates of heritability seen in females from the F2 to S3 generations. Selection for locomotor sensitivity also resulted in increased anxiety-like activity in the open field. These results are the first to indicate that adolescent THC-locomotor sensitivity can be influenced via selective breeding. Development of lines with a genetic predisposition for THC-sensitivity or resistance to locomotor effects allow for investigation of risk factors, differences in consequences of THC use, identification of correlated behavioral responses, and detection of genetic targets that may contribute to heightened cannabinoid sensitivity.
Collapse
|