1
|
Wang Y, Sun X, Peng J, Li F, Ali F, Wang Z. Regulation of seed germination: ROS, epigenetic, and hormonal aspects. J Adv Res 2024:S2090-1232(24)00225-X. [PMID: 38838783 DOI: 10.1016/j.jare.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The whole life of a plant is regulated by complex environmental or hormonal signaling networks that control genomic stability, environmental signal transduction, and gene expression affecting plant development and viability. Seed germination, responsible for the transformation from seed to seedling, is a key initiation step in plant growth and is controlled by unique physiological and biochemical processes. It is continuously modulated by various factors including epigenetic modifications, hormone transport, ROS signaling, and interaction among them. ROS showed versatile crucial functions in seed germination including various physiological oxidations to nucleic acid, protein, lipid, or chromatin in the cytoplasm, cell wall, and nucleus. AIM of review: This review intends to provide novel insights into underlying mechanisms of seed germination especially associated with the ROS, and considers how these versatile regulatory mechanisms can be developed as useful tools for crop improvement. KEY SCIENTIFIC CONCEPTS OF REVIEW We have summarized the generation and elimination of ROS during seed germination, with a specific focus on uncovering and understanding the mechanisms of seed germination at the level of phytohormones, ROS, and epigenetic switches, as well as the close connections between them. The findings exhibit that ROS plays multiple roles in regulating the ethylene, ABA, and GA homeostasis as well as the Ca2+ signaling, NO signaling, and MAPK cascade in seed germination via either the signal trigger or the oxidative modifier agent. Further, ROS shows the potential in the nuclear genome remodeling and some epigenetic modifiers function, although the detailed mechanisms are unclear in seed germination. We propose that ROS functions as a hub in the complex network regulating seed germination.
Collapse
Affiliation(s)
- Yakong Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiangyang Sun
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Jun Peng
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China; State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China; State Key Laboratory of Cotton Bio‑breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
2
|
Qin G, Li X, Qin Y, Lu L, Gao L, Guan D. Transcriptomics of Leaf Development in the Endangered Dioecious Magnolia kwangsiensis: Molecular Basis Underpinning Specialized Metabolism Genes. Genes (Basel) 2024; 15:335. [PMID: 38540394 PMCID: PMC10970092 DOI: 10.3390/genes15030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
Magnolia kwangsiensis, a dioecious tree native to China, is recognized not only for its status as an at-risk species but also for its potential in therapeutic applications courtesy of its bioactive compounds. However, the genetic underpinnings of its leaf development and compound biosynthesis are not well documented. Our study aims to bridge this knowledge gap through comparative transcriptomics, analyzing gene expression through different leaf maturation stages. We studied the transcriptome of M. kwangsiensis leaves by applying RNA sequencing at juvenile, tender, and mature phases. We identified differentially expressed genes (DEGs) to explore transcriptional changes accompanying the developmental trajectory. Our analysis delineates the transcriptional landscape of over 20,000 genes with over 6000 DEGs highlighting significant transcriptional shifts throughout leaf maturation. Mature leaves demonstrated upregulation in pathways related to photosynthesis, cell wall formation, and polysaccharide production, affirming their structural integrity and specialized metabolic functions. Our GO and KEGG enrichment analyses underpin these findings. Furthermore, we unveiled coordinated gene activity correlating development with synthesizing therapeutically relevant polysaccharides. We identified four novel glycosyltransferases potentially pivotal in this synergistic mechanism. Our study uncovers the complementary evolutionary forces that concurrently sculpt structural and chemical defenses. These genetic mechanisms calibrate leaf tissue resilience and biochemical efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Delong Guan
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China; (G.Q.)
| |
Collapse
|
3
|
Huang B, Wang P, Jin L, Yv X, Wen M, Wu S, Liu F, Xu J. Methylome and transcriptome analysis of flowering branches building of Citrus plants induced by drought stress. Gene 2023:147595. [PMID: 37385391 DOI: 10.1016/j.gene.2023.147595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Citrus plants exhibit positive floral response under water stress conditions, however, the mechanistic understanding of floral induction remains largely unexplored in water deficit. In this study, DNA methylomic and transcriptomic analyses were integrated to explore the flowering bud formation as well as branches building after light drought stress. While comparing with the conventional watering group (CK), the light drought group treated with five months (LD) showed a significant increase in the flowering branches, whereas an apparent decrease in vegetative branches. Global DNA methylation analysis showed that the LD Group acquired DNA methylation in more than 70090 genomic regions and lost DNA methylation in about 18421 genomic regions compared with normal watering group, this indicates that water deficiency leads to a global increase in the expression of DNA methylation in citrus. In the same time, we verified that the increase of DNA methylation level in LD group was correlated with the decrease of DNA demethylase related gene expression. Interestingly, in transcription analysis, it was found that the promoting flower genes of the LD group did not increase but decreased similarly with repressing genes, which is contrary to the intended result. Thus, we thought the lower expression of suppressors FLC and BFT were the key influencing factor to stimulate the flowering branches formation after LD treatment. Moreover, there was a strong negative correlation between the genes expression level and methylation level of the flowering induction/flower development genes. In general, we thought high global DNA methylation level induced by water deficit regulate the flowering branches building by reducing FLC and BFT genes expression.
Collapse
Affiliation(s)
- Bei Huang
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Peng Wang
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Longfei Jin
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Xiaofeng Yv
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Mingxia Wen
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Shaohui Wu
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Feng Liu
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Jianguo Xu
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China; National Center for Citrus Variety Improvement, Zhejiang Branches, Taizhou 318026, China
| |
Collapse
|
4
|
Jurdak R, Rodrigues GDAG, Chaumont N, Schivre G, Bourbousse C, Barneche F, Bou Dagher Kharrat M, Bailly C. Intracellular reactive oxygen species trafficking participates in seed dormancy alleviation in Arabidopsis seeds. THE NEW PHYTOLOGIST 2022; 234:850-866. [PMID: 35175638 DOI: 10.1111/nph.18038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species (ROS) release seed dormancy through an unknown mechanism. We used different seed dormancy-breaking treatments to decipher the dynamics and localization of ROS production during seed germination. We studied the involvement of ROS in the breaking of Arabidopsis seed dormancy by cold stratification, gibberellic acid (GA3 ) and light. We characterized the effects of these treatments on abscisic acid and gibberellins biosynthesis and signalling pathways. ROS, mitochondrial redox status and peroxisomes were visualized and/or quantified during seed imbibition. Finally, we performed a cytogenetic characterization of the nuclei from the embryonic axes during seed germination. We show that mitochondria participate in the early ROS production during seed imbibition and that a possible involvement of peroxisomes in later stages should still be analysed. At the time of radicle protrusion, ROS accumulated within the nucleus, which correlated with nuclear expansion and chromatin decompaction. Taken together, our results provide evidence of the role of ROS trafficking between organelles and of the nuclear redox status in the regulation of seed germination by dormancy.
Collapse
Affiliation(s)
- Rana Jurdak
- IBPS, CNRS, UMR 7622 Biologie du Développement, Sorbonne Université, Paris, F-75005, France
- Biodiversity and Functional Genomics Laboratory, Université Saint-Joseph de Beyrouth, Beyrouth, 1107 2050, Lebanon
| | - Guilherme de Almeida Garcia Rodrigues
- IBPS, CNRS, UMR 7622 Biologie du Développement, Sorbonne Université, Paris, F-75005, France
- Plant Physiology Lab, Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil
| | - Nicole Chaumont
- IBPS, CNRS, UMR 7622 Biologie du Développement, Sorbonne Université, Paris, F-75005, France
| | - Geoffrey Schivre
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, F-75005, France
- Université Paris-Saclay, Orsay, F-91405, France
| | - Clara Bourbousse
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, F-75005, France
| | - Fredy Barneche
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, F-75005, France
| | - Magda Bou Dagher Kharrat
- Biodiversity and Functional Genomics Laboratory, Université Saint-Joseph de Beyrouth, Beyrouth, 1107 2050, Lebanon
| | - Christophe Bailly
- IBPS, CNRS, UMR 7622 Biologie du Développement, Sorbonne Université, Paris, F-75005, France
| |
Collapse
|
5
|
Tognacca RS, Botto JF. Post-transcriptional regulation of seed dormancy and germination: Current understanding and future directions. PLANT COMMUNICATIONS 2021; 2:100169. [PMID: 34327318 PMCID: PMC8299061 DOI: 10.1016/j.xplc.2021.100169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 02/13/2021] [Indexed: 05/06/2023]
Abstract
Seed dormancy is a developmental checkpoint that prevents mature seeds from germinating under conditions that are otherwise favorable for germination. Temperature and light are the most relevant environmental factors that regulate seed dormancy and germination. These environmental cues can trigger molecular and physiological responses including hormone signaling, particularly that of abscisic acid and gibberellin. The balance between the content and sensitivity of these hormones is the key to the regulation of seed dormancy. Temperature and light tightly regulate the transcription of thousands of genes, as well as other aspects of gene expression such as mRNA splicing, translation, and stability. Chromatin remodeling determines specific transcriptional outputs, and alternative splicing leads to different outcomes and produces transcripts that encode proteins with altered or lost functions. Proper regulation of chromatin remodeling and alternative splicing may be highly relevant to seed germination. Moreover, microRNAs are also critical for the control of gene expression in seeds. This review aims to discuss recent updates on post-transcriptional regulation during seed maturation, dormancy, germination, and post-germination events. We propose future prospects for understanding how different post-transcriptional processes in crop seeds can contribute to the design of genotypes with better performance and higher productivity.
Collapse
Affiliation(s)
- Rocío Soledad Tognacca
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas y Naturales, CP1428 Buenos Aires, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, CP1417 Buenos Aires, Argentina
| | - Javier Francisco Botto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, CP1417 Buenos Aires, Argentina
| |
Collapse
|
6
|
Martínez-García JF, Moreno-Romero J. Shedding light on the chromatin changes that modulate shade responses. PHYSIOLOGIA PLANTARUM 2020; 169:407-417. [PMID: 32222987 DOI: 10.1111/ppl.13101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 05/25/2023]
Abstract
Perception of vegetation proximity or plant shade informs of potential competition for resources by the neighboring vegetation. As vegetation proximity impacts on both light quantity and quality, perception of this cue by plant photoreceptors reprograms development to result in responses that allow plants to compete with the neighboring vegetation. Developmental reprogramming involves massive and rapid changes in gene expression, with the concerted action of photoreceptors and downstream transcription factors. Changes in gene expression can be modulated by epigenetic processes that alter chromatin compaction, influencing the accessibility and binding of transcription factors to regulatory elements in the DNA. However, little is known about the epigenetic regulation of plant responses to the proximity of other plants. In this manuscript, we review what is known about plant shade effects on chromatin changes at the cytological level, that is, changes in nuclear morphology and high order chromatin density. We address which are the specific histone post-transcriptional modifications that have been associated with changes in shade-regulated gene expression, such as histone acetylation and histone methylation. Furthermore, we explore the possible mechanisms that integrate shade signaling components and chromatin remodelers to settle epigenetic marks at specific loci. This review aims to be a starting point to understand how a specific environmental cue, plant shade, integrates with chromatin dynamics to implement the proper acclimation responses.
Collapse
Affiliation(s)
- Jaime F Martínez-García
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Jordi Moreno-Romero
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, 08193, Spain
| |
Collapse
|
7
|
Dumur T, Duncan S, Graumann K, Desset S, Randall RS, Scheid OM, Prodanov D, Tatout C, Baroux C. Probing the 3D architecture of the plant nucleus with microscopy approaches: challenges and solutions. Nucleus 2019; 10:181-212. [PMID: 31362571 PMCID: PMC6682351 DOI: 10.1080/19491034.2019.1644592] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022] Open
Abstract
The eukaryotic cell nucleus is a central organelle whose architecture determines genome function at multiple levels. Deciphering nuclear organizing principles influencing cellular responses and identity is a timely challenge. Despite many similarities between plant and animal nuclei, plant nuclei present intriguing specificities. Complementary to molecular and biochemical approaches, 3D microscopy is indispensable for resolving nuclear architecture. However, novel solutions are required for capturing cell-specific, sub-nuclear and dynamic processes. We provide a pointer for utilising high-to-super-resolution microscopy and image processing to probe plant nuclear architecture in 3D at the best possible spatial and temporal resolution and at quantitative and cell-specific levels. High-end imaging and image-processing solutions allow the community now to transcend conventional practices and benefit from continuously improving approaches. These promise to deliver a comprehensive, 3D view of plant nuclear architecture and to capture spatial dynamics of the nuclear compartment in relation to cellular states and responses. Abbreviations: 3D and 4D: Three and Four dimensional; AI: Artificial Intelligence; ant: antipodal nuclei (ant); CLSM: Confocal Laser Scanning Microscopy; CTs: Chromosome Territories; DL: Deep Learning; DLIm: Dynamic Live Imaging; ecn: egg nucleus; FACS: Fluorescence-Activated Cell Sorting; FISH: Fluorescent In Situ Hybridization; FP: Fluorescent Proteins (GFP, RFP, CFP, YFP, mCherry); FRAP: Fluorescence Recovery After Photobleaching; GPU: Graphics Processing Unit; KEEs: KNOT Engaged Elements; INTACT: Isolation of Nuclei TAgged in specific Cell Types; LADs: Lamin-Associated Domains; ML: Machine Learning; NA: Numerical Aperture; NADs: Nucleolar Associated Domains; PALM: Photo-Activated Localization Microscopy; Pixel: Picture element; pn: polar nuclei; PSF: Point Spread Function; RHF: Relative Heterochromatin Fraction; SIM: Structured Illumination Microscopy; SLIm: Static Live Imaging; SMC: Spore Mother Cell; SNR: Signal to Noise Ratio; SRM: Super-Resolution Microscopy; STED: STimulated Emission Depletion; STORM: STochastic Optical Reconstruction Microscopy; syn: synergid nuclei; TADs: Topologically Associating Domains; Voxel: Volumetric pixel.
Collapse
Affiliation(s)
- Tao Dumur
- Gregor Mendel Institute (GMI) of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Susan Duncan
- Norwich Research Park, Earlham Institute, Norwich, UK
| | - Katja Graumann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Sophie Desset
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont–Ferrand, France
| | - Ricardo S Randall
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute (GMI) of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Dimiter Prodanov
- Environment, Health and Safety, Neuroscience Research Flanders, Leuven, Belgium
| | - Christophe Tatout
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont–Ferrand, France
| | - Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Sas-Nowosielska H, Bernas T. Spatial relationship between chromosomal domains in diploid and autotetraploid Arabidopsis thaliana nuclei. Nucleus 2017; 7:216-31. [PMID: 27310308 DOI: 10.1080/19491034.2016.1182277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Polyploids constitute more than 80% of angiosperm plant species. Their DNA content is often further increased by endoreplication, which occurs as a part of cell differentiation. Here, we explore the relationship between 3D chromatin architecture, number of genome copies and their origin in the model plant, Arabidopsis thaliana. Spatial proximity between pericentromeric, interstitial and subtelomeric domains of chromosomes 1 and 4 was quantified over a range of distances. The results indicate that average nuclear volume as well as chromatin density increase with the genome copy number. Similar dependence is observed when association of homologous chromosomes (in 2C/ endopolyploid nuclei) and sister chromatid separation (in endopolyploid nuclei) is studied. Moreover, clusters of chromosomal domains are detectable at the spatial scale above microscopy resolution. Subtelomeric, interstitial and pericentromeric chromosomal domains are affected to different extent by these processes, which are modulated by endopolyploidy. This factor influences fusion of heterochromatin as well. Nonetheless, local chromatin architecture of Arabidopsis thaliana depends mainly on endopolyploidy level, and to lesser extend on polyploidy.
Collapse
Affiliation(s)
- H Sas-Nowosielska
- a Laboratory of Imaging Tissue Structure and Function , Nencki Institute of Experimental Biology , Polish Academy of Sciences , Warszawa , Poland.,b Department of Plant Anatomy and Cytology , Faculty of Biology , University of Silesia , Katowice , Poland
| | - T Bernas
- b Department of Plant Anatomy and Cytology , Faculty of Biology , University of Silesia , Katowice , Poland
| |
Collapse
|
9
|
Duan W, Zhang H, Zhang B, Wu X, Shao S, Li Y, Hou X, Liu T. Role of vernalization-mediated demethylation in the floral transition of Brassica rapa. PLANTA 2017; 245:227-233. [PMID: 27885421 DOI: 10.1007/s00425-016-2622-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/20/2016] [Indexed: 05/26/2023]
Abstract
Vernalization-mediated demethylation of BrCKA2 (casein kinase II α-subunit) and BrCKB4 (casein kinase II β-subunit) shorten the period of the clock gene BrCCA1 (circadian clock associated 1) in Brassica rapa. Photoperiod and vernalization are two environmental cues involved in the regulation of floral transition, but the ways in which they interact remain unclear. DNA methylation is one of the main mechanisms involved in controlling the functional state of chromatin and gene expression in response to environmental signals. To study the interaction between photoperiod and vernalization in floral transition, we carried out a comparative genomic analysis of genome-wide DNA methylation profiles in normal (CK) and vernalized (CA) leaves from Brassica rapa using methylated-DNA immunoprecipitation sequencing (MeDIP-seq). Two subunits of casein kinase II (CK2), BrCKA2 (catalytic α-subunit of CK2) and BrCKB4 (regulatory β-subunit of CK2), exhibited gradual DNA demethylation and increased expression in vernalized B. rapa. DNA methylation-defective plants demonstrated the causal link between DNA demethylation changes and changes in gene expression. Virus-induced gene silencing (VIGS) of BrCKA2 and BrCKB4 in B. rapa resulted in no change to the period of BrCCA1 (circadian clock associated 1) and a 1-week late flowering time. Finally, we demonstrated that increased levels of BrCKA2 and BrCKB4 in vernalized B. rapa confer elevated CK2 activity, resulting in a shortened period of the clock gene BrCCA1, which plays an important role in perceiving photoperiod in plants. Thus, our results suggest that there is a direct interaction between photoperiod and vernalization through DNA methylation mechanisms.
Collapse
Affiliation(s)
- Weike Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huijun Zhang
- College of LIFE Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Bei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoting Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuaixu Shao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Jung JH, Altpeter F. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. PLANT MOLECULAR BIOLOGY 2016; 92:131-42. [PMID: 27306903 PMCID: PMC4999463 DOI: 10.1007/s11103-016-0499-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/30/2016] [Indexed: 05/18/2023]
Abstract
Sugarcane (Saccharum spp. hybrids) is a prime crop for commercial biofuel production. Advanced conversion technology utilizes both, sucrose accumulating in sugarcane stems as well as cell wall bound sugars for commercial ethanol production. Reduction of lignin content significantly improves the conversion of lignocellulosic biomass into ethanol. Conventional mutagenesis is not expected to confer reduction in lignin content in sugarcane due to its high polyploidy (x = 10-13) and functional redundancy among homo(eo)logs. Here we deploy transcription activator-like effector nuclease (TALEN) to induce mutations in a highly conserved region of the caffeic acid O-methyltransferase (COMT) of sugarcane. Capillary electrophoresis (CE) was validated by pyrosequencing as reliable and inexpensive high throughput method for identification and quantitative characterization of TALEN mediated mutations. Targeted COMT mutations were identified by CE in up to 74 % of the lines. In different events 8-99 % of the wild type COMT were converted to mutant COMT as revealed by pyrosequencing. Mutation frequencies among mutant lines were positively correlated to lignin reduction. Events with a mutation frequency of 99 % displayed a 29-32 % reduction of the lignin content compared to non-transgenic controls along with significantly reduced S subunit content and elevated hemicellulose content. CE analysis displayed similar peak patterns between primary COMT mutants and their vegetative progenies suggesting that TALEN mediated mutations were faithfully transmitted to vegetative progenies. This is the first report on genome editing in sugarcane. The findings demonstrate that targeted mutagenesis can improve cell wall characteristics for production of lignocellulosic ethanol in crops with highly complex genomes.
Collapse
Affiliation(s)
- Je Hyeong Jung
- Agronomy Department, University of Florida, IFAS, PO Box 110300, Gainesville, FL, 32611, USA
- Institute of Life Science and Natural Resources, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Fredy Altpeter
- Agronomy Department, University of Florida, IFAS, PO Box 110300, Gainesville, FL, 32611, USA.
- Plant Molecular and Cellular Biology Program, University of Florida, IFAS, PO Box 110300, Gainesville, FL, 32611, USA.
- Agronomy Department, University of Florida-IFAS, PO Box 103610, Gainesville, FL, 32611, USA.
| |
Collapse
|
11
|
Valledor L, Pascual J, Meijón M, Escandón M, Cañal MJ. Conserved Epigenetic Mechanisms Could Play a Key Role in Regulation of Photosynthesis and Development-Related Genes during Needle Development of Pinus radiata. PLoS One 2015; 10:e0126405. [PMID: 25965766 PMCID: PMC4429063 DOI: 10.1371/journal.pone.0126405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/01/2015] [Indexed: 11/28/2022] Open
Abstract
Needle maturation is a complex process that involves cell growth, differentiation and tissue remodelling towards the acquisition of full physiological competence. Leaf induction mechanisms are well known; however, those underlying the acquisition of physiological competence are still poorly understood, especially in conifers. We studied the specific epigenetic regulation of genes defining organ function (PrRBCS and PrRBCA) and competence and stress response (PrCSDP2 and PrSHMT4) during three stages of needle development and one de-differentiated control. Gene-specific changes in DNA methylation and histone were analysed by bisulfite sequencing and chromatin immunoprecipitation (ChIP). The expression of PrRBCA and PrRBCS increased during needle maturation and was associated with the progressive loss of H3K9me3, H3K27me3 and the increase in AcH4. The maturation-related silencing of PrSHMT4 was correlated with increased H3K9me3 levels, and the repression of PrCSDP2, to the interplay between AcH4, H3K27me3, H3K9me3 and specific DNA methylation. The employ of HAT and HDAC inhibitors led to a further determination of the role of histone acetylation in the regulation of our target genes. The integration of these results with high-throughput analyses in Arabidopsis thaliana and Populus trichocarpa suggests that the specific epigenetic mechanisms that regulate photosynthetic genes are conserved between the analysed species.
Collapse
Affiliation(s)
- Luis Valledor
- Plant Physiology, Faculty of Biology, University of Oviedo, Cat. Rodrígo Uría s/n, E-33071, Oviedo, Spain
- Department of Biology and CESAM, University of Aveiro, Campus Universitario de Santiago, P-3810-193, Aveiro, Portugal
- * E-mail: (LV); (MJC)
| | - Jesús Pascual
- Plant Physiology, Faculty of Biology, University of Oviedo, Cat. Rodrígo Uría s/n, E-33071, Oviedo, Spain
| | - Mónica Meijón
- Regional Institute for Research and Agro-Food Development (SERIDA), Finca Experimental La Mata s/n, E-33825, Grado, Spain
| | - Mónica Escandón
- Plant Physiology, Faculty of Biology, University of Oviedo, Cat. Rodrígo Uría s/n, E-33071, Oviedo, Spain
| | - María Jesús Cañal
- Plant Physiology, Faculty of Biology, University of Oviedo, Cat. Rodrígo Uría s/n, E-33071, Oviedo, Spain
- * E-mail: (LV); (MJC)
| |
Collapse
|
12
|
Light signaling controls nuclear architecture reorganization during seedling establishment. Proc Natl Acad Sci U S A 2015; 112:E2836-44. [PMID: 25964332 DOI: 10.1073/pnas.1503512112] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis.
Collapse
|
13
|
Golczyk H, Massouh A, Greiner S. Translocations of chromosome end-segments and facultative heterochromatin promote meiotic ring formation in evening primroses. THE PLANT CELL 2014; 26:1280-93. [PMID: 24681616 PMCID: PMC4001384 DOI: 10.1105/tpc.114.122655] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories.
Collapse
Affiliation(s)
- Hieronim Golczyk
- Department of Molecular Biology, Institute of Biotechnology, John Paul II Catholic University of Lublin, Konstantynów 1I 20-708, Poland
- Address correspondence to
| | - Amid Massouh
- Max Planck Institute of Molecular Plant Physiology, Department 3, Potsdam-Golm 14476, Germany
| | - Stephan Greiner
- Max Planck Institute of Molecular Plant Physiology, Department 3, Potsdam-Golm 14476, Germany
| |
Collapse
|
14
|
Nic-Can GI, López-Torres A, Barredo-Pool F, Wrobel K, Loyola-Vargas VM, Rojas-Herrera R, De-la-Peña C. New insights into somatic embryogenesis: leafy cotyledon1, baby boom1 and WUSCHEL-related homeobox4 are epigenetically regulated in Coffea canephora. PLoS One 2013; 8:e72160. [PMID: 23977240 PMCID: PMC3748027 DOI: 10.1371/journal.pone.0072160] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/07/2013] [Indexed: 01/09/2023] Open
Abstract
Plant cells have the capacity to generate a new plant without egg fertilization by a process known as somatic embryogenesis (SE), in which differentiated somatic cells can form somatic embryos able to generate a functional plant. Although there have been advances in understanding the genetic basis of SE, the epigenetic mechanism that regulates this process is still unknown. Here, we show that the embryogenic development of Coffea canephora proceeds through a crosstalk between DNA methylation and histone modifications during the earliest embryogenic stages of SE. We found that low levels of DNA methylation, histone H3 lysine 9 dimethylation (H3K9me2) and H3K27me3 change according to embryo development. Moreover, the expression of LEAFY cotyledon1 (LEC1) and BABY BOOM1 (BBM1) are only observed after SE induction, whereas WUSCHEL-related homeobox4 (WOX4) decreases its expression during embryo maturation. Using a pharmacological approach, it was found that 5-Azacytidine strongly inhibits the embryogenic response by decreasing both DNA methylation and gene expression of LEC1 and BBM1. Therefore, in order to know whether these genes were epigenetically regulated, we used Chromatin Immunoprecipitation (ChIP) assays. It was found that WOX4 is regulated by the repressive mark H3K9me2, while LEC1 and BBM1 are epigenetically regulated by H3K27me3. We conclude that epigenetic regulation plays an important role during somatic embryogenic development, and a molecular mechanism for SE is proposed.
Collapse
Affiliation(s)
- Geovanny I. Nic-Can
- Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | | | - Felipe Barredo-Pool
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Kazimierz Wrobel
- Facultad de Química, Universidad de Guanajuato, Guanajuato, México
| | - Víctor M. Loyola-Vargas
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, México
| | - Rafael Rojas-Herrera
- Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| |
Collapse
|
15
|
Zhang D, Ren L, Yue JH, Wang L, Zhuo LH, Shen XH. A comprehensive analysis of flowering transition in Agapanthus praecox ssp. orientalis (Leighton) Leighton by using transcriptomic and proteomic techniques. J Proteomics 2013; 80:1-25. [DOI: 10.1016/j.jprot.2012.12.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 11/20/2012] [Accepted: 12/15/2012] [Indexed: 10/27/2022]
|
16
|
|
17
|
Benoit M, Layat E, Tourmente S, Probst AV. Heterochromatin dynamics during developmental transitions in Arabidopsis - a focus on ribosomal DNA loci. Gene 2013; 526:39-45. [PMID: 23410919 DOI: 10.1016/j.gene.2013.01.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/16/2013] [Accepted: 01/23/2013] [Indexed: 01/01/2023]
Abstract
The Arabidopsis chromosomes contain conspicuous heterochromatin domains comprising the repetitive 45S and 5S ribosomal DNA loci as well as centromeric and pericentromeric repeats that organize into chromocenters during interphase. During developmental phase transitions such as seed maturation, germination, seedling growth and flowering that require large-scale reprogramming of gene expression patterns, the organization of repetitive sequences into chromocenters dynamically changes. Here we illustrate recent studies that shed light on the heterochromatin dynamics in cotyledons, the first aerial tissues preformed in the embryo, and in true leaves. We will summarize available data for the 5S rDNA repeat loci, in particular their chromatin organization and expression dynamics during the first days of post-germination development, and discuss how the plant accommodates 5S rRNA transcription during large-scale chromatin reorganization events.
Collapse
Affiliation(s)
- Matthias Benoit
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 24 Avenue des Landais, BP 80026, 63171 Aubière Cedex, France.
| | | | | | | |
Collapse
|
18
|
Solís MT, Rodríguez-Serrano M, Meijón M, Cañal MJ, Cifuentes A, Risueño MC, Testillano PS. DNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6431-44. [PMID: 23175669 PMCID: PMC3504494 DOI: 10.1093/jxb/ers298] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Stress-induced plant cell reprogramming involves changes in global genome organization, being the epigenetic modifications key factors in the regulation of genome flexibility. DNA methylation, accomplished by DNA methyltransferases, constitutes a prominent epigenetic modification of the chromatin fibre which is locked in a transcriptionally inactive conformation. Changes in DNA methylation accompany the reorganization of the nuclear architecture during plant cell differentiation and proliferation. After a stress treatment, in vitro-cultured microspores are reprogrammed and change their gametophytic developmental pathway towards embryogenesis, the process constituting a useful system of reprogramming in isolated cells for applied and basic research. Gene expression driven by developmental and stress cues often depends on DNA methylation; however, global DNA methylation and genome-wide expression patterns relationship is still poorly understood. In this work, the dynamics of DNA methylation patterns in relation to nuclear architecture and the expression of BnMET1a-like DNA methyltransferase genes have been analysed during pollen development and pollen reprogramming to embryogenesis in Brassica napus L. by a multidisciplinary approach. Results showed an epigenetic reprogramming after microspore embryogenesis induction which involved a decrease of global DNA methylation and its nuclear redistribution with the change of developmental programme and the activation of cell proliferation, while DNA methylation increases with pollen and embryo differentiation in a cell-type-specific manner. Changes in the presence, abundance, and distribution of BnMET1a-like transcripts highly correlated with variations in DNA methylation. Mature zygotic and pollen embryos presented analogous patterns of DNA methylation and MET1a-like expression, providing new evidence of the similarities between both developmental embryogenic programmes.
Collapse
Affiliation(s)
- María-Teresa Solís
- Plant Development and Nuclear Architecture lab. Biological Research Center, CIB-CSIC, Madrid, Spain
| | - María Rodríguez-Serrano
- Plant Development and Nuclear Architecture lab. Biological Research Center, CIB-CSIC, Madrid, Spain
| | | | | | | | - María C. Risueño
- Plant Development and Nuclear Architecture lab. Biological Research Center, CIB-CSIC, Madrid, Spain
| | - Pilar S. Testillano
- Plant Development and Nuclear Architecture lab. Biological Research Center, CIB-CSIC, Madrid, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Curaba J, Spriggs A, Taylor J, Li Z, Helliwell C. miRNA regulation in the early development of barley seed. BMC PLANT BIOLOGY 2012; 12:120. [PMID: 22838835 PMCID: PMC3443071 DOI: 10.1186/1471-2229-12-120] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/17/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND During the early stages of seed development many genes are under dynamic regulation to ensure the proper differentiation and establishment of the tissue that will constitute the mature grain. To investigate how miRNA regulation contributes to this process in barley, a combination of small RNA and mRNA degradome analyses were used to identify miRNAs and their targets. RESULTS Our analysis identified 84 known miRNAs and 7 new miRNAs together with 96 putative miRNA target genes regulated through a slicing mechanism in grain tissues during the first 15 days post anthesis. We also identified many potential miRNAs including several belonging to known miRNA families. Our data gave us evidence for an increase in miRNA-mediated regulation during the transition between pre-storage and storage phases. Potential miRNA targets were found in various signalling pathways including components of four phytohormone pathways (ABA, GA, auxin, ethylene) and the defence response to powdery mildew infection. Among the putative miRNA targets we identified were two essential genes controlling the GA response, a GA3oxidase1 and a homolog of the receptor GID1, and a homolog of the ACC oxidase which catalyses the last step of ethylene biosynthesis. We found that two MLA genes are potentially miRNA regulated, establishing a direct link between miRNAs and the R gene response. CONCLUSION Our dataset provides a useful source of information on miRNA regulation during the early development of cereal grains and our analysis suggests that miRNAs contribute to the control of development of the cereal grain, notably through the regulation of phytohormone response pathways.
Collapse
Affiliation(s)
- Julien Curaba
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Andrew Spriggs
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Jen Taylor
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Zhongyi Li
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Chris Helliwell
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| |
Collapse
|
20
|
Lin CH, Peng PH, Ko CY, Markhart AH, Lin TY. Characterization of a novel Y2K-type dehydrin VrDhn1 from Vigna radiata. PLANT & CELL PHYSIOLOGY 2012; 53:930-42. [PMID: 22440330 DOI: 10.1093/pcp/pcs040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A novel dehydrin gene (VrDhn1) was isolated from an embryo cDNA library of Vigna radiata (L.) Wilczek (mungbean) variety VC1973A. The intronless VrDhn1 gene encodes a protein belonging to the Y(2)K-type dehydrin family. VrDhn1 protein accumulated in embryos and cotyledons during seed maturation and disappeared 2 days after seed imbibition (DAI). The expression of VrDhn1 mRNA and accumulation of VrDhn1 protein were at high levels in mature seeds, but neither mRNA nor protein was detected in mungbean vegetative tissues under normal growth conditions. The VrDhn1 mRNA level was extremely high in mature seeds and decreased to ∼30% at 1 DAI, and was not detectable at ~7 DAI. Tissue dehydration, salinity and exogenous ABA markedly induced VrDhn1 transcripts in plants as measured by quantitative real-time reverse transcription-PCR (qRT-PCR). VrDhn1 protein was not detected using immunoblots in seedlings under stress treatments. In mature seeds or 1 DAI seedlings, VrDhn1 proteins were immunolocalized in the nucleus and cytoplasm. VrDhn1 exhibited low affinity for non-specific interaction with DNA using electrophoretic mobility shift assays (EMSAs), and the exogenous addition of Zn(2+) or Ni(2+) stimulated interaction. The His-tagged VrDhn1 (30.17 kDa) protein showed a molecular mass of 63.1 kDa on gel filtration, suggesting a dimer form. This is the first report showing that a Y(2)K-type VrDhn1 enters the nucleus and interacts with DNA during seed maturation.
Collapse
Affiliation(s)
- Chia-Hui Lin
- Institute of Bioinformatics and Structural Biology & Department of Life Science, National Tsing Hua University, 101 Sec 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | | | | | | | | |
Collapse
|
21
|
Franks PJ, Leitch IJ, Ruszala EM, Hetherington AM, Beerling DJ. Physiological framework for adaptation of stomata to CO2 from glacial to future concentrations. Philos Trans R Soc Lond B Biol Sci 2012; 367:537-46. [PMID: 22232765 DOI: 10.1098/rstb.2011.0270] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In response to short-term fluctuations in atmospheric CO(2) concentration, c(a), plants adjust leaf diffusive conductance to CO(2), g(c), via feedback regulation of stomatal aperture as part of a mechanism for optimizing CO(2) uptake with respect to water loss. The operational range of this elaborate control mechanism is determined by the maximum diffusive conductance to CO(2), g(c(max)), which is set by the size (S) and density (number per unit area, D) of stomata on the leaf surface. Here, we show that, in response to long-term exposure to elevated or subambient c(a), plants alter g(c(max)) in the direction of the short-term feedback response of g(c) to c(a) via adjustment of S and D. This adaptive feedback response to c(a), consistent with long-term optimization of leaf gas exchange, was observed in four species spanning a diverse taxonomic range (the lycophyte Selaginella uncinata, the fern Osmunda regalis and the angiosperms Commelina communis and Vicia faba). Furthermore, using direct observation as well as flow cytometry, we observed correlated increases in S, guard cell nucleus size and average apparent 1C DNA amount in epidermal cell nuclei with increasing c(a), suggesting that stomatal and leaf adaptation to c(a) is linked to genome scaling.
Collapse
Affiliation(s)
- Peter J Franks
- Faculty of Agriculture, Food and Natural Resources, University of Sydney, Sydney New South Wales 2006, Australia.
| | | | | | | | | |
Collapse
|
22
|
Viejo M, Santamaría ME, Rodríguez JL, Valledor L, Meijón M, Pérez M, Pascual J, Hasbún R, Fernández Fraga M, Berdasco M, Toorop PE, Cañal MJ, Rodríguez Fernández R. Epigenetics, the role of DNA methylation in tree development. Methods Mol Biol 2012; 877:277-301. [PMID: 22610636 DOI: 10.1007/978-1-61779-818-4_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
During development of multicellular organisms, cells become differentiated by modulating different programs of gene expression. Cells have their own epigenetic signature which reflects genotype, developmental history, and environmental influences, and it is ultimately reflected in the phenotype of the cells and the organism. However, in normal development or disease situations, such as adaptation to climate change or during in vitro culture, some cells undergo major epigenetic reprogramming involving the removal of epigenetic marks in the nuclei followed by the establishment of a different new set of marks. Compared with animal cells, biotech-mediated achievements are reduced in plants despite the presence of cell polypotency. In forestry, any sustainable developments using biotech tools remain restricted to the lab, without progressing to the field for application. Such barriers in the translation between development and implementation need to be addressed by organizations that have the power to integrate these two fields. However, a lack of understanding of gene regulation is also to blame for this barrier. In recent years, great progress has been made in unraveling the control of gene expression. These advances are discussed in this chapter, including the possibility of applying this knowledge in forestry practice.
Collapse
Affiliation(s)
- Marcos Viejo
- Área de Fisiología Vegetal, Departamento BOS, Facultad de Biología, Universidad de Oviedo, Oviedo, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation. Proc Natl Acad Sci U S A 2011; 108:20219-24. [PMID: 22123962 DOI: 10.1073/pnas.1117726108] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most plant species rely on seeds for their dispersal and survival under unfavorable environmental conditions. Seeds are characterized by their low moisture content and significantly reduced metabolic activities. During the maturation phase, seeds accumulate storage reserves and become desiccation-tolerant and dormant. Growth is resumed after release of dormancy and the occurrence of favorable environmental conditions. Here we show that embryonic cotyledon nuclei of Arabidopsis thaliana seeds have a significantly reduced nuclear size, which is established at the beginning of seed maturation. In addition, the chromatin of embryonic cotyledon nuclei from mature seeds is highly condensed. Nuclei regain their size and chromatin condensation level during germination. The reduction in nuclear size is controlled by the seed maturation regulator ABSCISIC ACID-INSENSITIVE 3, and the increase during germination requires two predicted nuclear matrix proteins, LITTLE NUCLEI 1 and LITTLE NUCLEI 2. Our results suggest that the specific properties of nuclei in ripe seeds are an adaptation to desiccation, independent of dormancy. We conclude that the changes in nuclear size and chromatin condensation in seeds are independent, developmentally controlled processes.
Collapse
|
24
|
Meijón M, Feito I, Valledor L, Rodríguez R, Cañal MJ. Promotion of flowering in azaleas by manipulating photoperiod and temperature induces epigenetic alterations during floral transition. PHYSIOLOGIA PLANTARUM 2011; 143:82-92. [PMID: 21569038 DOI: 10.1111/j.1399-3054.2011.01485.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The ability to control the timing of flowering is a key strategy for planning production in ornamental species such as the azalea; however, this requires a thorough understanding of floral induction pathways. DNA methylation is one of the main mechanisms involved in controlling the functional state of chromatin and gene expression in response to environmental and developmental signals. This work investigated the promotion of flowering in azaleas by the manipulation of environmental factors, using DNA methylation levels as a marker of floral bud development. The results showed that the change of long-day (LD) to short-day (SD) photoperiod is the primary factor responsible for floral induction in azaleas, whereas the existence of the previous cold period as well as the physiological memory are factors which improve floral production. Furthermore, for blooming to take place, 1300 units of growing degree days under an LD were necessary. The promotion of flowering in azaleas by alterations of photoperiod and temperature induced DNA methylation changes. The demethylation observed after the change from LD to SD is linked to a change in cell fate which is necessary for floral transition to take place and seems to be associated with the floral signal.
Collapse
Affiliation(s)
- Mónica Meijón
- Laboratorio de Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Universidad de Oviedo, C/Cat. Rodrigo Uria s/n, E-33071 Oviedo, Asturias, Spain
| | | | | | | | | |
Collapse
|
25
|
Ectopic gene expression and organogenesis in Arabidopsis mutants missing BRU1 required for genome maintenance. Genetics 2011; 189:83-95. [PMID: 21705754 DOI: 10.1534/genetics.111.130062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chromatin reconstitution after DNA replication and repair is essential for the inheritance of epigenetic information, but mechanisms underlying such a process are still poorly understood. Previously, we proposed that Arabidopsis BRU1 functions to ensure the chromatin reconstitution. Loss-of-function mutants of BRU1 are hypersensitive to genotoxic stresses and cause release of transcriptional gene silencing of heterochromatic genes. In this study, we show that BRU1 also plays roles in gene regulation in euchromatic regions. bru1 mutations caused sporadic ectopic expression of genes, including those that encode master regulators of developmental programs such as stem cell maintenance and embryogenesis. bru1 mutants exhibited adventitious organogenesis, probably due to the misexpression of such developmental regulators. The key regulatory genes misregulated in bru1 alleles were often targets of PcG SET-domain proteins, although the overlap between the bru1-misregulated and PcG SET-domain-regulated genes was limited at a genome-wide level. Surprisingly, a considerable fraction of the genes activated in bru1 were located in several subchromosomal regions ranging from 174 to 944 kb in size. Our results suggest that BRU1 has a function related to the stability of subchromosomal gene regulation in the euchromatic regions, in addition to the maintenance of chromatin states coupled with heritable epigenetic marks.
Collapse
|
26
|
Costas C, Desvoyes B, Gutierrez C. A chromatin perspective of plant cell cycle progression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:379-87. [PMID: 21453801 DOI: 10.1016/j.bbagrm.2011.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/18/2011] [Accepted: 03/23/2011] [Indexed: 12/27/2022]
Abstract
The finely regulated series of events that span from the birth of a cell to the production of two new born cells encompass the cell cycle. Cell cycle progression occurs in a unidirectional manner and requires passing through a number of stages in response to cellular, developmental and environmental cues. In addition to these signaling cascades, transcriptional regulation plays a major role and acts coordinately with genome duplication during S-phase and chromosome segregation during mitosis. In this context, chromatin is revealing as a highly dynamic and major player in cell cycle regulation not only owing to the changes that occur as a consequence of cell cycle progression but also because some specific chromatin modifications are crucial to move across the cell cycle. These are particularly relevant for controlling transcriptional activation and repression as well as initiation of DNA replication and chromosome compaction. As a consequence the epigenetic landscape of a proliferating cell is very complex throughout the cell cycle. These aspects of chromatin dynamics together with the impact of epigenetic modifications on cell proliferation will be discussed in this article. This article is part of a Special Issue entitled: Epigenetic Control of cellular and developmental processes in plants.
Collapse
Affiliation(s)
- Celina Costas
- Centro de Biologia Molecukar Severo Ochoa, Madrid, Spain
| | | | | |
Collapse
|
27
|
Meijón M, Cañal MJ, Valledor L, Rodríguez R, Feito I. Epigenetic and physiological effects of gibberellin inhibitors and chemical pruners on the floral transition of azalea. PHYSIOLOGIA PLANTARUM 2011; 141:276-288. [PMID: 21077902 DOI: 10.1111/j.1399-3054.2010.01430.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The ability to control the timing of flowering is a key strategy in planning the production of ornamental species such as azaleas; however, it requires a thorough understanding of floral transition. DNA methylation is involved in controlling the functional state of chromatin and gene expression during floral induction pathways in response to environmental and developmental signals. Plant hormone signalling is also known to regulate suites of morphogenic processes in plants and its role in flowering-time control is starting to emerge as a key controlling step. This work investigates if the gibberellin (GA) inhibitors and chemical pinching applied in improvement of azalea flowering alter the dynamics of DNA methylation or the levels of polyamines (PAs), GAs and cytokinins (CKs) during floral transition, and whether these changes could be related to the effects observed on flowering ability. DNA methylation during floral transition and endogenous content of PAs, GAs and CKs were analysed after the application of GA synthesis inhibitors (daminozide, paclobutrazol and chlormequat chloride) and a chemical pruner (fatty acids). The application of GA biosynthesis inhibitors caused alterations in levels of PAs, GAs and CKs and in global DNA methylation levels during floral transition; also, these changes in plant growth regulators and DNA methylation were correlated with flower development. DNA methylation, PA, GA and CK levels can be used as predictive markers of plant floral capacity in azalea.
Collapse
Affiliation(s)
- Mónica Meijón
- Laboratorio de Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Universidad de Oviedo, C/ Cat. Rodrigo Uría s/n, E-33071, Oviedo, Asturias, Spain
| | | | | | | | | |
Collapse
|
28
|
van Zanten M, Tessadori F, Bossen L, Peeters AJM, Fransz P. Large-scale chromatin de-compaction induced by low light is not accompanied by nucleosomal displacement. PLANT SIGNALING & BEHAVIOR 2010; 5:1677-8. [PMID: 21139439 PMCID: PMC3115134 DOI: 10.4161/psb.5.12.14039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 05/22/2023]
Abstract
Arabidopsis thaliana is widely used as model to study chromatin compaction dynamics during development and in response to the environment. Signals such as prolonged heat treatment, low light and pathogen infestation are known to induce large-scale de-condensation of nuclear chromatin. Here we demonstrate that the response to different environments varies at the nucleosomal level. Our results show that in contrast to previous reports on heat and biotic infestation, low light intensity signaling does not alter nucleosomal occupancy, despite the marked effects of low light on global chromatin compaction.
Collapse
Affiliation(s)
- Martijn van Zanten
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
29
|
Kaufmann K, Pajoro A, Angenent GC. Regulation of transcription in plants: mechanisms controlling developmental switches. Nat Rev Genet 2010; 11:830-42. [PMID: 21063441 DOI: 10.1038/nrg2885] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unlike animals, plants produce new organs throughout their life cycle using pools of stem cells that are organized in meristems. Although many key regulators of meristem and organ identities have been identified, it is still not well understood how they function at the molecular level and how they can switch an entire developmental programme in which thousands of genes are involved. Recent advances in the genome-wide identification of target genes controlled by key plant transcriptional regulators and their interactions with epigenetic factors provide new insights into general transcriptional regulatory mechanisms that control switches of developmental programmes and cell fates in complex organisms.
Collapse
|
30
|
Ondrej V, Navrátilová B, Protivánková I, Piterková J, Sedlárová M, Luhová L, Lebeda A. Recondensation level of repetitive sequences in the plant protoplast nucleus is limited by oxidative stress. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2395-401. [PMID: 20363868 PMCID: PMC2877892 DOI: 10.1093/jxb/erq067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/04/2010] [Accepted: 03/04/2010] [Indexed: 05/18/2023]
Abstract
Protoplast cultures are remarkable examples of plant cell dedifferentiation. The state of dedifferentiation is evidenced by changes in cell morphology, genome organization, as well as by the capability of protoplasts to differentiate into multiple types of cells (depending on the type of the stimulus applied). The first change in the genome structure is connected with large-scale chromatin decondensation, affecting chromocentres involving various types of these repetitive sequences. This paper describes not only the de- and recondensation of satellite DNA type I and 5S rDNA repetitive sequences, but it also compares the recondensation level of chromatin with the levels of oxidative stress which were decreased by using an antioxidant, as well as the capabilities of the antioxidative systems within protoplasts, during the first 72 h of their culture. It is demonstrated that the treatment of protoplasts with ascorbic acid not only decreased the level of oxidative stress but also positively stimulated the expression of the ascorbate peroxidase and catalase. It also led to a greater recondensation of the chromatin (when compared to the untreated protoplasts); in addition, it supported cell proliferation. It is concluded that large-scale genome relaxation is more directly connected with oxidative stress than with large changes in the expression of genes; and further, that its recondensation is related to the start of (as well as the level of) protection by the antioxidative systems.
Collapse
Affiliation(s)
- Vladan Ondrej
- Department of Botany, Faculty of Science, Palacký University, Slechtitelů 11, Olomouc 783 71, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
31
|
Desvoyes B, Sanchez MP, Ramirez-Parra E, Gutierrez C. Impact of nucleosome dynamics and histone modifications on cell proliferation during Arabidopsis development. Heredity (Edinb) 2010; 105:80-91. [PMID: 20424644 DOI: 10.1038/hdy.2010.50] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Eukaryotic chromatin is a highly structured macromolecular complex of which DNA is wrapped around a histone-containing core. DNA can be methylated at specific C residues and each histone molecule can be covalently modified at a large variety of amino acids in both their tail and core domains. Furthermore, nucleosomes are not static entities and both their position and histone composition can also vary. As a consequence, chromatin behaves as a highly dynamic cellular component with a large combinatorial complexity beyond DNA sequence that conforms the epigenetic landscape. This has key consequences on various developmental processes such as root and flower development, gametophyte and embryo formation and response to the environment, among others. Recent evidence indicate that posttranslational modifications of histones also affect cell cycle progression and processes depending on a correct balance of proliferating cell populations, which in the context of a developing organisms includes cell cycle, stem cell dynamics and the exit from the cell cycle to endoreplication and cell differentiation. The impact of epigenetic modifications on these processes will be reviewed here.
Collapse
Affiliation(s)
- B Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
32
|
Valledor L, Meijón M, Hasbún R, Jesús Cañal M, Rodríguez R. Variations in DNA methylation, acetylated histone H4, and methylated histone H3 during Pinus radiata needle maturation in relation to the loss of in vitro organogenic capability. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:351-7. [PMID: 19931210 DOI: 10.1016/j.jplph.2009.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 09/20/2009] [Accepted: 09/20/2009] [Indexed: 05/13/2023]
Abstract
Needle differentiation is a very complex process associated with the formation of a mature photosynthetic organ. From meristem differentiation to leaf maturation, gene control must play an important role switching required genes on and off to define tissue functions, with the epigenetic code being one of the main regulation mechanisms. In this work, we examined the connections between the variation in the levels of some epigenetic players (DNA methylation, acetylated histone H4 and histone H3 methylation at Lys 4 and Lys 9) at work during needle maturation. Our results indicate that needle maturation, which is associated with a decrease in organogenic capability, is related to an increase in heterochromatin-related epigenetic markers (high DNA methylation and low acetylated histone H4 levels, and the presence of histone H3 methylated at lys 9). Immunohistochemical analyses also showed that the DNA methylation of palisade parenchyma cell layers during the transition from immature to mature scions is associated with the loss of the capacity to induce adventitious organs.
Collapse
Affiliation(s)
- Luis Valledor
- EPIPHYSAGE Research Group, Area de Fisiología Vegetal, Departamento B.O.S., Instituto Universitario de Biotecnología de Asturias (IUBA), Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|
33
|
Distinct localization of histone H3 methylation in the vegetative nucleus of lily pollen. Cell Biol Int 2010; 34:253-9. [PMID: 19947918 DOI: 10.1042/cbi20090124] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We analysed the distribution of histone H3 modifications in the nucleus of the vegetative cell (the vegetative nucleus) during pollen development in lily (Lilium longiflorum). Among the modifications specifically and/or abundantly present in the vegetative nucleus, dimethylation of histone H3 at lysine 9 (H3K9me2) and lysine 27 (H3K27me2) were found in heterochromatin, whereas trimethylation of histone H3 at lysine 27 (H3K27me3) was localized in euchromatin in the vegetative nucleus. Such unique localization of the histone H3 methylation marks, particularly of H3K27me3, within a nucleus was not observed in lily nuclei other than the vegetative nucleus. The level of H3K27me3 increased in the euchromatic region of the vegetative nucleus during pollen maturation. The results suggest that H3K27me3 controls the gene expression of the vegetative cell during pollen maturation.
Collapse
|
34
|
Meijón M, Feito I, Valledor L, Rodríguez R, Cañal MJ. Dynamics of DNA methylation and Histone H4 acetylation during floral bud differentiation in azalea. BMC PLANT BIOLOGY 2010; 10:10. [PMID: 20067625 PMCID: PMC2923518 DOI: 10.1186/1471-2229-10-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 01/12/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND The ability to control the timing of flowering is a key strategy for planning production in ornamental species such as azalea, however it requires a thorough understanding of floral transition. Floral transition is achieved through a complex genetic network and regulated by multiple environmental and endogenous cues. Dynamic changes between chromatin states facilitating or inhibiting DNA transcription regulate the expression of floral induction pathways in response to environmental and developmental signals. DNA methylation and histone modifications are involved in controlling the functional state of chromatin and gene expression. RESULTS The results of this work indicate that epigenetic mechanisms such as DNA methylation and histone H4 acetylation have opposite and particular dynamics during the transition from vegetative to reproductive development in the apical shoots of azalea. Global levels of DNA methylation and histone H4 acetylation as well as immunodetection of 5-mdC and acetylated H4, in addition to a morphological study have permitted the delimitation of four basic phases in the development of the azalea bud and allowed the identification of a stage of epigenetic reprogramming which showed a sharp decrease of whole DNA methylation similar to that is defined in other developmental processes in plants and in mammals. CONCLUSION The epigenetic control and reorganization of chromatin seem to be decisive for coordinating floral development in azalea. DNA methylation and H4 deacetylation act simultaneously and co-ordinately, restructuring the chromatin and regulating the gene expression during soot apical meristem development and floral differentiation.
Collapse
Affiliation(s)
- Mónica Meijón
- Laboratorio de Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Universidad de Oviedo, C/Cat. Rodrigo Uria s/n, E-33071, Oviedo, Asturias, Spain
- Instituto de Biotecnología de Asturias, (Associated to CSIC) Edificio Santiago Gascón, C/Fernando Bongera s/n, E-33006 Oviedo, Asturias, Spain
| | - Isabel Feito
- SERIDA, Servicio Regional de Investigación Desarrollo Agroalimentario, Finca "La Mata", Apdo 13, E-33820 Grado, Asturias, Spain
| | - Luis Valledor
- Laboratorio de Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Universidad de Oviedo, C/Cat. Rodrigo Uria s/n, E-33071, Oviedo, Asturias, Spain
- Instituto de Biotecnología de Asturias, (Associated to CSIC) Edificio Santiago Gascón, C/Fernando Bongera s/n, E-33006 Oviedo, Asturias, Spain
| | - Roberto Rodríguez
- Laboratorio de Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Universidad de Oviedo, C/Cat. Rodrigo Uria s/n, E-33071, Oviedo, Asturias, Spain
- Instituto de Biotecnología de Asturias, (Associated to CSIC) Edificio Santiago Gascón, C/Fernando Bongera s/n, E-33006 Oviedo, Asturias, Spain
| | - María Jesús Cañal
- Laboratorio de Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Universidad de Oviedo, C/Cat. Rodrigo Uria s/n, E-33071, Oviedo, Asturias, Spain
- Instituto de Biotecnología de Asturias, (Associated to CSIC) Edificio Santiago Gascón, C/Fernando Bongera s/n, E-33006 Oviedo, Asturias, Spain
| |
Collapse
|
35
|
Meijón M, Valledor L, Santamaría E, Testillano PS, Risueño MC, Rodríguez R, Feito I, Cañal MJ. Epigenetic characterization of the vegetative and floral stages of azalea buds: dynamics of DNA methylation and histone H4 acetylation. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1624-36. [PMID: 19523713 DOI: 10.1016/j.jplph.2009.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 05/23/2023]
Abstract
Floral induction in plants is achieved through a complex genetic network and regulated by multiple environmental and endogenous cues. Epigenetic control is determinative in plants for coordinating the switch to flowering under favorable environmental conditions and achieving reproductive success. Global DNA methylation, whose increase is associated with heterochromatinization-cell differentiation, and histone H4 acetylation, which is linked to euchromatin, were analyzed in vegetative and floral buds of azalea in order to study the involvement of epigenetic mechanisms in the floral development of woody plants. The results showed an increase of DNA methylation in floral buds in contrast to the decrease observed for acetylated H4 (AcH4) levels. In addition, when the distributions of 5-mdC and AcH4 in vegetative and floral buds of azalea were analyzed by immunodetection, opposite patterns in their distribution were revealed and confirmed the existence of different cell types in the shoot apical meristem with varying degrees of differentiation.
Collapse
Affiliation(s)
- Mónica Meijón
- Laboratorio de Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Universidad de Oviedo, E-33071, Oviedo, Asturias, Spain
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Li C, Wu K, Fu G, Li Y, Zhong Y, Lin X, Zhou Y, Tian L, Huang S. Regulation of oleosin expression in developing peanut (Arachis hypogaea L.) embryos through nucleosome loss and histone modifications. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:4371-4382. [PMID: 19737778 DOI: 10.1093/jxb/erp275] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nucleosome loss and histone modifications are important mechanisms for transcriptional regulation. Concomitant changes in chromatin structures of two peanut (Arachis hypogaea L.) oleosin genes, AhOleo17.8 and AhOleo18.5, were examined in relation to transcriptional activity. Spatial and temporal expression analyses showed that both AhOleo17.8 and AhOleo18.5 promoters can adopt three conformational states, an inactive state (in vegetative tissues), a basal activated state (in early maturation embryos), and a fully activated state (in late maturation embryos). Chromatin immunoprecipitation assays revealed an increase of histone H3 acetylation levels at the proximal promoters and coding regions of AhOleo17.8 and AhOleo18.5 associated with basal transcription in early maturation embryos. Meanwhile, a decrease of histone H3K9 dimethylation levels at coding regions of oleosins was observed in early maturation embryos. However, a dramatic decrease in the histone acetylation signal was observed at the core promoters and the coding regions of the two oleosins in the fully activated condition in late maturation embryos. Although a small decrease of histone H3 levels of oleosins chromatin was detected in early maturation embryos, a significant loss of histone H3 levels occurred in late maturation embryos. These analyses indicate that the histone eviction from the proximal promoters and coding regions is associated with the high expression of oleosin genes during late embryos maturation. Moreover, the basal expression of oleosins in early maturation embryos is accompanied by the increase of histone H3 acetylation and decrease of histone H3K9me2.
Collapse
Affiliation(s)
- Chenlong Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tessadori F, van Zanten M, Pavlova P, Clifton R, Pontvianne F, Snoek LB, Millenaar FF, Schulkes RK, van Driel R, Voesenek LACJ, Spillane C, Pikaard CS, Fransz P, Peeters AJM. Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana. PLoS Genet 2009; 5:e1000638. [PMID: 19730687 PMCID: PMC2728481 DOI: 10.1371/journal.pgen.1000638] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 08/08/2009] [Indexed: 11/18/2022] Open
Abstract
Natural genetic variation in Arabidopsis thaliana exists for many traits and often reflects acclimation to local environments. Studying natural variation has proven valuable in the characterization of phenotypic traits and, in particular, in identifying genetic factors controlling these traits. It has been previously shown that chromatin compaction changes during development and biotic stress. To gain more insight into the genetic control of chromatin compaction, we investigated the nuclear phenotype of 21 selected Arabidopsis accessions from different geographic origins and habitats. We show natural variation in chromatin compaction and demonstrate a positive correlation with latitude of geographic origin. The level of compaction appeared to be dependent on light intensity. A novel approach, combining Quantitative Trait Locus (QTL) mapping and microscopic examination, pointed at PHYTOCHROME-B (PHYB) and HISTONE DEACETYLASE-6 (HDA6) as positive regulators of light-controlled chromatin compaction. Indeed, mutant analyses demonstrate that both factors affect global chromatin organization. HDA6, in addition, strongly promotes the light-mediated compaction of the Nucleolar Organizing Regions (NORs). The accession Cape Verde Islands-0 (Cvi-0), which shows sequence polymorphism in the PHYB gene and in the HDA6 promotor, resembles the hda6 mutant in having reduced chromatin compaction and decreased methylation levels of DNA and histone H3K9 at the NORs. We provide evidence that chromatin organization is controlled by light intensity. We propose that chromatin plasticity is associated with acclimation of Arabidopsis to its environment. The polymorphic alleles such as PHYB and HDA6 control this process. The habitat of the plant model species Arabidopsis thaliana can be found throughout the Northern hemisphere. As a consequence, individual populations have acclimated to a great diversity of environmental conditions. This is reflected by a wealth of natural genetic variation in many phenotypic traits. We utilized this natural variation via a novel approach, combining microscopic examination, quantitative genetics, and analysis of environmental parameters, to understand the regulation of nuclear chromatin compaction in leaf mesophyll cells. We show that the level of chromatin compaction among natural Arabidopsis thaliana accessions correlates with latitude of origin and depends on local light intensity. Our study provides evidence that the photoreceptor PHYTOCHROME-B (PHYB) and the histone modifier HISTONE DEACETYLASE 6 (HDA6) are positive regulators of global chromatin organization in a light-dependent manner. In addition, HDA6 specifically controls light-mediated chromatin compaction of the Nucleolar Organizing Regions (NORs). We propose that the observed light-controlled plasticity of chromatin plays a role in acclimation and survival of plants in their natural environment.
Collapse
Affiliation(s)
- Federico Tessadori
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn van Zanten
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Penka Pavlova
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Genetics, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Rachel Clifton
- Genetics & Biotechnology Laboratory, Department of Biochemistry & Biosciences Institute, University College Cork, Cork, Republic of Ireland
| | - Frédéric Pontvianne
- Biology Department, Washington University, St. Louis, Missouri, United States of America
| | - L. Basten Snoek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Frank F. Millenaar
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Roeland Kees Schulkes
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Roel van Driel
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Charles Spillane
- Genetics & Biotechnology Laboratory, Department of Biochemistry & Biosciences Institute, University College Cork, Cork, Republic of Ireland
| | - Craig S. Pikaard
- Biology Department, Washington University, St. Louis, Missouri, United States of America
| | - Paul Fransz
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: (PF); (AJMP)
| | - Anton J. M. Peeters
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
- * E-mail: (PF); (AJMP)
| |
Collapse
|
38
|
Ondrej V, Kitner M, Dolezalová I, Nádvorník P, Navrátilová B, Lebeda A. Chromatin structural rearrangement during dedifferentiation of protoplasts of Cucumis sativus L. Mol Cells 2009; 27:443-7. [PMID: 19390825 DOI: 10.1007/s10059-009-0057-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 12/31/2022] Open
Abstract
This paper reports on the structural rearrangement of satellite DNA type I repeats and heterochromatin during the dedifferentiation and cell cycling of mesophyll protoplasts of cucumber (Cucumis sativus). These repeats were localized in the telomeric heterochromatin of cucumber chromosomes and in the chromocenters of interphase nuclei. The dramatic reduction of heterochromatin involves decondensation of subtelomeric repeats in freshly isolated protoplasts; however, there are not a great many remarkable changes in the expression profile. In spite of that, reformation of the chromocenters, occurring 48 h after protoplast isolation, is accompanied by recondensation of satellite DNA type I; however, only partial reassembly of these repeats was revealed. In this study, FISH and a flow cytometry assay show a correlation between the partial chromocenter and the repeats reassembly, and with the reentry of cultivated protoplasts into the cell cycle and first cell division. After that, divided cells displayed a higher variability in the expression profile than did leaves' mesophyll cells and protoplasts.
Collapse
Affiliation(s)
- Vladan Ondrej
- Department of Botany, Faculty of Science, Palacky University, Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
39
|
Lorković ZJ. Role of plant RNA-binding proteins in development, stress response and genome organization. TRENDS IN PLANT SCIENCE 2009; 14:229-36. [PMID: 19285908 DOI: 10.1016/j.tplants.2009.01.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 12/18/2008] [Accepted: 01/08/2009] [Indexed: 05/20/2023]
Abstract
RNA-binding proteins (RBPs) in eukaryotes have crucial roles in all aspects of post-transcriptional gene regulation. They are important governors of diverse developmental processes by modulating expression of specific transcripts. The Arabidopsis (Arabidopsis thaliana) genome encodes for more than 200 different RBPs, most of which are plant specific and are therefore likely to perform plant-specific functions. Indeed, recent identification and analysis of plant RBPs clearly showed that, in addition to the important role in diverse developmental processes, they are also involved in adaptation of plants to various environmental conditions. Clearly, they act by regulating pre-mRNA splicing, polyadenylation, RNA stability and RNA export, as well as by influencing chromatin modification.
Collapse
Affiliation(s)
- Zdravko J Lorković
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9/3, A-1030 Vienna, Austria.
| |
Collapse
|