1
|
Xiong S, Wu L, Chen Y, Shi X, Wang Y. Multi-omics analysis reveals the regulatory mechanism of branching development in Quercus fabri. J Proteomics 2025; 313:105373. [PMID: 39778766 DOI: 10.1016/j.jprot.2024.105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
The ability of axillary meristems to form axillary buds and subsequently develop into branches is influenced by phytohormones, environmental conditions, and genetic factors. The main trunk of Quercus fabri is prone to branching, which not only impacts the appearance and density of the wood and significantly reduces the yield rate. This study conducted transcriptomic, proteomic, and metabolomic analyses on three stages of axillary bud development in Q. fabri. A total of 12,888 differentially expressed genes (DEGs), 8193 differentially accumulated proteins (DAPs), and 1788 differentially accumulated metabolites (DAMs) were identified through comparisons among the stages and subjected to multi-omics joint analysis. Conduct interaction network analysis on DEGs and DAPs to identify the significant transcription factor family (AP2/ERF) involved in the regulation of axillary bud development. Furthermore, KEGG enrichment analysis of DEGs, DAPs and DAMs indicated significant enrichment in plant hormone signaling pathways. The analysis of endogenous hormone levels and qRT-PCR results for pathway genes demonstrated that the expression levels of IAA and tZ significantly increased during late developmental stages, whereas the expression levels of ABA, ACC and JA significantly decreased. In summary, these findings contribute to a comprehensive understanding of the regulatory networks underlying the branching development of Q. fabri. SIGNIFICANCE: Q. fabri exhibits robust vegetative growth, and its primary trunk is prone to branching, significantly influencing the wood yield rate. Through a joint analysis of transcriptomics, proteomics, and metabolomics, we comprehensively examined the regulatory network governing the axillary bud development of Q. fabri. Our findings revealed the crucial roles of the AP2/ERF transcription factor family and plant hormone signal transduction pathways in branch development. These insights contribute to a deeper understanding of the mechanisms regulating branch development.
Collapse
Affiliation(s)
- Shifa Xiong
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xiang Shi
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|
2
|
Mao J, Wang H, Li J, Yang J, Zhang Y, Wu H. Comparative transcriptome profiling suggests the role of phytohormones in leaf stalk-stem angle in melon ( Cucumis melo L.). PeerJ 2024; 12:e18467. [PMID: 39575174 PMCID: PMC11580662 DOI: 10.7717/peerj.18467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/15/2024] [Indexed: 11/24/2024] Open
Abstract
Leaf stalk-stem angle is an important agronomic trait influencing melon architecture, photosynthetic efficiency, and crop yield. However, the mechanisms governing leaf stalk-stem angle, particularly in melon, are not well understood. In this study, we explored the comparative transcriptome in the expanded architecture line Y164 and the compact plant architecture line Z151 at 30 days after pollination. Phytohormones were measured at the leaf stalk-angle site at the same time in these two lines using liquid chromatography (LC) tandem mass spectrometry (MS) (LC-MS/MS). The phytohormones and transcriptomes were jointly analyzed. Differential hormone profiling revealed that the levels of 1-aminocyclopropane-1-carboxylate (ACC) and 12-oxophytodienoic acid (OPDA) in the large-angled line Y164 were significantly higher than those in the small-angled line Z151. These differences were quantified as 2.1- and 2.8-fold increases, respectively. Conversely, the content of isopentenyl adenosine (IPA) was significantly elevated in Z151, with a 3.8-fold higher concentration relative to Y164. Transcriptome analysis identified a total of 1709 differently expressed genes (DEGs), with a predominant enrichment in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to photosynthesis and plant hormone signal transduction. Similarly, photosynthesis and the hormone metabolic process were predominantly enriched in the biological process of Gene Ontology (GO) terms. Further integration of transcriptome and hormone analyses substantiated the close relationship between melon leaf stalk-stem angle and phytohormones, especially ACC, OPDA and IPA. Selected DEGs from phytohormone signal transduction were validated. Detailed analysis of DEGs highlighted the potential role of genes such as GH3s (LOC103490488, LOC103490483), SUARs (LOC107991561, LOC103497281 and LOC103489067), ARFs (LOC103503893, LOC103493078) and five genes in abscisic acid pathway. In summary, our findings strongly suggest a direct correlation between phytohormones and the leaf stalk-stem angles in melon.
Collapse
Affiliation(s)
- Jiancai Mao
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haojie Wang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Junhua Li
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Junyan Yang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yongbing Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haibo Wu
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
3
|
Li YT, Liu DH, Luo Y, Abbas Khan M, Mahmood Alam S, Liu YZ. Transcriptome analysis reveals the key network of axillary bud outgrowth modulated by topping in citrus. Gene 2024; 926:148623. [PMID: 38821328 DOI: 10.1016/j.gene.2024.148623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Topping, an important tree shaping and pruning technique, can promote the outgrowth of citrus axillary buds. However, the underlying molecular mechanism is still unclear. In this study, spring shoots of Citrus reticulata 'Huagan No.2' were topped and transcriptome was compared between axillary buds of topped and untopped shoots at 6 and 11 days after topping (DAT). 1944 and 2394 differentially expressed genes (DEGs) were found at 6 and 11 DAT, respectively. KEGG analysis revealed that many DEGs were related to starch and sucrose metabolism, signal transduction of auxin, cytokinin and abscisic acid. Specially, transcript levels of auxin synthesis, transport, and signaling-related genes (SAURs and ARF5), cytokinin signal transduction related genes (CRE1, AHP and Type-A ARRs), ABA signal responsive genes (PYL and ABF) were up-regulated by topping; while transcript levels of auxin receptor TIR1, auxin responsive genes AUX/IAAs, ABA signal transduction related gene PP2Cs and synthesis related genes NCED3 were down-regulated. On the other hand, the contents of sucrose and fructose in axillary buds of topped shoots were significantly higher than those in untopped shoots; transcript levels of 16 genes related to sucrose synthase, hexokinase, sucrose phosphate synthase, endoglucanase and glucosidase, were up-regulated in axillary buds after topping. In addition, transcript levels of genes related to trehalose 6-phosphate metabolism and glycolysis/tricarboxylic acid (TCA) cycle, as well to some transcription factors including Pkinase, Pkinase_Tyr, Kinesin, AP2/ERF, P450, MYB, NAC and Cyclin_c, significantly responded to topping. Taken together, the present results suggested that topping promoted citrus axillary bud outgrowth through comprehensively regulating plant hormone and carbohydrate metabolism, as well as signal transduction. These results deepened our understanding of citrus axillary bud outgrowth by topping and laid a foundation for further research on the molecular mechanisms of citrus axillary bud outgrowth.
Collapse
Affiliation(s)
- Yan-Ting Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops / College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dong-Hai Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops / College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yin Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops / College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Abbas Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops / College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shariq Mahmood Alam
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops / College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yong-Zhong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops / College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
4
|
Wu H, Liu M, Fang Y, Yang J, Xie X, Zhang H, Zhou D, Zhou Y, He Y, Chen J, Bai Q. Genome-Wide Characterization of the INDETERMINATE DOMAIN ( IDD) Zinc Finger Gene Family in Solanum lycopersicum and the Functional Analysis of SlIDD15 in Shoot Gravitropism. Int J Mol Sci 2024; 25:10422. [PMID: 39408748 PMCID: PMC11476865 DOI: 10.3390/ijms251910422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The plant-specific IDD transcription factors (TFs) are vital for regulating plant growth and developmental processes. However, the characteristics and biological roles of the IDD gene family in tomato (Solanum lycopersicum) are still largely unexplored. In this study, 17 SlIDD genes were identified in the tomato genome and classified into seven subgroups according to the evolutionary relationships of IDD proteins. Analysis of exon-intron structures and conserved motifs reflected the evolutionary conservation of SlIDDs in tomato. Collinearity analysis revealed that segmental duplication promoted the expansion of the SlIDD family. Ka/Ks analysis indicated that SlIDD gene orthologs experienced predominantly purifying selection throughout evolution. The analysis of cis-acting elements revealed that the promoters of SlIDD genes contain numerous elements associated with light, plant hormones, and abiotic stresses. The RNA-seq data and qRT-PCR experimental results showed that the SlIDD genes exhibited tissue-specific expression. Additionally, Group A members from Arabidopsis thaliana and rice are known to play a role in regulating plant shoot gravitropism. QRT-PCR analysis confirmed that the expression level of SlIDD15 in Group A was high in the hypocotyls and stems. Subcellular localization demonstrated that the SlIDD15 protein was localized in the nucleus. Surprisingly, the loss-of-function of SlIDD15 by CRISPR/Cas9 gene editing technology did not display obvious gravitropic response defects, implying the existence of functional redundant factors within SlIDD15. Taken together, this study offers foundational insights into the tomato IDD gene family and serves as a valuable guide for exploring their molecular mechanisms in greater detail.
Collapse
Affiliation(s)
- Huan Wu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (H.W.); (D.Z.)
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Mingli Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Yuqi Fang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Jing Yang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Xiaoting Xie
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Zhang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Dian Zhou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (H.W.); (D.Z.)
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Yueqiong Zhou
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yexin He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Jianghua Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (H.W.); (D.Z.)
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanzi Bai
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Wang X, Yan L, Li T, Zhang J, Zhang Y, Zhang J, Lian X, Zhang H, Zheng X, Hou N, Cheng J, Wang W, Zhang L, Ye X, Li J, Feng J, Tan B. The lncRNA1-miR6288b-3p-PpTCP4-PpD2 module regulates peach branch number by affecting brassinosteroid biosynthesis. THE NEW PHYTOLOGIST 2024; 243:1050-1064. [PMID: 38872462 DOI: 10.1111/nph.19903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Branch number is one of the most important agronomic traits of fruit trees such as peach. Little is known about how LncRNA and/or miRNA modules regulate branching through transcription factors. Here, we used molecular and genetic tools to clarify the molecular mechanisms underlying brassinosteroid (BR) altering plant branching. We found that the number of sylleptic branch and BR content in pillar peach ('Zhaoshouhong') was lower than those of standard type ('Okubo'), and exogenous BR application could significantly promote branching. PpTCP4 expressed great differentially comparing 'Zhaoshouhong' with 'Okubo'. PpTCP4 could directly bind to DWARF2 (PpD2) and inhibited its expression. PpD2 was the only one differentially expressed key gene in the path of BR biosynthesis. At the same time, PpTCP4 was identified as a target of miR6288b-3p. LncRNA1 could act as the endogenous target mimic of miR6288b-3p and repress expression of miR6288b-3p. Three deletions and five SNP sites of lncRNA1 promoter were found in 'Zhaoshouhong', which was an important cause of different mRNA level of PpTCP4 and BR content. Moreover, overexpressed PpTCP4 significantly inhibited branching. A novel mechanism in which the lncRNA1-miR6288b-3p-PpTCP4-PpD2 module regulates peach branching number was proposed.
Collapse
Affiliation(s)
- Xiaobei Wang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Lixia Yan
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Tianhao Li
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Jie Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Yajia Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Junjie Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Xiaodong Lian
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Haipeng Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Nan Hou
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Langlang Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Jidong Li
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- College of Forestry, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| |
Collapse
|
6
|
Shu Q, Yazdi H, Rötzer T, Ludwig F. Predicting resprouting of Platanus × hispanica following branch pruning by means of machine learning. FRONTIERS IN PLANT SCIENCE 2024; 15:1297390. [PMID: 38516666 PMCID: PMC10954810 DOI: 10.3389/fpls.2024.1297390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024]
Abstract
Introduction Resprouting is a crucial survival strategy following the loss of branches, being it by natural events or artificially by pruning. The resprouting prediction on a physiological basis is a highly complex approach. However, trained gardeners try to predict a tree's resprouting after pruning purely based on their empirical knowledge. In this study, we explore how far such predictions can also be made by machine learning. Methods Table-topped annually pruned Platanus × hispanica trees at a nursery were LiDAR-scanned for two consecutive years. Topological structures for these trees were abstracted by cylinder fitting. Then, new shoots and trimmed branches were labelled on corresponding cylinders. Binary and multiclass classification models were tested for predicting the location and number of new sprouts. Results The accuracy for predicting whether having or not new shoots on each cylinder reaches 90.8% with the LGBMClassifier, the balanced accuracy is 80.3%. The accuracy for predicting the exact numbers of new shoots with the GaussianNB model is 82.1%, but its balanced accuracy is reduced to 42.9%. Discussion The results were validated with a separate dataset, proving the feasibility of resprouting prediction after pruning using this approach. Different tree species, tree forms, and other variables should be addressed in further research.
Collapse
Affiliation(s)
- Qiguan Shu
- Professorship for Green Technologies in Landscape Architecture, TUM School of Engineering and Design, Technical University of Munich, Munich, Germany
| | - Hadi Yazdi
- Professorship for Green Technologies in Landscape Architecture, TUM School of Engineering and Design, Technical University of Munich, Munich, Germany
| | - Thomas Rötzer
- Chair for Forest Growth and Yield Science, Technical University of Munich, Freising, Germany
| | - Ferdinand Ludwig
- Professorship for Green Technologies in Landscape Architecture, TUM School of Engineering and Design, Technical University of Munich, Munich, Germany
| |
Collapse
|
7
|
Montesinos Á, Rubio-Cabetas MJ, Grimplet J. Characterization of Almond Scion/Rootstock Communication in Cultivar and Rootstock Tissues through an RNA-Seq Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:4166. [PMID: 38140493 PMCID: PMC10747828 DOI: 10.3390/plants12244166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
The rootstock genotype plays a crucial role in determining various aspects of scion development, including the scion three-dimensional structure, or tree architecture. Consequently, rootstock choice is a pivotal factor in the establishment of new almond (Prunus amygdalus (L.) Batsch, syn P. dulcis (Mill.)) intensive planting systems, demanding cultivars that can adapt to distinct requirements of vigor and shape. Nevertheless, considering the capacity of the rootstock genotype to influence scion development, it is likely that the scion genotype reciprocally affects rootstock performance. In the context of this study, we conducted a transcriptomic analysis of the scion/rootstock interaction in young almond trees, with a specific focus on elucidating the scion impact on the rootstock molecular response. Two commercial almond cultivars were grafted onto two hybrid rootstocks, thereby generating four distinct combinations. Through RNA-Seq analysis, we discerned that indeed, the scion genotype exerts an influence on the rootstock expression profile. This influence manifests through the modulation of genes associated with hormonal regulation, cell division, root development, and light signaling. This intricate interplay between scion and rootstock communication plays a pivotal role in the development of both scion and rootstock, underscoring the critical importance of a correct choice when establishing new almond orchards.
Collapse
Affiliation(s)
- Álvaro Montesinos
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (UPM-INIA/CSIC), 28223 Madrid, Spain;
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 4 177, 50013 Zaragoza, Spain
| | - María José Rubio-Cabetas
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 4 177, 50013 Zaragoza, Spain
| | - Jérôme Grimplet
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 4 177, 50013 Zaragoza, Spain
| |
Collapse
|
8
|
Kapoor B, Jenkins J, Schmutz J, Zhebentyayeva T, Kuelheim C, Coggeshall M, Heim C, Lasky JR, Leites L, Islam-Faridi N, Romero-Severson J, DeLeo VL, Lucas SM, Lazic D, Gailing O, Carlson J, Staton M. A haplotype-resolved chromosome-scale genome for Quercus rubra L. provides insights into the genetics of adaptive traits for red oak species. G3 (BETHESDA, MD.) 2023; 13:jkad209. [PMID: 37708394 PMCID: PMC10627279 DOI: 10.1093/g3journal/jkad209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Northern red oak (Quercus rubra L.) is an ecologically and economically important forest tree native to North America. We present a chromosome-scale genome of Q. rubra generated by the combination of PacBio sequences and chromatin conformation capture (Hi-C) scaffolding. This is the first reference genome from the red oak clade (section Lobatae). The Q. rubra assembly spans 739 Mb with 95.27% of the genome in 12 chromosomes and 33,333 protein-coding genes. Comparisons to the genomes of Quercus lobata and Quercus mongolica revealed high collinearity, with intrachromosomal structural variants present. Orthologous gene family analysis with other tree species revealed that gene families associated with defense response were expanding and contracting simultaneously across the Q. rubra genome. Quercus rubra had the most CC-NBS-LRR and TIR-NBS-LRR resistance genes out of the 9 species analyzed. Terpene synthase gene family comparisons further reveal tandem gene duplications in TPS-b subfamily, similar to Quercus robur. Phylogenetic analysis also identified 4 subfamilies of the IGT/LAZY gene family in Q. rubra important for plant structure. Single major QTL regions were identified for vegetative bud break and marcescence, which contain candidate genes for further research, including a putative ortholog of the circadian clock constituent cryptochrome (CRY2) and 8 tandemly duplicated genes for serine protease inhibitors, respectively. Genome-environment associations across natural populations identified candidate abiotic stress tolerance genes and predicted performance in a common garden. This high-quality red oak genome represents an essential resource to the oak genomic community, which will expedite comparative genomics and biological studies in Quercus species.
Collapse
Affiliation(s)
- Beant Kapoor
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Tatyana Zhebentyayeva
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, KY 40506, USA
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Carsten Kuelheim
- College of Forest Resources and Environmental Science, Michigan Tech University, Houghton, MI 49931, USA
| | - Mark Coggeshall
- College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Chris Heim
- Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Leites
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Nurul Islam-Faridi
- Forest Tree Molecular Cytogenetics Laboratory, USDA-FS, SRS-4160, Department of Ecology & Conservation Biology, Texas A&M University, College Station, TX 77843, USA
| | | | - Victoria L DeLeo
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sarah M Lucas
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Desanka Lazic
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Lower Saxony 37077, Germany
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Lower Saxony 37077, Germany
| | - John Carlson
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Margaret Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
9
|
Xiao L, Fang Y, Zhang H, Quan M, Zhou J, Li P, Wang D, Ji L, Ingvarsson PK, Wu HX, El-Kassaby YA, Du Q, Zhang D. Natural variation in the prolyl 4-hydroxylase gene PtoP4H9 contributes to perennial stem growth in Populus. THE PLANT CELL 2023; 35:4046-4065. [PMID: 37522322 PMCID: PMC10615208 DOI: 10.1093/plcell/koad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
Perennial trees must maintain stem growth throughout their entire lifespan to progressively increase in size as they age. The overarching question of the molecular mechanisms that govern stem perennial growth in trees remains largely unanswered. Here we deciphered the genetic architecture that underlies perennial growth trajectories using genome-wide association studies (GWAS) for measures of growth traits across years in a natural population of Populus tomentosa. By analyzing the stem growth trajectory, we identified PtoP4H9, encoding prolyl 4-hydroxylase 9, which is responsible for the natural variation in the growth rate of diameter at breast height (DBH) across years. Quantifying the dynamic genetic contribution of PtoP4H9 loci to stem growth showed that PtoP4H9 played a pivotal role in stem growth regulation. Spatiotemporal expression analysis showed that PtoP4H9 was highly expressed in cambium tissues of poplars of various ages. Overexpression and knockdown of PtoP4H9 revealed that it altered cell expansion to regulate cell wall modification and mechanical characteristics, thereby promoting stem growth in Populus. We showed that natural variation in PtoP4H9 occurred in a BASIC PENTACYSTEINE transcription factor PtoBPC1-binding promoter element controlling PtoP4H9 expression. The geographic distribution of PtoP4H9 allelic variation was consistent with the modes of selection among populations. Altogether, our study provides important genetic insights into dynamic stem growth in Populus, and we confirmed PtoP4H9 as a potential useful marker for breeding or genetic engineering of poplars.
Collapse
Affiliation(s)
- Liang Xiao
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206,China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Yuanyuan Fang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - He Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871,China
| | - Mingyang Quan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Jiaxuan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Peng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Dan Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Li Ji
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083,China
| | - Pär K Ingvarsson
- Linnean Center for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Box 7080, SE-750 07 Uppsala,Sweden
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, 90183 Umeå,Sweden
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4,Canada
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083,China
| | - Deqiang Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206,China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| |
Collapse
|
10
|
Zhou Y, Zheng T, Cai M, Feng L, Chi X, Shen P, Wang X, Wan Z, Yuan C, Zhang M, Han Y, Wang J, Pan H, Cheng T, Zhang Q. Genome assembly and resequencing analyses provide new insights into the evolution, domestication and ornamental traits of crape myrtle. HORTICULTURE RESEARCH 2023; 10:uhad146. [PMID: 37701453 PMCID: PMC10493637 DOI: 10.1093/hr/uhad146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/15/2023] [Indexed: 09/14/2023]
Abstract
Crape myrtle (Lagerstroemia indica) is a globally used ornamental woody plant and is the representative species of Lagerstroemia. However, studies on the evolution and genomic breeding of L. indica have been hindered by the lack of a reference genome. Here we assembled the first high-quality genome of L. indica using PacBio combined with Hi-C scaffolding to anchor the 329.14-Mb genome assembly into 24 pseudochromosomes. We detected a previously undescribed independent whole-genome triplication event occurring 35.5 million years ago in L. indica following its divergence from Punica granatum. After resequencing 73 accessions of Lagerstroemia, the main parents of modern crape myrtle cultivars were found to be L. indica and L. fauriei. During the process of domestication, genetic diversity tended to decrease in many plants, but this was not observed in L. indica. We constructed a high-density genetic linkage map with an average map distance of 0.33 cM. Furthermore, we integrated the results of quantitative trait locus (QTL) using genetic mapping and bulk segregant analysis (BSA), revealing that the major-effect interval controlling internode length (IL) is located on chr1, which contains CDL15, CRG98, and GID1b1 associated with the phytohormone pathways. Analysis of gene expression of the red, purple, and white flower-colour flavonoid pathways revealed that differential expression of multiple genes determined the flower colour of L. indica, with white flowers having the lowest gene expression. In addition, BSA of purple- and green-leaved individuals of populations of L. indica was performed, and the leaf colour loci were mapped to chr12 and chr17. Within these intervals, we identified MYB35, NCED, and KAS1. Our genome assembly provided a foundation for investigating the evolution, population structure, and differentiation of Myrtaceae species and accelerating the molecular breeding of L. indica.
Collapse
Affiliation(s)
- Yang Zhou
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Ming Cai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Lu Feng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Xiufeng Chi
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Ping Shen
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Xin Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Zhiting Wan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
11
|
Basu U, Parida SK. Restructuring plant types for developing tailor-made crops. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1106-1122. [PMID: 34260135 PMCID: PMC10214764 DOI: 10.1111/pbi.13666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 05/27/2023]
Abstract
Plants have adapted to different environmental niches by fine-tuning the developmental factors working together to regulate traits. Variations in the developmental factors result in a wide range of quantitative variations in these traits that helped plants survive better. The major developmental pathways affecting plant architecture are also under the control of such pathways. Most notable are the CLAVATA-WUSCHEL pathway regulating shoot apical meristem fate, GID1-DELLA module influencing plant height and tillering, LAZY1-TAC1 module controlling branch/tiller angle and the TFL1-FT determining the floral fate in plants. Allelic variants of these key regulators selected during domestication shaped the crops the way we know them today. There is immense yield potential in the 'ideal plant architecture' of a crop. With the available genome-editing techniques, possibilities are not restricted to naturally occurring variations. Using a transient reprogramming system, one can screen the effect of several developmental gene expressions in novel ecosystems to identify the best targets. We can use the plant's fine-tuning mechanism for customizing crops to specific environments. The process of crop domestication can be accelerated with a proper understanding of these developmental pathways. It is time to step forward towards the next-generation molecular breeding for restructuring plant types in crops ensuring yield stability.
Collapse
Affiliation(s)
- Udita Basu
- Genomics‐Assisted Breeding and Crop Improvement LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
| | - Swarup K. Parida
- Genomics‐Assisted Breeding and Crop Improvement LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
| |
Collapse
|
12
|
Xiong E, Qu X, Li J, Liu H, Ma H, Zhang D, Chu S, Jiao Y. The soybean ubiquitin-proteasome system: Current knowledge and future perspective. THE PLANT GENOME 2023; 16:e20281. [PMID: 36345561 DOI: 10.1002/tpg2.20281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Increasing soybean [Glycine max (L.) Merr.] yield has become a worldwide scientific problem in the world. Many studies have shown that ubiquitination plays a key role in stress response and yield formation. In the UniProtKB database, 2,429 ubiquitin-related proteins were predicted in soybean, however, <20 were studied. One key way to address this lack of progress in increasing soybean yield will be a deeper understanding of the ubiquitin-proteasome system (UPS) in soybean. In this review, we summarized the current knowledge about soybean ubiquitin-related proteins and discussed the method of combining phenotype, mutant library, transgenic system, genomics, and proteomics approaches to facilitate the exploration of the soybean UPS. We also proposed the strategy of applying the UPS in soybean improvement based on related studies in model plants. Our review will be helpful for soybean scientists to learn current research progress of the soybean UPS and further lay a theoretical reference for the molecular improvement of soybean in future research by use of this knowledge.
Collapse
Affiliation(s)
- Erhui Xiong
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Xuelian Qu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Junfeng Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Hongli Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Hui Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Yongqing Jiao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| |
Collapse
|
13
|
Pan J, Zhou X, Ahmad N, Zhang K, Tang R, Zhao H, Jiang J, Tian M, Li C, Li A, Zhang X, He L, Ma J, Li X, Tian R, Ma C, Pandey MK, Varshney RK, Wang X, Zhao C. BSA‑seq and genetic mapping identified candidate genes for branching habit in peanut. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4457-4468. [PMID: 36181525 DOI: 10.1007/s00122-022-04231-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The candidate gene AhLBA1 controlling lateral branch angel of peanut was fine-mapped to a 136.65-kb physical region on chromosome 15 using the BSA-seq and QTL mapping. Lateral branch angel (LBA) is an important plant architecture trait of peanut, which plays key role in lodging, peg soil penetration and pod yield. However, there are few reports of fine mapping and quantitative trait loci (QTLs)/cloned genes for LBA in peanut. In this project, a mapping population was constructed using a spreading variety Tifrunner and the erect variety Fuhuasheng. Through bulked segregant analysis sequencing (BSA-seq), a major gene related to LBA, named as AhLBA1, was preliminarily mapped at the region of Chr.15: 150-160 Mb. Then, using traditional QTL approach, AhLBA1 was narrowed to a 1.12 cM region, corresponding to a 136.65-kb physical interval of the reference genome. Of the nine genes housed in this region, three of them were involved in hormone metabolism and regulation, including one "F-box protein" and two "2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase (2OG oxygenase)" encoding genes. In addition, we found that the level of some classes of cytokinin (CK), auxin and ethylene showed significant differences between spreading and erect peanuts at the junction of main stem and lateral branch. These findings will aid further elucidation of the genetic mechanism of LBA in peanut and facilitating marker-assisted selection (MAS) in the future breeding program.
Collapse
Affiliation(s)
- Jiaowen Pan
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Ximeng Zhou
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Naveed Ahmad
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Kun Zhang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan, 250100, People's Republic of China
| | - Ronghua Tang
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Huiling Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Jing Jiang
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Mengdi Tian
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, People's Republic of China
| | - Changsheng Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Aiqin Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Xianying Zhang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Liangqiong He
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jing Ma
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xiaojie Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Ruizheng Tian
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Manish K Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Xingjun Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
14
|
Zhang H, Wafula EK, Eilers J, Harkess A, Ralph PE, Timilsena PR, dePamphilis CW, Waite JM, Honaas LA. Building a foundation for gene family analysis in Rosaceae genomes with a novel workflow: A case study in Pyrus architecture genes. FRONTIERS IN PLANT SCIENCE 2022; 13:975942. [PMID: 36452099 PMCID: PMC9702816 DOI: 10.3389/fpls.2022.975942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/21/2022] [Indexed: 05/26/2023]
Abstract
The rapid development of sequencing technologies has led to a deeper understanding of plant genomes. However, direct experimental evidence connecting genes to important agronomic traits is still lacking in most non-model plants. For instance, the genetic mechanisms underlying plant architecture are poorly understood in pome fruit trees, creating a major hurdle in developing new cultivars with desirable architecture, such as dwarfing rootstocks in European pear (Pyrus communis). An efficient way to identify genetic factors for important traits in non-model organisms can be to transfer knowledge across genomes. However, major obstacles exist, including complex evolutionary histories and variable quality and content of publicly available plant genomes. As researchers aim to link genes to traits of interest, these challenges can impede the transfer of experimental evidence across plant species, namely in the curation of high-quality, high-confidence gene models in an evolutionary context. Here we present a workflow using a collection of bioinformatic tools for the curation of deeply conserved gene families of interest across plant genomes. To study gene families involved in tree architecture in European pear and other rosaceous species, we used our workflow, plus a draft genome assembly and high-quality annotation of a second P. communis cultivar, 'd'Anjou.' Our comparative gene family approach revealed significant issues with the most recent 'Bartlett' genome - primarily thousands of missing genes due to methodological bias. After correcting assembly errors on a global scale in the 'Bartlett' genome, we used our workflow for targeted improvement of our genes of interest in both P. communis genomes, thus laying the groundwork for future functional studies in pear tree architecture. Further, our global gene family classification of 15 genomes across 6 genera provides a valuable and previously unavailable resource for the Rosaceae research community. With it, orthologs and other gene family members can be easily identified across any of the classified genomes. Importantly, our workflow can be easily adopted for any other plant genomes and gene families of interest.
Collapse
Affiliation(s)
- Huiting Zhang
- Tree Fruit Research Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Wenatchee, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Eric K. Wafula
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Jon Eilers
- Tree Fruit Research Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Wenatchee, WA, United States
| | - Alex E. Harkess
- College of Agriculture, Auburn University, Auburn, AL, United States
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Paula E. Ralph
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Prakash Raj Timilsena
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Claude W. dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Jessica M. Waite
- Tree Fruit Research Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Wenatchee, WA, United States
| | - Loren A. Honaas
- Tree Fruit Research Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Wenatchee, WA, United States
| |
Collapse
|
15
|
SCR Suppressor Mutants: Role in Hypocotyl Gravitropism and Root Growth in Arabidopsis thaliana. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The SCARECROW (SCR) transcription factor plays a key role in plant growth and development. However, we know very little about the role of SCR regulated pathways in plant development. Here, we used the homozygous scr1 mutant Arabidopsis thaliana (Wassilewskija ecotype), which had a T-DNA insertion in the SCR coding region and lacks a detectable SCR transcript. This scr1 mutant has a determinate mode of root growth, shoot agravitropism and abnormal internal architecture in all organs examined. To screen for mutants that suppress the scr1 abnormal phenotypes, we exposed homozygous scr1 seeds to ethyl methane sulphonate (EMS) mutagen. Upon growth out of these mutagenized seeds, thirteen suppressor mutant-harboring strains were identified. All thirteen suppressor-harboring strains were homozygous for scr1 and lacked the SCR transcript. Ten scr hypocotyl gravitropic suppressor lines showed improved hypocotyl gravitropic response. These ten suppressors fall into six complementation groups suggesting six different gene loci. Similarly, three independent scr root length suppressor lines rescued only the root growth phenotype and fell into three complementation groups, suggesting the involvement of three different gene loci. These suppressors might identify novel functions of the SCR gene in plant development.
Collapse
|
16
|
Pálsson S, Wasowicz P, Heiðmarsson S, Magnússon KP. Population structure and genetic variation of fragmented mountain birch forests in Iceland. J Hered 2022; 114:165-174. [PMID: 36331896 PMCID: PMC10078168 DOI: 10.1093/jhered/esac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Betula pubescens Ehrh. (mountain birch) is the only forest-forming tree in Iceland. Since human settlement (874 AD), the continuous 25,000-30,000 km 2 forest has shrunk to 1.200 km 2 of fragmented patches, making it a good object to study population genetic consequences of habitat fragmentation and disturbance. Further, genetic studies have also shown that hybridization between the tetraploid (2n=56) B. pubescens and the diploid (2n=28) Betula nana L. (dwarf birch) occurs among Iceland's natural populations. This study assessed the genetic variation within and among eleven birch forests remaining across Iceland. Genotype-by-sequencing methodology (GBS) provided a total of 24,585 SNPs, with a minor allele frequency > 5% for genetic analyses. The analysis showed similar diversity within forests, suggesting that fragmentation and hybridization have had a limited effect on the genetic variation within sites. A clear genetic divergence is found among forests from the different regions of Iceland that may reflect historical isolation; the differentiation between forests increased with geographic distances reflecting isolation by distance. Information on the distribution of genetic variation of birch in Iceland is essential for its conservation and to establish genotype-phenotype associations to predict responses to new environmental conditions imposed by climate change and novel biotic/abiotic stressors.
Collapse
Affiliation(s)
- Snæbjörn Pálsson
- Faculty of Life and Environmental Sciences, University of Iceland, Askja - Sturlugata 7, 102 Reykjavík, Iceland
| | - Pawel Wasowicz
- Icelandic Institute of Natural History, Borgir v. Norðurslóð, 600 Akureyri, Iceland
| | - Starri Heiðmarsson
- Icelandic Institute of Natural History, Borgir v. Norðurslóð, 600 Akureyri, Iceland
| | - Kristinn Pétur Magnússon
- Icelandic Institute of Natural History, Borgir v. Norðurslóð, 600 Akureyri, Iceland
- Faculty of Natural Resource Sciences, University of Akureyri, Borgir v. Norðurslóð, 600 Akureyri, Iceland
| |
Collapse
|
17
|
Wang X, Wang Q, Yan L, Hao Y, Lian X, Zhang H, Zheng X, Cheng J, Wang W, Zhang L, Ye X, Li J, Tan B, Feng J. PpTCP18 is upregulated by lncRNA5 and controls branch number in peach ( Prunus persica) through positive feedback regulation of strigolactone biosynthesis. HORTICULTURE RESEARCH 2022; 10:uhac224. [PMID: 36643759 PMCID: PMC9832876 DOI: 10.1093/hr/uhac224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Branch number is an important agronomic trait in peach (Prunus persica) trees because plant architecture affects fruit yield and quality. Although breeders can select varieties with different tree architecture, the biological mechanisms underlying architecture remain largely unclear. In this study, a pillar peach ('Zhaoshouhong') and a standard peach ('Okubo') were compared. 'Zhaoshouhong' was found to have significantly fewer secondary branches than 'Okubo'. Treatment with the synthetic strigolactone (SL) GR24 decreased branch number. Transcriptome analysis indicated that PpTCP18 (a homologous gene of Arabidopsis thaliana BRC1) expression was negatively correlated with strigolactone synthesis gene expression, indicating that PpTCP18 may play an important role in peach branching. Yeast one-hybrid, electrophoretic mobility shift, dual-luciferase assays and PpTCP18-knockdown in peach leaf buds indicated that PpTCP18 could increase expression of PpLBO1, PpMAX1, and PpMAX4. Furthermore, transgenic Arabidopsis plants overexpressing PpTCP18 clearly exhibited reduced primary rosette-leaf branches. Moreover, lncRNA sequencing and transient expression analysis revealed that lncRNA5 targeted PpTCP18, significantly increasing PpTCP18 expression. These results provide insights into the mRNA and lncRNA network in the peach SL signaling pathway and indicate that PpTCP18, a transcription factor downstream of SL signaling, is involved in positive feedback regulation of SL biosynthesis. This role of PpTCP18 may represent a novel mechanism in peach branching regulation. Our study improves current understanding of the mechanisms underlying peach branching and provides theoretical support for genetic improvement of peach tree architecture.
Collapse
Affiliation(s)
| | | | - Lixia Yan
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | - Yuhang Hao
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | - Xiaodong Lian
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | - Haipeng Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | - Langlang Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | - Jidong Li
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, China
| | | | | |
Collapse
|
18
|
Han T, Yu J, Zhuang J, Wang Z, Sun X, Zhang Y. The Characterization of Columnar Apple Gene MdCoL Promoter and Its Response to Abscisic Acid, Brassinosteroid and Gibberellic Acid. Int J Mol Sci 2022; 23:ijms231810781. [PMID: 36142696 PMCID: PMC9505010 DOI: 10.3390/ijms231810781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Columnar apple was an important germplasm resource to develop compact cultivars for labor-saving cultivation and to study fruit tree architecture. MdCoL is a strong candidate gene for controlling the columnar phenotype in apple. In this study, a 2000 bp upstream region of MdCoL was cloned as a full-length promoter, named MdCoLp1. To gain a better understanding of the characterization of the MdCoL promoter, cis-acting elements and the binding sites of transcription factors were predicted and analyzed, and four binary expression vectors consisting of the GUS reporter gene under the control of the MdCoL promoter was transformed into Arabidopsis thaliana to analyze the response to abscisic acid (ABA), brassinosteroid (BR) and gibberellic acid (GA3) of MdCoL promoters. Multiple transcription factors involving TCP, BEL1 and BES1/BZR1 and other transcription factor (TF) binding sites were predicted on the promoter of MdCoL. Histochemical staining showed that both full-length and 5′ truncated promoters could initiate GUS expression. The GUS activity was the most in leaf and stem, and mainly concentrated in the fibrovascular tissue, followed by root, and the least activity was observed in silique and flower. In addition, MdCoL expression was mainly localized in the quiescent center (QC) and lateral root growing point of root tip and the vascular tissue of stem and leaf by in situ hybridization. The results of exogenous hormones treatment showed that ABA and BR could activate the activity of the MdCoL promoter, while GA3 had opposite effects. In columnar apple seedlings, ABA treatment could upregulate the expression of MdCoL, but GA3 and BR restrained the transcription level of MdCoL. These results provide the foundation for deciphering the regulatory network of hormones affecting MdCoL transcription.
Collapse
Affiliation(s)
- Tingting Han
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiahui Yu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jie Zhuang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Ziyu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao 266109, China
- Correspondence:
| |
Collapse
|
19
|
Zhao J, Jiang L, Bai H, Dai Y, Li K, Li S, Wang X, Wu L, Fu Q, Yang Y, Dong Q, Yu S, Wang M, Liu H, Peng Z, Zhu H, Zhang X, He X, Lei Y, Liang Y, Guo L, Zhang H, Yu D, Liu Y, Huang H, Liu C, Peng S, Du Y. Characteristics of members of IGT family genes in controlling rice root system architecture and tiller development. FRONTIERS IN PLANT SCIENCE 2022; 13:961658. [PMID: 36147240 PMCID: PMC9487910 DOI: 10.3389/fpls.2022.961658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Root system architecture (RSA) and tiller are important agronomic traits. However, the mechanisms of the IGT family genes regulate RSA and tiller development in different rice varieties remain unclear. In this study, we demonstrated that 38 rice varieties obtained from Yuanyang Hani's terraced fields with different RSA and could be classified into six groups based on the ratio of root length and width. We found a positive correlation between RSA (including root width, length, and area) and tiller number in most of rice varieties. Furthermore, the IGT family genes Deeper Rooting 1 (DRO1), LAZY1, TAC1, and qSOR1 showed different expression patterns when rice grown under irrigation and drought conditions. Moreover, the qSOR1 gene had higher levels in the roots and tillers, and accompanied with higher levels of PIN1b gene in roots when rice grown under drought environmental condition. DRO1 gene had two single nucleotide polymorphisms (SNPs) in the exon 3 sequences and showed different expression patterns in the roots and tillers of the 38 rice varieties. Overexpression of DRO1 with a deletion of exon 5 caused shorter root length, less lateral roots and lower levels of LAZY1, TAC1, and qSOR1. Further protein interaction network, microRNA targeting and co-expression analysis showed that DRO1 plays a critical role in the root and tiller development associated with auxin transport. These data suggest that the RSA and tiller development are regulated by the IGT family genes in an intricate network way, which is tightly related to rice genetic background in rice adapting to different environmental conditions.
Collapse
Affiliation(s)
- Jianping Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Lihui Jiang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Hanrui Bai
- Division of Life Sciences and Medicine, College of Life Sciences, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Yuliang Dai
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Kuixiu Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Saijie Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xiaoran Wang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Lixia Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Qijing Fu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Yanfen Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Qian Dong
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Si Yu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Meixian Wang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Haiyan Liu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Ziai Peng
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Haiyan Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Xiaoyan Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Xie He
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Yan Lei
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Yan Liang
- Yuguopu District Agricultural Comprehensive Service Center, Mengzi, China
| | - Liwei Guo
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Hongji Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Decai Yu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Yixiang Liu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Huichuan Huang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Sheng Peng
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| | - Yunlong Du
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
20
|
Gu C, Shang L, Zhang G, Wang Q, Ma Q, Hong S, Zhao Y, Yang L. Identification and Expression Analysis of NAC Gene Family in Weeping Trait of Lagerstroemia indica. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11162168. [PMID: 36015471 PMCID: PMC9413744 DOI: 10.3390/plants11162168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 05/05/2023]
Abstract
Lagerstroemia indica is a widely used ornamental plant in summer gardens because of its desirable plant shape. The weeping traits of plants are related to secondary cell wall thickness and hormone signaling. NAC (NAM-ATAF1/2-CUC2), as one of the plant-specific transcription factors, is a switch for the secondary cell wall and also involved in leaf senescence, phytohormone signaling, and other growth processes. We identified a total of 21 LiNAC genes from the transcriptome data, which we divided into 14 subgroups and 2 groups. The physicochemical characteristics of amino acids, subcellular localization, transmembrane structure, GO and KEGG enrichment, and expression patterns were also examined. The qRT-PCR analysis showed that the expressions of LiNAC8 and LiNAC13 in upright L. indica 'Shaoguifei' and weeping L. indica 'Xiariwuniang' were significantly higher from the beginning to the end of growth stage (S1-S3), and the expressions of 'Shaoguifei' were always higher than those of 'Xiariwuniang'. However, LiNAC2 showed a downward trend in S1-S3 and the relative expression level of 'Shaoguifei' was lower than that of 'Xiariwuniang'. It is hypothesized that these LiNAC genes may be involved in the regulation of weeping traits in L. indica. The results of this study provide a basis for analyzing the functions of LiNAC genes and help to explore the molecular regulatory mechanisms related to the weeping traits in L. indica.
Collapse
Affiliation(s)
- Cuihua Gu
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Linxue Shang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Guozhe Zhang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Qun Wang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Qingqing Ma
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Sidan Hong
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yu Zhao
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Correspondence: (Y.Z.); (L.Y.)
| | - Liyuan Yang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Correspondence: (Y.Z.); (L.Y.)
| |
Collapse
|
21
|
Blocking Rice Shoot Gravitropism by Altering One Amino Acid in LAZY1. Int J Mol Sci 2022; 23:ijms23169452. [PMID: 36012716 PMCID: PMC9409014 DOI: 10.3390/ijms23169452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Tiller angle is an important trait that determines plant architecture and yield in cereal crops. Tiller angle is partially controlled during gravistimulation by the dynamic re-allocation of LAZY1 (LA1) protein between the nucleus and plasma membrane, but the underlying mechanism remains unclear. In this study, we identified and characterized a new allele of LA1 based on analysis of a rice (Oryza sativa L.) spreading-tiller mutant la1G74V, which harbors a non-synonymous mutation in the predicted transmembrane (TM) domain-encoding region of this gene. The mutation causes complete loss of shoot gravitropism, leading to prostrate growth of plants. Our results showed that LA1 localizes not only to the nucleus and plasma membrane but also to the endoplasmic reticulum. Removal of the TM domain in LA1 showed spreading-tiller phenotype of plants similar to la1G74V but did not affect the plasma membrane localization; thus, making it distinct from its ortholog ZmLA1 in Zea mays. Therefore, we propose that the TM domain is indispensable for the biological function of LA1, but this domain does not determine the localization of the protein to the plasma membrane. Our study provides new insights into the LA1-mediated regulation of shoot gravitropism.
Collapse
|
22
|
Yang H, Liao H, Xu F, Zhang W, Xu B, Chen X, Zhu B, Pan W, Yang X. Integrated transcriptomic and gibberellin analyses reveal genes related to branch development in Eucalyptus urophylla. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:69-79. [PMID: 35661587 DOI: 10.1016/j.plaphy.2022.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Tree branches affect the planting density and basal scab, which act as important attributes in the yield and quality of trees. Eucalyptus urophylla is an important pioneer tree with characteristics of strong adaptability, fast growth, short rotation period, and low disease and pest pressures. In this study, we collected ZQUC14 and LDUD26 clones and compared their transcriptomes and metabolomes from mature xylem, phloem, and developing tissues to identify factors that may influence branch development. In total, 32,809 differentially expressed genes (DEGs) and 18 gibberellin (GA) hormones were detected in the five sampled tissues. Searches of the kyoto Encyclopedia of Genes and Genomes pathways identified mainly genes related to diterpenoid biosynthesis, plant MAPK signaling pathways, plant hormone signal transduction, glycerolipid metabolism, peroxisome, phenylpropanoid biosynthesis, ABC transporters, and brassinosteroid biosynthesis. Furthermore, gene expression trend analysis and weighted gene co-expression network analysis revealed 13 genes likely involved in diterpenoid biosynthesis, including five members of the 2OG-Fe(II) oxygenase superfamily, four cytochrome P450 genes, and four novel genes. In GA signal transduction pathways, 24 DEGs were found to positively regulate branch formation. These results provide a comprehensive analysis of branch development based on the transcriptome and metabolome, and help clarify the molecular mechanisms of E. urophylla.
Collapse
Affiliation(s)
- Huixiao Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Huanqin Liao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Fang Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Weihua Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Bin Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Xinyu Chen
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Baozhu Zhu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Wen Pan
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China.
| | - Xiaohui Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China.
| |
Collapse
|
23
|
Molecular Mechanisms Regulating the Columnar Tree Architecture in Apple. FORESTS 2022. [DOI: 10.3390/f13071084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The columnar apple cultivar ‘McIntosh Wijcik’ was discovered as a spontaneous mutant from the top of a ‘McIntosh’ tree in the early 1960s. ‘McIntosh Wijcik’ exhibits the columnar growth phenotype: compact and sturdy growth, short internodes, and very few lateral shoots. Classical genetic analysis revealed that the columnar growth phenotype of ‘McIntosh Wijcik’ is controlled by a single dominant gene, Co. This review focuses on the advances made toward understanding the molecular mechanisms of columnar growth in the last decade. Molecular studies have shown that an 8.2 kb insertion in the intergenic region of the Co locus is responsible for the columnar growth phenotype of ‘McIntosh Wijcik’, implying that the insertion affects the expression patterns of adjacent genes. Among the candidate genes in the Co region, the expression pattern of MdDOX-Co, putatively encoding 2-oxoglutarate-dependent dioxygenase (DOX), was found to vary between columnar and non-columnar apples. Recent studies have found three functions of MdDOX-Co: facilitating bioactive gibberellin deficiency, increasing strigolactone levels, and positively regulating abscisic acid levels. Consequently, changes in these plant hormone levels caused by the ectopic expression of MdDOX-Co in the aerial organs of ‘McIntosh Wijcik’ can lead to dwarf trees with fewer lateral branches. These findings will contribute to the breeding and cultivation of new columnar apple cultivars with improved fruit quality.
Collapse
|
24
|
Tiller Angle Control 1 Is Essential for the Dynamic Changes in Plant Architecture in Rice. Int J Mol Sci 2022; 23:ijms23094997. [PMID: 35563391 PMCID: PMC9105778 DOI: 10.3390/ijms23094997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Plant architecture is dynamic as plants develop. Although many genes associated with specific plant architecture components have been identified in rice, genes related to underlying dynamic changes in plant architecture remain largely unknown. Here, we identified two highly similar recombinant inbred lines (RILs) with different plant architecture: RIL-Dynamic (D) and RIL-Compact (C). The dynamic plant architecture of RIL-D is characterized by ‘loosetiller angle (tillering stage)–compact (heading stage)–loosecurved stem (maturing stage)’ under natural long-day (NLD) conditions, and ‘loosetiller angle (tillering and heading stages)–loosetiller angle and curved stem (maturing stage)’ under natural short-day (NSD) conditions, while RIL-C exhibits a compact plant architecture both under NLD and NSD conditions throughout growth. The candidate locus was mapped to the chromosome 9 tail via the rice 8K chip assay and map-based cloning. Sequencing, complementary tests, and gene knockout tests demonstrated that Tiller Angle Control 1 (TAC1) is responsible for dynamic plant architecture in RIL-D. Moreover, TAC1 positively regulates loose plant architecture, and high TAC1 expression cannot influence the expression of tested tiller-angle-related genes. Our results reveal that TAC1 is necessary for the dynamic changes in plant architecture, which can guide improvements in plant architecture during the modern super rice breeding.
Collapse
|
25
|
Moulia B, Badel E, Bastien R, Duchemin L, Eloy C. The shaping of plant axes and crowns through tropisms and elasticity: an example of morphogenetic plasticity beyond the shoot apical meristem. THE NEW PHYTOLOGIST 2022; 233:2354-2379. [PMID: 34890051 DOI: 10.1111/nph.17913] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Shoot morphogenetic plasticity is crucial to the adaptation of plants to their fluctuating environments. Major insights into shoot morphogenesis have been compiled studying meristems, especially the shoot apical meristem (SAM), through a methodological effort in multiscale systems biology and biophysics. However, morphogenesis at the SAM is robust to environmental changes. Plasticity emerges later on during post-SAM development. The purpose of this review is to show that multiscale systems biology and biophysics is insightful for the shaping of the whole plant as well. More specifically, we review the shaping of axes and crowns through tropisms and elasticity, combining the recent advances in morphogenetic control using physical cues and by genes. We focus mostly on land angiosperms, but with growth habits ranging from small herbs to big trees. We show that generic (universal) morphogenetic processes have been identified, revealing feedforward and feedback effects of global shape on the local morphogenetic process. In parallel, major advances have been made in the analysis of the major genes involved in shaping axes and crowns, revealing conserved genic networks among angiosperms. Then, we show that these two approaches are now starting to converge, revealing exciting perspectives.
Collapse
Affiliation(s)
- Bruno Moulia
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - Eric Badel
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - Renaud Bastien
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
- INSERM U1284, Center for Research and Interdisciplinarity (CRI), Université de Paris, F-75004, Paris, France
| | - Laurent Duchemin
- Physique et Mécanique des Milieux Hétérogenes, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, F-75005, Paris, France
| | - Christophe Eloy
- Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, F-13013, Marseille, France
| |
Collapse
|
26
|
Kunita I, Morita MT, Toda M, Higaki T. A Three-Dimensional Scanning System for Digital Archiving and Quantitative Evaluation of Arabidopsis Plant Architectures. PLANT & CELL PHYSIOLOGY 2021; 62:1975-1982. [PMID: 34021582 PMCID: PMC8711699 DOI: 10.1093/pcp/pcab068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/28/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
A plant's architecture contributes to its ability to acquire resources and reduce mechanical load. Arabidopsis thaliana is the most common model plant in molecular biology, and there are several mutants and transgenic lines with modified plant architecture regulation, such as lazy1 mutants, which have reversed angles of lateral branches. Although some phenotyping methods have been used in larger agricultural plants, limited suitable methods are available for three-dimensional reconstruction of Arabidopsis, which is smaller and has more uniform surface textures and structures. An inexpensive, easily adopted three-dimensional reconstruction system that can be used for Arabidopsis is needed so that researchers can view and quantify morphological changes over time. We developed a three-dimensional reconstruction system for A. thaliana using the visual volume intersection method, which uses a fixed camera to capture plant images from multiple directions while the plant slowly rotates. We then developed a script to autogenerate stack images from the obtained input movie and visualized the plant architecture by rendering the output stack image using the general bioimage analysis software. We successfully three-dimensionally and time-sequentially scanned wild-type and lazy1 mutant A. thaliana plants and measured the angles of the lateral branches. This non-contact, non-destructive method requires no specialized equipment and is space efficient, inexpensive and easily adopted by Arabidopsis researchers. Consequently, this system will promote three- and four-dimensional phenotyping of this model plant, and it can be used in combination with molecular genetics to further elucidate the molecular mechanisms that regulate Arabidopsis architecture.
Collapse
Affiliation(s)
- Itsuki Kunita
- Faculty of Engineering, University of the Ryukyus, Senbaru 1, Nishihara-cho, Nakagami-gun, Okinawa 903-0213, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Masashi Toda
- Center for Management of Information Technologies, Kumamoto University, Kurokami 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
| | | |
Collapse
|
27
|
Li D, Zhao M, Yu X, Zhao L, Xu Z, Han X. Over-Expression of Rose RrLAZY1 Negatively Regulates the Branch Angle of Transgenic Arabidopsis Inflorescence. Int J Mol Sci 2021; 22:ijms222413664. [PMID: 34948467 PMCID: PMC8709306 DOI: 10.3390/ijms222413664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Branch angle is a key shoot architecture trait that strongly influences the ornamental and economic value of garden plants. However, the mechanism underlying the control of branch angle, an important aspect of tree architecture, is far from clear in roses. In the present study, we isolated the RrLAZY1 gene from the stems of Rosa rugosa ‘Zilong wochi’. Sequence analysis showed that the encoded RrLAZY1 protein contained a conserved GΦL (A/T) IGT domain, which belongs to the IGT family. Quantitative real-time PCR (qRT-PCR) analyses revealed that RrLAZY1 was expressed in all tissues and that expression was highest in the stem. The RrLAZY1 protein was localized in the plasma membrane. Based on a yeast two-hybrid assay and bimolecular fluorescence complementation experiments, the RrLAZY1 protein was found to interact with auxin-related proteins RrIAA16. The over-expression of the RrLAZY1 gene displayed a smaller branch angle in transgenic Arabidopsis inflorescence and resulted in changes in the expression level of genes related to auxin polar transport and signal transduction pathways. This study represents the first systematic analysis of the LAZY1 gene family in R. rugosa. The results of this study will provide a theoretical basis for the improvement of rose plant types and molecular breeding and provide valuable information for studying the regulation mechanism of branch angle in other woody plants.
Collapse
Affiliation(s)
| | | | | | | | - Zongda Xu
- Correspondence: (Z.X.); (X.H.); Tel.: +86-0538-824-2216 (Z.X. & X.H.)
| | - Xu Han
- Correspondence: (Z.X.); (X.H.); Tel.: +86-0538-824-2216 (Z.X. & X.H.)
| |
Collapse
|
28
|
Zeng RF, Zhou H, Fu LM, Yan Z, Ye LX, Hu SF, Gan ZM, Ai XY, Hu CG, Zhang JZ. Two citrus KNAT-like genes, CsKN1 and CsKN2, are involved in the regulation of spring shoot development in sweet orange. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7002-7019. [PMID: 34185082 DOI: 10.1093/jxb/erab311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/26/2021] [Indexed: 05/21/2023]
Abstract
Shoot-tip abortion is a very common phenomenon in some perennial woody plants and it affects the height, architecture, and branch orientation of trees; however, little is currently known about the underlying mechanisms. In this study, we identified a gene in sweet orange (Citrus sinensis) encoding a KNAT-like protein (CsKN1) and found high expression in the shoot apical meristem (SAM). Overexpression of CsKN1 in transgenic plants prolonged the vegetative growth of SAMs, whilst silencing resulted in either the loss or inhibition of SAMs. Yeast two-hybrid analysis revealed that CsKN1 interacted with another citrus KNAT-like protein (CsKN2), and overexpression of CsKN2 in lemon and tobacco caused an extreme multiple-meristem phenotype. Overexpression of CsKN1 and CsKN2 in transgenic plants resulted in the differential expression of numerous genes related to hormone biosynthesis and signaling. Yeast one-hybrid analysis revealed that the CsKN1-CsKN2 complex can bind to the promoter of citrus floral meristem gene LEAFY (CsLFY) and inhibit its expression. These results indicated that CsKN1 might prolong the vegetative growth period of SAMs by delaying flowering. In addition, an ethylene-responsive factor (CsERF) was found to bind to the CsKN1 promoter and suppresses its transcription. Overexpression of CsERF in Arabidopsis increased the contents of ethylene and reactive oxygen species, which might induce the occurrence of shoot-tip abscission. On the basis of our results, we conclude that CsKN1 and CsKN2 might work cooperatively to regulate the shoot-tip abscission process in spring shoots of sweet orange.
Collapse
Affiliation(s)
- Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Li-Ming Fu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhen Yan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Li-Xia Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Si-Fan Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Yan Ai
- Institute of Pomology and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
29
|
Montesinos Á, Dardick C, Rubio-Cabetas MJ, Grimplet J. Polymorphisms and gene expression in the almond IGT family are not correlated to variability in growth habit in major commercial almond cultivars. PLoS One 2021; 16:e0252001. [PMID: 34644299 PMCID: PMC8513883 DOI: 10.1371/journal.pone.0252001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Almond breeding programs aimed at selecting cultivars adapted to intensive orchards have recently focused on the optimization of tree architecture. This multifactorial trait is defined by numerous components controlled by processes such as hormonal responses, gravitropism and light perception. Gravitropism sensing is crucial to control the branch angle and therefore, the tree habit. A gene family, denominated IGT family after a shared conserved domain, has been described as involved in the regulation of branch angle in several species, including rice and Arabidopsis, and even in fruit trees like peach. Here we identified six members of this family in almond: LAZY1, LAZY2, TAC1, DRO1, DRO2, IGT-like. After analyzing their protein sequences in forty-one almond cultivars and wild species, little variability was found, pointing a high degree of conservation in this family. To our knowledge, this is the first effort to analyze the diversity of IGT family proteins in members of the same tree species. Gene expression was analyzed in fourteen cultivars of agronomical interest comprising diverse tree habit phenotypes. Only LAZY1, LAZY2 and TAC1 were expressed in almond shoot tips during the growing season. No relation could be established between the expression profile of these genes and the variability observed in the tree habit. However, some insight has been gained in how LAZY1 and LAZY2 are regulated, identifying the IPA1 almond homologues and other transcription factors involved in hormonal responses as regulators of their expression. Besides, we have found various polymorphisms that could not be discarded as involved in a potential polygenic origin of regulation of architectural phenotypes. Therefore, we have established that neither the expression nor the genetic polymorphism of IGT family genes are correlated to diversity of tree habit in currently commercialized almond cultivars, with other gene families contributing to the variability of these traits.
Collapse
Affiliation(s)
- Álvaro Montesinos
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Hortofruticultura, Gobierno de Aragón, Avda. Montañana, Zaragoza, Spain
- Instituto Agroalimentario de Aragón–IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet, Zaragoza, Spain
| | - Chris Dardick
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States of America
| | - María José Rubio-Cabetas
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Hortofruticultura, Gobierno de Aragón, Avda. Montañana, Zaragoza, Spain
- Instituto Agroalimentario de Aragón–IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet, Zaragoza, Spain
| | - Jérôme Grimplet
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Hortofruticultura, Gobierno de Aragón, Avda. Montañana, Zaragoza, Spain
- Instituto Agroalimentario de Aragón–IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet, Zaragoza, Spain
| |
Collapse
|
30
|
Yan Y, Shi Q, Gong B. S-nitrosoglutathione Reductase-Mediated Nitric Oxide Affects Axillary Buds Outgrowth of Solanum lycopersicum L. by Regulating Auxin and Cytokinin Signaling. PLANT & CELL PHYSIOLOGY 2021; 62:458-471. [PMID: 33493306 DOI: 10.1093/pcp/pcab002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Auxin and cytokinin are two kinds of important phytohormones that mediate outgrowth of axillary buds in plants. How nitric oxide and its regulator of S-nitrosoglutathione reductase (GSNOR) take part in auxin and cytokinin signaling for controlling axillary buds outgrowth remains elusive. We investigated the roles of GSNOR during tomato axillary bud outgrowth by using physiological, biochemical and genetic approaches. GSNOR negatively regulated NO homeostasis. Suppression of GSNOR promoted axillary bud outgrowth by inhibiting the expression of FZY in both apical and axillary buds. Meanwhile, AUX1 and PIN1 were down-regulated in apical buds but up-regulated in axillary buds in GSNOR-suppressed plants. Thus, reduced IAA accumulation was shown in both apical buds and axillary buds of GSNOR-suppressed plants. GSNOR-mediated changes of NO and auxin affected cytokinin biosynthesis, transport, and signaling. And a decreased ratio of auxin: cytokinin was shown in axillary buds of GSNOR-suppressed plants, leading to bud dormancy breaking. We also found that the original NO signaling was generated by nitrate reductase (NR) catalyzing nitrate as substrate. NR-mediated NO reduced the GSNOR activity through S-nitrosylation of Cys-10, then induced a further NO burst, which played the above roles to promote axillary buds outgrowth. Together, GSNOR-mediated NO played important roles in controlling axillary buds outgrowth by altering the homeostasis and signaling of auxin and cytokinin in tomato plants.
Collapse
Affiliation(s)
- Yanyan Yan
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, P.R. China
| | - Qinghua Shi
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, P.R. China
| | - Biao Gong
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, P.R. China
| |
Collapse
|
31
|
Yang H, Xu F, Liao H, Pan W, Zhang W, Xu B, Yang X. Transcriptome and metabolite analysis related to branch development in two genotypes of Eucalyptus urophylla. Mol Genet Genomics 2021; 296:1071-1083. [PMID: 34159440 DOI: 10.1007/s00438-021-01803-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/11/2021] [Indexed: 01/03/2023]
Abstract
Branching in long-lived plants can cause scarring at the base and affect wood density, which greatly inhibits wood yield and quality. Eucalyptus urophylla is one of the most important commercial forest tree species in South China, with diverse branch number and branch angles under different genetic backgrounds. However, the main elements and regulatory mechanisms associated with different branching traits in E. urophylla remain unclear. To identify the factors that may influence branching, the transcriptome and metabolome were performed on the shoot apex (SA), lateral shoot apex (LSA), and stem segment at the 5th axillary bud from the shoot apex (S1) in lines ZQUC14 (A) and LDUD26 (B), with A exhibiting a smaller Ba than B. A total of 307.3 million high-quality clean reads and nine hormones were identified from six libraries. Several differentially expressed regulatory factors were identified between the two genotypes of E. urophylla. The Kyoto Encyclopedia of Genes and Genomes pathways were enriched in plant hormone signal transduction, plant hormone biosynthesis and their transport pathways. Furthermore, gene expression pattern analysis identified genes that were significantly downregulated or upregulated in S1 relative to the SA and LSA segments, and the plant hormone signal transduction pathway was constructed to explain branching development. This study clarified the main plant hormones and genes underlying branch numbers and angles of E. urophylla, confirmed that ABA and SA could promote a larger branch angle and smaller branch number, while IAA has an opposite function. Numbers of key candidate genes involved in plant hormone signal transduction were found in the positive regulation of branch formation. These novel findings should aid molecular breeding of branching in Eucalyptus.
Collapse
Affiliation(s)
- Huixiao Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Fang Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Huanqin Liao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Wen Pan
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Weihua Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Bin Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Xiaohui Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.
| |
Collapse
|
32
|
Sun X, Wen C, Xu J, Wang Y, Zhu J, Zhang Y. The apple columnar gene candidate MdCoL and the AP2/ERF factor MdDREB2 positively regulate ABA biosynthesis by activating the expression of MdNCED6/9. TREE PHYSIOLOGY 2021; 41:1065-1076. [PMID: 33238313 DOI: 10.1093/treephys/tpaa162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
MdCoL, which encodes a putative 2OG-Fe(II) oxygenase, is a strong candidate gene for control of the columnar growth phenotype in apple. However, the mechanism by which MdCoL produces the columnar trait is unclear. Here, we show that MdCoL influences abscisic acid (ABA) biosynthesis through its interactions with the MdDREB2 transcription factor. Expression analyses and transgenic tobacco studies have confirmed that MdCoL is likely a candidate for control of the columnar phenotype. Furthermore, the ABA level in columnar apple trees is significantly higher than that in standard apple trees. A protein interaction experiment has showed that MdCoL interacts with MdDREB2. Transient expression and electrophoretic mobility shift assays have demonstrated that MdDREB2 binds directly to the DRE motif in the MdNCED6 and MdNCED9 (MdNCED6/9) gene promoters, thereby activating the transcription of these ABA biosynthesis genes. In addition, a higher ABA content has been detected following co-overexpression of MdCoL-MdDREB2 when compared with the overexpression of MdCoL or MdDREB2 alone. Taken together, our results indicate that an interaction between MdCoL and MdDREB2 promotes the expression of MdNCED6/9 and increases ABA levels, a phenomenon that may underlie the columnar growth phenotype in apple.
Collapse
Affiliation(s)
- Xin Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| | - Cuiping Wen
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jihua Xu
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| | - Yihe Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| |
Collapse
|
33
|
Zhuo X, Zheng T, Li S, Zhang Z, Zhang M, Zhang Y, Ahmad S, Sun L, Wang J, Cheng T, Zhang Q. Identification of the PmWEEP locus controlling weeping traits in Prunus mume through an integrated genome-wide association study and quantitative trait locus mapping. HORTICULTURE RESEARCH 2021; 8:131. [PMID: 34059642 PMCID: PMC8167129 DOI: 10.1038/s41438-021-00573-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/20/2021] [Accepted: 04/07/2021] [Indexed: 05/20/2023]
Abstract
Weeping Prunus mume (mei) has long been cultivated in East Asia for its specific ornamental value. However, little is known about the regulatory mechanism of the weeping trait in mei, which limits molecular breeding for the improvement of weeping-type cultivars. Here, we quantified the weeping trait in mei using nested phenotyping of 214 accessions and 342 F1 hybrids. Two major associated loci were identified from the genome-wide association study (GWAS), which was conducted using 3,014,409 single nucleotide polymorphisms (SNPs) derived from resequencing, and 8 QTLs and 55 epistatic loci were identified from QTL mapping using 7,545 specific lengths amplified fragment (SLAF) markers. Notably, an overlapping PmWEEP major QTL was fine mapped within a 0.29 Mb region on chromosome 7 (Pa7), and a core SNP locus closely associated with the weeping trait was screened and validated. Furthermore, a total of 22 genes in the PmWEEP QTL region were expressed in weeping or upright mei based on RNA-seq analysis. Among them, only a novel gene (Pm024213) containing a thioredoxin (Trx) domain was found to be close to the core SNP and specifically expressed in buds and branches of weeping mei. Co-expression analysis of Pm024213 showed that most of the related genes were involved in auxin and lignin biosynthesis. These findings provide insights into the regulatory mechanism of the weeping trait and effective molecular markers for molecular-assisted breeding in Prunus mume.
Collapse
Affiliation(s)
- Xiaokang Zhuo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China.
| | - Suzhen Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Zhiyong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Yichi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Sagheer Ahmad
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Lidan Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
34
|
Moulia B, Douady S, Hamant O. Fluctuations shape plants through proprioception. Science 2021; 372:372/6540/eabc6868. [PMID: 33888615 DOI: 10.1126/science.abc6868] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Plants constantly experience fluctuating internal and external mechanical cues, ranging from nanoscale deformation of wall components, cell growth variability, nutating stems, and fluttering leaves to stem flexion under tree weight and wind drag. Developing plants use such fluctuations to monitor and channel their own shape and growth through a form of proprioception. Fluctuations in mechanical cues may also be actively enhanced, producing oscillating behaviors in tissues. For example, proprioception through leaf nastic movements may promote organ flattening. We propose that fluctuation-enhanced proprioception allows plant organs to sense their own shapes and behave like active materials with adaptable outputs to face variable environments, whether internal or external. Because certain shapes are more amenable to fluctuations, proprioception may also help plant shapes to reach self-organized criticality to support such adaptability.
Collapse
Affiliation(s)
- Bruno Moulia
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France.
| | - Stéphane Douady
- Laboratoire Matières et Systèmes Complexes (MSC), Université de Paris, CNRS, 75205 Paris Cedex 13, France.
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69007 Lyon, France.
| |
Collapse
|
35
|
Tian Z, Wang JW, Li J, Han B. Designing future crops: challenges and strategies for sustainable agriculture. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1165-1178. [PMID: 33258137 DOI: 10.1111/tpj.15107] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 05/26/2023]
Abstract
Crop production is facing unprecedented challenges. Despite the fact that the food supply has significantly increased over the past half-century, ~8.9 and 14.3% people are still suffering from hunger and malnutrition, respectively. Agricultural environments are continuously threatened by a booming world population, a shortage of arable land, and rapid changes in climate. To ensure food and ecosystem security, there is a need to design future crops for sustainable agriculture development by maximizing net production and minimalizing undesirable effects on the environment. The future crops design projects, recently launched by the National Natural Science Foundation of China and Chinese Academy of Sciences (CAS), aim to develop a roadmap for rapid design of customized future crops using cutting-edge technologies in the Breeding 4.0 era. In this perspective, we first introduce the background and missions of these projects. We then outline strategies to design future crops, such as improvement of current well-cultivated crops, de novo domestication of wild species and redomestication of current cultivated crops. We further discuss how these ambitious goals can be achieved by the recent development of new integrative omics tools, advanced genome-editing tools and synthetic biology approaches. Finally, we summarize related opportunities and challenges in these projects.
Collapse
Affiliation(s)
- Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- ShanghaiTech University, Shanghai, 200031, China
| | - Jiayang Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Han
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- ShanghaiTech University, Shanghai, 200031, China
- National Center for Gene Research, Shanghai, 200233, China
| |
Collapse
|
36
|
Li L, Zhang Y, Zheng T, Zhuo X, Li P, Qiu L, Liu W, Wang J, Cheng T, Zhang Q. Comparative gene expression analysis reveals that multiple mechanisms regulate the weeping trait in Prunus mume. Sci Rep 2021; 11:2675. [PMID: 33514804 PMCID: PMC7846751 DOI: 10.1038/s41598-021-81892-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/13/2021] [Indexed: 11/23/2022] Open
Abstract
Prunus mume (also known as Mei) is an important ornamental plant that is popular with Asians. The weeping trait in P. mume has attracted the attention of researchers for its high ornamental value. However, the formation of the weeping trait of woody plants is a complex process and the molecular basis of weeping stem development is unclear. Here, the morphological and histochemical characteristics and transcriptome profiles of upright and weeping stems from P. mume were studied. Significant alterations in the histochemical characteristics of upright and weeping stems were observed, and the absence of phloem fibres and less xylem in weeping stems might be responsible for their inability to resist gravity and to grow downward. Transcriptome analysis showed that differentially expressed genes (DEGs) were enriched in phenylpropanoid biosynthesis and phytohormone signal transduction pathways. To investigate the differential responses to hormones, upright and weeping stems were treated with IAA (auxin) and GA3 (gibberellin A3), respectively, and the results revealed that weeping stems had a weaker IAA response ability and reduced upward bending angles than upright stems. On the contrary, weeping stems had increased upward bending angles than upright stems with GA3 treatment. Compared to upright stems, interestingly, DEGs associated with diterpenoid biosynthesis and phenylpropanoid biosynthesis were significantly enriched after being treated with IAA, and expression levels of genes associated with phenylpropanoid biosynthesis, ABC transporters, glycosylphosphatidylinositol (GPI)—anchor biosynthesis were altered after being treated with GA3 in weeping stems. Those results reveal that multiple molecular mechanisms regulate the formation of weeping trait in P. mume, which lays a theoretical foundation for the cultivation of new varieties.
Collapse
Affiliation(s)
- Lulu Li
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yichi Zhang
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Xiaokang Zhuo
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ping Li
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Like Qiu
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Weichao Liu
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
37
|
Nakaso Y, Arimoto S, Kawaguchi K, Muto T, Ueda H. Mechanical measurement of gravitropic bending force in pea sprouts. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:475-480. [PMID: 33850437 PMCID: PMC8034668 DOI: 10.5511/plantbiotechnology.20.1201b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/01/2020] [Indexed: 05/25/2023]
Abstract
Environmental stimuli such as gravity and light modify the plant development to optimize overall architecture. Many physiological and molecular biological studies of gravitropism and phototropism have been carried out. However, sufficient analysis has not been performed from a mechanical point of view. If the biological and mechanical characteristics of gravitropism and phototropism can be accurately grasped, then controlling the environmental conditions would be helpful to control the growth of plants into a specific shape. In this study, to clarify the mechanical characteristics of gravitropism, we examined the transverse bending moment occurring in cantilevered pea (Pisum sativum) sprouts in response to gravistimulation. The force of the pea sprouts lifting themselves during gravitropism was measured using an electronic balance. The gravitropic bending force of the pea sprouts was in the order of 100 Nmm in the conditions set for this study, although there were wide variations due to individual differences.
Collapse
Affiliation(s)
- Yosuke Nakaso
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Sayaka Arimoto
- Nikken Sekkei Ltd., 2-18-3 Iidabashi, Chiyoda-ku, Tokyo 102-0072, Japan
| | - Ken’ichi Kawaguchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Takara Muto
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haruko Ueda
- Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501, Japan
| |
Collapse
|
38
|
Guo W, Chen L, Herrera-Estrella L, Cao D, Tran LSP. Altering Plant Architecture to Improve Performance and Resistance. TRENDS IN PLANT SCIENCE 2020; 25:1154-1170. [PMID: 32595089 DOI: 10.1016/j.tplants.2020.05.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
High-stress resistance and yield are major goals in crop cultivation, which can be addressed by modifying plant architecture. Significant progress has been made in recent years to understand how plant architecture is controlled under various growth conditions, recognizing the central role phytohormones play in response to environmental stresses. miRNAs, transcription factors, and other associated proteins regulate plant architecture, mainly via the modulation of hormone homeostasis and signaling. To generate crop plants of ideal architecture, we propose simultaneous editing of multiple genes involved in the regulatory networks associated with plant architecture as a feasible strategy. This strategy can help to address the need to increase grain yield and/or stress resistance under the pressures of the ever-increasing world population and climate change.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Luis Herrera-Estrella
- The Unidad de Genomica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico; Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, TX, USA
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
39
|
Mao T, Zhu H, Liu Y, Bao M, Zhang J, Fu Q, Xiong C, Zhang J. Weeping candidate genes screened using comparative transcriptomic analysis of weeping and upright progeny in an F1 population of Prunus mume. PHYSIOLOGIA PLANTARUM 2020; 170:318-334. [PMID: 32754906 PMCID: PMC7693177 DOI: 10.1111/ppl.13179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/07/2020] [Accepted: 08/02/2020] [Indexed: 05/15/2023]
Abstract
Weeping is a specific plant architecture with high ornamental value. Despite the considerable importance of the weeping habit to landscaping applications and knowledge of plant architecture biology, little is known regarding the underlying molecular mechanisms. In this study, growth and phytohormone content were analyzed among the progeny of different branch types in an F1 mapping population of Prunus mume with varying plant architecture. Bulked segregant RNA sequencing was conducted to compare differences among progeny at a transcriptional level. The weeping habit appears to be a complex process regulated by a series of metabolic pathways, with photosynthesis and flavonoid biosynthesis highly enriched in differentially expressed genes between weeping and upright progeny. Based on functional annotation and homologous analyses, we identified 30 candidate genes related to weeping that merit further analysis, including 10 genes related to IAA and GA3 biosynthesis, together with 6 genes related to secondary branch growth. The results of this study will facilitate further studies of the molecular mechanisms underlying the weeping habit in P. mume.
Collapse
Affiliation(s)
- Tian‐Yu Mao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Huan‐Huan Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Yao‐Yao Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Man‐Zhu Bao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Jun‐Wei Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Qiang Fu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Cai‐Feng Xiong
- Moshan Administrative OfficeWuhan East Lake Eco‐tourism Scenic SpotWuhanChina
| | - Jie Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
40
|
Opposing influences of TAC1 and LAZY1 on Lateral Shoot Orientation in Arabidopsis. Sci Rep 2020; 10:6051. [PMID: 32269265 PMCID: PMC7142156 DOI: 10.1038/s41598-020-62962-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
TAC1 and LAZY1 are members of a gene family that regulates lateral shoot orientation in plants. TAC1 promotes outward orientations in response to light, while LAZY1 promotes upward shoot orientations in response to gravity via altered auxin transport. We performed genetic, molecular, and biochemical assays to investigate possible interactions between these genes. In Arabidopsis they were expressed in similar tissues and double mutants revealed the wide-angled lazy1 branch phenotype, indicating it is epistatic to the tac1 shoot phenotype. Surprisingly, the lack of TAC1 did not influence gravitropic shoot curvature responses. Combined, these results suggest TAC1 might negatively regulate LAZY1 to promote outward shoot orientations. However, additional results revealed that TAC1- and LAZY1 influence on shoot orientation is more complex than a simple direct negative regulatory pathway. Transcriptomes of Arabidopsis tac1 and lazy1 mutants compared to wild type under normal and gravistimulated conditions revealed few overlapping differentially expressed genes. Overexpression of each gene did not result in major branch angle differences. Shoot tip hormone levels were similar between tac1, lazy1, and Col, apart from exceptionally elevated levels of salicylic acid in lazy1. The data presented here provide a foundation for future study of TAC1 and LAZY1 regulation of shoot architecture.
Collapse
|
41
|
Saveleva N, Lyzhin A, Yushkov A, Zemisov A, Borzykh N. Screening of apple genotypes with the columnar growth habit using control markers. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202503007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One of the approaches to intensify horticulture is to introduce cultivars with an unusual canopy into commercial production. Such plants can be columnar Apple trees. In modern breeding, there is a trend to create cultivars with a compact canopy. In such orchards, it is reduced to a minimum the cost for pruning, harvesting, and protection against pest and disease, which are the main expenses in apple orchards with a traditional canopy. The use of molecular markers linked to columnar growth habit allows us to identify a physiological sign at an early stage of growth: in the juvenile period. The assessment of apple cultivars and hybrids was carried out at the I. V. Michurin Federal Scientific Centre in 2015-2018. Four markers were used in the research: Mdo. chr 10.12, C18470-25831, 29f1, and jwlr to identify plants with the columnar growth habit gene (Co). The use of various DNA markers made it possible to establish that not all of them are well linked to the Co gene. In the research process, primers were identified for markers 29f1 and jwlr, which reliably allowed us to identify plants with columnar growth habit at the juvenile stage, which will significantly reduce the breeding process.
Collapse
|
42
|
Roeder AH, Jill Harrison C. Editorial overview: Scaling development through the plant tree of life. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:A1-A4. [PMID: 30850085 DOI: 10.1016/j.pbi.2019.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Adrienne Hk Roeder
- Weill Institute for Cell and Molecular Biology and Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|