1
|
Choudhary P, Aggarwal PR, Salvi P, Muthamilarasan M. Molecular insight into auxin signaling and associated network modulating stress responses in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109452. [PMID: 39733728 DOI: 10.1016/j.plaphy.2024.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Phytohormones are vital regulators of various signaling networks in plants. Among different phytohormones, auxin has been thoroughly studied for its role in regulating plants' growth, development, and stress response. One major function of auxin is modulating the developmental processes in response to environmental cues. Although extensive studies on Arabidopsis have advanced the knowledge of auxin biology, several studies on rice have uncovered key players regulated by auxin that play critical roles in coordinating auxin homeostasis and signaling involved in defense response. The emerging knowledge on auxin biology, auxin-regulated gene expression, and auxin-signaling in rice during various environmental stresses has provided insights into the possible mechanism of rice susceptibility or resistance to different abiotic and biotic stresses. The current review enumerates the possible mechanisms of stress-induced auxin homeostasis in rice. In addition, we provide an overview of the state of knowledge on auxin-mediated defense signaling in rice, highlighting its pivotal role in stress response. In particular, we discuss the auxin pathways and the dynamic regulation in response to biotic and abiotic stress. We highlight the novel findings in the diversity of auxin signaling in the model plant Arabidopsis with an aim to emphasize the need to translate these findings into agronomically and economically important cereals like rice. Addressing the complexity of auxin induction, signaling, and its associated molecular network, an in-depth investigation in rice is required to comprehend auxin-mediated spatial-temporal regulation of developmental processes during stress.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, Uttar Pradesh, India.
| | - Pooja R Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Praful Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, 140308, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
2
|
Liang W, Zamarreño ÁM, Torres-Montilla S, de la Torre A, Totozafy JC, Kaji T, Ueda M, Corso M, García-Mina JM, Solano R, Chini A. Dinor-12-oxo-phytodienoic acid conjugation with amino acids inhibits its phytohormone bioactivity in Marchantia polymorpha. PLANT PHYSIOLOGY 2024; 197:kiae610. [PMID: 39514772 DOI: 10.1093/plphys/kiae610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Jasmonates (JAs) are important phytohormones that regulate plant tolerance to biotic and abiotic stresses, and developmental processes. Distinct JAs in different plant lineages activate a conserved signaling pathway that mediates these responses: dinor-12-oxo-phytodienoic acid (dn-OPDA) isomers in bryophytes and lycophytes, and JA-Ile in most vascular plants. In many cases, the final responses triggered by these phytohormones depend on the accumulation of specialized metabolites. To identify compounds regulated by the dn-OPDA pathway in the liverwort Marchantia polymorpha, untargeted metabolomic analyses were carried out in response to wounding, a stress that activates the dn-OPDA pathway. A previously unreported group of molecules was identified from these analyses: dn-OPDA-amino acid conjugates (dn-OPDA-aas). Their accumulation after wounding and herbivory was confirmed by targeted metabolic profiling in Marchantia and in all species in which we previously detected dn-iso-OPDA. Mutants in GRETCHEN-HAGEN 3A (MpGH3A) failed to accumulate dn-OPDA-aa conjugates and showed a constitutive activation of the OPDA pathway and increased resistance to herbivory. Our results show that dn-iso-OPDA bioactivity is reduced by amino acid conjugation. Therefore, JA conjugation in land plants plays dichotomous roles: jasmonic acid conjugation with isoleucine (Ile) produces the bioactive JA-Ile in tracheophytes, whereas conjugation of dn-iso-OPDA with different amino acids deactivates the phytohormone in bryophytes and lycophytes.
Collapse
Affiliation(s)
- Wenting Liang
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Cientificas (CSIC), 28049 Madrid, Spain
| | - Ángel M Zamarreño
- Department of Environmental Biology, Bioma Institute, University of Navarra, Navarra 31008, Spain
| | - Salvador Torres-Montilla
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Cientificas (CSIC), 28049 Madrid, Spain
| | - Antonio de la Torre
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Cientificas (CSIC), 28049 Madrid, Spain
| | - Jean Chrisologue Totozafy
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Takuya Kaji
- Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Minoru Ueda
- Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Massimiliano Corso
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - José M García-Mina
- Department of Environmental Biology, Bioma Institute, University of Navarra, Navarra 31008, Spain
| | - Roberto Solano
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Cientificas (CSIC), 28049 Madrid, Spain
| | - Andrea Chini
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Cientificas (CSIC), 28049 Madrid, Spain
| |
Collapse
|
3
|
Billakurthi K, Wrobel TJ, Gowik U, Bräutigam A, Weber APM, Westhoff P. Transcriptome dynamics in developing leaves from C 3 and C 4 Flaveria species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1438-1456. [PMID: 39427328 DOI: 10.1111/tpj.17059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/18/2024] [Indexed: 10/22/2024]
Abstract
C4 species have evolved more than 60 times independently from C3 ancestors. This multiple and parallel evolution of the complex C4 trait suggests common underlying evolutionary mechanisms, which could be identified by comparative analysis of closely related C3 and C4 species. Efficient C4 function depends on a distinctive leaf anatomy that is characterised by enlarged, chloroplast-rich bundle sheath cells and narrow vein spacing. To elucidate the molecular mechanisms that generate the Kranz anatomy, we analysed a developmental series of leaves from the C4 plant Flaveria bidentis and the closely related C3 species Flaveria robusta by comparing anatomies and transcriptomes. Vascular density measurements of all nine leaf developmental stages identified three leaf anatomical zones whose proportions vary with respect to the developmental stage. We then deconvoluted the transcriptome datasets using non-negative matrix factorisation, which identified four distinct transcriptome patterns in the growing leaves of both species. By integrating the leaf anatomy and transcriptome data, we were able to correlate the different transcriptional profiles with different developmental zones in the leaves. These comparisons revealed an important role for auxin metabolism, in particular auxin homeostasis (conjugation and deconjugation), in establishing the high vein density typical of C4 species.
Collapse
Affiliation(s)
- Kumari Billakurthi
- Institute of Plant Molecular and Developmental Biology, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Thomas J Wrobel
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
- Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Udo Gowik
- Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Andrea Bräutigam
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
- Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
- Faculty of Biology, Bielefeld University, D-33615, Bielefeld, Germany
| | - Andreas P M Weber
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
- Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental Biology, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| |
Collapse
|
4
|
Deng C, Zeng N, Li C, Pang J, Zhang N, Li B. Mechanisms of ROS-mediated interactions between Bacillus aryabhattai LAD and maize roots to promote plant growth. BMC Microbiol 2024; 24:327. [PMID: 39242527 PMCID: PMC11378622 DOI: 10.1186/s12866-024-03479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Plant growth-promoting rhizobacteria (PGPR), as a group of environmentally friendly bacteria growing in the rhizosphere of plants, play an important role in plant growth and development and resistance to environmental stresses. However, their limited understanding has led to the fact that their large-scale use in agriculture is still scarce, and the mechanisms by which beneficial bacteria are selected by plants and how they interact with them are still unclear. METHOD In this study, we investigated the interaction between the auxin-producing strain Bacillus aryabhattai LAD and maize roots, and performed transcriptomic and metabolomic analyses of Bacillus aryabhattai LAD after treatment with maize root secretions(RS). RESULTS Our results show that there is a feedback effect between the plant immune system and bacterial auxin. Bacteria activate the immune response of plant roots to produce reactive oxygen species(ROS), which in turn stimulates bacteria to synthesize IAA, and the synthesized IAA further promotes plant growth. Under the condition of co-culture with LAD, the main root length, seedling length, root surface area and root volume of maize increased by 197%, 107%, 89% and 75%, respectively. In addition, the results of transcriptome metabolome analysis showed that LAD was significantly enriched in amino acid metabolism, carbohydrate metabolism and lipid metabolism pathways after RS treatment, including 93 differentially expressed genes and 45 differentially accumulated metabolites. CONCLUSION Our findings not only provide a relevant model for exploring the effects of plant-soil microbial interactions on plant defense functions and thereby promoting plant growth, but also lay a solid foundation for the future large-scale use of PGPR in agriculture for sustainable agricultural development.
Collapse
Affiliation(s)
- Chao Deng
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- School of Chemistry and Life Science, Anshan Normal University, Anshan, 114007, People's Republic of China
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Chunji Li
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510225, People's Republic of China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou, 510225, China
| | - Jiahe Pang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
5
|
Ain NU, Habiba, Ming R. Allele-Specific Hormone Dynamics in Highly Transgressive F2 Biomass Segregants in Sugarcane ( Saccharum spp.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2247. [PMID: 39204683 PMCID: PMC11358940 DOI: 10.3390/plants13162247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Sugarcane holds global promise as a biofuel feedstock, necessitating a deep understanding of factors that influence biomass yield. This study unravels the intricate dynamics of plant hormones that govern growth and development in sugarcane. Transcriptome analysis of F2 introgression hybrids, derived from the cross of Saccharum officinarum "LA Purple" and wild Saccharum robustum "MOL5829", was conducted, utilizing the recently sequenced allele-specific genome of "LA Purple" as a reference. A total of 8059 differentially expressed genes were categorized into gene models (21.5%), alleles (68%), paralogs (10%), and tandemly duplicated genes (0.14%). KEGG analysis highlighted enrichment in auxin (IAA), jasmonic acid (JA), and abscisic acid (ABA) pathways, revealing regulatory roles of hormone repressor gene families (Aux/IAA, PP2C, and JAZ). Signaling pathways indicated that downregulation of AUX/IAA and PP2C and upregulation of JAZ repressor genes in high biomass segregants act as key players in influencing downstream growth regulatory genes. Endogenous hormone levels revealed higher concentrations of IAA and ABA in high biomass, which contrasted with lower levels of JA. Weighted co-expression network analysis demonstrated strong connectivity between hormone-related key genes and cell wall structural genes in high biomass genotypes. Expression analysis confirmed the upregulation of genes involved in the synthesis of structural carbohydrates and the downregulation of inflorescence and senescence-related genes in high biomass, which suggested an extended vegetative growth phase. The study underscores the importance of cumulative gene expression, including gene models, dominant alleles, paralogs, and tandemly duplicated genes and activators and repressors of disparate hormone (IAA, JA, and ABA) signaling pathways are the points of hormone crosstalk in contrasting biomass F2 segregants and could be applied for engineering high biomass acquiring varieties.
Collapse
Affiliation(s)
- Noor-ul Ain
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Habiba
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA;
| | - Ray Ming
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
6
|
Palayam M, Yan L, Nagalakshmi U, Gilio AK, Cornu D, Boyer FD, Dinesh-Kumar SP, Shabek N. Structural insights into strigolactone catabolism by carboxylesterases reveal a conserved conformational regulation. Nat Commun 2024; 15:6500. [PMID: 39090154 PMCID: PMC11294565 DOI: 10.1038/s41467-024-50928-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Phytohormone levels are regulated through specialized enzymes, participating not only in their biosynthesis but also in post-signaling processes for signal inactivation and cue depletion. Arabidopsis thaliana (At) carboxylesterase 15 (CXE15) and carboxylesterase 20 (CXE20) have been shown to deplete strigolactones (SLs) that coordinate various growth and developmental processes and function as signaling molecules in the rhizosphere. Here, we elucidate the X-ray crystal structures of AtCXE15 (both apo and SL intermediate bound) and AtCXE20, revealing insights into the mechanisms of SL binding and catabolism. The N-terminal regions of CXE15 and CXE20 exhibit distinct secondary structures, with CXE15 characterized by an alpha helix and CXE20 by an alpha/beta fold. These structural differences play pivotal roles in regulating variable SL hydrolysis rates. Our findings, both in vitro and in planta, indicate that a transition of the N-terminal helix domain of CXE15 between open and closed forms facilitates robust SL hydrolysis. The results not only illuminate the distinctive process of phytohormone breakdown but also uncover a molecular architecture and mode of plasticity within a specific class of carboxylesterases.
Collapse
Affiliation(s)
- Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
| | - Linyi Yan
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
| | - Ugrappa Nagalakshmi
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
| | - Amelia K Gilio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA
- The Genome Center, University of California-Davis, Davis, CA, USA
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA, USA.
| |
Collapse
|
7
|
Holland CK, Jez JM. Fidelity in plant hormone modifications catalyzed by Arabidopsis GH3 acyl acid amido synthetases. J Biol Chem 2024; 300:107421. [PMID: 38815865 PMCID: PMC11253546 DOI: 10.1016/j.jbc.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetases conjugate amino acids to acyl acid hormones to either activate or inactivate the hormone molecule. The largest subgroup of GH3 proteins modify the growth-promoting hormone auxin (indole-3-acetic acid; IAA) with the second largest class activating the defense hormone jasmonic acid (JA). The two-step reaction mechanism of GH3 proteins provides a potential proofreading mechanism to ensure fidelity of hormone modification. Examining pyrophosphate release in the first-half reaction of Arabidopsis GH3 proteins that modify IAA (AtGH3.2/YDK2, AtGH3.5/WES1, AtGH3.17/VAS2), JA (AtGH3.11/JAR1), and other acyl acids (AtGH3.7, AtGH3.12/PBS3) indicates that acyl acid-AMP intermediates are hydrolyzed into acyl acid and AMP in the absence of the amino acid, a typical feature of pre-transfer editing mechanisms. Single-turnover kinetic analysis of AtGH3.2/YDK2 and AtGH3.5/WES1 shows that non-cognate acyl acid-adenylate intermediates are more rapidly hydrolyzed than the cognate IAA-adenylate. In contrast, AtGH3.11/JAR1 only adenylates JA, not IAA. While some of the auxin-conjugating GH3 proteins in Arabidopsis (i.e., AtGH3.5/WES1) accept multiple acyl acid substrates, others, like AtGH3.2/YDK2, are specific for IAA; however, both these proteins share similar active site residues. Biochemical analysis of chimeric variants of AtGH3.2/YDK2 and AtGH3.5/WES1 indicates that the C-terminal domain contributes to selection of cognate acyl acid substrates. These findings suggest that the hydrolysis of non-cognate acyl acid-adenylate intermediates, or proofreading, proceeds via a slowed structural switch that provides a checkpoint for fidelity before the full reaction proceeds.
Collapse
Affiliation(s)
- Cynthia K Holland
- Department of Biology, Williams College, Williamstown, Massachusetts; Department of Biology, Washington University in St Louis, St Louis, Missouri
| | - Joseph M Jez
- Department of Biology, Washington University in St Louis, St Louis, Missouri.
| |
Collapse
|
8
|
Pirredda M, Fañanás-Pueyo I, Oñate-Sánchez L, Mira S. Seed Longevity and Ageing: A Review on Physiological and Genetic Factors with an Emphasis on Hormonal Regulation. PLANTS (BASEL, SWITZERLAND) 2023; 13:41. [PMID: 38202349 PMCID: PMC10780731 DOI: 10.3390/plants13010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Upon storage, seeds inevitably age and lose their viability over time, which determines their longevity. Longevity correlates with successful seed germination and enhancing this trait is of fundamental importance for long-term seed storage (germplasm conservation) and crop improvement. Seed longevity is governed by a complex interplay between genetic factors and environmental conditions experienced during seed development and after-ripening that will shape seed physiology. Several factors have been associated with seed ageing such as oxidative stress responses, DNA repair enzymes, and composition of seed layers. Phytohormones, mainly abscisic acid, auxins, and gibberellins, have also emerged as prominent endogenous regulators of seed longevity, and their study has provided new regulators of longevity. Gaining a thorough understanding of how hormonal signalling genes and pathways are integrated with downstream mechanisms related to seed longevity is essential for formulating strategies aimed at preserving seed quality and viability. A relevant aspect related to research in seed longevity is the existence of significant differences between results depending on the seed equilibrium relative humidity conditions used to study seed ageing. Hence, this review delves into the genetic, environmental and experimental factors affecting seed ageing and longevity, with a particular focus on their hormonal regulation. We also provide gene network models underlying hormone signalling aimed to help visualize their integration into seed longevity and ageing. We believe that the format used to present the information bolsters its value as a resource to support seed longevity research for seed conservation and crop improvement.
Collapse
Affiliation(s)
- Michela Pirredda
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro 2, 28040 Madrid, Spain;
| | - Iris Fañanás-Pueyo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Sara Mira
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro 2, 28040 Madrid, Spain;
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| |
Collapse
|
9
|
Luo P, Li TT, Shi WM, Ma Q, Di DW. The Roles of GRETCHEN HAGEN3 (GH3)-Dependent Auxin Conjugation in the Regulation of Plant Development and Stress Adaptation. PLANTS (BASEL, SWITZERLAND) 2023; 12:4111. [PMID: 38140438 PMCID: PMC10747189 DOI: 10.3390/plants12244111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The precise control of free auxin (indole-3-acetic acid, IAA) gradient, which is orchestrated by biosynthesis, conjugation, degradation, hydrolyzation, and transport, is critical for all aspects of plant growth and development. Of these, the GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetase family, pivotal in conjugating IAA with amino acids, has garnered significant interest. Recent advances in understanding GH3-dependent IAA conjugation have positioned GH3 functional elucidation as a hot topic of research. This review aims to consolidate and discuss recent findings on (i) the enzymatic mechanisms driving GH3 activity, (ii) the influence of chemical inhibitor on GH3 function, and (iii) the transcriptional regulation of GH3 and its impact on plant development and stress response. Additionally, we explore the distinct biological functions attributed to IAA-amino acid conjugates.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Ming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (T.-T.L.); (W.-M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Yang L, Luo S, Jiao J, Yan W, Zeng B, He H, He G. Integrated Transcriptomic and Metabolomic Analysis Reveals the Mechanism of Gibberellic acid Regulates the Growth and Flavonoid Synthesis in Phellodendron chinense Schneid Seedlings. Int J Mol Sci 2023; 24:16045. [PMID: 38003235 PMCID: PMC10671667 DOI: 10.3390/ijms242216045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The phytohormone gibberellic acids (GAs) play a crucial role in the processes of growth, organ development, and secondary metabolism. However, the mechanism of exogenous GA3 regulating the growth and flavonoid synthesis in Phellodendron chinense Schneid (P. chinense Schneid) seedlings remains unclear. In this study, the physicochemical properties, gene expression level, and secondary metabolite of P. chinense Schneid seedlings under GA3 treatment were investigated. The results showed that GA3 significantly improved the plant height, ground diameter, fresh weight, chlorophyll content, soluble substance content, superoxide dismutase, and peroxidase activities. This was accompanied by elevated relative expression levels of Pc(S)-GA2ox, Pc(S)-DELLA, Pc(S)-SAUR50, Pc(S)-PsaD, Pc(S)-Psb 27, Pc(S)-PGK, Pc(S)-CER3, and Pc(S)-FBA unigenes. Conversely, a notable reduction was observed in the carotenoid content, catalase activity and the relative expression abundances of Pc(S)-KAO, Pc(S)-GID1/2, and Pc(S)-GH 3.6 unigenes in leaves of P. chinense Schneid seedlings (p < 0.05). Furthermore, GA3 evidently decreased the contents of pinocembrin, pinobanksin, isosakuranetin, naringin, naringenin, (-)-epicatechin, tricetin, luteolin, and vitexin belonged to flavonoid in stem bark of P. chinense Schneid seedlings (p < 0.05). These results indicated that exogenous GA3 promoted growth through improving chlorophyll content and gene expression in photosynthesis and phytohormone signal pathway and inhibited flavonoid synthesis in P. chinense Schneid seedlings.
Collapse
Affiliation(s)
- Lv Yang
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Shengwei Luo
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Jing Jiao
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Baiquan Zeng
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Hanjie He
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Gongxiu He
- College of Forestry, Central South University of Forestry & Technology, Changsha 410004, China
| |
Collapse
|
11
|
Mik V, Pospíšil T, Brunoni F, Grúz J, Nožková V, Wasternack C, Miersch O, Strnad M, Floková K, Novák O, Široká J. Synthetic and analytical routes to the L-amino acid conjugates of cis-OPDA and their identification and quantification in plants. PHYTOCHEMISTRY 2023; 215:113855. [PMID: 37690699 DOI: 10.1016/j.phytochem.2023.113855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Cis-(+)-12-oxophytodienoic acid (cis-(+)-OPDA) is a bioactive jasmonate, a precursor of jasmonic acid, which also displays signaling activity on its own. Modulation of cis-(+)-OPDA actions may be carried out via biotransformation leading to metabolites of various functions. This work introduces a methodology for the synthesis of racemic cis-OPDA conjugates with amino acids (OPDA-aa) and their deuterium-labeled analogs, which enables the unambiguous identification and accurate quantification of these compounds in plants. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry-based method for the reliable determination of seven OPDA-aa (OPDA-Alanine, OPDA-Aspartate, OPDA-Glutamate, OPDA-Glycine, OPDA-Isoleucine, OPDA-Phenylalanine, and OPDA-Valine) from minute amount of plant material. The extraction from 10 mg of fresh plant tissue by 10% aqueous methanol followed by single-step sample clean-up on hydrophilic-lipophilic balanced columns prior to final analysis was optimized. The method was validated in terms of accuracy and precision, and the method parameters such as process efficiency, recovery and matrix effects were evaluated. In mechanically wounded 30-day-old Arabidopsis thaliana leaves, five endogenous (+)-OPDA-aa were identified and their endogenous levels were estimated. The time-course accumulation revealed a peak 60 min after the wounding, roughly corresponding to the accumulation of cis-(+)-OPDA. Our synthetic and analytical methodologies will support studies on cis-(+)-OPDA conjugation with amino acids and research into the biological significance of these metabolites in plants.
Collapse
Affiliation(s)
- Václav Mik
- Department of Experimental Biology, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Tomáš Pospíšil
- Department of Chemical Biology, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Federica Brunoni
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Jiří Grúz
- Department of Experimental Biology, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Vladimíra Nožková
- Department of Chemical Biology, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Claus Wasternack
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Otto Miersch
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Kristýna Floková
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Jitka Široká
- Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| |
Collapse
|
12
|
Yao P, Zhang C, Qin T, Liu Y, Liu Z, Xie X, Bai J, Sun C, Bi Z. Comprehensive Analysis of GH3 Gene Family in Potato and Functional Characterization of StGH3.3 under Drought Stress. Int J Mol Sci 2023; 24:15122. [PMID: 37894803 PMCID: PMC10606756 DOI: 10.3390/ijms242015122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
As an important hormone response gene, Gretchen Hagen 3 (GH3) maintains hormonal homeostasis by conjugating excess auxin with amino acids during plant stress-related signaling pathways. GH3 genes have been characterized in many plant species, but they are rarely reported in potato. Here, 19 StGH3 genes were isolated and characterized. Phylogenetic analysis indicated that StGH3s were divided into two categories (group I and group III). Analyses of gene structure and motif composition showed that the members of a specific StGH3 subfamily are relatively conserved. Collinearity analysis of StGH3 genes in potato and other plants laid a foundation for further exploring the evolutionary characteristics of the StGH3 genes. Promoter analysis showed that most StGH3 promoters contained hormone and abiotic stress response elements. Multiple transcriptome studies indicated that some StGH3 genes were responsive to ABA, water deficits, and salt treatments. Moreover, qRT-PCR analysis indicated that StGH3 genes could be induced by phytohormones (ABA, SA, and MeJA) and abiotic stresses (water deficit, high salt, and low temperature), although with different patterns. Furthermore, transgenic tobacco with transient overexpression of the StGH3.3 gene showed positive regulation in response to water deficits by increasing proline accumulation and reducing the leaf water loss rate. These results suggested that StGH3 genes may be involved in the response to abiotic stress through hormonal signal pathways. Overall, this study provides useful insights into the evolution and function of StGH3s and lays a foundation for further study on the molecular mechanisms of StGH3s in the regulation of potato drought resistance.
Collapse
Affiliation(s)
- Panfeng Yao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (T.Q.); (Y.L.); (Z.L.); (X.X.); (J.B.); (C.S.)
| | - Chunli Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (T.Q.); (Y.L.); (Z.L.); (X.X.); (J.B.); (C.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Tianyuan Qin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (T.Q.); (Y.L.); (Z.L.); (X.X.); (J.B.); (C.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (T.Q.); (Y.L.); (Z.L.); (X.X.); (J.B.); (C.S.)
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (T.Q.); (Y.L.); (Z.L.); (X.X.); (J.B.); (C.S.)
| | - Xiaofei Xie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (T.Q.); (Y.L.); (Z.L.); (X.X.); (J.B.); (C.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (T.Q.); (Y.L.); (Z.L.); (X.X.); (J.B.); (C.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (T.Q.); (Y.L.); (Z.L.); (X.X.); (J.B.); (C.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (T.Q.); (Y.L.); (Z.L.); (X.X.); (J.B.); (C.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
13
|
Bhatta D, Adhikari A, Kang SM, Kwon EH, Jan R, Kim KM, Lee IJ. Hormones and the antioxidant transduction pathway and gene expression, mediated by Serratia marcescens DB1, lessen the lethality of heavy metals (As, Ni, and Cr) in Oryza sativa L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115377. [PMID: 37597286 DOI: 10.1016/j.ecoenv.2023.115377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Microorganisms have recently gained recognition as efficient biological tool for reducing heavy metal toxicity in crops. In this experiment, we isolated a potent heavy metal (As, Ni, and Cr) resistant rhizobacterium Serratia marcescens DB1 and detected its plant growth promoting traits such as phosphate solubilization, gibberellin synthesis, organic acid production and amino acid regulation. Based on these findings, DB1 was further investigated for application in a rice var. Hwayeongbyeo subjected to 1 mM As, 4 mM Ni, and 4 mM Cr stress. The rice plants treated with Cr and Ni appeared healthy but were lethal, indicating unfitness for consumption due to toxic metal deposition, whereas the plants treated with > 1 mM As instantaneously died. Our results showed that DB1 inoculation significantly decreased metal accumulation in the rice shoots. Particularly, Cr uptake dropped by 16.55% and 22.12% in (Cr + DB1) and (Cr + As + Ni + DB1), respectively, As dropped by 48.90% and 35.82% in (As + DB1) and (Cr + As + Ni + DB1), respectively, and Ni dropped by 7.95% and 19.56% in (Ni + DB1) and (Cr + As + Ni + DB1), respectively. These findings were further validated by gene expression analysis results, which showed that DB1 inoculation significantly decreased the expression of OsPCS1 (a phytochelatin synthase gene), OsMTP1 (a metal transporting gene), and OsMTP5 (a gene for the expulsion of excess metal). Moreover, DB1 inoculation considerably enhanced the morphological growth of rice through modulation of endogenous phytohormones (abscisic acid, salicylic acid, and jasmonic acid) and uptake of essential elements such as K and P. These findings indicate that DB1 is an effective biofertilizer that can mitigate heavy metal toxicity in rice crops.
Collapse
Affiliation(s)
- Dibya Bhatta
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
14
|
Iwai R, Uchida S, Yamaguchi S, Nagata D, Koga A, Hayashi S, Yamamoto S, Miyasaka H. Effects of LPS from Rhodobacter sphaeroides, a Purple Non-Sulfur Bacterium (PNSB), on the Gene Expression of Rice Root. Microorganisms 2023; 11:1676. [PMID: 37512850 PMCID: PMC10383378 DOI: 10.3390/microorganisms11071676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The effects of lipopolysaccharide (LPS) from Rhodobacter sphaeroides, a purple non-sulfur bacterium (PNSB), on the gene expression of the root of rice (Oryza sativa) were investigated by next generation sequencing (NGS) RNA-seq analysis. The rice seeds were germinated on agar plates containing 10 pg/mL of LPS from Rhodobacter sphaeroides NBRC 12203 (type culture). Three days after germination, RNA samples were extracted from the roots and analyzed by RNA-seq. The effects of dead (killed) PNSB cells of R. sphaeroides NBRC 12203T at the concentration of 101 cfu/mL (ca. 50 pg cell dry weight/mL) were also examined. Clean reads of NGS were mapped to rice genome (number of transcript ID: 44785), and differentially expressed genes were analyzed by DEGs. As a result of DEG analysis, 300 and 128 genes, and 86 and 8 genes were significantly up- and down-regulated by LPS and dead cells of PNSB, respectively. The plot of logFC (fold change) values of the up-regulated genes of LPS and PNSB dead cells showed a significant positive relationship (r2 = 0.6333, p < 0.0001), indicating that most of the effects of dead cell were attributed to those of LPS. Many genes related to tolerance against biotic (fungal and bacterial pathogens) and abiotic (cold, drought, and high salinity) stresses were up-regulated, and the most strikingly up-regulated genes were those involved in the jasmonate signaling pathway, and the genes of chalcone synthase isozymes, indicating that PNSB induced defense response against biotic and abiotic stresses via the jasmonate signaling pathway, despite the non-pathogenicity of PNSB.
Collapse
Affiliation(s)
- Ranko Iwai
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Shunta Uchida
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Sayaka Yamaguchi
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Daiki Nagata
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Aoi Koga
- Ciamo Co., Ltd., G-2F Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Shuhei Hayashi
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Shinjiro Yamamoto
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Hitoshi Miyasaka
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| |
Collapse
|
15
|
Li W, He J, Wang X, Ashline M, Wu Z, Liu F, Fu ZQ, Chang M. PBS3: a versatile player in and beyond salicylic acid biosynthesis in Arabidopsis. THE NEW PHYTOLOGIST 2023; 237:414-422. [PMID: 36263689 DOI: 10.1111/nph.18558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
AVRPPHB SUSCEPTIBLE 3 (PBS3) belongs to the GH3 family of acyl acid amido synthetases, which conjugates amino acids to diverse acyl acid substrates. Recent studies demonstrate that PBS3 in Arabidopsis plays a key role in the biosynthesis of plant defense hormone salicylic acid (SA) by catalyzing the conjugation of glutamate to isochorismate to form isochorismate-9-glutamate, which is then used to produce SA through spontaneous decay or ENHANCED PSEUDOMONAS SUSCEPTIBILITY (EPS1) catalysis. Consistent with its function as an essential enzyme for SA biosynthesis, PBS3 is well known to be a positive regulator of plant immunity in Arabidopsis. Additionally, PBS3 is also involved in the trade-off between abiotic and biotic stress responses in Arabidopsis by suppressing the inhibitory effect of abscisic acid on SA-mediated plant immunity. Besides stress responses, PBS3 also plays a role in plant development. Under long-day conditions, PBS3 influences Arabidopsis flowering time by regulating the expression of flowering regulators FLOWERING LOCUS C and FLOWERING LOCUS T. Taken together, PBS3 functions in the signaling network of plant development and responses to biotic and/or abiotic stresses, but the molecular mechanisms underlying its diverse roles remain obscure.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jinyu He
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiuzhuo Wang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Matthew Ashline
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Zirui Wu
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Ming Chang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
16
|
Genome-Wide Identification of Auxin-Responsive GH3 Gene Family in Saccharum and the Expression of ScGH3-1 in Stress Response. Int J Mol Sci 2022; 23:ijms232112750. [PMID: 36361540 PMCID: PMC9654502 DOI: 10.3390/ijms232112750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Gretchen Hagen3 (GH3), one of the three major auxin-responsive gene families, is involved in hormone homeostasis in vivo by amino acid splicing with the free forms of salicylic acid (SA), jasmonic acid (JA) or indole-3-acetic acid (IAA). Until now, the functions of sugarcane GH3 (SsGH3) family genes in response to biotic stresses have been largely unknown. In this study, we performed a systematic identification of the SsGH3 gene family at the genome level and identified 41 members on 19 chromosomes in the wild sugarcane species, Saccharum spontaneum. Many of these genes were segmentally duplicated and polyploidization was the main contributor to the increased number of SsGH3 members. SsGH3 proteins can be divided into three major categories (SsGH3-I, SsGH3-II, and SsGH3-III) and most SsGH3 genes have relatively conserved exon-intron arrangements and motif compositions. Diverse cis-elements in the promoters of SsGH3 genes were predicted to be essential players in regulating SsGH3 expression patterns. Multiple transcriptome datasets demonstrated that many SsGH3 genes were responsive to biotic and abiotic stresses and possibly had important functions in the stress response. RNA sequencing and RT-qPCR analysis revealed that SsGH3 genes were differentially expressed in sugarcane tissues and under Sporisorium scitamineum stress. In addition, the SsGH3 homolog ScGH3-1 gene (GenBank accession number: OP429459) was cloned from the sugarcane cultivar (Saccharum hybrid) ROC22 and verified to encode a nuclear- and membrane-localization protein. ScGH3-1 was constitutively expressed in all tissues of sugarcane and the highest amount was observed in the stem pith. Interestingly, it was down-regulated after smut pathogen infection but up-regulated after MeJA and SA treatments. Furthermore, transiently overexpressed Nicotiana benthamiana, transduced with the ScGH3-1 gene, showed negative regulation in response to the infection of Ralstonia solanacearum and Fusarium solani var. coeruleum. Finally, a potential model for ScGH3-1-mediated regulation of resistance to pathogen infection in transgenic N. benthamiana plants was proposed. This study lays the foundation for a comprehensive understanding of the sequence characteristics, structural properties, evolutionary relationships, and expression of the GH3 gene family and thus provides a potential genetic resource for sugarcane disease-resistance breeding.
Collapse
|
17
|
Vaughan-Hirsch J, Li D, Roig Martinez A, Roden S, Pattyn J, Taira S, Shikano H, Miyama Y, Okano Y, Voet A, Van de Poel B. A 1-aminocyclopropane-1-carboxylic-acid (ACC) dipeptide elicits ethylene responses through ACC-oxidase mediated substrate promiscuity. FRONTIERS IN PLANT SCIENCE 2022; 13:995073. [PMID: 36172554 PMCID: PMC9510837 DOI: 10.3389/fpls.2022.995073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Plants produce the volatile hormone ethylene to regulate many developmental processes and to deal with (a)biotic stressors. In seed plants, ethylene is synthesized from 1-aminocyclopropane-1-carboxylic acid (ACC) by the dedicated enzyme ACC oxidase (ACO). Ethylene biosynthesis is tightly regulated at the level of ACC through ACC synthesis, conjugation and transport. ACC is a non-proteinogenic amino acid, which also has signaling roles independent from ethylene. In this work, we investigated the biological function of an uncharacterized ACC dipeptide. The custom-synthesized di-ACC molecule can be taken up by Arabidopsis in a similar way as ACC, in part via Lysine Histidine Transporters (e.g., LHT1). Using Nano-Particle Assisted Laser Desoprtion/Ionization (Nano-PALDI) mass-spectrometry imaging, we revealed that externally fed di-ACC predominantly localizes to the vasculature tissue, despite it not being detectable in control hypocotyl segments. Once taken up, the ACC dimer can evoke a triple response phenotype in dark-grown seedlings, reminiscent of ethylene responses induced by ACC itself, albeit less efficiently compared to ACC. Di-ACC does not act via ACC-signaling, but operates via the known ethylene signaling pathway. In vitro ACO activity and molecular docking showed that di-ACC can be used as an alternative substrate by ACO to form ethylene. The promiscuous nature of ACO for the ACC dimer also explains the higher ethylene production rates observed in planta, although this reaction occurred less efficiently compared to ACC. Overall, the ACC dipeptide seems to be transported and converted into ethylene in a similar way as ACC, and is able to augment ethylene production levels and induce subsequent ethylene responses in Arabidopsis.
Collapse
Affiliation(s)
- John Vaughan-Hirsch
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Dongdong Li
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Albert Roig Martinez
- Division of Biochemistry, Molecular and Structural Biology, Department of Chemistry, University of Leuven, Leuven, Belgium
| | - Stijn Roden
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Jolien Pattyn
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Shu Taira
- Department of Agriculture, Fukushima University, Fukushima, Japan
| | - Hitomi Shikano
- Department of Agriculture, Fukushima University, Fukushima, Japan
| | - Yoko Miyama
- Department of Agriculture, Fukushima University, Fukushima, Japan
| | - Yukari Okano
- Department of Agriculture, Fukushima University, Fukushima, Japan
| | - Arnout Voet
- Division of Biochemistry, Molecular and Structural Biology, Department of Chemistry, University of Leuven, Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
- KU Leuven Plant Institute, University of Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Chemical inhibition of the auxin inactivation pathway uncovers the roles of metabolic turnover in auxin homeostasis. Proc Natl Acad Sci U S A 2022; 119:e2206869119. [PMID: 35914172 PMCID: PMC9371723 DOI: 10.1073/pnas.2206869119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The phytohormone auxin, indole-3-acetic acid (IAA), plays a prominent role in plant development. Auxin homeostasis is coordinately regulated by auxin synthesis, transport, and inactivation; however, the physiological contribution of auxin inactivation to auxin homeostasis has not been determined. The GH3 IAA-amino acid conjugating enzymes play a central role in auxin inactivation. Chemical inhibition of GH3 proteins in planta is challenging because the inhibition of these enzymes leads to IAA overaccumulation that rapidly induces GH3 expression. Here, we report the characterization of a potent GH3 inhibitor, kakeimide, that selectively targets IAA-conjugating GH3 proteins. Chemical knockdown of the auxin inactivation pathway demonstrates that auxin turnover is very rapid (about 10 min) and indicates that both auxin biosynthesis and inactivation dynamically regulate auxin homeostasis.
Collapse
|