1
|
Zheng Y, Huang W, Josiah RT, Clemence T, Vernon SC, Enklebert T, Deng X, Zheng Z. Genomic Analysis of ' Candidatus Liberibacter africanus' Strain from Zimbabwe Reveals Unique Virulence and Prophage Characteristics Compared with ' Ca. L. asiaticus'. PLANT DISEASE 2025; 109:31-36. [PMID: 39146002 DOI: 10.1094/pdis-05-24-1141-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Citrus Huanglongbing (HLB) is caused by the phloem-limited α-proteobacterium 'Candidatus Liberibacter spp.', among which 'Ca. L. africanus' (CLaf) has posed a significant threat to citrus production in Africa for nearly a century. CLaf is closely related to the globally prevalent 'Ca. L. asiaticus' (CLas), whereas little is known about the virulence of CLaf, primarily because of limited genome resources. In this study, we completed the whole-genome assembly and annotation of the CLaf strain Zim (from Zimbabwe). Compared with CLas, a total of 102 CLaf unique genes were identified, including 14 potential Sec-dependent effector (SDE) genes, 29 phage-associated genes, and 59 genes with hypothetical function. Among 14 SDEs, V9J15_03810 was able to induce a significant hypersensitive response in Nicotiana benthamiana, indicating its potential as a virulence factor for CLaf. Genome analysis showed that the CLaf strain Zim genome harbored a complete prophage region (named P-Zim-1, 42,208 bp). P-Zim-1 retained two immunosuppressive peroxidase genes (V9J15_02125 and V9J15_02130) homologous to CLas prophage SC1/SC2, whereas the lysogen-associated genes encoding integrase (V9J15_01970) and repressor (V9J15_02080) were homologous to the prophage of 'Ca. L. solanacearum', the causal agent of potato zebra chip disease. In addition, P-Zim-1 carried a novel CRISPR/Cas system, including a CRISPR array (located within V9J15_02040, ranging from 443,643 to 443,897) and five CRISPR-related Cas proteins (V9J15_02005, V9J15_02010, V9J15_02015, V9J15_02025, and V9J15_02035). This study first characterized the unique genomic feature of CLaf related to virulence and prophage, which will facilitate future research on CLaf biology and African HLB management.
Collapse
Affiliation(s)
- Yongqin Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenxia Huang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | | | | | | | | | - Xiaoling Deng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zheng Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Jones DAB, Rybak K, Hossain M, Bertazzoni S, Williams A, Tan KC, Phan HTT, Hane JK. Repeat-induced point mutations driving Parastagonospora nodorum genomic diversity are balanced by selection against non-synonymous mutations. Commun Biol 2024; 7:1614. [PMID: 39627497 PMCID: PMC11615325 DOI: 10.1038/s42003-024-07327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
Parastagonospora nodorum is necrotrophic fungal pathogen of wheat with significant genomic resources. Population-level pangenome data for 173 isolates, of which 156 were from Western Australia (WA) and 17 were international, were examined for overall genomic diversity and effector gene content. A heterothallic core population occurred across all regions of WA, with asexually-reproducing clonal clusters in dryer northern regions. High potential for SNP diversity in the form of repeat-induced point mutation (RIP)-like transitions, was observed across the genome, suggesting widespread 'RIP-leakage' from transposon-rich repetitive sequences into non-repetitive regions. The strong potential for RIP-like mutations was balanced by negative selection against non-synonymous SNPs, that was observed within protein-coding regions. Protein isoform profiles of known effector loci (SnToxA, SnTox1, SnTox3, SnTox267, and SnTox5) indicated low-levels of non-synonymous and high-levels of silent RIP-like mutations. Effector predictions identified 186 candidate secreted predicted effector proteins (CSEPs), 69 of which had functional annotations and included confirmed effectors. Pangenome-based effector isoform profiles across WA were distinct from global isolates and were conserved relative to population structure, and may enable new approaches for monitoring crop disease pathotypes.
Collapse
Affiliation(s)
- Darcy A B Jones
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Kasia Rybak
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Mohitul Hossain
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Stefania Bertazzoni
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Angela Williams
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Kar-Chun Tan
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Huyen T T Phan
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - James K Hane
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia.
| |
Collapse
|
3
|
Kusch S, Frantzeskakis L, Lassen BD, Kümmel F, Pesch L, Barsoum M, Walden KD, Panstruga R. A fungal plant pathogen overcomes mlo-mediated broad-spectrum disease resistance by rapid gene loss. THE NEW PHYTOLOGIST 2024; 244:962-979. [PMID: 39155769 DOI: 10.1111/nph.20063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024]
Abstract
Hosts and pathogens typically engage in a coevolutionary arms race. This also applies to phytopathogenic powdery mildew fungi, which can rapidly overcome plant resistance and perform host jumps. Using experimental evolution, we show that the powdery mildew pathogen Blumeria hordei is capable of breaking the agriculturally important broad-spectrum resistance conditioned by barley loss-of-function mlo mutants. Partial mlo virulence of evolved B. hordei isolates is correlated with a distinctive pattern of adaptive mutations, including small-sized (c. 8-40 kb) deletions, of which one is linked to the de novo insertion of a transposable element. Occurrence of the mutations is associated with a transcriptional induction of effector protein-encoding genes that is absent in mlo-avirulent isolates on mlo mutant plants. The detected mutational spectrum comprises the same loci in at least two independently isolated mlo-virulent isolates, indicating convergent multigenic evolution. The mutational events emerged in part early (within the first five asexual generations) during experimental evolution, likely generating a founder population in which incipient mlo virulence was later stabilized by additional events. This work highlights the rapid dynamic genome evolution of an obligate biotrophic plant pathogen with a transposon-enriched genome.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Lamprinos Frantzeskakis
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Birthe D Lassen
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Florian Kümmel
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Lina Pesch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Mirna Barsoum
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Kim D Walden
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| |
Collapse
|
4
|
Skiadas P, Riera Vidal S, Dommisse J, Mendel MN, Elberse J, Van den Ackerveken G, de Jonge R, Seidl MF. Pangenome graph analysis reveals extensive effector copy-number variation in spinach downy mildew. PLoS Genet 2024; 20:e1011452. [PMID: 39453979 PMCID: PMC11540230 DOI: 10.1371/journal.pgen.1011452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/06/2024] [Accepted: 10/07/2024] [Indexed: 10/27/2024] Open
Abstract
Plant pathogens adapt at speeds that challenge contemporary disease management strategies like the deployment of disease resistance genes. The strong evolutionary pressure to adapt, shapes pathogens' genomes, and comparative genomics has been instrumental in characterizing this process. With the aim to capture genomic variation at high resolution and study the processes contributing to adaptation, we here leverage an innovative, multi-genome method to construct and annotate the first pangenome graph of an oomycete plant pathogen. We expand on this approach by analysing the graph and creating synteny based single-copy orthogroups for all genes. We generated telomere-to-telomere genome assemblies of six genetically diverse isolates of the oomycete pathogen Peronospora effusa, the economically most important disease in cultivated spinach worldwide. The pangenome graph demonstrates that P. effusa genomes are highly conserved, both in chromosomal structure and gene content, and revealed the continued activity of transposable elements which are directly responsible for 80% of the observed variation between the isolates. While most genes are generally conserved, virulence related genes are highly variable between the isolates. Most of the variation is found in large gene clusters resulting from extensive copy-number expansion. Pangenome graph-based discovery can thus be effectively used to capture genomic variation at exceptional resolution, thereby providing a framework to study the biology and evolution of plant pathogens.
Collapse
Affiliation(s)
- Petros Skiadas
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
- Translational Plant Biology, Utrecht University, Utrecht, The Netherlands
| | - Sofía Riera Vidal
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Joris Dommisse
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Melanie N. Mendel
- Translational Plant Biology, Utrecht University, Utrecht, The Netherlands
- Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Joyce Elberse
- Translational Plant Biology, Utrecht University, Utrecht, The Netherlands
| | | | - Ronnie de Jonge
- Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
- AI Technology for Life, Department of Information and Computing Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Michael F. Seidl
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Jaswal R, Dubey H, Kiran K, Rawal H, Kumar G, Rajarammohan S, Deshmukh R, Sonah H, Prasad P, Bhardwaj SC, Gupta N, Sharma TR. Identification and functional characterization of the npc-2-like domain containing rust effector protein that suppresses cell death in plants. Mol Biol Rep 2024; 51:962. [PMID: 39235644 DOI: 10.1007/s11033-024-09894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
The MD-2-related lipid-recognition (ML/Md-2) domain is a lipid/sterol-binding domain that are involved in sterol transfer and innate immunity in eukaryotes. Here we report a genome-wide survey of this family, identifying 84 genes in 30 fungi including plant pathogens. All the studied species were found to have varied ML numbers, and expansion of the family was observed in Rhizophagus irregularis (RI) with 33 genes. The molecular docking studies of these proteins with cholesterol derivatives indicate lipid-binding functional conservation across the animal and fungi kingdom. The phylogenetic studies among eukaryotic ML proteins showed that Puccinia ML members are more closely associated with animal (insect) npc2 proteins than other fungal ML members. One of the candidates from leaf rust fungus Puccinia triticina, Pt5643 was PCR amplified and further characterized using various studies such as qRT-PCR, subcellular localization studies, yeast functional complementation, signal peptide validation, and expression studies. The Pt5643 exhibits the highest expression on the 5th day post-infection (dpi). The confocal microscopy of Pt5643 in onion epidermal cells and N. benthamiana shows its location in the cytoplasm and nucleus. The functional complementation studies of Pt5643 in npc2 mutant yeast showed its functional similarity to the eukaryotic/yeast npc2 gene. Furthermore, the overexpression of Pt5643 also suppressed the BAX, NEP1, and H₂O₂-induced program cell death in Nicotiana species and yeast. Altogether the present study reports the novel function of ML domain proteins in plant fungal pathogens and their possible role as effector molecules in host defense manipulation.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, 140306, Punjab, India
- Department of Microbiology, Panjab University, Chandigarh, 160014, Punjab, India
| | - Himanshu Dubey
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Kanti Kiran
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Hukam Rawal
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Gulshan Kumar
- Department of Entomology, University of Georgia, Tifton, GA, 30223, USA
| | | | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, 123031, India
| | - Humira Sonah
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, 123031, India
| | - Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, 171009, Shimla, India
| | - Subhash C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, 171009, Shimla, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, 160014, Punjab, India.
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, 140306, Punjab, India.
| |
Collapse
|
6
|
Barragan AC, Latorre SM, Malmgren A, Harant A, Win J, Sugihara Y, Burbano HA, Kamoun S, Langner T. Multiple Horizontal Mini-chromosome Transfers Drive Genome Evolution of Clonal Blast Fungus Lineages. Mol Biol Evol 2024; 41:msae164. [PMID: 39107250 PMCID: PMC11346369 DOI: 10.1093/molbev/msae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024] Open
Abstract
Crop disease pandemics are often driven by asexually reproducing clonal lineages of plant pathogens that reproduce asexually. How these clonal pathogens continuously adapt to their hosts despite harboring limited genetic variation, and in absence of sexual recombination remains elusive. Here, we reveal multiple instances of horizontal chromosome transfer within pandemic clonal lineages of the blast fungus Magnaporthe (Syn. Pyricularia) oryzae. We identified a horizontally transferred 1.2Mb accessory mini-chromosome which is remarkably conserved between M. oryzae isolates from both the rice blast fungus lineage and the lineage infecting Indian goosegrass (Eleusine indica), a wild grass that often grows in the proximity of cultivated cereal crops. Furthermore, we show that this mini-chromosome was horizontally acquired by clonal rice blast isolates through at least nine distinct transfer events over the past three centuries. These findings establish horizontal mini-chromosome transfer as a mechanism facilitating genetic exchange among different host-associated blast fungus lineages. We propose that blast fungus populations infecting wild grasses act as genetic reservoirs that drive genome evolution of pandemic clonal lineages that afflict cereal crops.
Collapse
Affiliation(s)
- Ana Cristina Barragan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sergio M Latorre
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Angus Malmgren
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yu Sugihara
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Hernán A Burbano
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
7
|
Perrier M, Barber AE. Unraveling the genomic diversity and virulence of human fungal pathogens through pangenomics. PLoS Pathog 2024; 20:e1012313. [PMID: 38990800 PMCID: PMC11238998 DOI: 10.1371/journal.ppat.1012313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Affiliation(s)
- Marion Perrier
- Junior Research Group Fungal Informatics, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Amelia E Barber
- Junior Research Group Fungal Informatics, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
8
|
Logachev A, Kanapin A, Rozhmina T, Stanin V, Bankin M, Samsonova A, Orlova E, Samsonova M. Pangenomics of flax fungal parasite Fusarium oxysporum f. sp. lini. FRONTIERS IN PLANT SCIENCE 2024; 15:1383914. [PMID: 38872883 PMCID: PMC11169931 DOI: 10.3389/fpls.2024.1383914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
To assess the genomic diversity of Fusarium oxysporum f. sp. lini strains and compile a comprehensive gene repertoire, we constructed a pangenome using 13 isolates from four different clonal lineages, each exhibiting distinct levels of virulence. Syntenic analyses of two selected genomes revealed significant chromosomal rearrangements unique to each genome. A comprehensive examination of both core and accessory pangenome content and diversity points at an open genome state. Additionally, Gene Ontology (GO) enrichment analysis indicated that non-core pangenome genes are associated with pathogen recognition and immune signaling. Furthermore, the Folini pansecterome, encompassing secreted proteins critical for fungal pathogenicity, primarily consists of three functional classes: effector proteins, CAZYmes, and proteases. These three classes account for approximately 3.5% of the pangenome. Each functional class within the pansecterome was meticulously annotated and characterized with respect to pangenome category distribution, PFAM domain frequency, and strain virulence assessment. This analysis revealed that highly virulent isolates have specific types of PFAM domains that are exclusive to them. Upon examining the repertoire of SIX genes known for virulence in other formae speciales, it was found that all isolates had a similar gene content except for two, which lacked SIX genes entirely.
Collapse
Affiliation(s)
- Anton Logachev
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St.Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Alexander Kanapin
- Center for Computational Biology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Tatyana Rozhmina
- Flax Institute, Federal Research Center for Bast Fiber Crops, Torzhok, Russia
| | - Vladislav Stanin
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St.Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Mikhail Bankin
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St.Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Anastasia Samsonova
- Center for Computational Biology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Ekaterina Orlova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St.Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Maria Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St.Petersburg Polytechnic University, Saint Petersburg, Russia
| |
Collapse
|
9
|
Wang J, Xu Y, Peng Y, Wang Y, Kang Z, Zhao J. A fully haplotype-resolved and nearly gap-free genome assembly of wheat stripe rust fungus. Sci Data 2024; 11:508. [PMID: 38755209 PMCID: PMC11099153 DOI: 10.1038/s41597-024-03361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Stripe rust fungus Puccinia striiformis f. sp. tritici (Pst) is a destructive pathogen of wheat worldwide. Pst has a macrocyclic-heteroecious lifecycle, in which one-celled urediniospores are dikaryotic, each nucleus containing one haploid genome. We successfully generated the first fully haplotype-resolved and nearly gap-free chromosome-scale genome assembly of Pst by combining PacBio HiFi sequencing and trio-binning strategy. The genome size of the two haploid assemblies was 75.59 Mb and 75.91 Mb with contig N50 of 4.17 Mb and 4.60 Mb, and both had 18 pseudochromosomes. The high consensus quality values of 55.57 and 59.02 for both haplotypes confirmed the correctness of the assembly. Of the total 18 chromosomes, 15 and 16 were gapless while there were only five and two gaps for the remaining chromosomes of the two haplotypes, respectively. In total, 15,046 and 15,050 protein-coding genes were predicted for the two haplotypes, and the complete BUSCO scores achieved 97.7% and 97.9%, respectively. The genome will lay the foundation for further research on genetic variations and the evolution of rust fungi.
Collapse
Affiliation(s)
- Jierong Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiwen Xu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuxi Peng
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiping Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhensheng Kang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jing Zhao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
10
|
Winters NP, Wafula EK, Knollenberg BJ, Hämälä T, Timilsena PR, Perryman M, Zhang D, Sheaffer LL, Praul CA, Ralph PE, Prewitt S, Leandro-Muñoz ME, Delgadillo-Duran DA, Altman NS, Tiffin P, Maximova SN, dePamphilis CW, Marden JH, Guiltinan MJ. A combination of conserved and diverged responses underlies Theobroma cacao's defense response to Phytophthora palmivora. BMC Biol 2024; 22:38. [PMID: 38360697 PMCID: PMC10870529 DOI: 10.1186/s12915-024-01831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Plants have complex and dynamic immune systems that have evolved to resist pathogens. Humans have worked to enhance these defenses in crops through breeding. However, many crops harbor only a fraction of the genetic diversity present in wild relatives. Increased utilization of diverse germplasm to search for desirable traits, such as disease resistance, is therefore a valuable step towards breeding crops that are adapted to both current and emerging threats. Here, we examine diversity of defense responses across four populations of the long-generation tree crop Theobroma cacao L., as well as four non-cacao Theobroma species, with the goal of identifying genetic elements essential for protection against the oomycete pathogen Phytophthora palmivora. RESULTS We began by creating a new, highly contiguous genome assembly for the P. palmivora-resistant genotype SCA 6 (Additional file 1: Tables S1-S5), deposited in GenBank under accessions CP139290-CP139299. We then used this high-quality assembly to combine RNA and whole-genome sequencing data to discover several genes and pathways associated with resistance. Many of these are unique, i.e., differentially regulated in only one of the four populations (diverged 40 k-900 k generations). Among the pathways shared across all populations is phenylpropanoid biosynthesis, a metabolic pathway with well-documented roles in plant defense. One gene in this pathway, caffeoyl shikimate esterase (CSE), was upregulated across all four populations following pathogen treatment, indicating its broad importance for cacao's defense response. Further experimental evidence suggests this gene hydrolyzes caffeoyl shikimate to create caffeic acid, an antimicrobial compound and known inhibitor of Phytophthora spp. CONCLUSIONS Our results indicate most expression variation associated with resistance is unique to populations. Moreover, our findings demonstrate the value of using a broad sample of evolutionarily diverged populations for revealing the genetic bases of cacao resistance to P. palmivora. This approach has promise for further revealing and harnessing valuable genetic resources in this and other long-generation plants.
Collapse
Affiliation(s)
- Noah P Winters
- IGDP Ecology, The Pennsylvania State University, 422 Huck Life Sciences Building, University Park, PA, 16803, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | | | - Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Prakash R Timilsena
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Melanie Perryman
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, USA
| | - Lena L Sheaffer
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Craig A Praul
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Paula E Ralph
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sarah Prewitt
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | | | | | - Naomi S Altman
- Department of Statistics, The Pennsylvania State University, University Park, PA, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Siela N Maximova
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Claude W dePamphilis
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- IGDP Plant Biology, The Pennsylvania State University, University Park, PA, USA
| | - James H Marden
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Mark J Guiltinan
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- IGDP Plant Biology, The Pennsylvania State University, University Park, PA, USA.
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
11
|
Garcia JF, Morales-Cruz A, Cochetel N, Minio A, Figueroa-Balderas R, Rolshausen PE, Baumgartner K, Cantu D. Comparative Pangenomic Insights into the Distinct Evolution of Virulence Factors Among Grapevine Trunk Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:127-142. [PMID: 37934016 DOI: 10.1094/mpmi-09-23-0129-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The permanent organs of grapevines (Vitis vinifera L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the symptoms they induce and the extent and speed of damage. Isolates of the same species often display a wide virulence range, even within the same vineyard. This study focuses on Eutypa lata, Neofusicoccum parvum, and Phaeoacremonium minimum, causal agents of Eutypa dieback, Botryosphaeria dieback, and Esca, respectively. We sequenced 50 isolates from viticulture regions worldwide and built nucleotide-level, reference-free pangenomes for each species. Through examination of genomic diversity and pangenome structure, we analyzed intraspecific conservation and variability of putative virulence factors, focusing on functions under positive selection and recent gene family dynamics of contraction and expansion. Our findings reveal contrasting distributions of putative virulence factors in the core, dispensable, and private genomes of each pangenome. For example, carbohydrate active enzymes (CAZymes) were prevalent in the core genomes of each pangenome, whereas biosynthetic gene clusters were prevalent in the dispensable genomes of E. lata and P. minimum. The dispensable fractions were also enriched in Gypsy transposable elements and virulence factors under positive selection (polyketide synthase genes in E. lata and P. minimum, glycosyltransferases in N. parvum). Our findings underscore the complexity of the genomic architecture in each species and provide insights into their adaptive strategies, enhancing our understanding of the underlying mechanisms of virulence. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jadran F Garcia
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, U.S.A
| | - Noé Cochetel
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Andrea Minio
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, U.S.A
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Davis, CA, U.S.A
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
- Genome Center, University of California, Davis, Davis, CA, U.S.A
| |
Collapse
|
12
|
Chicowski AS, Bredow M, Utiyama AS, Marcelino-Guimarães FC, Whitham SA. Soybean-Phakopsora pachyrhizi interactions: towards the development of next-generation disease-resistant plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:296-315. [PMID: 37883664 PMCID: PMC10826999 DOI: 10.1111/pbi.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/19/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023]
Abstract
Soybean rust (SBR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is a devastating foliar disease threatening soybean production. To date, no commercial cultivars conferring durable resistance to SBR are available. The development of long-lasting SBR resistance has been hindered by the lack of understanding of this complex pathosystem, encompassing challenges posed by intricate genetic structures in both the host and pathogen, leading to a gap in the knowledge of gene-for-gene interactions between soybean and P. pachyrhizi. In this review, we focus on recent advancements and emerging technologies that can be used to improve our understanding of the P. pachyrhizi-soybean molecular interactions. We further explore approaches used to combat SBR, including conventional breeding, transgenic approaches and RNA interference, and how advances in our understanding of plant immune networks, the availability of new molecular tools, and the recent sequencing of the P. pachyrhizi genome could be used to aid in the development of better genetic resistance against SBR. Lastly, we discuss the research gaps of this pathosystem and how new technologies can be used to shed light on these questions and to develop durable next-generation SBR-resistant soybean plants.
Collapse
Affiliation(s)
- Aline Sartor Chicowski
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Melissa Bredow
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Alice Satiko Utiyama
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Londrina, Paraná, Brazil
- Department of Agronomy, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Steven A Whitham
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
13
|
Dutta A, McDonald BA, Croll D. Combined reference-free and multi-reference based GWAS uncover cryptic variation underlying rapid adaptation in a fungal plant pathogen. PLoS Pathog 2023; 19:e1011801. [PMID: 37972199 PMCID: PMC10688896 DOI: 10.1371/journal.ppat.1011801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/30/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Microbial pathogens often harbor substantial functional diversity driven by structural genetic variation. Rapid adaptation from such standing variation threatens global food security and human health. Genome-wide association studies (GWAS) provide a powerful approach to identify genetic variants underlying recent pathogen adaptation. However, the reliance on single reference genomes and single nucleotide polymorphisms (SNPs) obscures the true extent of adaptive genetic variation. Here, we show quantitatively how a combination of multiple reference genomes and reference-free approaches captures substantially more relevant genetic variation compared to single reference mapping. We performed reference-genome based association mapping across 19 reference-quality genomes covering the diversity of the species. We contrasted the results with a reference-free (i.e., k-mer) approach using raw whole-genome sequencing data in a panel of 145 strains collected across the global distribution range of the fungal wheat pathogen Zymoseptoria tritici. We mapped the genetic architecture of 49 life history traits including virulence, reproduction and growth in multiple stressful environments. The inclusion of additional reference genome SNP datasets provides a nearly linear increase in additional loci mapped through GWAS. Variants detected through the k-mer approach explained a higher proportion of phenotypic variation than a reference genome-based approach and revealed functionally confirmed loci that classic GWAS approaches failed to map. The power of GWAS in microbial pathogens can be significantly enhanced by comprehensively capturing structural genetic variation. Our approach is generalizable to a large number of species and will uncover novel mechanisms driving rapid adaptation of pathogens.
Collapse
Affiliation(s)
- Anik Dutta
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Bruce A. McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
14
|
Welgemoed T, Duong TA, Barnes I, Stukenbrock EH, Berger DK. Population genomic analyses suggest recent dispersal events of the pathogen Cercospora zeina into East and Southern African maize cropping systems. G3 (BETHESDA, MD.) 2023; 13:jkad214. [PMID: 37738420 PMCID: PMC10627275 DOI: 10.1093/g3journal/jkad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Abstract
A serious factor hampering global maize production is gray leaf spot disease. Cercospora zeina is one of the causative pathogens, but population genomics analysis of C. zeina is lacking. We conducted whole-genome Illumina sequencing of a representative set of 30 C. zeina isolates from Kenya and Uganda (East Africa) and Zambia, Zimbabwe, and South Africa (Southern Africa). Selection of the diverse set was based on microsatellite data from a larger collection of the pathogen. Pangenome analysis of the C. zeina isolates was done by (1) de novo assembly of the reads with SPAdes, (2) annotation with BRAKER, and (3) protein clustering with OrthoFinder. A published long-read assembly of C. zeina (CMW25467) from Zambia was included and annotated using the same pipeline. This analysis revealed 790 non-shared accessory and 10,677 shared core orthogroups (genes) between the 31 isolates. Accessory gene content was largely shared between isolates from all countries, with a few genes unique to populations from Southern Africa (32) or East Africa (6). There was a significantly higher proportion of effector genes in the accessory secretome (44%) compared to the core secretome (24%). PCA, ADMIXTURE, and phylogenetic analysis using a neighbor-net network indicated a population structure with a geographical subdivision between the East African isolates and the Southern African isolates, although gene flow was also evident. The small pangenome and partial population differentiation indicated recent dispersal of C. zeina into Africa, possibly from 2 regional founder populations, followed by recurrent gene flow owing to widespread maize production across sub-Saharan Africa.
Collapse
Affiliation(s)
- Tanya Welgemoed
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-11, Kiel 24118, Germany
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön 24306, Germany
| | - Dave K Berger
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
15
|
Milner DS, Galindo LJ, Irwin NAT, Richards TA. Transporter Proteins as Ecological Assets and Features of Microbial Eukaryotic Pangenomes. Annu Rev Microbiol 2023; 77:45-66. [PMID: 36944262 DOI: 10.1146/annurev-micro-032421-115538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Here we review two connected themes in evolutionary microbiology: (a) the nature of gene repertoire variation within species groups (pangenomes) and (b) the concept of metabolite transporters as accessory proteins capable of providing niche-defining "bolt-on" phenotypes. We discuss the need for improved sampling and understanding of pangenome variation in eukaryotic microbes. We then review the factors that shape the repertoire of accessory genes within pangenomes. As part of this discussion, we outline how gene duplication is a key factor in both eukaryotic pangenome variation and transporter gene family evolution. We go on to outline how, through functional characterization of transporter-encoding genes, in combination with analyses of how transporter genes are gained and lost from accessory genomes, we can reveal much about the niche range, the ecology, and the evolution of virulence of microbes. We advocate for the coordinated systematic study of eukaryotic pangenomes through genome sequencing and the functional analysis of genes found within the accessory gene repertoire.
Collapse
Affiliation(s)
- David S Milner
- Department of Biology, University of Oxford, Oxford, United Kingdom;
| | | | - Nicholas A T Irwin
- Department of Biology, University of Oxford, Oxford, United Kingdom;
- Merton College, University of Oxford, Oxford, United Kingdom
| | - Thomas A Richards
- Department of Biology, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
16
|
Resistance strategies for defense against Albugo candida causing white rust disease. Microbiol Res 2023; 270:127317. [PMID: 36805163 DOI: 10.1016/j.micres.2023.127317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Albugo candida, the causal organism of white rust, is an oomycete obligate pathogen infecting crops of Brassicaceae family occurred on aerial part, including vegetable and oilseed crops at all growth stages. The disease expression is characterized by local infection appearing on the abaxial region developing white or creamy yellow blister (sori) on leaves and systemic infections cause hypertrophy and hyperplasia leading to stag-head of reproductive organ. To overcome this problem, several disease management strategies like fungicide treatments were used in the field and disease-resistant varieties have also been developed using conventional and molecular breeding. Due to high variability among A. candida isolates, there is no single approach available to understand the diverse spectrum of disease symptoms. In absence of resistance sources against pathogen, repetitive cultivation of genetically-similar varieties locally tends to attract oomycete pathogen causing heavy yield losses. In the present review, a deep insight into the underlying role of the non-host resistance (NHR) defence mechanism available in plants, and the strategies to exploit available gene pools from plant species that are non-host to A. candida could serve as novel sources of resistance. This work summaries the current knowledge pertaining to the resistance sources available in non-host germ plasm, the understanding of defence mechanisms and the advance strategies covers molecular, biochemical and nature-based solutions in protecting Brassica crops from white rust disease.
Collapse
|
17
|
Lofgren LA, Ross BS, Cramer RA, Stajich JE. The pan-genome of Aspergillus fumigatus provides a high-resolution view of its population structure revealing high levels of lineage-specific diversity driven by recombination. PLoS Biol 2022; 20:e3001890. [PMID: 36395320 PMCID: PMC9714929 DOI: 10.1371/journal.pbio.3001890] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/01/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Aspergillus fumigatus is a deadly agent of human fungal disease where virulence heterogeneity is thought to be at least partially structured by genetic variation between strains. While population genomic analyses based on reference genome alignments offer valuable insights into how gene variants are distributed across populations, these approaches fail to capture intraspecific variation in genes absent from the reference genome. Pan-genomic analyses based on de novo assemblies offer a promising alternative to reference-based genomics with the potential to address the full genetic repertoire of a species. Here, we evaluate 260 genome sequences of A. fumigatus including 62 newly sequenced strains, using a combination of population genomics, phylogenomics, and pan-genomics. Our results offer a high-resolution assessment of population structure and recombination frequency, phylogenetically structured gene presence-absence variation, evidence for metabolic specificity, and the distribution of putative antifungal resistance genes. Although A. fumigatus disperses primarily via asexual conidia, we identified extraordinarily high levels of recombination with the lowest linkage disequilibrium decay value reported for any fungal species to date. We provide evidence for 3 primary populations of A. fumigatus, with recombination occurring only rarely between populations and often within them. These 3 populations are structured by both gene variation and distinct patterns of gene presence-absence with unique suites of accessory genes present exclusively in each clade. Accessory genes displayed functional enrichment for nitrogen and carbohydrate metabolism suggesting that populations may be stratified by environmental niche specialization. Similarly, the distribution of antifungal resistance genes and resistance alleles were often structured by phylogeny. Altogether, the pan-genome of A. fumigatus represents one of the largest fungal pan-genomes reported to date including many genes unrepresented in the Af293 reference genome. These results highlight the inadequacy of relying on a single-reference genome-based approach for evaluating intraspecific variation and the power of combined genomic approaches to elucidate population structure, genetic diversity, and putative ecological drivers of clinically relevant fungi.
Collapse
Affiliation(s)
- Lotus A. Lofgren
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, United States of America
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Brandon S. Ross
- Dartmouth Geisel School of Medicine in the Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, United States of America
| | - Robert A. Cramer
- Dartmouth Geisel School of Medicine in the Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
18
|
Gourlie R, McDonald M, Hafez M, Ortega-Polo R, Low KE, Abbott DW, Strelkov SE, Daayf F, Aboukhaddour R. The pangenome of the wheat pathogen Pyrenophora tritici-repentis reveals novel transposons associated with necrotrophic effectors ToxA and ToxB. BMC Biol 2022; 20:239. [PMID: 36280878 PMCID: PMC9594970 DOI: 10.1186/s12915-022-01433-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In fungal plant pathogens, genome rearrangements followed by selection pressure for adaptive traits have facilitated the co-evolutionary arms race between hosts and their pathogens. Pyrenophora tritici-repentis (Ptr) has emerged recently as a foliar pathogen of wheat worldwide and its populations consist of isolates that vary in their ability to produce combinations of different necrotrophic effectors. These effectors play vital roles in disease development. Here, we sequenced the genomes of a global collection (40 isolates) of Ptr to gain insights into its gene content and genome rearrangements. RESULTS A comparative genome analysis revealed an open pangenome, with an abundance of accessory genes (~ 57%) reflecting Ptr's adaptability. A clear distinction between pathogenic and non-pathogenic genomes was observed in size, gene content, and phylogenetic relatedness. Chromosomal rearrangements and structural organization, specifically around effector coding genes, were detailed using long-read assemblies (PacBio RS II) generated in this work in addition to previously assembled genomes. We also discovered the involvement of large mobile elements associated with Ptr's effectors: ToxA, the gene encoding for the necrosis effector, was found as a single copy within a 143-kb 'Starship' transposon (dubbed 'Horizon') with a clearly defined target site and target site duplications. 'Horizon' was located on different chromosomes in different isolates, indicating mobility, and the previously described ToxhAT transposon (responsible for horizontal transfer of ToxA) was nested within this newly identified Starship. Additionally, ToxB, the gene encoding the chlorosis effector, was clustered as three copies on a 294-kb element, which is likely a different putative 'Starship' (dubbed 'Icarus') in a ToxB-producing isolate. ToxB and its putative transposon were missing from the ToxB non-coding reference isolate, but the homolog toxb and 'Icarus' were both present in a different non-coding isolate. This suggests that ToxB may have been mobile at some point during the evolution of the Ptr genome which is contradictory to the current assumption of ToxB vertical inheritance. Finally, the genome architecture of Ptr was defined as 'one-compartment' based on calculated gene distances and evolutionary rates. CONCLUSIONS These findings together reflect on the highly plastic nature of the Ptr genome which has likely helped to drive its worldwide adaptation and has illuminated the involvement of giant transposons in facilitating the evolution of virulence in Ptr.
Collapse
Affiliation(s)
- Ryan Gourlie
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Lethbridge, AB Canada
| | - Megan McDonald
- grid.6572.60000 0004 1936 7486School of Biosciences, University of Birmingham, Institute of Microbiology and Infection, Edgbaston, Birmingham, UK
| | - Mohamed Hafez
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Lethbridge, AB Canada
| | - Rodrigo Ortega-Polo
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Lethbridge, AB Canada
| | - Kristin E. Low
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Lethbridge, AB Canada
| | - D. Wade Abbott
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Lethbridge, AB Canada
| | - Stephen E. Strelkov
- grid.17089.370000 0001 2190 316XFaculty of Agricultural, Life, and Environmental Sciences, University of Alberta, Edmonton, AB Canada
| | - Fouad Daayf
- grid.21613.370000 0004 1936 9609Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB Canada
| | - Reem Aboukhaddour
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Lethbridge, AB Canada
| |
Collapse
|
19
|
Lorenzi AS, Bonatelli ML, Chia MA, Peressim L, Quecine MC. Opposite Sides of Pantoea agglomerans and Its Associated Commercial Outlook. Microorganisms 2022; 10:microorganisms10102072. [PMID: 36296348 PMCID: PMC9610544 DOI: 10.3390/microorganisms10102072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 12/01/2022] Open
Abstract
Multifaceted microorganisms such as the bacterium Pantoea colonize a wide range of habitats and can exhibit both beneficial and harmful behaviors, which provide new insights into microbial ecology. In the agricultural context, several strains of Pantoea spp. can promote plant growth through direct or indirect mechanisms. Members of this genus contribute to plant growth mainly by increasing the supply of nitrogen, solubilizing ammonia and inorganic phosphate, and producing phytohormones (e.g., auxins). Several other studies have shown the potential of strains of Pantoea spp. to induce systemic resistance and protection against pests and pathogenic microorganisms in cultivated plants. Strains of the species Pantoea agglomerans deserve attention as a pest and phytopathogen control agent. Several of them also possess a biotechnological potential for therapeutic purposes (e.g., immunomodulators) and are implicated in human infections. Thus, the differentiation between the harmful and beneficial strains of P. agglomerans is mandatory to apply this bacterium safely as a biofertilizer or biocontroller. This review specifically evaluates the potential of the strain-associated features of P. agglomerans for bioprospecting and agricultural applications through its biological versatility as well as clarifying its potential animal and human health risks from a genomic point of view.
Collapse
Affiliation(s)
- Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília 70910-900, DF, Brazil
| | - Maria Letícia Bonatelli
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH—UFZ, 04318 Leipzig, Germany
| | - Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Leonardo Peressim
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, USP, Piracicaba 13418-900, SP, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, USP, Piracicaba 13418-900, SP, Brazil
- Correspondence:
| |
Collapse
|
20
|
Using Genomes and Evolutionary Analyses to Screen for Host-Specificity and Positive Selection in the Plant Pathogen Xylella fastidiosa. Appl Environ Microbiol 2022; 88:e0122022. [PMID: 36094203 PMCID: PMC9499020 DOI: 10.1128/aem.01220-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Xylella fastidiosa infects several economically important crops in the Americas, and it also recently emerged in Europe. Here, using a set of Xylella genomes reflective of the genus-wide diversity, we performed a pan-genome analysis based on both core and accessory genes for two purposes: (i) to test associations between genetic divergence and plant host species and (ii) to identify positively selected genes that are potentially involved in arms-race dynamics. For the former, tests yielded significant evidence for the specialization of X. fastidiosa to plant host species. This observation contributes to a growing literature suggesting that the phylogenetic history of X. fastidiosa lineages affects the host range. For the latter, our analyses uncovered evidence of positive selection across codons for 5.3% (67 of 1,257) of the core genes and 5.4% (201 of 3,691) of the accessory genes. These genes are candidates to encode interacting factors with plant and insect hosts. Most of these genes had unknown functions, but we did identify some tractable candidates, including nagZ_2, which encodes a beta-glucosidase that is important for Neisseria gonorrhoeae biofilm formation; cya, which modulates gene expression in pathogenic bacteria, and barA, a membrane associated histidine kinase that has roles in cell division, metabolism, and pili formation. IMPORTANCEXylella fastidiosa causes devasting diseases to several critical crops. Because X. fastidiosa colonizes and infects many plant species, it is important to understand whether the genome of X. fastidiosa has genetic determinants that underlie specialization to specific host plants. We analyzed genome sequences of X. fastidiosa to investigate evolutionary relationships and to test for evidence of positive selection on specific genes. We found a significant signal between genome diversity and host plants, consistent with bacterial specialization to specific plant hosts. By screening for positive selection, we identified both core and accessory genes that may affect pathogenicity, including genes involved in biofilm formation.
Collapse
|
21
|
Fiol A, Jurado-Ruiz F, López-Girona E, Aranzana MJ. An efficient CRISPR-Cas9 enrichment sequencing strategy for characterizing complex and highly duplicated genomic regions. A case study in the Prunus salicina LG3-MYB10 genes cluster. PLANT METHODS 2022; 18:105. [PMID: 36030243 PMCID: PMC9419362 DOI: 10.1186/s13007-022-00937-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Genome complexity is largely linked to diversification and crop innovation. Examples of regions with duplicated genes with relevant roles in agricultural traits are found in many crops. In both duplicated and non-duplicated genes, much of the variability in agronomic traits is caused by large as well as small and middle scale structural variants (SVs), which highlights the relevance of the identification and characterization of complex variability between genomes for plant breeding. RESULTS Here we improve and demonstrate the use of CRISPR-Cas9 enrichment combined with long-read sequencing technology to resolve the MYB10 region in the linkage group 3 (LG3) of Japanese plum (Prunus salicina). This region, which has a length from 90 to 271 kb according to the P. salicina genomes available, is associated with fruit color variability in Prunus species. We demonstrate the high complexity of this region, with homology levels between Japanese plum varieties comparable to those between Prunus species. We cleaved MYB10 genes in five plum varieties using the Cas9 enzyme guided by a pool of crRNAs. The barcoded fragments were then pooled and sequenced in a single MinION Oxford Nanopore Technologies (ONT) run, yielding 194 Mb of sequence. The enrichment was confirmed by aligning the long reads to the plum reference genomes, with a mean read on-target value of 4.5% and a depth per sample of 11.9x. From the alignment, 3261 SNPs and 287 SVs were called and phased. A de novo assembly was constructed for each variety, which also allowed detection, at the haplotype level, of the variability in this region. CONCLUSIONS CRISPR-Cas9 enrichment is a versatile and powerful tool for long-read targeted sequencing even on highly duplicated and/or polymorphic genomic regions, being especially useful when a reference genome is not available. Potential uses of this methodology as well as its limitations are further discussed.
Collapse
Affiliation(s)
- Arnau Fiol
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Federico Jurado-Ruiz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Elena López-Girona
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Maria José Aranzana
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain.
- Institut de Recerca I Tecnologia Agroalimentàries, Barcelona, Spain.
| |
Collapse
|
22
|
Mateus ID, Auxier B, Ndiaye MMS, Cruz J, Lee SJ, Sanders IR. Reciprocal recombination genomic signatures in the symbiotic arbuscular mycorrhizal fungi Rhizophagus irregularis. PLoS One 2022; 17:e0270481. [PMID: 35776745 PMCID: PMC9249182 DOI: 10.1371/journal.pone.0270481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/12/2022] [Indexed: 11/24/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are part of the most widespread fungal-plant symbiosis. They colonize at least 80% of plant species, promote plant growth and plant diversity. These fungi are multinucleated and contain either one or two haploid nuclear genotypes (monokaryon and dikaryon) identified by the alleles at a putative mating-type locus. This taxon has been considered as an ancient asexual scandal because of the lack of observable sexual structures. Despite identification of a putative mating-type locus and functional activation of genes related to mating when two isolates co-exist, it remains unknown if the AMF life cycle involves a sexual or parasexual stage. We used publicly available genome sequences to test if Rhizophagus irregularis dikaryon genomes display signatures of sexual reproduction in the form of reciprocal recombination patterns, or if they display exclusively signatures of parasexual reproduction involving gene conversion. We used short-read and long-read sequence data to identify nucleus-specific alleles within dikaryons and then compared them to orthologous gene sequences from related monokaryon isolates displaying the same putative MAT-types as the dikaryon. We observed that the two nucleus-specific alleles of the dikaryon A5 are more related to the homolog sequences of monokaryon isolates displaying the same putative MAT-type than between each other. We also observed that these nucleus-specific alleles displayed reciprocal recombination signatures. These results confirm that dikaryon and monokaryon isolates displaying the same putative MAT-type are related in their life-cycle. These results suggest that a genetic exchange mechanism, involving reciprocal recombination in dikaryon genomes, allows AMF to generate genetic diversity.
Collapse
Affiliation(s)
- Ivan D. Mateus
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| | - Ben Auxier
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Mam M. S. Ndiaye
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Joaquim Cruz
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Soon-Jae Lee
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Ian R. Sanders
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Redkar A, Sabale M, Zuccaro A, Di Pietro A. Determinants of endophytic and pathogenic lifestyle in root colonizing fungi. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102226. [PMID: 35526366 DOI: 10.1016/j.pbi.2022.102226] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Plant-fungal interactions in the soil crucially impact crop productivity and can range from highly beneficial to detrimental. Accumulating evidence suggests that some root-colonizing fungi shift between endophytic and pathogenic behaviour depending on the host species and that combinations of effector proteins collectively shape the fungal lifestyle on a given plant. In this review we discuss recent advances in our understanding of how fungal infection strategies on roots can lead to contrasting outcomes for the host. We highlight functional similarities and differences in compatibility determinants that control the colonization of specific-cell layers within plant roots, ultimately shaping the continuum between endophytic and pathogenic lifestyle.
Collapse
Affiliation(s)
- Amey Redkar
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain; Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| | - Mugdha Sabale
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Alga Zuccaro
- University of Cologne, Institute for Plant Sciences, D-50674, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), D-50674, Cologne, Germany
| | - Antonio Di Pietro
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
24
|
Berrios L. Examining the genomic features of human and plant-associated Burkholderia strains. Arch Microbiol 2022; 204:335. [PMID: 35587294 DOI: 10.1007/s00203-022-02953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
Humans and plants have evolved in the near omnipresence of a microbial milieu, and the factors that govern host-microbe interactions continue to require scientific exploration. To better understand if and to what degree patterns between microbial genomic features and host association (i.e., human and plant) exist, I analyzed the genomes of select Burkholderia strains-a bacterial genus comprised of both human and plant-associated strains-that were isolated from either humans or plants. To this end, I uncovered host-specific, genomic patterns related to metabolic pathway potentials in addition to convergent features that may be related to pathogenic overlap between hosts. Together, these findings detail the genomic associations of human and plant-associated Burkholderia strains and provide a framework for future investigations that seek to link host-host transmission potentials.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
25
|
Hartmann FE. Using structural variants to understand the ecological and evolutionary dynamics of fungal plant pathogens. THE NEW PHYTOLOGIST 2022; 234:43-49. [PMID: 34873717 DOI: 10.1111/nph.17907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Deletions, duplications, insertions, inversions and translocations are commonly referred to as structural variants (SVs). Fungal plant pathogens have compact genomes, facilitating the generation of accurate maps of SVs for these species in recent studies. Structural variants have been found to constitute a significant proportion of the standing genetic variation in fungal plant pathogen populations, potentially leading to the generation of accessory genes, regions or chromosomes enriched in pathogenicity factors. Structural variants are involved in the rapid adaptation and ecological traits of pathogens, including host specialization and mating. Long-read sequencing techniques coupled with theoretical and experimental approaches have considerable potential for elucidating the phenotypic effects of SVs and deciphering the evolutionary and genomic mechanisms underlying the formation of SVs in fungal plant pathogens.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Ecologie Systematique Evolution, Batiment 360, Universite Paris-Saclay, CNRS, AgroParisTech, Orsay, 91400, France
| |
Collapse
|
26
|
Jha UC, Sharma KD, Nayyar H, Parida SK, Siddique KHM. Breeding and Genomics Interventions for Developing Ascochyta Blight Resistant Grain Legumes. Int J Mol Sci 2022; 23:ijms23042217. [PMID: 35216334 PMCID: PMC8880496 DOI: 10.3390/ijms23042217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
Grain legumes are a key food source for ensuring global food security and sustaining agriculture. However, grain legume production is challenged by growing disease incidence due to global climate change. Ascochyta blight (AB) is a major disease, causing substantial yield losses in grain legumes worldwide. Harnessing the untapped reserve of global grain legume germplasm, landraces, and crop wild relatives (CWRs) could help minimize yield losses caused by AB infection in grain legumes. Several genetic determinants controlling AB resistance in various grain legumes have been identified following classical genetic and conventional breeding approaches. However, the advent of molecular markers, biparental quantitative trait loci (QTL) mapping, genome-wide association studies, genomic resources developed from various genome sequence assemblies, and whole-genome resequencing of global germplasm has revealed AB-resistant gene(s)/QTL/genomic regions/haplotypes on various linkage groups. These genomics resources allow plant breeders to embrace genomics-assisted selection for developing/transferring AB-resistant genomic regions to elite cultivars with great precision. Likewise, advances in functional genomics, especially transcriptomics and proteomics, have assisted in discovering possible candidate gene(s) and proteins and the underlying molecular mechanisms of AB resistance in various grain legumes. We discuss how emerging cutting-edge next-generation breeding tools, such as rapid generation advancement, field-based high-throughput phenotyping tools, genomic selection, and CRISPR/Cas9, could be used for fast-tracking AB-resistant grain legumes to meet the increasing demand for grain legume-based protein diets and thus ensuring global food security.
Collapse
Affiliation(s)
- Uday C. Jha
- Indian Institute of Pulses Research, Kanpur 208024, India
- Correspondence: (U.C.J.); (K.H.M.S.)
| | - Kamal Dev Sharma
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur 176062, India;
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh 0172, India;
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), New Delhi 110001, India;
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
- Correspondence: (U.C.J.); (K.H.M.S.)
| |
Collapse
|
27
|
Rocher F, Alouane T, Philippe G, Martin ML, Label P, Langin T, Bonhomme L. Fusarium graminearum Infection Strategy in Wheat Involves a Highly Conserved Genetic Program That Controls the Expression of a Core Effectome. Int J Mol Sci 2022; 23:ijms23031914. [PMID: 35163834 PMCID: PMC8836836 DOI: 10.3390/ijms23031914] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Fusarium graminearum, the main causal agent of Fusarium Head Blight (FHB), is one of the most damaging pathogens in wheat. Because of the complex organization of wheat resistance to FHB, this pathosystem represents a relevant model to elucidate the molecular mechanisms underlying plant susceptibility and to identify their main drivers, the pathogen’s effectors. Although the F. graminearum catalog of effectors has been well characterized at the genome scale, in planta studies are needed to confirm their effective accumulation in host tissues and to identify their role during the infection process. Taking advantage of the genetic variability from both species, a RNAseq-based profiling of gene expression was performed during an infection time course using an aggressive F. graminearum strain facing five wheat cultivars of contrasting susceptibility as well as using three strains of contrasting aggressiveness infecting a single susceptible host. Genes coding for secreted proteins and exhibiting significant expression changes along infection progress were selected to identify the effector gene candidates. During its interaction with the five wheat cultivars, 476 effector genes were expressed by the aggressive strain, among which 91% were found in all the infected hosts. Considering three different strains infecting a single susceptible host, 761 effector genes were identified, among which 90% were systematically expressed in the three strains. We revealed a robust F. graminearum core effectome of 357 genes expressed in all the hosts and by all the strains that exhibited conserved expression patterns over time. Several wheat compartments were predicted to be targeted by these putative effectors including apoplast, nucleus, chloroplast and mitochondria. Taken together, our results shed light on a highly conserved parasite strategy. They led to the identification of reliable key fungal genes putatively involved in wheat susceptibility to F. graminearum, and provided valuable information about their putative targets.
Collapse
Affiliation(s)
- Florian Rocher
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
| | - Tarek Alouane
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
| | - Géraldine Philippe
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
| | - Marie-Laure Martin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université Paris-Saclay, Université Evry, 91190 Gif sur Yvette, France;
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91190 Gif sur Yvette, France
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
| | - Philippe Label
- UMR 547 Physique et Physiologie Intégratives de l’Arbre en environnement Fluctuant, INRAE, Université Clermont Auvergne, 63178 Aubière, France;
| | - Thierry Langin
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
| | - Ludovic Bonhomme
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
- Correspondence:
| |
Collapse
|
28
|
Pasin F, Daròs JA, Tzanetakis IE. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6534904. [PMID: 35195244 PMCID: PMC9249622 DOI: 10.1093/femsre/fuac011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Potyviridae, the largest family of known RNA viruses (realm Riboviria), belongs to the picorna-like supergroup and has important agricultural and ecological impacts. Potyvirid genomes are translated into polyproteins, which are in turn hydrolyzed to release mature products. Recent sequencing efforts revealed an unprecedented number of potyvirids with a rich variability in gene content and genomic layouts. Here, we review the heterogeneity of non-core modules that expand the structural and functional diversity of the potyvirid proteomes. We provide a family-wide classification of P1 proteinases into the functional Types A and B, and discuss pretty interesting sweet potato potyviral ORF (PISPO), putative zinc fingers, and alkylation B (AlkB)—non-core modules found within P1 cistrons. The atypical inosine triphosphate pyrophosphatase (ITPase/HAM1), as well as the pseudo tobacco mosaic virus-like coat protein (TMV-like CP) are discussed alongside homologs of unrelated virus taxa. Family-wide abundance of the multitasking helper component proteinase (HC-pro) is revised. Functional connections between non-core modules are highlighted to support host niche adaptation and immune evasion as main drivers of the Potyviridae evolutionary radiation. Potential biotechnological and synthetic biology applications of potyvirid leader proteinases and non-core modules are finally explored.
Collapse
Affiliation(s)
- Fabio Pasin
- Corresponding author: Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), UPV Building 8E, Ingeniero Fausto Elio, 46011 Valencia, Spain. E-mail:
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, 72701 Fayetteville, AR, USA
| |
Collapse
|
29
|
Santoyo G. How plants recruit their microbiome? New insights into beneficial interactions. J Adv Res 2021; 40:45-58. [PMID: 36100333 PMCID: PMC9481936 DOI: 10.1016/j.jare.2021.11.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023] Open
Abstract
Plant-microbiome interaction occurs at the rhizosphere, endosphere, and phyllosphere. Root exudates can favor the recruitment of a beneficial microbiome in the rhizosphere. Plant topology and phytochemistry influence the recruitment of the phyllosphere microbiome. Diverse plant strategies selectively recruit beneficial microbiomes. Multiple plant mechanisms displace potential pathogens from the rhizosphere. The beneficial microbiome helps plants to recruit other beneficial microbiota.
Background Research on beneficial mechanisms by plant-associated microbiomes, such as plant growth stimulation and protection from plant pathogens, has gained considerable attention over the past decades; however, the mechanisms used by plants to recruit their microbiome is largely unknown. Aim of Review Here, we review the latest studies that have begun to reveal plant strategies in selectively recruiting beneficial microbiomes, and how they manage to exclude potential pathogens. Key Scientific concepts of Review: We examine how plants attract beneficial microbiota from the main areas of interaction, such as the rhizosphere, endosphere, and phyllosphere, and demonstrate that such process occurs by producing root exudates, and recognizing molecules produced by the beneficial microbiota or distinguishing pathogens using specific receptors, or by triggering signals that support plant-microbiome homeostasis. Second, we analyzed the main environmental or biotic factors that modulate the structure and successional dynamics of microbial communities. Finally, we review how the associated microbiome is capable of engaging with other synergistic microbes, hence providing an additional element of selection. Collectively, this study reveals the importance of understanding the complex network of plant interactions, which will improve the understanding of bioinoculant application in agriculture, based on a microbiome that interacts efficiently with plant organs under different environmental conditions.
Collapse
Affiliation(s)
- Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mexico.
| |
Collapse
|
30
|
Torres DE, Thomma BPHJ, Seidl MF. Transposable Elements Contribute to Genome Dynamics and Gene Expression Variation in the Fungal Plant Pathogen Verticillium dahliae. Genome Biol Evol 2021; 13:evab135. [PMID: 34100895 PMCID: PMC8290119 DOI: 10.1093/gbe/evab135] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are a major source of genetic and regulatory variation in their host genome and are consequently thought to play important roles in evolution. Many fungal and oomycete plant pathogens have evolved dynamic and TE-rich genomic regions containing genes that are implicated in host colonization and adaptation. TEs embedded in these regions have typically been thought to accelerate the evolution of these genomic compartments, but little is known about their dynamics in strains that harbor them. Here, we used whole-genome sequencing data of 42 strains of the fungal plant pathogen Verticillium dahliae to systematically identify polymorphic TEs that may be implicated in genomic as well as in gene expression variation. We identified 2,523 TE polymorphisms and characterize a subset of 8% of the TEs as polymorphic elements that are evolutionary younger, less methylated, and more highly expressed when compared with the remaining 92% of the total TE complement. As expected, the polyrmorphic TEs are enriched in the adaptive genomic regions. Besides, we observed an association of polymorphic TEs with pathogenicity-related genes that localize nearby and that display high expression levels. Collectively, our analyses demonstrate that TE dynamics in V. dahliae contributes to genomic variation, correlates with expression of pathogenicity-related genes, and potentially impacts the evolution of adaptive genomic regions.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research, The Netherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, The Netherlands
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, Germany
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, The Netherlands
| |
Collapse
|
31
|
Bar I, Sambasivam PT, Davidson J, Farfan-Caceres LM, Lee RC, Hobson K, Moore K, Ford R. Current population structure and pathogenicity patterns of Ascochyta rabiei in Australia. Microb Genom 2021; 7:000627. [PMID: 34283013 PMCID: PMC8477395 DOI: 10.1099/mgen.0.000627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
Ascochyta blight disease, caused by the necrotrophic fungus Ascochyta rabiei, is a major biotic constraint to chickpea production in Australia and worldwide. Detailed knowledge of the structure of the pathogen population and its potential to adapt to our farming practices is key to informing optimal management of the disease. This includes understanding the molecular diversity among isolates and the frequency and distribution of the isolates that have adapted to overcome host resistance across agroecologically distinct regions. Thanks to continuous monitoring efforts over the past 6 years, a comprehensive collection of A. rabiei isolates was collated from the major Australian chickpea production regions. To determine the molecular structure of the entire population, representative isolates from each collection year and growing region have been genetically characterized using a DArTseq genotyping-by-sequencing approach. The genotyped isolates were further phenotyped to determine their pathogenicity levels against a differential set of chickpea cultivars and genotype-phenotype associations were inferred. Overall, the Australian A. rabiei population displayed a far lower genetic diversity (average Nei's gene diversity of 0.047) than detected in other populations worldwide. This may be explained by the presence of a single mating-type in Australia, MAT1-2, limiting its reproduction to a clonal mode. Despite the low detected molecular diversity, clonal selection appears to have given rise to a subset of adapted isolates that are highly pathogenic on commonly employed resistance sources, and that are occurring at an increasing frequency. Among these, a cluster of genetically similar isolates was identified, with a higher proportion of highly aggressive isolates than in the general population. The discovery of distinct genetic clusters associated with high and low isolate pathogenicity forms the foundation for the development of a molecular pathotyping tool for the Australian A. rabiei population. Application of such a tool, along with continuous monitoring of the genetic structure of the population will provide crucial information for the screening of breeding material and integrated disease management packages.
Collapse
Affiliation(s)
- Ido Bar
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, QLD 4111, Australia
| | | | - Jenny Davidson
- South Australian Research and Development Institute, Hartley Grove, Urrbrae SA 5064, Australia
| | - Lina M. Farfan-Caceres
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Robert C. Lee
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Kristy Hobson
- Department of Primary Industries Tamworth Agricultural Institute, Calala, NSW 2340, Australia
| | - Kevin Moore
- Department of Primary Industries Tamworth Agricultural Institute, Calala, NSW 2340, Australia
| | - Rebecca Ford
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, QLD 4111, Australia
| |
Collapse
|
32
|
Kharel A, Islam MT, Rookes J, Cahill D. How to Unravel the Key Functions of Cryptic Oomycete Elicitin Proteins and Their Role in Plant Disease. PLANTS 2021; 10:plants10061201. [PMID: 34204633 PMCID: PMC8231210 DOI: 10.3390/plants10061201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
Pathogens and plants are in a constant battle with one another, the result of which is either the restriction of pathogen growth via constitutive or induced plant defense responses or the pathogen colonization of plant cells and tissues that cause disease. Elicitins are a group of highly conserved proteins produced by certain oomycete species, and their sterol binding ability is recognized as an important feature in sterol–auxotrophic oomycetes. Elicitins also orchestrate other aspects of the interactions of oomycetes with their plant hosts. The function of elicitins as avirulence or virulence factors is controversial and is dependent on the host species, and despite several decades of research, the function of these proteins remains elusive. We summarize here our current understanding of elicitins as either defense-promoting or defense-suppressing agents and propose that more recent approaches such as the use of ‘omics’ and gene editing can be used to unravel the role of elicitins in host–pathogen interactions. A better understanding of the role of elicitins is required and deciphering their role in host–pathogen interactions will expand the strategies that can be adopted to improve disease resistance and reduce crop losses.
Collapse
|
33
|
Sacristán S, Goss EM, Eves-van den Akker S. How Do Pathogens Evolve Novel Virulence Activities? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:576-586. [PMID: 33522842 DOI: 10.1094/mpmi-09-20-0258-ia] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.We consider the state of knowledge on pathogen evolution of novel virulence activities, broadly defined as anything that increases pathogen fitness with the consequence of causing disease in either the qualitative or quantitative senses, including adaptation of pathogens to host immunity and physiology, host species, genotypes, or tissues, or the environment. The evolution of novel virulence activities as an adaptive trait is based on the selection exerted by hosts on variants that have been generated de novo or arrived from elsewhere. In addition, the biotic and abiotic environment a pathogen experiences beyond the host may influence pathogen virulence activities. We consider host-pathogen evolution, host range expansion, and external factors that can mediate pathogen evolution. We then discuss the mechanisms by which pathogens generate and recombine the genetic variation that leads to novel virulence activities, including DNA point mutation, transposable element activity, gene duplication and neofunctionalization, and genetic exchange. In summary, if there is an (epi)genetic mechanism that can create variation in the genome, it will be used by pathogens to evolve virulence factors. Our knowledge of virulence evolution has been biased by pathogen evolution in response to major gene resistance, leaving other virulence activities underexplored. Understanding the key driving forces that give rise to novel virulence activities and the integration of evolutionary concepts and methods with mechanistic research on plant-microbe interactions can help inform crop protection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Erica M Goss
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, U.S.A
| | | |
Collapse
|
34
|
Barragan AC, Weigel D. Plant NLR diversity: the known unknowns of pan-NLRomes. THE PLANT CELL 2021; 33:814-831. [PMID: 33793812 PMCID: PMC8226294 DOI: 10.1093/plcell/koaa002] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/23/2020] [Indexed: 05/20/2023]
Abstract
Plants and pathogens constantly adapt to each other. As a consequence, many members of the plant immune system, and especially the intracellular nucleotide-binding site leucine-rich repeat receptors, also known as NOD-like receptors (NLRs), are highly diversified, both among family members in the same genome, and between individuals in the same species. While this diversity has long been appreciated, its true extent has remained unknown. With pan-genome and pan-NLRome studies becoming more and more comprehensive, our knowledge of NLR sequence diversity is growing rapidly, and pan-NLRomes provide powerful platforms for assigning function to NLRs. These efforts are an important step toward the goal of comprehensively predicting from sequence alone whether an NLR provides disease resistance, and if so, to which pathogens.
Collapse
Affiliation(s)
- A Cristina Barragan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
35
|
Singh NK, Badet T, Abraham L, Croll D. Rapid sequence evolution driven by transposable elements at a virulence locus in a fungal wheat pathogen. BMC Genomics 2021; 22:393. [PMID: 34044766 PMCID: PMC8157644 DOI: 10.1186/s12864-021-07691-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Plant pathogens cause substantial crop losses in agriculture production and threaten food security. Plants evolved the ability to recognize virulence factors and pathogens have repeatedly escaped recognition due rapid evolutionary change at pathogen virulence loci (i.e. effector genes). The presence of transposable elements (TEs) in close physical proximity of effector genes can have important consequences for gene regulation and sequence evolution. Species-wide investigations of effector gene loci remain rare hindering our ability to predict pathogen evolvability. RESULTS Here, we performed genome-wide association studies (GWAS) on a highly polymorphic mapping population of 120 isolates of Zymoseptoria tritici, the most damaging pathogen of wheat in Europe. We identified a major locus underlying significant variation in reproductive success of the pathogen and damage caused on the wheat cultivar Claro. The most strongly associated locus is intergenic and flanked by genes encoding a predicted effector and a serine-type endopeptidase. The center of the locus contained a highly dynamic region consisting of multiple families of TEs. Based on a large global collection of assembled genomes, we show that the virulence locus has undergone substantial recent sequence evolution. Large insertion and deletion events generated length variation between the flanking genes by a factor of seven (5-35 kb). The locus showed also strong signatures of genomic defenses against TEs (i.e. RIP) contributing to the rapid diversification of the locus. CONCLUSIONS In conjunction, our work highlights the power of combining GWAS and population-scale genome analyses to investigate major effect loci in pathogens.
Collapse
Affiliation(s)
- Nikhil Kumar Singh
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Leen Abraham
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
36
|
Yildiz G, Ozkilinc H. Pan-Mitogenomics Approach Discovers Diversity and Dynamism in the Prominent Brown Rot Fungal Pathogens. Front Microbiol 2021; 12:647989. [PMID: 34054750 PMCID: PMC8149612 DOI: 10.3389/fmicb.2021.647989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/29/2021] [Indexed: 01/26/2023] Open
Abstract
Monilinia fructicola and Monilinia laxa species are the most destructive and economically devastating fungal plant pathogens causing brown rot disease on stone and pome fruits worldwide. Mitochondrial genomes (mitogenomes) play critical roles influencing the mechanisms and directions of the evolution of fungal pathogens. The pan-mitogenomics approach predicts core and accessory regions of the mitochondrial genomes and explains the gain or loss of variation within and between species. The present study is a fungal pan-mitogenome of M. fructicola (N = 8) and M. laxa (N = 8) species. The completely sequenced and annotated mitogenomes showed high variability in size within and between the species. The mitogenomes of M. laxa were larger, ranging from 178,351 to 179,780bp, than the mitogenomes of M. fructicola, ranging from 158,607 to 167,838bp. However, size variation within the species showed that M. fructicola isolates were more variable in the size range than M. laxa isolates. All the mitogenomes included conserved mitochondrial genes, as well as variable regions including different mobile introns encoding homing endonucleases or maturase, non-coding introns, and repetitive elements. The linear model analysis supported the hypothesis that the mitogenome size expansion is due to presence of variable (accessory) regions. Gene synteny was mostly conserved among all samples, with the exception for order of the rps3 in the mitogenome of one isolate. The mitogenomes presented AT richness; however, A/T and G/C skew varied among the mitochondrial genes. The purifying selection was detected in almost all the protein-coding genes (PCGs) between the species. However, cytochrome b was the only gene showing a positive selection signal among the total samples. Combined datasets of amino acid sequences of 14 core mitochondrial PCGs and rps3 obtained from this study together with published mitochondrial genome sequences from some other species from Heliotales were used to infer a maximum likelihood (ML) phylogenetic tree. ML tree indicated that both Monilinia species highly diverged from each other as well as some other fungal species from the same order. Mitogenomes harbor much information about the evolution of fungal plant pathogens, which could be useful to predict pathogenic life strategies.
Collapse
Affiliation(s)
- Gozde Yildiz
- School of Graduate Studies, MSc Program in Biomolecular Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Hilal Ozkilinc
- School of Graduate Studies, MSc Program in Biomolecular Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.,Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
37
|
Chen H, Raffaele S, Dong S. Silent control: microbial plant pathogens evade host immunity without coding sequence changes. FEMS Microbiol Rev 2021; 45:6095737. [PMID: 33440001 DOI: 10.1093/femsre/fuab002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Both animals and plants have evolved a robust immune system to surveil and defeat invading pathogenic microbes. Evasion of host immune surveillance is the key for pathogens to initiate successful infection. To evade the host immunity, plant pathogens evolved a variety of strategies such as masking themselves from host immune recognitions, blocking immune signaling transductions, reprogramming immune responses and adapting to immune microenvironmental changes. Gain of new virulence genes, sequence and structural variations enables plant pathogens to evade host immunity through changes in the genetic code. However, recent discoveries demonstrated that variations at the transcriptional, post-transcriptional, post-translational and glycome level enable pathogens to cope with the host immune system without coding sequence changes. The biochemical modification of pathogen associated molecular patterns and silencing of effector genes emerged as potent ways for pathogens to hide from host recognition. Altered processing in mRNA activities provide pathogens with resilience to microenvironment changes. Importantly, these hiding variants are directly or indirectly modulated by catalytic enzymes or enzymatic complexes and cannot be revealed by classical genomics alone. Unveiling these novel host evasion mechanisms in plant pathogens enables us to better understand the nature of plant disease and pinpoints strategies for rational diseases management in global food protection.
Collapse
Affiliation(s)
- Han Chen
- Department of Plant Pathology and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes, INRAE, CNRS, 24 Chemin de Borde Rouge - Auzeville, CS52627, F31326 Castanet Tolosan Cedex, France
| | - Suomeng Dong
- Department of Plant Pathology and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
38
|
Everhart S, Gambhir N, Stam R. Population Genomics of Filamentous Plant Pathogens-A Brief Overview of Research Questions, Approaches, and Pitfalls. PHYTOPATHOLOGY 2021; 111:12-22. [PMID: 33337245 DOI: 10.1094/phyto-11-20-0527-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With ever-decreasing sequencing costs, research on the population biology of plant pathogens is transitioning from population genetics-using dozens of genetic markers or polymorphism data of several genes-to population genomics-using several hundred to tens of thousands of markers or whole-genome sequence data. The field of population genomics is characterized by rapid theoretical and methodological advances and by numerous steps and pitfalls in its technical and analytical workflow. In this article, we aim to provide a brief overview of topics relevant to the study of population genomics of filamentous plant pathogens and direct readers to more extensive reviews for in-depth understanding. We briefly discuss different types of population genomics-inspired research questions and give insights into the sampling strategies that can be used to answer such questions. We then consider different sequencing strategies, the various options available for data processing, and some of the currently available tools for population genomic data analysis. We conclude by highlighting some of the hurdles along the population genomic workflow, providing cautionary warnings relative to assumptions and technical challenges, and presenting our own future perspectives of the field of population genomics for filamentous plant pathogens.
Collapse
Affiliation(s)
- Sydney Everhart
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, U.S.A
| | - Nikita Gambhir
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, U.S.A
| | - Remco Stam
- Phytopathology, School of Life Sciences Weihenstephan, Technical University Munich, Germany
| |
Collapse
|
39
|
Singh NK, Dutta A, Puccetti G, Croll D. Tackling microbial threats in agriculture with integrative imaging and computational approaches. Comput Struct Biotechnol J 2020; 19:372-383. [PMID: 33489007 PMCID: PMC7787954 DOI: 10.1016/j.csbj.2020.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 11/29/2022] Open
Abstract
Pathogens and pests are one of the major threats to agricultural productivity worldwide. For decades, targeted resistance breeding was used to create crop cultivars that resist pathogens and environmental stress while retaining yields. The often decade-long process of crossing, selection, and field trials to create a new cultivar is challenged by the rapid rise of pathogens overcoming resistance. Similarly, antimicrobial compounds can rapidly lose efficacy due to resistance evolution. Here, we review three major areas where computational, imaging and experimental approaches are revolutionizing the management of pathogen damage on crops. Recognizing and scoring plant diseases have dramatically improved through high-throughput imaging techniques applicable both under well-controlled greenhouse conditions and directly in the field. However, computer vision of complex disease phenotypes will require significant improvements. In parallel, experimental setups similar to high-throughput drug discovery screens make it possible to screen thousands of pathogen strains for variation in resistance and other relevant phenotypic traits. Confocal microscopy and fluorescence can capture rich phenotypic information across pathogen genotypes. Through genome-wide association mapping approaches, phenotypic data helps to unravel the genetic architecture of stress- and virulence-related traits accelerating resistance breeding. Finally, joint, large-scale screenings of trait variation in crops and pathogens can yield fundamental insights into how pathogens face trade-offs in the adaptation to resistant crop varieties. We discuss how future implementations of such innovative approaches in breeding and pathogen screening can lead to more durable disease control.
Collapse
Affiliation(s)
- Nikhil Kumar Singh
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Anik Dutta
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Guido Puccetti
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
- Syngenta Crop Protection AG, CH-4332 Stein, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
40
|
Jha UC, Bohra A, Pandey S, Parida SK. Breeding, Genetics, and Genomics Approaches for Improving Fusarium Wilt Resistance in Major Grain Legumes. Front Genet 2020; 11:1001. [PMID: 33193586 PMCID: PMC7644945 DOI: 10.3389/fgene.2020.01001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/06/2020] [Indexed: 12/29/2022] Open
Abstract
Fusarium wilt (FW) disease is the key constraint to grain legume production worldwide. The projected climate change is likely to exacerbate the current scenario. Of the various plant protection measures, genetic improvement of the disease resistance of crop cultivars remains the most economic, straightforward and environmental-friendly option to mitigate the risk. We begin with a brief recap of the classical genetic efforts that provided first insights into the genetic determinants controlling plant response to different races of FW pathogen in grain legumes. Subsequent technological breakthroughs like sequencing technologies have enhanced our understanding of the genetic basis of both plant resistance and pathogenicity. We present noteworthy examples of targeted improvement of plant resistance using genomics-assisted approaches. In parallel, modern functional genomic tools like RNA-seq are playing a greater role in illuminating the various aspects of plant-pathogen interaction. Further, proteomics and metabolomics have also been leveraged in recent years to reveal molecular players and various signaling pathways and complex networks participating in host-pathogen interaction. Finally, we present a perspective on the challenges and limitations of high-throughput phenotyping and emerging breeding approaches to expeditiously develop FW-resistant cultivars under the changing climate.
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR-Indian Institute of Pulses Research, Uttar Pradesh, India
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research, Uttar Pradesh, India
| | - Shailesh Pandey
- Forest Protection Division, Forest Research Institute, Dehradun, India
| | | |
Collapse
|
41
|
Henry P, Kaur S, Pham QAT, Barakat R, Brinker S, Haensel H, Daugovish O, Epstein L. Genomic differences between the new Fusarium oxysporum f. sp. apii (Foa) race 4 on celery, the less virulent Foa races 2 and 3, and the avirulent on celery f. sp. coriandrii. BMC Genomics 2020; 21:730. [PMID: 33081696 PMCID: PMC7576743 DOI: 10.1186/s12864-020-07141-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Members of the F. oxysporium species complex (FOSC) in the f. sp. apii (Foa) are pathogenic on celery and those in f. sp. coriandrii (Foci) are pathogenic on coriander (=cilantro). Foci was first reported in California in 2005; a new and highly aggressive race 4 of Foa was observed in 2013 in California. Preliminary evidence indicated that Foa can also cause disease on coriander, albeit are less virulent than Foci. Comparative genomics was used to investigate the evolutionary relationships between Foa race 4, Foa race 3, and the Foci, which are all in FOSC Clade 2, and Foa race 2, which is in FOSC Clade 3. RESULTS A phylogenetic analysis of 2718 single-copy conserved genes and mitochondrial DNA sequence indicated that Foa races 3 and 4 and the Foci are monophyletic within FOSC Clade 2; these strains also are in a single somatic compatibility group. However, in the accessory genomes, the Foci versus Foa races 3 and 4 differ in multiple contigs. Based on significantly increased expression of Foa race 4 genes in planta vs. in vitro, we identified 23 putative effectors and 13 possible pathogenicity factors. PCR primers for diagnosis of either Foa race 2 or 4 and the Foci were identified. Finally, mixtures of conidia that were pre-stained with different fluorochromes indicated that Foa race 4 formed conidial anastomosis tubes (CATs) with Foci. Foa race 4 and Foa race 2, which are in different somatic compatibility groups, did not form CATs with each other. CONCLUSIONS There was no evidence that Foa race 2 was involved in the recent evolution of Foa race 4; Foa race 2 and 4 are CAT-incompatible. Although Foa races 3 and 4 and the Foci are closely related, there is no evidence that either Foci contributed to the evolution of Foa race 4, or that Foa race 4 was the recent recipient of a multi-gene chromosomal segment from another strain. However, horizontal chromosome transfer could account for the major difference in the accessory genomes of Foa race 4 and the Foci and for their differences in host range.
Collapse
Affiliation(s)
- Peter Henry
- Department of Plant Pathology, University of California, Davis, California, 95616-8680, USA.,USDA-ARS, 1636 East Alisal St., Salinas, CA, 93905, USA
| | - Sukhwinder Kaur
- Department of Plant Pathology, University of California, Davis, California, 95616-8680, USA
| | - Quyen Anh Tran Pham
- Department of Plant Pathology, University of California, Davis, California, 95616-8680, USA.,Current address: Janssen Biopharma, Inc., 260 E Grand Ave., South San Francisco, CA, 94080, USA
| | - Radwan Barakat
- Department of Plant Pathology, University of California, Davis, California, 95616-8680, USA.,Department of Plant Production & Protection, College of Agriculture, Hebron University, Hebron, Palestine
| | - Samuel Brinker
- Department of Plant Pathology, University of California, Davis, California, 95616-8680, USA
| | - Hannah Haensel
- Department of Plant Pathology, University of California, Davis, California, 95616-8680, USA
| | - Oleg Daugovish
- University of California Cooperative Extension, 669 County Square Drive, Suite 100, Ventura, CA, 93003, USA
| | - Lynn Epstein
- Department of Plant Pathology, University of California, Davis, California, 95616-8680, USA.
| |
Collapse
|