1
|
Otto P, Célestin G, Kergunteuil A, Valantin-Morison M, Pashalidou FG. Oviposition-induced plant volatiles prime defences against impending herbivores in neighbouring non-damaged plants. Sci Rep 2025; 15:17461. [PMID: 40394137 DOI: 10.1038/s41598-025-02371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 05/13/2025] [Indexed: 05/22/2025] Open
Abstract
Plants exploit environmental cues about the risks of encountering insect herbivores, often sensitising defensive responses. While herbivore-induced plant volatiles (HIPVs) are reported to enhance plant defences against incoming herbivores, responses to oviposition-induced plant volatiles (OIPVs) are massively under-explored. We studied whether OIPV emissions from Brassica napus enhance defences in non-damaged neighbouring B. napus when subsequently infested with Pieris brassicae larvae. We collected and analysed the emission rates of plant volatile organic compounds under different treatments and measured P. brassicae larvae biomass as a proxy for defence. We show that oviposition triggers the release of specific volatiles, i.e. α-pinene, dimethyl-trisulfide, and limonene, potentially serving as herbivore early warning cues for neighbouring non-damaged plants. Initially, after three days of herbivory, OIPV-receivers emitted lower levels of volatiles compared to control receivers; however, following seven days of herbivory, both control and OIPV-receivers emitted similar amounts of volatiles. We suggest a potential trade-off between direct and indirect defences, with sensitised plants investing metabolic resources initially towards direct and later enhancing indirect defences. We show that OIPVs mediate plant-plant communication, a natural potential for Brassicaceae crop protection.
Collapse
Affiliation(s)
- Pius Otto
- UMR Agronomie, INRAE, AgroParisTech, Université Paris-Saclay, 91123, Palaiseau Cedex, France
| | - Gerlens Célestin
- UMR Agronomie, INRAE, AgroParisTech, Université Paris-Saclay, 91123, Palaiseau Cedex, France
| | - Alan Kergunteuil
- INRAE, LAE, Université de Lorraine, 54000, Nancy, France
- INRAE, PSH, 84000, Avignon, France
| | - Muriel Valantin-Morison
- UMR Agronomie, INRAE, AgroParisTech, Université Paris-Saclay, 91123, Palaiseau Cedex, France
| | - Foteini G Pashalidou
- UMR Agronomie, INRAE, AgroParisTech, Université Paris-Saclay, 91123, Palaiseau Cedex, France.
- UMR ABSys-Agrosystèmes Biodiversifiés (INRAE), Campus Supagro Montpellier 2 Place Viala, 34060, Montpellier Cedex 2, France.
| |
Collapse
|
2
|
Tian Z, Wang Y, Sun T, Hu X, Hao W, Zhao T, Wang Y, Zhang L, Jiang X, Turlings TCJ, Li Y. An egg parasitoid assesses host egg quality from afar using oviposition-induced plant volatiles. Curr Biol 2025:S0960-9822(25)00563-9. [PMID: 40403718 DOI: 10.1016/j.cub.2025.04.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/29/2025] [Accepted: 04/28/2025] [Indexed: 05/24/2025]
Abstract
Parasitoids of herbivores exploit inducible plant volatiles to find plants with potential hosts from a distance, whereas at close range they typically use host-derived cues to pinpoint and identify suitable hosts. Here, we show, however, that the egg parasitoid Trichogramma japonicum assesses host egg quality far more efficiently by remotely using oviposition-induced plant volatiles (OIPVs). In olfactometer assays, female T. japonicum wasps showed a strong preference for the odor of rice plants carrying 2-day-old eggs of the rice leaf folder Cnaphalocrocis medinalis over the odor of plants with younger or older eggs, a preference that correlated with higher parasitism rates. In accordance with the preference-performance hypothesis, the offspring of T. japonicum showed superior performance in 2-day-old eggs, including shorter development times and higher eclosion rates. Volatile analysis revealed significantly increased emission of D-limonene and α-pinene from plants with 2-day-old eggs, and we found that synthetic versions of these two monoterpenes were highly attractive to the wasp. Knockout rice plants deficient in D-limonene and α-pinene synthesis lost their appeal to the wasps, but attraction could be restored by dispensing synthetic versions of the attractants alongside the knockouts. These findings reveal a novel and highly efficient host-assessment strategy in egg parasitoids, whereby plant-provided cues inform the wasps about host quality from afar. This discovery is illustrative of the clever strategies that have evolved out of plant-insect interactions and offers fresh ideas to optimally exploit plant traits for biocontrol approaches against C. medinalis, a major rice pest.
Collapse
Affiliation(s)
- Zhiqiang Tian
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuanyuan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Agriculture and Forestry Science and Technology, Weifang Vocational College, Weifang 262737, China
| | - Tao Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiaoyun Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wanting Hao
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Te Zhao
- Colleage of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yanan Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Lei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ted C J Turlings
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, China; Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchȃtel, Neuchȃtel 2000, Switzerland; Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Yunhe Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
3
|
Rahman-Soad A, Krause S, Hagemann L, Hilker M. Needle age-dependent defence of Scots pine against insect herbivory. TREE PHYSIOLOGY 2025; 45:tpaf046. [PMID: 40238090 DOI: 10.1093/treephys/tpaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/12/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Plant defence responses to herbivory vary with foliage age, which in angiosperms lasts a few months, but may be several years in conifers. While age-dependent leaf responses of angiosperms to insect herbivory are well studied, much less is known about anti-herbivore responses of conifer needles that differ in age by a year or more. Similarly, insect responses to conifer foliage that differs in age by years have rarely been studied. Here, we used Pinus sylvestris L. (Scots pine) and the herbivorous sawfly Diprion pini to elucidate (i) the responses of this herbivore to pine needles of different age and (ii) needle age-dependent differences in two anti-herbivore plant defence traits, rarely studied in interactions of conifers and phyllophagous insects, i.e., phytohormones and proteinase inhibitor (PI) activity. The sawfly D. pini preferred old (previous year) over young (current year) pine needles for oviposition and feeding by late larval instars. The insect benefited from these preferences through higher egg survival rates on old needles and more larval weight when feeding upon old needles. Scots pine needles showed needle-age dependent differences in their phytohormonal responses to D. pini larval feeding. Feeding-induced concentrations of salicylic acid and abscisic acid were higher in young than old needles. No such age dependency was detected for herbivory-induced changes in levels of jasmonic acid, in contrast to known, age-dependent jasmonic acid responses to damage in angiosperms. Contrary to angiosperms, PI activities of pine were not induced by sawfly feeding upon young or old needles. However, old needles showed constitutively significantly lower PI activities, which are discussed with respect to the benefits that D. pini gains when preferring old needles. Our results highlight the developmental plasticity of defence traits of conifer foliage as well as the adaptation of a pine herbivore specialist to these defences.
Collapse
Affiliation(s)
- Asifur Rahman-Soad
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Sophie Krause
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn-Institute, Königin-Luise-Str. 19, 14195, Berlin, Germany
| | - Laura Hagemann
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| |
Collapse
|
4
|
Shi JH, Shao R, Abdelkhalek ST, Zhang S, Wang MQ. The oviposition of cotton bollworms stimulates the defense against its eggs and larvae in tomato plants. PEST MANAGEMENT SCIENCE 2025; 81:1196-1203. [PMID: 39511969 DOI: 10.1002/ps.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Herbivorous insects sustain their populations by oviposition. To reduce the damage caused by herbivores, the host plant triggers a defensive response upon detection of egg deposition. However, the specific impact of the egg deposition time of the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae), on the tomato plant defense remains obscure. RESULTS This study investigated the effects of tomato plant defenses on cotton bollworm eggs and larvae at different time intervals following egg deposition. The study revealed that tomato plant defense triggered by egg deposition did not directly affect the hatchability of the eggs. Nevertheless, it attracted Trichogramma chilonis 48 h after the egg deposition. Gas chromatography-mass spectrometry analysis of the oviposition-induced plant volatiles (OIPVs) revealed a considerable increase in the amount of α-pinene released by tomato plants 48 h after egg deposition. The olfactory results from Y-tube experiments showed that α-pinene exhibited a substantial attraction towards T. chilonis. In addition, it was found that the defense response induced by egg deposition for 24 and 48 h significantly inhibited the growth and development of the larvae. Metabolomics analysis revealed that the egg deposition of cotton bollworm altered the metabolite composition and caused significant modifications in the metabolic pathways of tomato plants. CONCLUSION These findings provide novel insights into pest management by using egg-induced plant defenses to reduce egg hatching, and impede larval growth and development in herbivorous insects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin-Hua Shi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rui Shao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sara T Abdelkhalek
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Shuo Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Lu JB, Ren PP, Tian Y, Yang YY, Feng QK, Zhang XY, He F, Huang HJ, Chen JP, Li JM, Zhang CX. Structural characterization and proteomic profiling of oviposition secretions across three rice planthopper species. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 176:104220. [PMID: 39581556 DOI: 10.1016/j.ibmb.2024.104220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/29/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Insect oviposition secretions play crucial roles during the reproductive process, yet systematic studies on their structural characterization and protein compositions remain limited. This study investigated the oviposition secretions of three major rice pests: the brown planthopper (Nilaparvata lugens, BPH), small brown planthopper (Laodelphax striatella, SBPH), and white-backed planthopper (Sogatella furcifera, WBPH). Ultrastructural observation revealed differences in the oviposition secretions of them. The eggs of BPH and SBPH were adhered to rice tissue by abundant secretions, while WBPH eggs were embedded deeper within the leaf sheath with less secretions. Proteomic analysis identified 111, 98, and 66 oviposition secretion proteins (OSPs) in BPH, SBPH, and WBPH, respectively. 4 common protein subgroups were shared among them, along with varying numbers of shared subgroups between species pairs. Notably, the majority of OSPs were exclusively found in one species, indicating the existence of both similar and specialized functions unique to each planthopper species. The functions of 4 uncharacterized OSPs (Nl.chr07.0363, Nl.chr12.078, Nl.chr11.716, Nl.scaffold.0714) that were uniquely identified in the BPH were studied by maternal RNAi. Downregulation of each of these 4 protein-coding genes led to a significant decrease in egg production and hatchability. Moreover, knockdown of Nl.chr12.078 or Nl.chr07.0363 also disrupt the secretory function of the lateral oviduct. In conclusion, this study provides insights into the structural characteristics and protein components of the oviposition secretions of BPH, SBPH, and WBPH, which could serve as potential targets for RNAi-based pest control and lay a foundation for future studies on insect-plant interactions mediated by oviposition secretions.
Collapse
Affiliation(s)
- Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Peng-Peng Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ying Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yan-Yan Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Qing-Kai Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Fang He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Song HD, Zhang FB, Ji SX, Wang XQ, Wang JX, Liu YX, Wang XW, Han WH. The SA-WRKY70-PR-Callose Axis Mediates Plant Defense Against Whitefly Eggs. Int J Mol Sci 2024; 25:12076. [PMID: 39596145 PMCID: PMC11593482 DOI: 10.3390/ijms252212076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The molecular mechanisms of plant responses to phytophagous insect eggs are poorly understood, despite their importance in insect-plant interactions. This study investigates the plant defense mechanisms triggered by the eggs of whitefly Bemisia tabaci, a globally significant agricultural pest. A transcriptome comparison of tobacco plants with and without eggs revealed that whitefly eggs may activate the response of defense-related genes, including those involved in the salicylic acid (SA) signaling pathway. SA levels are induced by eggs, resulting in a reduction in egg hatching, which suggests that SA plays a key role in plant resistance to whitefly eggs. Employing Agrobacterium-mediated transient expression, virus-induced gene silencing assays, DNA-protein interaction studies, and bioassays, we elucidate the regulatory mechanisms involved. Pathogenesis-related proteins NtPR1-L1 and NtPR5-L2, downstream of the SA pathway, also affect whitefly egg hatching. The SA-regulated transcription factor NtWRKY70a directly binds to the NtPR1-L1 promoter, enhancing its expression. Moreover, NtPR1-L1 promotes callose deposition, which may impede the eggs' access to water and nutrients. This study establishes the SA-WRKY70-PR-callose axis as a key mechanism linking plant responses and defenses against whitefly eggs, providing new insights into the molecular interactions between plants and insect eggs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wen-Hao Han
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (H.-D.S.); (F.-B.Z.); (S.-X.J.); (X.-Q.W.); (J.-X.W.); (Y.-X.L.); (X.-W.W.)
| |
Collapse
|
7
|
Wei B, Cao S, Zhang G, Wang H, Cao Z, Chen Q, Niu C. Citrus Fruits Produce Direct Defense Responses against Oviposition by Bactrocera minax (Diptera: Tephritidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23736-23746. [PMID: 39257316 DOI: 10.1021/acs.jafc.4c05871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Plants perceive and orchestrate defense responses when herbivorous insects are ovipositing. Fruits, as a crucial reproductive organ in plants, have rarely been researched on the responses to insect eggs. Here, we found that oviposition by the specialist insect Bactrocera minax in navel oranges activated the lignin synthesis pathway and cell division, causing mechanical pressure that crushed the eggs. Transcriptome and metabolome analyses revealed an enrichment of oviposition-induced genes and metabolites within the lignin synthesis pathway, which was confirmed by histochemical staining. Furthermore, hydrogen peroxide (H2O2) accumulation was observed at the oviposition sites. Plant defense-related hormones jasmonic acid (JA) and salicylic acid (SA) exhibited rapid induction after oviposition, while indole-3-acetic acid (IAA) activation occurred in the later stages of oviposition. Additionally, secondary metabolites induced by prior egg deposition were found to influence larval performance. Our studies provide molecular evidence that host fruits have evolved defense mechanisms against insect eggs and pave the way for future development of insect-resistant citrus varieties.
Collapse
Affiliation(s)
- Bingbing Wei
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuai Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guijian Zhang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoran Wang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoran Chen
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Li C, Pei J, Wang L, Tian Y, Ren L, Luo Y. Interactions at the Oviposition Scar: Molecular and Metabolic Insights into Elaeagnus angustifolia's Resistance Response to Anoplophora glabripennis. Int J Mol Sci 2024; 25:9504. [PMID: 39273453 PMCID: PMC11395401 DOI: 10.3390/ijms25179504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The Russian olive (Elaeagnus angustifolia), which functions as a "dead-end trap tree" for the Asian long-horned beetle (Anoplophora glabripennis) in mixed plantations, can successfully attract Asian long-horned beetles for oviposition and subsequently kill the eggs by gum. This study aimed to investigate gum secretion differences by comparing molecular and metabolic features across three conditions-an oviposition scar, a mechanical scar, and a healthy branch-using high-performance liquid chromatography and high-throughput RNA sequencing methods. Our findings indicated that the gum mass secreted by an oviposition scar was 1.65 times greater than that secreted by a mechanical scar. Significant differences in gene expression and metabolism were observed among the three comparison groups. A Kyoto Encyclopedia of Genes and Genomes annotation and enrichment analysis showed that an oviposition scar significantly affected starch and sucrose metabolism, leading to the discovery of 52 differentially expressed genes and 7 differentially accumulated metabolites. A network interaction analysis of differentially expressed metabolites and genes showed that EaSUS1, EaYfcE1, and EaPGM1 regulate sucrose, uridine diphosphate glucose, α-D-glucose-1P, and D-glucose-6P. Although the polysaccharide content in the OSs was 2.22 times higher than that in the MSs, the sucrose content was lower. The results indicated that the Asian long-horned beetle causes Russian olive sucrose degradation and D-glucose-6P formation. Therefore, we hypothesized that damage caused by the Asian long-horned beetle could enhance tree gum secretions through hydrolyzed sucrose and stimulate the Russian olive's specific immune response. Our study focused on the first pair of a dead-end trap tree and an invasive borer pest in forestry, potentially offering valuable insights into the ecological self-regulation of Asian long-horned beetle outbreaks.
Collapse
Affiliation(s)
- Chengcheng Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Jiahe Pei
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Lixiang Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Yi Tian
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
9
|
Peters DH, Greenberg LO, Fatouros NE. Oviposition strategies in Pieridae butterflies and the role of an egg-killing plant trait therein. Ecol Evol 2024; 14:e11697. [PMID: 39026945 PMCID: PMC11257707 DOI: 10.1002/ece3.11697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Most herbivorous insects are host-plant specialists that evolved detoxification mechanisms to overcome their host plant's toxins. In the evolutionary arms-races between Pieridae butterflies and Brassicaceae plants, some plant species have evolved another defence against the pierids: egg-killing. Underneath the eggs, leaves develop a so-called hypersensitive response (HR)-like cell death. Whether some butterflies have evolved oviposition strategies to counter-adapt against egg-killing remains to be studied. In this study, we assessed the oviposition site location of Pieridae butterflies on their natural host plants. We described the plant tissue on which we located the eggs of the most common Pieridae in the Netherlands: Gonepteryx rhamni, Anthocharis cardamines, Pieris rapae, P. napi, P. brassicae and P. mannii. Additionally, we assessed expression of HR-like cell death in response to the deposited butterfly eggs. We found that both A. cardamines and G. rhamni mainly oviposited on the floral stem and the branch, respectively, and oviposited on host plants from lineages not expected to kill pierid eggs. Accordingly, no HR-like cell death was seen. All Pieris eggs found were located on leaves of their host, the only tissue found to express HR-like cell death. Furthermore, each Pieris species was found to at least occasionally oviposit on Brassica nigra. This was the only plant species in this survey that expressed HR-like cell death in response to the eggs of P. rapae, P. napi and P. brassicae. Our observations demonstrate that HR-like cell death remains an effective defence strategy against these Pieris species and as such did not find evidence for the hypothesized counterstrategies. Surveying certain key species and disentangling the micro-evolution of oviposition strategies within a species would allow us to further investigate potential counter-adaptations that evolved against HR-like cell death. This study provides the basis for further investigation of potential counter-adaptations to egg-killing defences.
Collapse
Affiliation(s)
- Dorette H. Peters
- Biosystematics GroupWageningen UniversityWageningenThe Netherlands
- Present address:
Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | | | - Nina E. Fatouros
- Biosystematics GroupWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
10
|
Rahman-Soad A, Bittner N, Hilker M. Pine Response to Sawfly Pheromones: Effects on Sawfly's Oviposition and Larval Growth. INSECTS 2024; 15:458. [PMID: 38921172 PMCID: PMC11203435 DOI: 10.3390/insects15060458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
Insect pheromones have been intensively studied with respect to their role in insect communication. However, scarce knowledge is available on the impact of pheromones on plant responses, and how these in turn affect herbivorous insects. A previous study showed that exposure of pine (Pinus sylvestris) to the sex pheromones of the pine sawfly Diprion pini results in enhanced defenses against the eggs of this sawfly; the egg survival rate on pheromone-exposed pine needles was lower than that on unexposed pine. The long-lasting common evolutionary history of D. pini and P. sylvestris suggests that D. pini has developed counter-adaptations to these pine responses. Here, we investigated by behavioral assays how D. pini copes with the defenses of pheromone-exposed pine. The sawfly females did not discriminate between the odor of pheromone-exposed and unexposed pine. However, when they had the chance to contact the trees, more unexposed than pheromone-exposed trees received eggs. The exposure of pine to the pheromones did not affect the performance of larvae and their pupation success. Our findings indicate that the effects that responses of pine to D. pini sex pheromones exert on the sawfly eggs and sawfly oviposition behavior do not extend to effects on the larvae.
Collapse
Affiliation(s)
- Asifur Rahman-Soad
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, 12163 Berlin, Germany; (A.R.-S.); (N.B.)
| | - Norbert Bittner
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, 12163 Berlin, Germany; (A.R.-S.); (N.B.)
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, 85764 Neuherberg, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, 12163 Berlin, Germany; (A.R.-S.); (N.B.)
| |
Collapse
|
11
|
Bassetti N, Caarls L, Bouwmeester K, Verbaarschot P, van Eijden E, Zwaan BJ, Bonnema G, Schranz ME, Fatouros NE. A butterfly egg-killing hypersensitive response in Brassica nigra is controlled by a single locus, PEK, containing a cluster of TIR-NBS-LRR receptor genes. PLANT, CELL & ENVIRONMENT 2024; 47:1009-1022. [PMID: 37961842 DOI: 10.1111/pce.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Knowledge of plant recognition of insects is largely limited to a few resistance (R) genes against sap-sucking insects. Hypersensitive response (HR) characterizes monogenic plant traits relying on R genes in several pathosystems. HR-like cell death can be triggered by eggs of cabbage white butterflies (Pieris spp.), pests of cabbage crops (Brassica spp.), reducing egg survival and representing an effective plant resistance trait before feeding damage occurs. Here, we performed genetic mapping of HR-like cell death induced by Pieris brassicae eggs in the black mustard Brassica nigra (B. nigra). We show that HR-like cell death segregates as a Mendelian trait and identified a single dominant locus on chromosome B3, named PEK (Pieris egg- killing). Eleven genes are located in an approximately 50 kb region, including a cluster of genes encoding intracellular TIR-NBS-LRR (TNL) receptor proteins. The PEK locus is highly polymorphic between the parental accessions of our mapping populations and among B. nigra reference genomes. Our study is the first one to identify a single locus potentially involved in HR-like cell death induced by insect eggs in B. nigra. Further fine-mapping, comparative genomics and validation of the PEK locus will shed light on the role of these TNL receptors in egg-killing HR.
Collapse
Affiliation(s)
- Niccolò Bassetti
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Lotte Caarls
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Patrick Verbaarschot
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Ewan van Eijden
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Guusje Bonnema
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
12
|
Hundacker J, Linda T, Hilker M, Lortzing V, Bittner N. The impact of insect egg deposition on Pinus sylvestris transcriptomic and phytohormonal responses to larval herbivory. TREE PHYSIOLOGY 2024; 44:tpae008. [PMID: 38227779 PMCID: PMC10878248 DOI: 10.1093/treephys/tpae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Plants can improve their resistance to feeding damage by insects if they have perceived insect egg deposition prior to larval feeding. Molecular analyses of these egg-mediated defence mechanisms have until now focused on angiosperm species. It is unknown how the transcriptome of a gymnosperm species responds to insect eggs and subsequent larval feeding. Scots pine (Pinus sylvestris L.) is known to improve its defences against larvae of the herbivorous sawfly Diprion pini L. if it has previously received sawfly eggs. Here, we analysed the transcriptomic and phytohormonal responses of Scots pine needles to D. pini eggs (E-pine), larval feeding (F-pine) and to both eggs and larval feeding (EF-pine). Pine showed strong transcriptomic responses to sawfly eggs and-as expected-to larval feeding. Many egg-responsive genes were also differentially expressed in response to feeding damage, and these genes play an important role in biological processes related to cell wall modification, cell death and jasmonic acid signalling. EF-pine showed fewer transcriptomic changes than F-pine, whereas EF-treated angiosperm species studied so far showed more transcriptional changes to the initial phase of larval feeding than only feeding-damaged F-angiosperms. However, as with responses of EF-angiosperms, EF-pine showed higher salicylic acid concentrations than F-pine. Based on the considerable overlap of the transcriptomes of E- and F-pine, we suggest that the weaker transcriptomic response of EF-pine than F-pine to larval feeding damage is compensated by the strong, egg-induced response, which might result in maintained pine defences against larval feeding.
Collapse
Affiliation(s)
- Janik Hundacker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Straße 9, Berlin 12163, Germany
| | - Tom Linda
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Straße 9, Berlin 12163, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Straße 9, Berlin 12163, Germany
| | - Vivien Lortzing
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Straße 9, Berlin 12163, Germany
| | - Norbert Bittner
- Applied Genetics, Institute of Biology, Freie Universität Berlin, Albrecht-Thaer-Weg 6, Berlin 14195, Germany
| |
Collapse
|
13
|
de Melo HC. Science fosters ongoing reassessments of plant capabilities. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2024; 36:457-475. [DOI: 10.1007/s40626-023-00300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2025]
|
14
|
Lortzing V, Valsamakis G, Jantzen F, Hundacker J, Paniagua Voirol LR, Schumacher F, Kleuser B, Hilker M. Plant defensive responses to insect eggs are inducible by general egg-associated elicitors. Sci Rep 2024; 14:1076. [PMID: 38212511 PMCID: PMC10784483 DOI: 10.1038/s41598-024-51565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024] Open
Abstract
Egg deposition by herbivorous insects is well known to elicit defensive plant responses. Our study aimed to elucidate the insect and plant species specificity of these responses. To study the insect species specificity, we treated Arabidopsis thaliana with egg extracts and egg-associated secretions of a sawfly (Diprion pini), a beetle (Xanthogaleruca luteola) and a butterfly (Pieris brassicae). All egg extracts elicited salicylic acid (SA) accumulation in the plant, and all secretions induced expression of plant genes known to be responsive to the butterfly eggs, among them Pathogenesis-Related (PR) genes. All secretions contained phosphatidylcholine derivatives, known elicitors of SA accumulation and PR gene expression in Arabidopsis. The sawfly egg extract did not induce plant camalexin levels, while the other extracts did. Our studies on the plant species specificity revealed that Solanum dulcamara and Ulmus minor responded with SA accumulation and cell death to P. brassicae eggs, i.e. responses also known for A. thaliana. However, the butterfly eggs induced neoplasms only in S. dulcamara. Our results provide evidence for general, phosphatidylcholine-based, egg-associated elicitors of plant responses and for conserved plant core responses to eggs, but also point to plant and insect species-specific traits in plant-insect egg interactions.
Collapse
Affiliation(s)
- Vivien Lortzing
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Georgios Valsamakis
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Friederike Jantzen
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Janik Hundacker
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Luis R Paniagua Voirol
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
- Microbiology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| | - Fabian Schumacher
- Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195, Berlin, Germany
- Core-Facility BioSupraMol, PharmaMS Subunit, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195, Berlin, Germany
| | - Burkhard Kleuser
- Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195, Berlin, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.
| |
Collapse
|
15
|
Liu F, Li B, Liu C, Liu Y, Liu X, Lu M. Oviposition by Plagiodera versicolora on Salix matsudana cv. 'Zhuliu' alters the leaf transcriptome and impairs larval performance. FRONTIERS IN PLANT SCIENCE 2023; 14:1226641. [PMID: 37538058 PMCID: PMC10394651 DOI: 10.3389/fpls.2023.1226641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
Insect egg deposition can induce plant defenses against their larvae. Previous studies have primarily focused on herbaceous plant defenses; however, little is known about how the Salicaceae respond to insect egg deposition and defend themselves against herbivores. By combining plant defense gene studies and bioassays, we investigated the effect of the coleoptera Plagiodera versicolora egg deposition on willow (Salix matsudana cv. 'Zhuliu') and examined the interactions at the plant resistance and transcriptome levels. RNA-seq data were utilized to analyze changes in the leaf transcriptome with and without oviposition, and also the changes in the leaf transcriptome of feeding-damaged leaves with and without prior oviposition. P. versicolora oviposition on willow leaves resulted in altered expression levels of transcripts associated with plant stress and metabolic responses. Compared with leaves with no oviposition, leaves with egg deposition showed a slight increase in phenylpropanoid biosynthesis and phytohormone signaling genes after larval feeding. The RNA-seq analysis revealed alterations in willow transcripts in response to leaf beetle infestations. Bioassays indicated that oviposition by P. versicolora on willows reduced subsequent larvae performance, suggesting that prior oviposition by P. versicolora could increase willows' resistance to larvae. This study advances our knowledge of how oviposition by coleoptera insects induces changes in the resistance of leaves to herbivory in the Salicaceae family.
Collapse
|
16
|
Schott J, Jantzen F, Hilker M. Elm tree defences against a specialist herbivore are moderately primed by an infestation in the previous season. TREE PHYSIOLOGY 2023; 43:1218-1232. [PMID: 37010106 PMCID: PMC10335851 DOI: 10.1093/treephys/tpad038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
The studies of the long-term effects of insect infestations on plant anti-herbivore defences tend to focus on feeding-induced damage. Infestations by an entire insect generation, including egg depositions as well as the feeding insects, are often neglected. Whilst there is increasing evidence that the presence of insect eggs can intensify plants' anti-herbivore defences against hatching larvae in the short term, little is known about how insect infestations, including insect egg depositions, affect plant defences in the long term. We addressed this knowledge gap by investigating long-term effects of insect infestation on elm's (Ulmus minor Mill. cv. 'Dahlem') defences against subsequent infestation. In greenhouse experiments, elms were exposed to elm leaf beetle (ELB, Xanthogaleruca luteola) infestation (adults, eggs and larvae). Thereafter, the trees cast their leaves under simulated winter conditions and were re-infested with ELB after the regrowth of their leaves under simulated summer conditions. Elm leaf beetles performed moderately worse on previously infested elms with respect to several developmental parameters. The concentrations of the phenylpropanoids kaempferol and quercetin, which are involved in egg-mediated, short-term effects on elm defences, were slightly higher in the ELB-challenged leaves of previously infested trees than in the challenged leaves of naïve trees. The expression of several genes involved in the phenylpropanoid pathway, jasmonic acid signalling, and DNA and histone modifications appeared to be affected by ELB infestation; however, prior infestation did not alter the expression intensities of these genes. The concentrations of several phytohormones were similarly affected in the currently challenged leaves of previously infested trees and naïve trees. Our study shows that prior infestation of elms by a specialised insect leads to moderately improved defences against subsequent infestation in the following growing season. Prior infestation adds a long-term effect to the short-term enhancer effect that plants show in response to egg depositions when defending against hatching larvae.
Collapse
Affiliation(s)
- Johanna Schott
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Friederike Jantzen
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Monika Hilker
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| |
Collapse
|
17
|
Yang X, Yan Z, Li X, Li Y, Li K. Chemical cues in the interaction of herbivory-prey induce consumer-specific morphological and chemical defenses in Phaeocystis globosa. HARMFUL ALGAE 2023; 126:102450. [PMID: 37290885 DOI: 10.1016/j.hal.2023.102450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023]
Abstract
Bloom-forming algae Phaeocystis globosa is one of the most successful blooming algae in the oceans due to its capacity to sense grazer-associated chemical cues and respond adaptively to these grazer-specific cues with opposing shifts in phenotype. P. globosa produces toxic and deterrent compounds as chemical defenses. However, the origin of the signals and underlying mechanisms that triggered the morphological and chemical defenses remain enigmatic. Rotifer was chosen to establish an herbivore-phytoplankton interaction with P. globosa. The influences of rotifer kairomone and conspecific-grazed cue on morphological and chemical defenses in P. globosa were investigated. As a result, rotifer kairomones elicited morphological defenses and broad-spectrum chemical defenses, whereas algae-grazed cues elicited morphological defenses and consumer-specific chemical defenses. According to multi-omics findings, the difference in hemolytic toxicity caused by different stimuli may be related to the upregulation of lipid metabolism pathways and increased lipid metabolite content, while the inhibition of colonial formation and development of P. globosa may be caused by the downscaled production and secretion of glycosaminoglycans. The study demonstrated that zooplankton consumption cues were recognized by intraspecific prey and elicited consumer-specific chemical defenses, highlighting the chemical ecology of herbivore-phytoplankton interactions in the marine ecosystem.
Collapse
Affiliation(s)
- Xiao Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Ocean, Yantai University, Yantai 266071, China
| | - Xiaodong Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yaxi Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Ke Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
18
|
Caarls L, Bassetti N, Verbaarschot P, Mumm R, van Loon JJA, Schranz ME, Fatouros NE. Hypersensitive-like response in Brassica plants is specifically induced by molecules from egg-associated secretions of cabbage white butterflies. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Plants perceive and respond to herbivore insect eggs. Upon egg deposition on leaves, a strong hypersensitive response (HR)-like cell death can be activated leading to egg desiccation and/or dropping. In Brassica spp., including many crops, the HR-like mechanism against eggs of cabbage white butterflies (Pieris spp.) is poorly understood. Using two Brassica species, the crop B. rapa and its wild relative B. nigra, we studied the cellular and molecular plant response to Pieris brassicae eggs and characterized potential insect egg-associated molecular patterns (EAMPs) inducing HR-like cell death. We found that eggs of P. brassicae induced typical hallmarks of early immune responses, such as callose deposition, production of reactive oxygen species and cell death in B. nigra and B. rapa leaf tissue, also in plants that did not express HR-like cell death. However, elevated levels of ethylene production and upregulation of salicylic acid-responsive genes were only detected in a B. nigra accession expressing HR-like cell death. Eggs and egg wash from P. brassicae contains compounds that induced such responses, but the eggs of the generalist moth Mamestra brassicae did not. Furthermore, wash made from hatched Pieris eggs, egg glue, and accessory reproductive glands (ARG) that produce this glue, induced HR-like cell death, whereas washes from unfertilized eggs dissected from the ovaries or removal of the glue from eggs resulted in no or a reduced response. This suggests that there is one or multiple egg associated molecular pattern (EAMP) located in the egg glue a that teresponse in B. nigra is specific to Pieris species. Lastly, our results indicate that the EAMP is neither lipidic nor proteinaceous. Our study expands the knowledge on the mechanism of Brassica-Pieris-egg interaction and is a step closer toward identification of EAMPs in Pieris egg glue and corresponding receptor(s) in Brassica.
Collapse
|
19
|
Dávila C, Fiorenza JE, Gershenzon J, Reichelt M, Zavala JA, Fernández PC. Sawfly egg deposition extends the insect life cycle and alters hormone and volatile emission profiles. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1084063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
IntroductionInsect oviposition can enhance plant defenses and decrease plant quality in response to future feeding damage by hatched larvae. Induced resistance triggered by egg deposition and its negative effect on insect herbivore performance is known for several annual plants but has been much less studied in woody perennials, such as species of the Salicaceae. Here we studied the response of the willow Salix babylonica to oviposition by the specialist willow sawfly Nematus oligospilus and its impact on insect performance.MethodsWe measured the effect of oviposition on larval feeding and pupa formation and evaluated its influence on plant phytohormones and volatile emission profile.ResultsWe showed that oviposition reduced neonate larval growth and increased the proportion of prepupae that delayed their transition to pupae, thus extending the length of the sawfly cocoon phase. Oviposited willows increased jasmonic acid levels and changed their volatile profile through enhanced concentrations of the terpenoids, (E/E)-α-farnesene, (Z)- and (E)-β-ocimene. Volatile profiles were characteristic for each type of insect damage (oviposition vs. feeding), but no priming effect was found.DiscussionWe demonstrated that willows could perceive sawfly oviposition per se as a primary factor activating defense signaling via the jasmonic acid pathway. This induced response ultimately determined changes in pupation dynamics that may affect the whole insect population cycle.
Collapse
|
20
|
Hilker M, Salem H, Fatouros NE. Adaptive Plasticity of Insect Eggs in Response to Environmental Challenges. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:451-469. [PMID: 36266253 DOI: 10.1146/annurev-ento-120120-100746] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Insect eggs are exposed to a plethora of abiotic and biotic threats. Their survival depends on both an innate developmental program and genetically determined protective traits provided by the parents. In addition, there is increasing evidence that (a) parents adjust the egg phenotype to the actual needs, (b) eggs themselves respond to environmental challenges, and (c) egg-associated microbes actively shape the egg phenotype. This review focuses on the phenotypic plasticity of insect eggs and their capability to adjust themselves to their environment. We outline the ways in which the interaction between egg and environment is two-way, with the environment shaping the egg phenotype but also with insect eggs affecting their environment. Specifically, insect eggs affect plant defenses, host biology (in the case of parasitoid eggs), and insect oviposition behavior. We aim to emphasize that the insect egg, although it is a sessile life stage, actively responds to and interacts with its environment.
Collapse
Affiliation(s)
- Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany;
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen, Germany;
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands;
| |
Collapse
|
21
|
Takabayashi J. Herbivory-Induced Plant Volatiles Mediate Multitrophic Relationships in Ecosystems. PLANT & CELL PHYSIOLOGY 2022; 63:1344-1355. [PMID: 35866611 DOI: 10.1093/pcp/pcac107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Herbivory-induced plant volatiles (HIPVs) are involved in biotic interactions among plants as well as herbivorous and carnivorous arthropods. This review looks at the specificity in plant-carnivore communication mediated by specific blends of HIPVs as well as describes plant-herbivore and plant-plant communication mediated by specific HIPVs. Factors affecting the net benefits of HIPV production have also been examined. These specific means of communication results in high complexity in the 'interaction-information network', which should be explored further to elucidate the mechanism underlying the numerous species coexisting in ecosystems.
Collapse
Affiliation(s)
- Junji Takabayashi
- Center for Ecological Research, Kyoto University, 2-509-3, Hirano, Otsu, Shiga, 520-2113 Japan
| |
Collapse
|
22
|
Valsamakis G, Bittner N, Kunze R, Hilker M, Lortzing V. Priming of Arabidopsis resistance to herbivory by insect egg deposition depends on the plant's developmental stage. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4996-5015. [PMID: 35522985 PMCID: PMC9366327 DOI: 10.1093/jxb/erac199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
While traits of plant resistance to herbivory often change during ontogeny, it is unknown whether the primability of this resistance depends on the plant's developmental stage. Resistance in non-flowering Arabidopsis thaliana against Pieris brassicae larvae is known to be primable by prior egg deposition on leaves. We investigated whether this priming effect is maintained in plants at the flowering stage. Larval performance assays revealed that flowering plants' resistance to herbivory was not primable by egg deposition. Accordingly, transcriptomes of flowering plants showed almost no response to eggs. In contrast, egg deposition on non-flowering plants enhanced the expression of genes induced by subsequent larval feeding. Strikingly, flowering plants showed constitutively high expression levels of these genes. Larvae performed generally worse on flowering than on non-flowering plants, indicating that flowering plants constitutively resist herbivory. Furthermore, we determined the seed weight in regrown plants that had been exposed to eggs and larvae during the non-flowering or flowering stage. Non-flowering plants benefitted from egg priming with a smaller loss in seed yield. The seed yield of flowering plants was unaffected by the treatments, indicating tolerance towards the larvae. Our results show that the primability of anti-herbivore defences in Arabidopsis depends on the plant's developmental stage.
Collapse
Affiliation(s)
| | | | - Reinhard Kunze
- Applied Genetics, Institute of Biology, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Monika Hilker
- Applied Zoology/ Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| | | |
Collapse
|
23
|
Weeraddana CDS, Evenden ML. Oviposition by a Specialist Herbivore Increases Susceptibility of Canola to Herbivory by a Generalist Herbivore. ENVIRONMENTAL ENTOMOLOGY 2022; 51:605-612. [PMID: 35485203 DOI: 10.1093/ee/nvac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Oviposition by specialist herbivores can alter the suitability of the host plant to subsequent infestation by other herbivores. In this study, we tested the effect of previous oviposition on canola, Brassica napus L., by a Brassica specialist, the diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), on subsequent herbivory by the generalist feeder, the bertha armyworm (BAW), Mamestra configurata Walker (Lepidoptera: Noctuidae). The effect of DBM oviposition on subsequent BAW oviposition and larval feeding was tested in no-choice and choice experiments. Oviposition of BAW was not altered by DBM eggs on canola plants, however, BAW had increased larval feeding on plants with DBM eggs. These results suggest that oviposition by a specialist herbivore increased the susceptibility of the host plant to generalist herbivory. In a preliminary experiment, salicylic acid, jasmonic acid, and its conjugates were not altered by DBM oviposition on canola, however, further experimentation is needed to determine if oviposition affects expression of plant defense pathways and other plant traits.
Collapse
Affiliation(s)
- Chaminda De Silva Weeraddana
- University of Alberta, Department of Biological Sciences, Edmonton, AB, Canada
- Department of Entomology, Winnipeg, MB, Canada
| | - Maya L Evenden
- University of Alberta, Department of Biological Sciences, Edmonton, AB, Canada
| |
Collapse
|
24
|
Oviposition Preference and Performance of a Specialist Herbivore Is Modulated by Natural Enemies, Larval Odors, and Immune Status. J Chem Ecol 2022; 48:670-682. [DOI: 10.1007/s10886-022-01363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
|
25
|
de Oliveira Pinto I, Sarmento MI, Martins AO, Rocha JPL, Pinto G, Araújo WL, Soares AM, Sarmento RA. Cell death and changes in primary metabolism: the onset of defence in Eucalyptus in the war against Leptocybe invasa. PEST MANAGEMENT SCIENCE 2022; 78:1721-1728. [PMID: 34997819 DOI: 10.1002/ps.6791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/26/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Here, we investigated changes in primary metabolism and cell death around oviposition sites in two hybrid clones of Eucalyptus with different degrees of resistance to Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae), as well as tolerance to water deficiency. RESULTS We showed that apices of the resistant clone with oviposition had a higher content of amino acids, organic acids and the compound putrescine compared with those of the susceptible clone with oviposition. By contrast, apices of the resistant clone with oviposition had lower sugar and pyruvate organic acid content than those of the susceptible clone with oviposition. Small areas of necrosis were induced around the oviposition sites in the stem apices of Eucalyptus 24 h after infestation. The resistant clone developed larger necrotic areas that showed progressive increases 24-72 h after infestation compared with the susceptible clone, in which cell death was significantly lower and no changes were observed in necrotic area over time. Thus, the programmed death of cells around the egg, modulated by several amino acids, is likely the first defence response of Eucalyptus against L. invasa. CONCLUSION Our results serve as the basis for the early identification of key metabolites produced in plants in defence against galling insects. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ismael de Oliveira Pinto
- Federal Institute of Tocantins, Colinas do Tocantins Campus, Colinas do Tocantins, Brazil
- Federal University of Tocantins, Gurupi Campus, Gurupi, Brazil
| | - Maíra Ignacio Sarmento
- Federal University of Tocantins, Gurupi Campus, Gurupi, Brazil
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Auxiliadora Oliveira Martins
- Department of Plant Biology, Federal University of Viçosa, Viçosa, Brazil
- Max Planck Partner Group at the Department of Plant Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | - Glória Pinto
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Wagner L Araújo
- Department of Plant Biology, Federal University of Viçosa, Viçosa, Brazil
- Max Planck Partner Group at the Department of Plant Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Amadeu Mvm Soares
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | | |
Collapse
|
26
|
Hundacker J, Bittner N, Weise C, Bröhan G, Varama M, Hilker M. Pine defense against eggs of an herbivorous sawfly is elicited by an annexin-like protein present in egg-associated secretion. PLANT, CELL & ENVIRONMENT 2022; 45:1033-1048. [PMID: 34713898 DOI: 10.1111/pce.14211] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Known elicitors of plant defenses against eggs of herbivorous insects are low-molecular-weight organic compounds associated with the eggs. However, previous studies provided evidence that also proteinaceous compounds present in secretion associated with eggs of the herbivorous sawfly Diprion pini can elicit defensive responses in Pinus sylvestris. Pine responses induced by the proteinaceous secretion are known to result in enhanced emission of (E)-β-farnesene, which attracts egg parasitoids killing the eggs. Here, we aimed to identify the defense-eliciting protein and elucidate its function. After isolating the defense-eliciting protein from D. pini egg-associated secretion by ultrafiltration and gel electrophoresis, we identified it by MALDI-TOF mass spectrometry as an annexin-like protein, which we named 'diprionin'. Further GC-MS analyses showed that pine needles treated with heterologously expressed diprionin released enhanced quantities of (E)-β-farnesene. Our bioassays confirmed attractiveness of diprionin-treated pine to egg parasitoids. Expression of several pine candidate genes involved in terpene biosynthesis and regulation of ROS homeostasis was similarly affected by diprionin and natural sawfly egg deposition. However, the two treatments had different effects on expression of pathogenesis-related genes (PR1, PR5). Diprionin is the first egg-associated proteinaceous elicitor of indirect plant defense against insect eggs described so far.
Collapse
Affiliation(s)
- Janik Hundacker
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| | - Norbert Bittner
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| | - Christoph Weise
- Department of Biochemistry, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Berlin, Germany
| | - Gunnar Bröhan
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| | - Martti Varama
- Natural Resources Institute Finland, Helsinki, Finland
| | - Monika Hilker
- Department of Applied Zoology and Animal Ecology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Berlin, Germany
| |
Collapse
|
27
|
Yin L, Karn A, Cadle-Davidson L, Zou C, Londo J, Sun Q, Clark MD. Candidate resistance genes to foliar phylloxera identified at Rdv3 of hybrid grape. HORTICULTURE RESEARCH 2022; 9:uhac027. [PMID: 35184180 PMCID: PMC8976690 DOI: 10.1093/hr/uhac027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/13/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The foliage of the native grape species Vitis riparia and certain cold-hardy hybrid grapes are particularly susceptible to the insect pest phylloxera, Daktulosphaira vitifoliae Fitch. A previous study using a cold-hardy hybrid grape biparental F1 population (N~125) detected the first quantitative trait locus (QTL) for foliar resistance on chromosome 14, designated as resistance to Daktulosphaira vitifoliae 3 (Rdv3). This locus spans a ~7-Mbp (10-20 cM) region and is too wide for effective marker-assisted selection or identification of candidate genes. Therefore, we fine mapped the QTL using a larger F1 population, GE1783 (N~1023), and genome-wide rhAmpSeq haplotype markers. Through three selective phenotyping experiments replicated in the greenhouse, we screened 184 potential recombinants of GE1783 using a 0 to 7 severity rating scale among other phylloxera severity traits. A 500-kb fine mapped region at 4.8 Mbp on chromosome 14 was identified. The tightly linked rhAmpSeq marker 14_4805213 and flanking markers can be used for future marker-assisted breeding. This region contains 36 candidate genes with predicted functions in disease resistance (R genes and Bonzai genes) and gall formation (bifunctional 3-dehydroquinate dehydratase/shikimate dehydrogenase). Disease resistance genes suggest a traditional R-gene-mediated resistance mechanism often accompanied by a hypersensitive response, which has been widely studied in the plant pathology field. A novel resistance mechanism, non-responsiveness to phylloxera gall formation is proposed as a function of the bifunctional dehydratase gene, which plays a role in gallic acid biosynthesis and is important in gall formation. This study has implications for improvement of foliar phylloxera resistance in cold-hardy hybrid germplasm and is a starting place to understand the mechanism of resistance in crops to gall-forming insects.
Collapse
Affiliation(s)
- Lu Yin
- Department of Horticultural Science, University of Minnesota, Twin Cities, Minnesota 55018, USA
- School of Life Science, Arizona State University, Tempe, Arizona 85281, USA
| | - Avinash Karn
- AgReliant Genetics LLC, Lebanon, Indiana 46052, USA
- School of Integrative Plant Sciences, Cornell AgriTech, Cornell University, Geneva, New York 14456, USA
| | - Lance Cadle-Davidson
- School of Integrative Plant Sciences, Cornell AgriTech, Cornell University, Geneva, New York 14456, USA
- Grape Genetics Research Unit, USDA-ARS, Geneva, New York 14456, USA
| | - Cheng Zou
- Institute of Biotechnology, BRC Bioinformatics Facility, Cornell University, Ithaca, New York 14853, USA
| | - Jason Londo
- School of Integrative Plant Sciences, Cornell AgriTech, Cornell University, Geneva, New York 14456, USA
- Grape Genetics Research Unit, USDA-ARS, Geneva, New York 14456, USA
| | - Qi Sun
- Institute of Biotechnology, BRC Bioinformatics Facility, Cornell University, Ithaca, New York 14853, USA
| | - Matthew D Clark
- Department of Horticultural Science, University of Minnesota, Twin Cities, Minnesota 55018, USA
| |
Collapse
|
28
|
Guedes LM, Torres S, Sáez-Carillo K, Becerra J, Pérez CI, Aguilera N. High antioxidant activity of phenolic compounds dampens oxidative stress in Espinosa nothofagi galls induced on Nothofagus obliqua buds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111114. [PMID: 34895543 DOI: 10.1016/j.plantsci.2021.111114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/04/2021] [Accepted: 11/06/2021] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species (ROS) are considered the first signaling molecules involved in gall development, linked to the establishment of cyto-histological gradients leading to gall tissue redifferentiation. ROS overproduction induces the failure of gall establishment or its premature senescence. Galls could therefore have efficient mechanisms of ROS dissipation and maintenance of homeostasis, such as polyphenol synthesis. The co-occurrence of ROS and polyphenols in the Espinosa nothofagi galls induced on Nothofagus obliqua buds was explored and was related to the antioxidant capacity of the inner (IC) and outer (OC) gall compartments. We hypothesize that: (i) ROS are produced and accumulated in both tissue compartments of E. nothofagi galls in co-occurrence with polyphenolic, flavonols, and lignin, conferring high antioxidant activity to inner and outer gall tissue compartment; (ii) antioxidant activity is higher in IC related to a higher polyphenol concentration in this compartment. The results show that ROS and polyphenols, mainly flavonols, are produced and accumulated in IC and OC, while lignin accumulated mainly in the IC. In both gall compartments, polyphenols mediate ROS elimination, confirmed by histochemical and spectrophotometry techniques. The IC extract has the highest antioxidant capacity, probably due to lignin deposition and a higher polyphenol concentration in this compartment.
Collapse
Affiliation(s)
- Lubia María Guedes
- Universidad de Concepción, Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Casilla 160-C, CP 4030000, Concepción, Chile
| | - Solange Torres
- Universidad de Concepción, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Botánica, Laboratorio de Química de Productos Naturales, Casilla 160-C, CP 4030000, Concepción, Chile
| | - Katia Sáez-Carillo
- Universidad de Concepción, Facultad de Ciencias Físicas y Matemáticas, Departamento de Estadística, Casilla 160-C, Concepción, Chile
| | - José Becerra
- Universidad de Concepción, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Botánica, Laboratorio de Química de Productos Naturales, Casilla 160-C, CP 4030000, Concepción, Chile
| | - Claudia I Pérez
- Universidad de Concepción, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Botánica, Laboratorio de Química de Productos Naturales, Casilla 160-C, CP 4030000, Concepción, Chile
| | - Narciso Aguilera
- Universidad de Concepción, Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Casilla 160-C, CP 4030000, Concepción, Chile.
| |
Collapse
|
29
|
de Lima Toledo CA, da Silva Ponce F, Oliveira MD, Aires ES, Seabra Júnior S, Lima GPP, de Oliveira RC. Change in the Physiological and Biochemical Aspects of Tomato Caused by Infestation by Cryptic Species of Bemisia tabaci MED and MEAM1. INSECTS 2021; 12:1105. [PMID: 34940193 PMCID: PMC8707048 DOI: 10.3390/insects12121105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 11/23/2022]
Abstract
Infestation by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes damage to tomatoes with production losses of up to 100%, affecting the physiological and biochemical aspects of host plants. The objective of this study was to analyze the influence of infestation of cryptic species of B. tabaci MED and MEAM1 on the physiological and biochemical aspects of tomato. Tomato plants 'Santa Adélia Super' infested with B. tabaci (MED and MEAM1), and non-infested plants were evaluated for differences in gas exchange, chlorophyll - a fluorescence of photosystem II (PSII), and biochemical factors (total phenols, total flavonoids, superoxide dismutase-SOD, peroxidase-POD, and polyphenol oxidase-PPO). Plants infested with B. tabaci MED showed low rates of CO2 assimilation and stomatal conductance of 55% and 52%, respectively. The instantaneous carboxylation efficiency was reduced by 40% in MED and by 60% in MEAM1 compared to the control. Regarding biochemical aspects, plants infested by MED cryptic species showed high activity of POD and PPO enzymes and total phenol content during the second and third instars when compared to control plants. Our results indicate that B. tabaci MED infestation in tomato plants had a greater influence than B. tabaci MEAM1 infestation on physiological parameters (CO2 assimilation rate (A), stomatal conductance (gs), and apparent carboxylation efficiency (A/Ci)) and caused increased activity of POD and PPO enzymes, indicating plant resistance to attack. In contrast, B. tabaci MEAM1 caused a reduction in POD enzyme activity, favoring offspring performance.
Collapse
Affiliation(s)
| | - Franciely da Silva Ponce
- Department of Horticulture, São Paulo State University (UNESP), Botucatu 18600-950, Brazil; (F.d.S.P.); (E.S.A.)
| | - Moisés Daniel Oliveira
- Crop Protection Department, São Paulo State University (UNESP), Botucatu 18600-950, Brazil; (M.D.O.); (R.C.d.O.)
| | - Eduardo Santana Aires
- Department of Horticulture, São Paulo State University (UNESP), Botucatu 18600-950, Brazil; (F.d.S.P.); (E.S.A.)
| | - Santino Seabra Júnior
- Department of Agronomy, State University of Mato Grosso, Nova Mutum 78450-000, Brazil;
| | - Giuseppina Pace Pereira Lima
- Department of Chemistry and Biochemistry, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-970, Brazil;
| | - Regiane Cristina de Oliveira
- Crop Protection Department, São Paulo State University (UNESP), Botucatu 18600-950, Brazil; (M.D.O.); (R.C.d.O.)
| |
Collapse
|
30
|
Schott J, Fuchs B, Böttcher C, Hilker M. Responses to larval herbivory in the phenylpropanoid pathway of Ulmus minor are boosted by prior insect egg deposition. PLANTA 2021; 255:16. [PMID: 34878607 PMCID: PMC8654711 DOI: 10.1007/s00425-021-03803-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 06/10/2023]
Abstract
Elms, which have received insect eggs as a 'warning' of larval herbivory, enhance their anti-herbivore defences by accumulating salicylic acid and amplifying phenylpropanoid-related transcriptional and metabolic responses to hatching larvae. Plant responses to insect eggs can result in intensified defences against hatching larvae. In annual plants, this egg-mediated effect is known to be associated with changes in leaf phenylpropanoid levels. However, little is known about how trees-long-living, perennial plants-improve their egg-mediated, anti-herbivore defences. The role of phytohormones and the phenylpropanoid pathway in egg-primed anti-herbivore defences of a tree species has until now been left unexplored. Using targeted and untargeted metabolome analyses we studied how the phenylpropanoid pathway of Ulmus minor responds to egg-laying by the elm leaf beetle and subsequent larval feeding. We found that when compared to untreated leaves, kaempferol and quercetin concentrations increased in feeding-damaged leaves with prior egg deposition, but not in feeding-damaged leaves without eggs. PCR analyses revealed that prior insect egg deposition intensified feeding-induced expression of phenylalanine ammonia lyase (PAL), encoding the gateway enzyme of the phenylpropanoid pathway. Salicylic acid (SA) concentrations were higher in egg-treated, feeding-damaged leaves than in egg-free, feeding-damaged leaves, but SA levels did not increase in response to egg deposition alone-in contrast to observations made of Arabidopsis thaliana. Our results indicate that prior egg deposition induces a SA-mediated response in elms to feeding damage. Furthermore, egg deposition boosts phenylpropanoid biosynthesis in subsequently feeding-damaged leaves by enhanced PAL expression, which results in the accumulation of phenylpropanoid derivatives. As such, the elm tree shows similar, yet distinct, responses to insect eggs and larval feeding as the annual model plant A. thaliana.
Collapse
Affiliation(s)
- Johanna Schott
- Department of Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Benjamin Fuchs
- Department of Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
- Biodiversity Unit, University of Turku, 20014, Turku, Finland
| | - Christoph Böttcher
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Königin-Luise-Str. 19, 14195, Berlin, Germany
| | - Monika Hilker
- Department of Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.
| |
Collapse
|
31
|
Abstract
Communication occurs when a sender emits a cue perceived by a receiver that changes the receiver's behavior. Plants perceive information regarding light, water, other nutrients, touch, herbivores, pathogens, mycorrhizae, and nitrogen-fixing bacteria. Plants also emit cues perceived by other plants, beneficial microbes, herbivores, enemies of herbivores, pollinators, and seed dispersers. Individuals responding to light cues experienced increased fitness. Evidence for benefits of responding to cues involving herbivores and pathogens is more limited. The benefits of emitting cues are also less clear, particularly for plant–plant communication. Reliance on multiple or dosage-dependent cues can reduce inappropriate responses, and plants often remember past cues. Plants have multiple needs and prioritize conflicting cues such that the risk of abiotic stress is treated as greater than that of shading, which is in turn treated as greater than that of consumption. Plants can distinguish self from nonself and kin from strangers. They can identify the species of competitor or consumer and respond appropriately. Cues involving mutualists often contain highly specific information.
Collapse
Affiliation(s)
- Richard Karban
- Department of Entomology and Nematology, University of California, Davis, California 95616, USA
| |
Collapse
|
32
|
Li J, Qian HM, Pan LL, Wang QM, Liu SS. Performance of two species of whiteflies is unaffected by glucosinolate profile in Brassica plants. PEST MANAGEMENT SCIENCE 2021; 77:4313-4320. [PMID: 33942969 DOI: 10.1002/ps.6460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND While plant glucosinolates are known to impart resistance to many insects, their role in the interactions between plants and many phloem-feeding insects such as whiteflies are poorly understood. The whitefly Bemisia tabaci complex comprises many cryptic species that differ in the ability to utilize Brassica plants. However, whether Brassica plants-specific traits such as glucosinolates determine differences of whiteflies in colonizing Brassica plants remains in question. RESULTS We first observed performance of two whitefly species MEAM1 and Asia II 3, which differ obviously in their ability to colonize Brassica plants, on four cultivars of three Brassica species that vary in glucosinolate profile. We found that the life history characteristics of each of the two whitefly species seems to be only marginally affected by cultivar. We next used wild-type Arabidopsis plants and mutants defective in glucosinolate biosynthesis or hydrolysis to explore the effects of glucosinolates on the whitefly. We found that fecundity and development of immature stages of neither of the two whitefly species differ significantly between wild-type and mutants. CONCLUSION The data suggest that glucosinolates may have little effect on the oviposition by adults and the survival and development of immature stages of MEAM1 and Asia II 3 whiteflies. The marked differences in colonizing Brassica crops between the two whitefly species are likely due to plant traits other than glucosinolates. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hong-Mei Qian
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Li-Long Pan
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qiao-Mei Wang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Ojeda-Martinez D, Martinez M, Diaz I, Estrella Santamaria M. Spider mite egg extract modifies Arabidopsis response to future infestations. Sci Rep 2021; 11:17692. [PMID: 34489518 PMCID: PMC8421376 DOI: 10.1038/s41598-021-97245-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Transcriptional plant responses are an important aspect of herbivore oviposition studies. However, most of our current knowledge is derived from studies using Lepidopteran models, where egg-laying and feeding are separate events in time. Little is known regarding plant response to pests where females feed and oviposit simultaneously. The present study characterized oviposition-induced transcriptomic response of Arabidopsis to Tetranychus urticae egg extracts. Transcriptional evidence indicates that early events in plant response to the egg extract involve responses typical to biotic stresses, which include the alteration in the levels of Ca2+ and ROS, the modification of pathways regulated by the phytohormones jasmonic acid and ethylene, and the production of volatiles and glucosinolates as defence mechanisms. These molecular changes affect female fertility, which was significantly reduced when mites fed on plants pre-exposed to the egg extract. However, longer periods of plant exposure to egg extract cause changes in the transcriptional response of the plant reveal a trend to a decrease in the activation of the defensive response. This alteration correlated with a shift at 72 h of exposition in the effect of the mite feeding. At that point, plants become more susceptible and suffer higher damage when challenged by the mite.
Collapse
Affiliation(s)
- Dairon Ojeda-Martinez
- grid.419190.40000 0001 2300 669XCentro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Manuel Martinez
- grid.419190.40000 0001 2300 669XCentro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain ,grid.5690.a0000 0001 2151 2978Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Diaz
- grid.419190.40000 0001 2300 669XCentro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain ,grid.5690.a0000 0001 2151 2978Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - M. Estrella Santamaria
- grid.419190.40000 0001 2300 669XCentro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
34
|
Enders L, Begcy K. Unconventional routes to developing insect-resistant crops. MOLECULAR PLANT 2021; 14:1439-1453. [PMID: 34217871 DOI: 10.1016/j.molp.2021.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/26/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Concerns over widespread use of insecticides and heightened insect pest virulence under climate change continue to fuel the need for environmentally safe and sustainable control strategies. However, to develop such strategies, a better understanding of the molecular basis of plant-pest interactions is still needed. Despite decades of research investigating plant-insect interactions, few examples exist where underlying molecular mechanisms are well characterized, and even rarer are cases where this knowledge has been successfully applied to manage harmful agricultural pests. Consequently, the field appears to be static, urgently needing shifts in approaches to identify novel mechanisms by which insects colonize plants and plants avoid insect pressure. In this perspective, we outline necessary steps for advancing holistic methodologies that capture complex plant-insect molecular interactions. We highlight novel and underexploited approaches in plant-insect interaction research as essential routes to translate knowledge of underlying molecular mechanisms into durable pest control strategies, including embracing microbial partnerships, identifying what makes a plant an unsuitable host, capitalizing on tolerance of insect damage, and learning from cases where crop domestication and agronomic practices enhance pest virulence.
Collapse
Affiliation(s)
- Laramy Enders
- Purdue University, Department of Entomology, West Lafayette, IN 47907, USA.
| | - Kevin Begcy
- University of Florida, Environmental Horticulture Department, Gainesville, FL 32611, USA.
| |
Collapse
|
35
|
Afentoulis DG, Cusumano A, Greenberg LO, Caarls L, Fatouros NE. Attraction of Trichogramma Wasps to Butterfly Oviposition-Induced Plant Volatiles Depends on Brassica Species, Wasp Strain and Leaf Necrosis. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.703134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within the Brassicaceae, wild as well as crop species are challenged by specialist herbivores including cabbage white butterflies (Pieris spp.). The wild crucifer Brassica nigra responds to oviposition by Pieris butterflies by the synergistic expression of two egg-killing traits. Genotypes that express a hypersensitive response (HR)-like necrosis (direct egg-killing) also emit oviposition-induced plant volatiles (OIPVs) attracting Trichogramma egg parasitoids (indirect egg-killing). This so-called double defense line can result in high butterfly egg mortalities. It remains unknown whether this strategy is unique to B. nigra or more common in Brassica species. To test this, we examined the response of different Trichogramma evanescens lines to OIPVs emitted by B. nigra and three close relatives (Brassica napus, Brassica rapa, and Brassica oleracea). Furthermore, we evaluated whether HR-like necrosis played a role in the attraction toward plant volatiles. Our results show a specificity in wasp attraction to different plant species. Three out of four plant species attracted a specific T. evanescens strain, including the crops B. rapa and B. napus. Parasitoid attraction was positively affected by presence of HR-like necrosis in one plant species. Our findings imply that, despite being a true generalist in terms of host range, T. evanescens shows intraspecific variation during host searching, which should be taken into account when selecting parasitoid lines for biocontrol of certain crops. Finally, we conclude that also crop plants within the Brassicaceae family possess egg-killing traits and can exert the double-defense line which may enable effective selection of egg-killing defense traits by cabbage breeders.
Collapse
|
36
|
Griese E, Caarls L, Bassetti N, Mohammadin S, Verbaarschot P, Bukovinszkine’Kiss G, Poelman EH, Gols R, Schranz ME, Fatouros NE. Insect egg-killing: a new front on the evolutionary arms-race between brassicaceous plants and pierid butterflies. THE NEW PHYTOLOGIST 2021; 230:341-353. [PMID: 33305360 PMCID: PMC7986918 DOI: 10.1111/nph.17145] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/04/2020] [Indexed: 05/03/2023]
Abstract
Evolutionary arms-races between plants and insect herbivores have long been proposed to generate key innovations such as plant toxins and detoxification mechanisms that can drive diversification of the interacting species. A novel front-line of plant defence is the killing of herbivorous insect eggs. We test whether an egg-killing plant trait has an evolutionary basis in such a plant-insect arms-race. Within the crucifer family (Brassicaceae), some species express a hypersensitive response (HR)-like necrosis underneath butterfly eggs (Pieridae) that leads to eggs desiccating or falling off the plant. We studied the phylogenetic distribution of this trait, its egg-killing effect on and elicitation by butterflies, by screening 31 Brassicales species, and nine Pieridae species. We show a clade-specific induction of strong, egg-killing HR-like necrosis mainly in species of the Brassiceae tribe including Brassica crops and close relatives. The necrosis is strongly elicited by pierid butterflies that are specialists of crucifers. Furthermore, HR-like necrosis is linked to PR1 defence gene expression, accumulation of reactive oxygen species and cell death, eventually leading to egg-killing. Our findings suggest that the plants' egg-killing trait is a new front on the evolutionary arms-race between Brassicaceae and pierid butterflies beyond the well-studied plant toxins that have evolved against their caterpillars.
Collapse
Affiliation(s)
- Eddie Griese
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
- Laboratory of EntomologyWageningen UniversityWageningen6700 AAthe Netherlands
| | - Lotte Caarls
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
- Present address:
Plant BreedingWageningen University and ResearchWageningen6700 AJthe Netherlands
| | - Niccolò Bassetti
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
| | - Setareh Mohammadin
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
| | | | - Gabriella Bukovinszkine’Kiss
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
- Laboratory of GeneticsWageningen UniversityWageningen6700 AAthe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen UniversityWageningen6700 AAthe Netherlands
| | - Rieta Gols
- Laboratory of EntomologyWageningen UniversityWageningen6700 AAthe Netherlands
| | - M. Eric Schranz
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
| | - Nina E. Fatouros
- Biosystematics GroupWageningen UniversityWageningen6700 AAthe Netherlands
| |
Collapse
|
37
|
Arimura GI. Making Sense of the Way Plants Sense Herbivores. TRENDS IN PLANT SCIENCE 2021; 26:288-298. [PMID: 33277185 DOI: 10.1016/j.tplants.2020.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Plants are constantly threatened by herbivore attacks and must devise survival strategies. Some plants sense and respond to elicitors including specific molecules secreted by herbivores and molecules that are innate to plants. Elicitors activate diverse arrays of plant defense mechanisms that confer resistance to the predator. Recent new insights into the cellular pathways by which plants sense elicitors and elicit defense responses against herbivores are opening doors to a myriad of agricultural applications. This review focuses on the machinery of herbivory-sensing and on cellular and systemic/airborne signaling via elicitors, exemplified by the model case of interactions between Arabidopsis hosts and moths of the genus Spodoptera.
Collapse
Affiliation(s)
- Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.
| |
Collapse
|
38
|
Oates CN, Denby KJ, Myburg AA, Slippers B, Naidoo S. Insect egg-induced physiological changes and transcriptional reprogramming leading to gall formation. PLANT, CELL & ENVIRONMENT 2021; 44:535-547. [PMID: 33125164 DOI: 10.1111/pce.13930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Gall-inducing insects and their hosts present some of the most intricate plant-herbivore interactions. Oviposition on the host is often the first cue of future herbivory and events at this early time point can affect later life stages. Many gallers are devastating plant pests, yet little information regarding the plant-insect molecular interplay exists, particularly following egg deposition. We studied the physiological and transcriptional responses of Eucalyptus following oviposition by the gall-inducing wasp, Leptocybe invasa, to explore potential mechanisms governing defence responses and gall development. RNA sequencing and microscopy were used to explore a susceptible Eucalyptus-L. invasa interaction. Infested and control material was compared over time (1-3, 7 and 90 days post oviposition) to examine the transcriptional and morphological changes. Oviposition induces accumulation of reactive oxygen species and phenolics which is reflected in the transcriptome analysis. Gene expression supports phytohormones and 10 transcription factor subfamilies as key regulators. The egg and oviposition fluid stimulate cell division resulting in gall development. Eucalyptus responses to oviposition are apparent within 24 hr. Putative defences include the oxidative burst and barrier reinforcement. However, egg and oviposition fluid stimuli may redirect these responses towards gall development.
Collapse
Affiliation(s)
- Caryn N Oates
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | | | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
39
|
Mertens D, Boege K, Kessler A, Koricheva J, Thaler JS, Whiteman NK, Poelman EH. Predictability of Biotic Stress Structures Plant Defence Evolution. Trends Ecol Evol 2021; 36:444-456. [PMID: 33468354 DOI: 10.1016/j.tree.2020.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022]
Abstract
To achieve ecological and reproductive success, plants need to mitigate a multitude of stressors. The stressors encountered by plants are highly dynamic but typically vary predictably due to seasonality or correlations among stressors. As plants face physiological and ecological constraints in responses to stress, it can be beneficial for plants to evolve the ability to incorporate predictable patterns of stress in their life histories. Here, we discuss how plants predict adverse conditions, which plant strategies integrate predictability of biotic stress, and how such strategies can evolve. We propose that plants commonly optimise responses to correlated sequences or combinations of herbivores and pathogens, and that the predictability of these patterns is a key factor governing plant strategies in dynamic environments.
Collapse
Affiliation(s)
- Daan Mertens
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Karina Boege
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | | | - Noah K Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
40
|
Valsamakis G, Bittner N, Fatouros NE, Kunze R, Hilker M, Lortzing V. Priming by Timing: Arabidopsis thaliana Adjusts Its Priming Response to Lepidoptera Eggs to the Time of Larval Hatching. FRONTIERS IN PLANT SCIENCE 2020; 11:619589. [PMID: 33362842 PMCID: PMC7755604 DOI: 10.3389/fpls.2020.619589] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/18/2020] [Indexed: 05/20/2023]
Abstract
Plants can respond to eggs laid by herbivorous insects on their leaves by preparing (priming) their defense against the hatching larvae. Egg-mediated priming of defense is known for several plant species, including Brassicaceae. However, it is unknown yet for how long the eggs need to remain on a plant until a primed defense state is reached, which is ecologically manifested by reduced performance of the hatching larvae. To address this question, we used Arabidopsis thaliana, which carried eggs of the butterfly Pieris brassicae for 1-6 days prior to exposure to larval feeding. Our results show that larvae gained less biomass the longer the eggs had previously been on the plant. The strongest priming effect was obtained when eggs had been on the plant for 5 or 6 days, i.e., for (almost) the entire development time of the Pieris embryo inside the egg until larval hatching. Transcript levels of priming-responsive genes, levels of jasmonic acid-isoleucine (JA-Ile), and of the egg-inducible phytoalexin camalexin increased with the egg exposure time. Larval performance studies on mutant plants revealed that camalexin is dispensable for anti-herbivore defense against P. brassicae larvae, whereas JA-Ile - in concert with egg-induced salicylic acid (SA) - seems to be important for signaling egg-mediated primed defense. Thus, A. thaliana adjusts the kinetics of its egg-primed response to the time point of larval hatching. Hence, the plant is optimally prepared just in time prior to larval hatching.
Collapse
Affiliation(s)
- Georgios Valsamakis
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Norbert Bittner
- Applied Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Nina E. Fatouros
- Biosystematics Group, Wageningen University, Wageningen, Netherlands
| | - Reinhard Kunze
- Applied Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Vivien Lortzing
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
41
|
Jia M, Li Q, Hua J, Liu J, Zhou W, Qu B, Luo S. Phytohormones Regulate Both "Fish Scale" Galls and Cones on Picea koraiensis. FRONTIERS IN PLANT SCIENCE 2020; 11:580155. [PMID: 33329642 PMCID: PMC7729011 DOI: 10.3389/fpls.2020.580155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/09/2020] [Indexed: 05/16/2023]
Abstract
The larch adelgid Adelges laricis laricis Vallot is a specialist insect parasite of Picea koraiensis (Korean spruce) and forms fish scale-like galls that damage the growth of the host plants. Our investigation reveals that both these galls and the fruits (cones) of P. koraiensis display lower concentrations of phytosynthetic pigments and accumulate anthocyanin cyanidin-3-O-glucoside and soluble sugars in the mature stages. Interestingly, high concentrations of 6-benzylaminopurine (BAP) both in the cauline gall tissues and in the larch adelgids themselves (4064.61 ± 167.83 and 3655.42 ± 210.29 ng/g FW, respectively), suggested that this vital phytohormone may be synthesized by the insects to control the development of gall tissues. These results indicate that the galls and cones are sink organs, and the development of gall tissues is possibly regulated by phytohormones in a way similar to that of the growth of cones. The concentrations of phytohormones related to growth [indole-3-acetic acid (IAA), cytokinins (CTK), and gibberellins (GAs)] and defense [salicylic acid (SA)], as well as SA-related phenolics [benzoic acid (BA) and p-hydroxybenzoic acid (pHBA)] in gall tissues were positively correlated with those in cones during the development stage. The levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in the developmental stage of the cones correlates negatively with their concentrations in the gall tissues (R = -0.92, p < 0.001), suggesting that downregulation of ACC might be the reason why galls are not abscised after a year. Our results provide a new perspective on the potential mechanism of the development of cauline galls on P. koraiensis, which are regulated by phytohormones.
Collapse
Affiliation(s)
- Mingyue Jia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Qilong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jiayi Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Wei Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Bo Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University,Shenyang, China
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University,Shenyang, China
| |
Collapse
|
42
|
Lortzing T, Kunze R, Steppuhn A, Hilker M, Lortzing V. Arabidopsis, tobacco, nightshade and elm take insect eggs as herbivore alarm and show similar transcriptomic alarm responses. Sci Rep 2020; 10:16281. [PMID: 33004864 PMCID: PMC7530724 DOI: 10.1038/s41598-020-72955-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Plants respond to insect eggs with transcriptional changes, resulting in enhanced defence against hatching larvae. However, it is unknown whether phylogenetically distant plant species show conserved transcriptomic responses to insect eggs and subsequent larval feeding. We used Generally Applicable Gene set Enrichment (GAGE) on gene ontology terms to answer this question and analysed transcriptome data from Arabidopsis thaliana, wild tobacco (Nicotiana attenuata), bittersweet nightshade (Solanum dulcamara) and elm trees (Ulmus minor) infested by different insect species. The different plant-insect species combinations showed considerable overlap in their transcriptomic responses to both eggs and larval feeding. Within these conformable responses across the plant-insect combinations, the responses to eggs and feeding were largely analogous, and about one-fifth of these analogous responses were further enhanced when egg deposition preceded larval feeding. This conserved transcriptomic response to eggs and larval feeding comprised gene sets related to several phytohormones and to the phenylpropanoid biosynthesis pathway, of which specific branches were activated in different plant-insect combinations. Since insect eggs and larval feeding activate conserved sets of biological processes in different plant species, we conclude that plants with different lifestyles share common transcriptomic alarm responses to insect eggs, which likely enhance their defence against hatching larvae.
Collapse
Affiliation(s)
- Tobias Lortzing
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Molecular Botany, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Reinhard Kunze
- Applied Genetics, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Anke Steppuhn
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Molecular Botany, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Vivien Lortzing
- Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
43
|
Kelly LJ, Plumb WJ, Carey DW, Mason ME, Cooper ED, Crowther W, Whittemore AT, Rossiter SJ, Koch JL, Buggs RJA. Convergent molecular evolution among ash species resistant to the emerald ash borer. Nat Ecol Evol 2020; 4:1116-1128. [PMID: 32451426 PMCID: PMC7610378 DOI: 10.1038/s41559-020-1209-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/16/2020] [Indexed: 11/08/2022]
Abstract
Recent studies show that molecular convergence plays an unexpectedly common role in the evolution of convergent phenotypes. We exploited this phenomenon to find candidate loci underlying resistance to the emerald ash borer (EAB, Agrilus planipennis), the United States' most costly invasive forest insect to date, within the pan-genome of ash trees (the genus Fraxinus). We show that EAB-resistant taxa occur within three independent phylogenetic lineages. In genomes from these resistant lineages, we detect 53 genes with evidence of convergent amino acid evolution. Gene-tree reconstruction indicates that, for 48 of these candidates, the convergent amino acids are more likely to have arisen via independent evolution than by another process such as hybridization or incomplete lineage sorting. Seven of the candidate genes have putative roles connected to the phenylpropanoid biosynthesis pathway and 17 relate to herbivore recognition, defence signalling or programmed cell death. Evidence for loss-of-function mutations among these candidates is more frequent in susceptible species than in resistant ones. Our results on evolutionary relationships, variability in resistance, and candidate genes for defence response within the ash genus could inform breeding for EAB resistance, facilitating ecological restoration in areas invaded by this beetle.
Collapse
Affiliation(s)
- Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
- Royal Botanic Gardens, Kew, Richmond, UK.
| | - William J Plumb
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Royal Botanic Gardens, Kew, Richmond, UK
- Forestry Development Department, Teagasc, Dublin, Republic of Ireland
| | - David W Carey
- United States Department of Agriculture, Forest Service, Northern Research Station, Delaware, OH, USA
| | - Mary E Mason
- United States Department of Agriculture, Forest Service, Northern Research Station, Delaware, OH, USA
| | - Endymion D Cooper
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - William Crowther
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - Alan T Whittemore
- United States Department of Agriculture, Agricultural Research Service, US National Arboretum, Washington, DC, USA
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Jennifer L Koch
- United States Department of Agriculture, Forest Service, Northern Research Station, Delaware, OH, USA
| | - Richard J A Buggs
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
- Royal Botanic Gardens, Kew, Richmond, UK.
| |
Collapse
|
44
|
Paniagua Voirol LR, Valsamakis G, Lortzing V, Weinhold A, Johnston PR, Fatouros NE, Kunze R, Hilker M. Plant responses to insect eggs are not induced by egg-associated microbes, but by a secretion attached to the eggs. PLANT, CELL & ENVIRONMENT 2020; 43:1815-1826. [PMID: 32096568 DOI: 10.1111/pce.13746] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/16/2019] [Accepted: 02/15/2020] [Indexed: 05/11/2023]
Abstract
Plants can enhance their defence against herbivorous insects by responding to insect egg depositions preceding larval feeding. The similarity of plant responses to insect eggs with those to phytopathogens gave rise to the hypothesis that egg-associated microbes might act as elicitors. We tested this hypothesis by investigating first if elimination of microbes in the butterfly Pieris brassicae changes the responses of Brassica nigra and Arabidopsis thaliana to eggs and larvae of this insect species. An antibiotic treatment of butterflies mitigated the plant transcriptional response to the eggs and the egg-mediated enhancement of the plant's defence against larvae. However, application of cultivated microbial isolates from the eggs onto Arabidopsis thaliana did not enhance the plant's anti-herbivore defence. Instead, application of an egg-associated glandular secretion, which is attaching the eggs to the leaves, elicited the enhancing effect on the plant's defence against larvae. However, this effect was only achieved when the secretion was applied in similar quantities as released by control butterflies, but not when applied in the reduced quantity as released by antibiotic-treated butterflies. We conclude that glandular secretions rather than egg-associated microbes act in a dose-dependent manner as elicitor of the egg-mediated enhancement of the plant's defence against insect larvae.
Collapse
Affiliation(s)
- Luis R Paniagua Voirol
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Georgios Valsamakis
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Vivien Lortzing
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Arne Weinhold
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Paul R Johnston
- Institute of Biology, Evolutionary Biology, Freie Universität Berlin, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| | - Reinhard Kunze
- Institute of Biology, Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Monika Hilker
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
45
|
Jezek M. Butterfly-plant interaction - A dicey ménage à trois? PLANT, CELL & ENVIRONMENT 2020; 43:1811-1814. [PMID: 32572988 DOI: 10.1111/pce.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, UK
| |
Collapse
|
46
|
Liu J, Legarrea S, Alba JM, Dong L, Chafi R, Menken SBJ, Kant MR. Juvenile Spider Mites Induce Salicylate Defenses, but Not Jasmonate Defenses, Unlike Adults. FRONTIERS IN PLANT SCIENCE 2020; 11:980. [PMID: 32754172 PMCID: PMC7367147 DOI: 10.3389/fpls.2020.00980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/16/2020] [Indexed: 05/25/2023]
Abstract
When plants detect herbivores they strengthen their defenses. As a consequence, some herbivores evolved the means to suppress these defenses. Research on induction and suppression of plant defenses usually makes use of particular life stages of herbivores. Yet many herbivorous arthropods go through development cycles in which their successive stages have different characteristics and lifestyles. Here we investigated the interaction between tomato defenses and different herbivore developmental stages using two herbivorous spider mites, i.e., Tetranychus urticae of which the adult females induce defenses and T. evansi of which the adult females suppress defenses in Solanum lycopersicum (tomato). First, we monitored egg-to-adult developmental time on tomato wild type (WT) and the mutant defenseless-1 (def-1, unable to produce jasmonate-(JA)-defenses). Then we assessed expression of salivary effector genes (effector 28, 84, SHOT2b, and SHOT3b) in the consecutive spider mite life stages as well as adult males and females. Finally, we assessed the extent to which tomato plants upregulate JA- and salicylate-(SA)-defenses in response to the consecutive mite developmental stages and to the two sexes. The consecutive juvenile mite stages did not induce JA defenses and, accordingly, egg-to-adult development on WT and def-1 did not differ for either mite species. Their eggs however appeared to suppress the SA-response. In contrast, all the consecutive feeding stages upregulated SA-defenses with the strongest induction by T. urticae larvae. Expression of effector genes was higher in the later developmental stages. Comparing expression in adult males and females revealed a striking pattern: while expression of effector 84 and SHOT3b was higher in T. urticae females than in males, this was the opposite for T. evansi. We also observed T. urticae females to upregulate tomato defenses, while T. evansi females did not. In addition, of both species also the males did not upregulate defenses. Hence, we argue that mite ontogenetic niche shifts and stage-specific composition of salivary secreted proteins probably together determine the course and efficiency of induced tomato defenses.
Collapse
Affiliation(s)
- Jie Liu
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Saioa Legarrea
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Juan M. Alba
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Lin Dong
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Rachid Chafi
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Steph B. J. Menken
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Merijn R. Kant
- Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
47
|
Li CZ, Sun H, Gao Q, Bian FY, Noman A, Xiao WH, Zhou GX, Lou YG. Host plants alter their volatiles to help a solitary egg parasitoid distinguish habitats with parasitized hosts from those without. PLANT, CELL & ENVIRONMENT 2020; 43:1740-1750. [PMID: 32170871 DOI: 10.1111/pce.13747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
When attacked by herbivores, plants emit volatiles to attract parasitoids and predators of herbivores. However, our understanding of the effect of plant volatiles on the subsequent behaviour of conspecific parasitoids when herbivores on plants are parasitized is limited. In this study, rice plants were infested with gravid females of the brown planthopper (BPH) Nilaparvata lugens for 24 hr followed by another 24 hr in which the BPH eggs on plants were permitted to be parasitized by their egg parasitoid, Anagrus nilaparvatae; volatiles from rice plants that underwent such treatment were less attractive to subsequent conspecific parasitoids compared to the volatiles from plants infested with gravid BPH females alone. Chemical analysis revealed that levels of JA and JA-Ile as well as of four volatile compounds-linalool, MeSA, α-zingiberene and an unknown compound-from plants infested with BPH and parasitized by wasps were significantly higher than levels of these compounds from BPH-infested plants. Laboratory and field bioassays revealed that one of the four increased chemicals-α-zingiberene-reduced the plant's attractiveness to the parasitoid. These results suggest that host plants can fine-tune their volatiles to help egg parasitoids distinguish host habitats with parasitized hosts from those without.
Collapse
Affiliation(s)
- Cheng-Zhe Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hao Sun
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qing Gao
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang-Yuan Bian
- Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, Hangzhou, China
| | - Ali Noman
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Wen-Han Xiao
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Guo-Xin Zhou
- Key Laboratory for Quality Improvement of Agriculture Products of Zhejiang Province, Department of Plant Protection, Zhejiang A&F University, Lin'an, China
| | - Yong-Gen Lou
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
48
|
Pashalidou FG, Eyman L, Sims J, Buckley J, Fatouros NE, De Moraes CM, Mescher MC. Plant volatiles induced by herbivore eggs prime defences and mediate shifts in the reproductive strategy of receiving plants. Ecol Lett 2020; 23:1097-1106. [PMID: 32314512 DOI: 10.1111/ele.13509] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/22/2020] [Accepted: 03/10/2020] [Indexed: 12/24/2022]
Abstract
Plants can detect cues associated with the risk of future herbivory and modify defence phenotypes accordingly; however, our current understanding is limited both with respect to the range of early warning cues to which plants respond and the nature of the responses. Here we report that exposure to volatile emissions from plant tissues infested with herbivore eggs promotes stronger defence responses to subsequent herbivory in two Brassica species. Furthermore, exposure to these volatile cues elicited an apparent shift from growth to reproduction in Brassica nigra, with exposed plants exhibiting increased flower and seed production, but reduced leaf production, relative to unexposed controls. Our results thus document plant defence priming in response to a novel environmental cue, oviposition-induced plant volatiles, while also showing that plant responses to early warning cues can include changes in both defence and life-history traits.
Collapse
Affiliation(s)
- Foteini G Pashalidou
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland.,UMR Agronomie, INRAE, AgroParisTech, Universite Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Lisa Eyman
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - James Sims
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - James Buckley
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, Netherlands
| | - Consuelo M De Moraes
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| |
Collapse
|
49
|
Abstract
Acute and precise signal perception and transduction are essential for plant defense against insects. Insect elicitors-that is, the biologically active molecules from insects' oral secretion (which contains regurgitant and saliva), frass, ovipositional fluids, and the endosymbionts-are recognized by plants and subsequently induce a local or systematic defense response. On the other hand, insects secrete various types of effectors to interfere with plant defense at multiple levels for better adaptation. Jasmonate is a main regulator involved in plant defense against insects and integrates with multiple pathways to make up the intricate defense network. Jasmonate signaling is strictly regulated in plants to avoid the hypersensitive defense response and seems to be vulnerable to assault by insect effectors at the same time. Here, we summarize recently identified elicitors, effectors, and their target proteins in plants and discuss their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Ying-Bo Mao
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
50
|
Griese E, Pineda A, Pashalidou FG, Iradi EP, Hilker M, Dicke M, Fatouros NE. Plant responses to butterfly oviposition partly explain preference-performance relationships on different brassicaceous species. Oecologia 2020; 192:463-475. [PMID: 31932923 PMCID: PMC7002336 DOI: 10.1007/s00442-019-04590-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/27/2019] [Indexed: 10/26/2022]
Abstract
The preference-performance hypothesis (PPH) states that herbivorous female insects prefer to oviposit on those host plants that are best for their offspring. Yet, past attempts to show the adaptiveness of host selection decisions by herbivores often failed. Here, we tested the PPH by including often neglected oviposition-induced plant responses, and how they may affect both egg survival and larval weight. We used seven Brassicaceae species of which most are common hosts of two cabbage white butterfly species, the solitary Pieris rapae and gregarious P. brassicae. Brassicaceous species can respond to Pieris eggs with leaf necrosis, which can lower egg survival. Moreover, plant-mediated responses to eggs can affect larval performance. We show a positive correlation between P. brassicae preference and performance only when including the egg phase: 7-day-old caterpillars gained higher weight on those plant species which had received most eggs. Pieris eggs frequently induced necrosis in the tested plant species. Survival of clustered P. brassicae eggs was unaffected by the necrosis in most tested species and no relationship between P. brassicae egg survival and oviposition preference was found. Pieris rapae preferred to oviposit on plant species most frequently expressing necrosis although egg survival was lower on those plants. In contrast to the lower egg survival on plants expressing necrosis, larval biomass on these plants was higher than on plants without a necrosis. We conclude that egg survival is not a crucial factor for oviposition choices but rather egg-mediated responses affecting larval performance explained the preference-performance relationship of the two butterfly species.
Collapse
Affiliation(s)
- Eddie Griese
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| | - Ana Pineda
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- NIOO-KNAW, Wageningen, The Netherlands
| | - Foteini G Pashalidou
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- UMR Agronomie, INRA, AgroParisTech, Universite Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Eleonora Pizarro Iradi
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- BASF Chile, Carrascal 3851, Quinta Normal, Santiago, Chile
| | - Monika Hilker
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Nina E Fatouros
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|