1
|
Tan W, Nian H, Tran LSP, Jin J, Lian T. Small peptides: novel targets for modulating plant-rhizosphere microbe interactions. Trends Microbiol 2024; 32:1072-1083. [PMID: 38670883 DOI: 10.1016/j.tim.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The crucial role of rhizosphere microbes in plant growth and their resilience to environmental stresses underscores the intricate communication between microbes and plants. Plants are equipped with a diverse set of signaling molecules that facilitate communication across different biological kingdoms, although our comprehension of these mechanisms is still evolving. Small peptides produced by plants (SPPs) and microbes (SPMs) play a pivotal role in intracellular signaling and are essential in orchestrating various plant development stages. In this review, we posit that SPPs and SPMs serve as crucial signaling agents for the bidirectional cross-kingdom communication between plants and rhizosphere microbes. We explore several potential mechanistic pathways through which this communication occurs. Additionally, we propose that leveraging small peptides, inspired by plant-rhizosphere microbe interactions, represents an innovative approach in the field of holobiont engineering.
Collapse
Affiliation(s)
- Weiyi Tan
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.
| | - Jing Jin
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Chen C, Buscaill P, Sanguankiattichai N, Huang J, Kaschani F, Kaiser M, van der Hoorn RAL. Extracellular plant subtilases dampen cold-shock peptide elicitor levels. NATURE PLANTS 2024; 10:1749-1760. [PMID: 39394507 PMCID: PMC11570497 DOI: 10.1038/s41477-024-01815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/05/2024] [Indexed: 10/13/2024]
Abstract
Recognizing pathogen-associated molecular patterns on the cell surface is crucial for plant immunity. The proteinaceous nature of many of these patterns suggests that secreted proteases play important roles in their formation and stability. Here we demonstrate that the apoplastic subtilase SBT5.2a inactivates the immunogenicity of cold-shock proteins (CSPs) of the bacterial plant pathogen Pseudomonas syringae by cleaving within the immunogenic csp22 epitope. Consequently, mutant plants lacking SBT5.2a activity retain higher levels of csp22, leading to enhanced immune responses and reduced pathogen growth. SBT5.2 sensitivity is influenced by sequence variation surrounding the cleavage site and probably extends to CSPs from other bacterial species. These findings suggest that variations in csp22 stability among bacterial pathogens are a crucial factor in plant-bacteria interactions and that pathogens exploit plant proteases to avoid pattern recognition.
Collapse
Affiliation(s)
- Changlong Chen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| | - Pierre Buscaill
- Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| | | | - Jie Huang
- Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| | - Farnusch Kaschani
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
3
|
Greifenhagen A, Ruwe H, Zimmer V, Messerschmidt J, Bhukya DPN, Kenea HD, Schaller A, Spallek T. The peptide hormone PjCLE1 stimulates haustorium formation in the parasitic plant Phtheirospermum japonicum. Proc Natl Acad Sci U S A 2024; 121:e2414582121. [PMID: 39383005 PMCID: PMC11494319 DOI: 10.1073/pnas.2414582121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024] Open
Abstract
Phtheirospermum japonicum is a hemiparasitic plant of the Orobanchaceae, the largest family of parasitic plants. It extracts water and nutrients from other plants through haustoria along its roots. Haustoriogenesis, the formation of haustoria, is initiated by host-derived haustorium-inducing factors (HIFs). The first step in haustoriogenesis is the development of parasitically inactive protohaustoria. Here, we report that an endogenous peptide hormone, CLAVATA3/Embryo Surrounding Region 1 (PjCLE1), is sufficient to induce protohaustorium formation. PjCLE1 hyperactivated HIF-responses and caused prolific protohaustoria formation. PjCLE1 expression and activation by the subtilisin-type protease PjSBT1.2.3 occur in fully developed, mature haustoria, suggesting that PjCLE1 acts as an internal signal produced by mature haustoria to stimulate additional protohaustorium formation for effective extraction of resources from hosts. PjCLE1 is similar in sequence to CLEs regulating nodulation in legumes and part of a regulatory system for haustoria formation in parasitic plants.
Collapse
Affiliation(s)
- Anne Greifenhagen
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart70599, Germany
| | - Hannes Ruwe
- Plant Biotic Interactions Group, Albrecht-von-Haller Institute of Plant Sciences, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), University of Göttingen, Göttingen37077, Germany
| | - Victoria Zimmer
- Plant Biotic Interactions Group, Albrecht-von-Haller Institute of Plant Sciences, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), University of Göttingen, Göttingen37077, Germany
| | - Jana Messerschmidt
- Plant Biotic Interactions Group, Albrecht-von-Haller Institute of Plant Sciences, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), University of Göttingen, Göttingen37077, Germany
| | - Durga Prasad Naik Bhukya
- Plant Biotic Interactions Group, Albrecht-von-Haller Institute of Plant Sciences, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), University of Göttingen, Göttingen37077, Germany
| | - Hawi Deressa Kenea
- Plant Biotic Interactions Group, Albrecht-von-Haller Institute of Plant Sciences, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), University of Göttingen, Göttingen37077, Germany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart70599, Germany
| | - Thomas Spallek
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart70599, Germany
- Plant Biotic Interactions Group, Albrecht-von-Haller Institute of Plant Sciences, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), University of Göttingen, Göttingen37077, Germany
| |
Collapse
|
4
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
5
|
Liu Y, Jackson E, Liu X, Huang X, van der Hoorn RAL, Zhang Y, Li X. Proteolysis in plant immunity. THE PLANT CELL 2024; 36:3099-3115. [PMID: 38723588 PMCID: PMC11371161 DOI: 10.1093/plcell/koae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/23/2024] [Indexed: 09/05/2024]
Abstract
Compared with transcription and translation, protein degradation machineries can act faster and be targeted to different subcellular compartments, enabling immediate regulation of signaling events. It is therefore not surprising that proteolysis has been used extensively to control homeostasis of key regulators in different biological processes and pathways. Over the past decades, numerous studies have shown that proteolysis, where proteins are broken down to peptides or amino acids through ubiquitin-mediated degradation systems and proteases, is a key regulatory mechanism to control plant immunity output. Here, we briefly summarize the roles various proteases play during defence activation, focusing on recent findings. We also update the latest progress of ubiquitin-mediated degradation systems in modulating immunity by targeting plant membrane-localized pattern recognition receptors, intracellular nucleotide-binding domain leucine-rich repeat receptors, and downstream signaling components. Additionally, we highlight recent studies showcasing the importance of proteolysis in maintaining broad-spectrum resistance without obvious yield reduction, opening new directions for engineering elite crops that are resistant to a wide range of pathogens with high yield.
Collapse
Affiliation(s)
- Yanan Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Edan Jackson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xueru Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xingchuan Huang
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | | | - Yuelin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
6
|
Barashkova AS, Smirnov AN, Rogozhin EA. Complex of Defense Polypeptides of Wheatgrass ( Elytrigia elongata) Associated with Plant Immunity to Biotic and Abiotic Stress Factors. PLANTS (BASEL, SWITZERLAND) 2024; 13:2459. [PMID: 39273943 PMCID: PMC11396971 DOI: 10.3390/plants13172459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Plant defense polypeptides play a crucial role in providing plants with constitutive immunity against various biotic and abiotic stressors. In this study, we explored a complex of proteins from wheatgrass (Elytrigia elongata) spikelets to estimate their role in the plant's tolerance to various environmental factors. The current research shows that in vitro protein extracts from E. elongata spikelets possess antifungal activity against certain Fusarium species, which are specific cereal pathogens, at concentrations of 1-2 mg/mL. In this study, we reproduced these antifungal activities using a 4 mg/mL extract in artificial fungal infection experiments on wheat grain (Triticum aestivum) under controlled laboratory conditions. Furthermore, the tested extract demonstrated a protective effect on Saccharomyces cerevisiae exposed to hyper-salinity stress at a concentration of 2 mg/mL. A combined scheme of fractionation and structural identification was applied for the estimation of the diversity of defense polypeptides. Defensins, lipid-transfer proteins, hydrolase inhibitors (cereal bifunctional trypsin/alpha-amylase inhibitors from a Bowman-Birk trypsin inhibitor), and high-molecular-weight disease resistance proteins were isolated from the extract. Thus, wheatgrass spikelets appear to be a reservoir of defense polypeptides. Our findings contribute to a deeper understanding of plant defense proteins and peptides and their involvement in the adaptation to various stress factors, and they reveal the regulatory effect at the ecosystem level.
Collapse
Affiliation(s)
- Anna S Barashkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- All-Russian Institute of Plant Protection, 196608 Saint Petersburg, Russia
| | - Alexey N Smirnov
- Department of Plant Protection, Institute of Agrobiotechnology, Timiryazev Russian State Agrarian University, 127550 Moscow, Russia
| | - Eugene A Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- All-Russian Institute of Plant Protection, 196608 Saint Petersburg, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia
| |
Collapse
|
7
|
Lu S, Xiao F. Small Peptides: Orchestrators of Plant Growth and Developmental Processes. Int J Mol Sci 2024; 25:7627. [PMID: 39062870 PMCID: PMC11276966 DOI: 10.3390/ijms25147627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Small peptides (SPs), ranging from 5 to 100 amino acids, play integral roles in plants due to their diverse functions. Despite their low abundance and small molecular weight, SPs intricately regulate critical aspects of plant life, including cell division, growth, differentiation, flowering, fruiting, maturation, and stress responses. As vital mediators of intercellular signaling, SPs have garnered significant attention in plant biology research. This comprehensive review delves into SPs' structure, classification, and identification, providing a detailed understanding of their significance. Additionally, we summarize recent findings on the biological functions and signaling pathways of prominent SPs that regulate plant growth and development. This review also offers a perspective on future research directions in peptide signaling pathways.
Collapse
Affiliation(s)
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| |
Collapse
|
8
|
Matsui S, Noda S, Kuwata K, Nomoto M, Tada Y, Shinohara H, Matsubayashi Y. Arabidopsis SBT5.2 and SBT1.7 subtilases mediate C-terminal cleavage of flg22 epitope from bacterial flagellin. Nat Commun 2024; 15:3762. [PMID: 38704378 PMCID: PMC11069567 DOI: 10.1038/s41467-024-48108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Plants initiate specific defense responses by recognizing conserved epitope peptides within the flagellin proteins derived from bacteria. Proteolytic cleavage of epitope peptides from flagellin by plant apoplastic proteases is thought to be crucial for the perception of the epitope by the plant receptor. However, the identity of the plant proteases involved in this process remains unknown. Here, we establish an efficient identification system for the target proteases in Arabidopsis apoplastic fluid; the method employs native two-dimensional electrophoresis followed by an in-gel proteolytic assay using a fluorescence-quenching peptide substrate. We designed a substrate to specifically detect proteolytic activity at the C-terminus of the flg22 epitope in flagellin and identified two plant subtilases, SBT5.2 and SBT1.7, as specific proteases responsible for the C-terminal cleavage of flg22. In the apoplastic fluid of Arabidopsis mutant plants deficient in these two proteases, we observe a decrease in the C-terminal cleavage of the flg22 domain from flagellin, leading to a decrease in the efficiency of flg22 epitope liberation. Consequently, defensive reactive oxygen species (ROS) production is delayed in sbt5.2 sbt1.7 double-mutant leaf disks compared to wild type following flagellin exposure.
Collapse
Affiliation(s)
- Sayaka Matsui
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Saki Noda
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Mika Nomoto
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hidefumi Shinohara
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, 910-1195, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
| |
Collapse
|
9
|
Shi D, Huang H, Zhang Y, Qian Z, Du J, Huang L, Yan X, Lin S. The roles of non-coding RNAs in male reproductive development and abiotic stress responses during this unique process in flowering plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111995. [PMID: 38266717 DOI: 10.1016/j.plantsci.2024.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Successful male reproductive development is the guarantee for sexual reproduction of flowering plants. Male reproductive development is a complicated and multi-stage process that integrates physiological processes and adaptation and tolerance to a myriad of environmental stresses. This well-coordinated process is governed by genetic and epigenetic machineries. Non-coding RNAs (ncRNAs) play pleiotropic roles in the plant growth and development. The identification, characterization and functional analysis of ncRNAs and their target genes have opened a new avenue for comprehensively revealing the regulatory network of male reproductive development and its response to environmental stresses in plants. This review briefly addresses the types, origin, biogenesis and mechanisms of ncRNAs in plants, highlights important updates on the roles of ncRNAs in regulating male reproductive development and emphasizes the contribution of ncRNAs, especially miRNAs and lncRNAs, in responses to abiotic stresses during this unique process in flowering plants.
Collapse
Affiliation(s)
- Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huiting Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
10
|
van Wijk KJ, Leppert T, Sun Z, Kearly A, Li M, Mendoza L, Guzchenko I, Debley E, Sauermann G, Routray P, Malhotra S, Nelson A, Sun Q, Deutsch EW. Detection of the Arabidopsis Proteome and Its Post-translational Modifications and the Nature of the Unobserved (Dark) Proteome in PeptideAtlas. J Proteome Res 2024; 23:185-214. [PMID: 38104260 DOI: 10.1021/acs.jproteome.3c00536] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
This study describes a new release of the Arabidopsis thaliana PeptideAtlas proteomics resource (build 2023-10) providing protein sequence coverage, matched mass spectrometry (MS) spectra, selected post-translational modifications (PTMs), and metadata. 70 million MS/MS spectra were matched to the Araport11 annotation, identifying ∼0.6 million unique peptides and 18,267 proteins at the highest confidence level and 3396 lower confidence proteins, together representing 78.6% of the predicted proteome. Additional identified proteins not predicted in Araport11 should be considered for the next Arabidopsis genome annotation. This release identified 5198 phosphorylated proteins, 668 ubiquitinated proteins, 3050 N-terminally acetylated proteins, and 864 lysine-acetylated proteins and mapped their PTM sites. MS support was lacking for 21.4% (5896 proteins) of the predicted Araport11 proteome: the "dark" proteome. This dark proteome is highly enriched for E3 ligases, transcription factors, and for certain (e.g., CLE, IDA, PSY) but not other (e.g., THIONIN, CAP) signaling peptides families. A machine learning model trained on RNA expression data and protein properties predicts the probability that proteins will be detected. The model aids in discovery of proteins with short half-life (e.g., SIG1,3 and ERF-VII TFs) and for developing strategies to identify the missing proteins. PeptideAtlas is linked to TAIR, tracks in JBrowse, and several other community proteomics resources.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Alyssa Kearly
- Boyce Thompson Institute, Ithaca, New York 14853, United States
| | - Margaret Li
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Isabell Guzchenko
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Erica Debley
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Georgia Sauermann
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Pratyush Routray
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Sagunya Malhotra
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Andrew Nelson
- Boyce Thompson Institute, Ithaca, New York 14853, United States
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, United States
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| |
Collapse
|
11
|
Elsäßer G, Seidl T, Pfannstiel J, Schaller A, Stührwohldt N. Characterization of Prolyl-4-Hydroxylase Substrate Specificity Using Pichia pastoris as an Efficient Eukaryotic Expression System. Methods Mol Biol 2024; 2731:59-80. [PMID: 38019426 DOI: 10.1007/978-1-0716-3511-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The use of eukaryotic expression systems facilitates the heterologous expression of complex eukaryotic proteins in their post-translationally modified and biologically active state, as a prerequisite for subsequent biochemical characterization and functional analysis. Here we describe the complete workflow for the expression of Arabidopsis thaliana prolyl-4-hydroxylases (P4Hs) in the methylotrophic yeast Pichia pastoris (renamed as Komagataella phaffii), for the extraction of the recombinant enzymes, purification by affinity chromatography, and characterization of P4H activity and specificity toward oligopeptide substrates by mass spectrometry. We expressed eight of the 13 Arabidopsis P4Hs and show that they are all active against proline-rich extensin-derived peptides. However, three of them differed in substrate specificity and were also able to hydroxylate the CLEL9 signaling peptide, featuring a single proline within its mature peptide sequence.
Collapse
Affiliation(s)
- Gerith Elsäßer
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Tim Seidl
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Module, University of Hohenheim, Stuttgart, Germany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Nils Stührwohldt
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
12
|
Galiullina RA, Chichkova NV, Safronov GG, Vartapetian AB. Characterization of Phytaspase Proteolytic Activity Using Fluorogenic Peptide Substrates. Methods Mol Biol 2024; 2731:49-58. [PMID: 38019425 DOI: 10.1007/978-1-0716-3511-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Within the subtilase family of plant proteolytic enzymes, phytaspases are distinguished by their strict substrate cleavage specificity after an aspartate residue preceded by a characteristic tripeptide amino acid motif. This type of recognition resembles that of animal apoptotic proteases, caspases. Phytaspases attract attention not only because they are critically important for the accomplishment of stress-induced death of plant cells, but also due to their ability to specifically process precursor proteins, thus generating bioactive plant peptide hormones, systemin and phytosulfokine. As the activity of phytaspases appears to be essential for life and death decisions made by the plant cell, elaboration of an approach to characterize and quantitate phytaspase proteolytic activity is of importance. Here we provide a protocol for phytaspase activity determination and characterization using fluorogenic peptide substrates. This approach works well, both with purified phytaspase samples, and with crude extracts from plant tissues. We also discuss advantages of the assay, factors that may influence its sensitivity and specificity, as well as possible pitfalls.
Collapse
Affiliation(s)
- Raisa A Galiullina
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Nina V Chichkova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Grigoriy G Safronov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Andrey B Vartapetian
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.
| |
Collapse
|
13
|
Wang X, Meng X. Rapid Identification of Peptide-Receptor-Coreceptor Complexes in Protoplasts. Methods Mol Biol 2024; 2731:241-251. [PMID: 38019439 DOI: 10.1007/978-1-0716-3511-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Secreted signaling peptides, also called peptide hormones, play crucial roles in regulating plant growth, development, and immunity. Plant peptide hormones are perceived by plasma membrane-localized receptor-like kinases (RLKs) or receptor-like proteins (RLPs) that harbor specific extracellular domains to bind and recognize the corresponding peptide ligands. Binding of a peptide ligand to its receptor usually induces the hetero-dimerization of the cognate receptor and a coreceptor, followed by the phosphorylation and activation of the receptor complex to transduce downstream signaling. Therefore, matching peptide ligands with their respective receptors/coreceptors is crucial for elucidating peptide hormone signaling pathways. In this chapter, using the RGF7 peptide-RGI4/RGI5 receptor-BAK1 coreceptor complex as an example, we describe a rapid method to identify the peptide ligand-receptor-coreceptor complexes via co-immunoprecipitation assays using recombinant proteins transiently expressed in Arabidopsis protoplasts.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
14
|
Tran Van Canh L, Aubourg S. Bioinformatics Methods for Prediction of Gene Families Encoding Extracellular Peptides. Methods Mol Biol 2024; 2731:3-21. [PMID: 38019422 DOI: 10.1007/978-1-0716-3511-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Genes encoding small secreted peptides are widely distributed among plant genomes but their detection and annotation remains challenging. The bioinformatics protocol described here aims to identify as exhaustively as possible secreted peptide precursors belonging to a family of interest. First, homology searches are performed at the protein and genome levels. Next, multiple sequence alignments and predictions of a secretion signal are used to define a set of homologous proteins sharing features of secreted peptide precursors. These protein sequences are then used as input of motif detection and profile-based tools to build representative matrices and profiles that are used iteratively as guides to scan again the proteome and genome until family completion.
Collapse
Affiliation(s)
- Loup Tran Van Canh
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, Angers, France
| | - Sébastien Aubourg
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, Angers, France
| |
Collapse
|
15
|
Yang H, Kim X, Skłenar J, Aubourg S, Sancho-Andrés G, Stahl E, Guillou MC, Gigli-Bisceglia N, Tran Van Canh L, Bender KW, Stintzi A, Reymond P, Sánchez-Rodríguez C, Testerink C, Renou JP, Menke FLH, Schaller A, Rhodes J, Zipfel C. Subtilase-mediated biogenesis of the expanded family of SERINE RICH ENDOGENOUS PEPTIDES. NATURE PLANTS 2023; 9:2085-2094. [PMID: 38049516 DOI: 10.1038/s41477-023-01583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 11/03/2023] [Indexed: 12/06/2023]
Abstract
Plant signalling peptides are typically released from larger precursors by proteolytic cleavage to regulate plant growth, development and stress responses. Recent studies reported the characterization of a divergent family of Brassicaceae-specific peptides, SERINE RICH ENDOGENOUS PEPTIDES (SCOOPs), and their perception by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2). Here, we reveal that the SCOOP family is highly expanded, containing at least 50 members in the Columbia-0 reference Arabidopsis thaliana genome. Notably, perception of these peptides is strictly MIK2-dependent. How bioactive SCOOP peptides are produced, and to what extent their perception is responsible for the multiple physiological roles associated with MIK2 are currently unclear. Using N-terminomics, we validate the N-terminal cleavage site of representative PROSCOOPs. The cleavage sites are determined by conserved motifs upstream of the minimal SCOOP bioactive epitope. We identified subtilases necessary and sufficient to process PROSCOOP peptides at conserved cleavage motifs. Mutation of these subtilases, or their recognition motifs, suppressed PROSCOOP cleavage and associated overexpression phenotypes. Furthermore, we show that higher-order mutants of these subtilases show phenotypes reminiscent of mik2 null mutant plants, consistent with impaired PROSCOOP biogenesis, and demonstrating biological relevance of SCOOP perception by MIK2. Together, this work provides insights into the molecular mechanisms underlying the functions of the recently identified SCOOP peptides and their receptor MIK2.
Collapse
Affiliation(s)
- Huanjie Yang
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xeniya Kim
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Jan Skłenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sébastien Aubourg
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | | - Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, the Netherlands
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Loup Tran Van Canh
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Kyle W Bender
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Annick Stintzi
- Institute of Biology, Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Jean-Pierre Renou
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andreas Schaller
- Institute of Biology, Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Jack Rhodes
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
16
|
Bühler E, Fahrbach E, Schaller A, Stührwohldt N. Sulfopeptide CLEL6 inhibits anthocyanin biosynthesis in Arabidopsis thaliana. PLANT PHYSIOLOGY 2023; 193:809-820. [PMID: 37254811 DOI: 10.1093/plphys/kiad316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Posttranslationally modified peptides are now recognized as important regulators of plant stress responses. Here, we identified the small sulfated CLE-LIKE6 (CLEL6) peptide as a negative regulator of anthocyanin biosynthesis in etiolated and in light-stressed Arabidopsis (Arabidopsis thaliana) seedlings. CLEL6 function depends on proteolytic processing of the CLEL6 precursor by subtilisin-like serine proteinase 6.1 (SBT6.1) and on tyrosine sulfation by tyrosylprotein sulfotransferase (TPST). Loss-of-function mutants of either sbt6.1 or tpst showed significantly higher anthocyanin accumulation than the wild type upon light stress. The anthocyanin overaccumulation phenotype of sbt6.1 and tpst was suppressed by application of mature CLEL6. Overexpression and external application of CLEL6 inhibited the expression of anthocyanin biosynthesis genes in etiolated and light-stressed seedlings, confirming the role of CLEL6 as an inhibitor of anthocyanin biosynthesis. Small posttranslationally modified peptides are perceived by leucine-rich repeat receptor-like kinases. Using a quintuple mutant of ROOT MERISTEM GROWTH FACTOR 1 INSENSITIVE (RGI) receptors, we showed the essential function of the RGI receptor family in CLEL6 signaling. Our data indicate that overexpression or application of CLEL6 inhibits anthocyanin biosynthesis through RGI receptors. We propose that CLEL6 inhibits anthocyanin biosynthesis in etiolated seedlings, and that anthocyanin biosynthesis is derepressed when CLEL6 expression is downregulated upon light exposure. Hyperaccumulation of anthocyanins in light-stressed tpst and sbt6.1 mutant seedlings suggests that CLEL6, or related sulfopeptides, continues to act as negative regulators to limit pigment accumulation in the light.
Collapse
Affiliation(s)
- Eric Bühler
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70593, Germany
| | - Elisa Fahrbach
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70593, Germany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70593, Germany
| | | |
Collapse
|
17
|
van Wijk KJ, Leppert T, Sun Z, Kearly A, Li M, Mendoza L, Guzchenko I, Debley E, Sauermann G, Routray P, Malhotra S, Nelson A, Sun Q, Deutsch EW. Mapping the Arabidopsis thaliana proteome in PeptideAtlas and the nature of the unobserved (dark) proteome; strategies towards a complete proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543322. [PMID: 37333403 PMCID: PMC10274743 DOI: 10.1101/2023.06.01.543322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
This study describes a new release of the Arabidopsis thaliana PeptideAtlas proteomics resource providing protein sequence coverage, matched mass spectrometry (MS) spectra, selected PTMs, and metadata. 70 million MS/MS spectra were matched to the Araport11 annotation, identifying ∼0.6 million unique peptides and 18267 proteins at the highest confidence level and 3396 lower confidence proteins, together representing 78.6% of the predicted proteome. Additional identified proteins not predicted in Araport11 should be considered for building the next Arabidopsis genome annotation. This release identified 5198 phosphorylated proteins, 668 ubiquitinated proteins, 3050 N-terminally acetylated proteins and 864 lysine-acetylated proteins and mapped their PTM sites. MS support was lacking for 21.4% (5896 proteins) of the predicted Araport11 proteome - the 'dark' proteome. This dark proteome is highly enriched for certain ( e.g. CLE, CEP, IDA, PSY) but not other ( e.g. THIONIN, CAP,) signaling peptides families, E3 ligases, TFs, and other proteins with unfavorable physicochemical properties. A machine learning model trained on RNA expression data and protein properties predicts the probability for proteins to be detected. The model aids in discovery of proteins with short-half life ( e.g. SIG1,3 and ERF-VII TFs) and completing the proteome. PeptideAtlas is linked to TAIR, JBrowse, PPDB, SUBA, UniProtKB and Plant PTM Viewer.
Collapse
|
18
|
Camarero MC, Briegas B, Corbacho J, Labrador J, Gallardo M, Gomez-Jimenez MC. Characterization of Transcriptome Dynamics during Early Fruit Development in Olive ( Olea europaea L.). Int J Mol Sci 2023; 24:961. [PMID: 36674474 PMCID: PMC9864153 DOI: 10.3390/ijms24020961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
In the olive (Olea europaea L.), an economically leading oil crop worldwide, fruit size and yield are determined by the early stages of fruit development. However, few detailed analyses of this stage of fruit development are available. This study offers an extensive characterization of the various processes involved in early olive fruit growth (cell division, cell cycle regulation, and cell expansion). For this, cytological, hormonal, and transcriptional changes characterizing the phases of early fruit development were analyzed in olive fruit of the cv. 'Picual'. First, the surface area and mitotic activity (by flow cytometry) of fruit cells were investigated during early olive fruit development, from 0 to 42 days post-anthesis (DPA). The results demonstrate that the cell division phase extends up to 21 DPA, during which the maximal proportion of 4C cells in olive fruits was reached at 14 DPA, indicating that intensive cell division was activated in olive fruits at that time. Subsequently, fruit cell expansion lasted as long as 3 weeks more before endocarp lignification. Finally, the molecular mechanisms controlling the early fruit development were investigated by analyzing the transcriptome of olive flowers at anthesis (fruit set) as well as olive fruits at 14 DPA (cell division phase) and at 28 DPA (cell expansion phase). Sequential induction of the cell cycle regulating genes is associated with the upregulation of genes involved in cell wall remodeling and ion fluxes, and with a shift in plant hormone metabolism and signaling genes during early olive fruit development. This occurs together with transcriptional activity of subtilisin-like protease proteins together with transcription factors potentially involved in early fruit growth signaling. This gene expression profile, together with hormonal regulators, offers new insights for understanding the processes that regulate cell division and expansion, and ultimately fruit yield and olive size.
Collapse
Affiliation(s)
- Maria C. Camarero
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Beatriz Briegas
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Jorge Corbacho
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Juana Labrador
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Mercedes Gallardo
- Laboratory of Plant Physiology, University of Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Maria C. Gomez-Jimenez
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| |
Collapse
|
19
|
Guillou MC, Balliau T, Vergne E, Canut H, Chourré J, Herrera-León C, Ramos-Martín F, Ahmadi-Afzadi M, D’Amelio N, Ruelland E, Zivy M, Renou JP, Jamet E, Aubourg S. The PROSCOOP10 Gene Encodes Two Extracellular Hydroxylated Peptides and Impacts Flowering Time in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3554. [PMID: 36559666 PMCID: PMC9784617 DOI: 10.3390/plants11243554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The Arabidopsis PROSCOOP genes belong to a family predicted to encode secreted pro-peptides, which undergo maturation steps to produce peptides named SCOOP. Some of them are involved in defence signalling through their perception by a receptor complex including MIK2, BAK1 and BKK1. Here, we focused on the PROSCOOP10 gene, which is highly and constitutively expressed in aerial organs. The MS/MS analyses of leaf apoplastic fluids allowed the identification of two distinct peptides (named SCOOP10#1 and SCOOP10#2) covering two different regions of PROSCOOP10. They both possess the canonical S-X-S family motif and have hydroxylated prolines. This identification in apoplastic fluids confirms the biological reality of SCOOP peptides for the first time. NMR and molecular dynamics studies showed that the SCOOP10 peptides, although largely unstructured in solution, tend to assume a hairpin-like fold, exposing the two serine residues previously identified as essential for the peptide activity. Furthermore, PROSCOOP10 mutations led to an early-flowering phenotype and increased expression of the floral integrators SOC1 and LEAFY, consistent with the de-regulated transcription of PROSCOOP10 in several other mutants displaying early- or late-flowering phenotypes. These results suggest a role for PROSCOOP10 in flowering time, highlighting the functional diversity within the PROSCOOP family.
Collapse
Affiliation(s)
| | - Thierry Balliau
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, F-91190 Gif-sur-Yvette, France
| | - Emilie Vergne
- Institut Agro, SFR QUASAV, IRHS, Université Angers, INRAE, F-49000 Angers, France
| | - Hervé Canut
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, Toulouse INP, CNRS, F-31320 Auzeville-Tolosane, France
| | - Josiane Chourré
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, Toulouse INP, CNRS, F-31320 Auzeville-Tolosane, France
| | - Claudia Herrera-León
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, F-80039 Amiens, France
| | - Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, F-80039 Amiens, France
| | - Masoud Ahmadi-Afzadi
- Institut Agro, SFR QUASAV, IRHS, Université Angers, INRAE, F-49000 Angers, France
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 117-76315, Iran
| | - Nicola D’Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, F-80039 Amiens, France
| | - Eric Ruelland
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Technologie de Compiègne, F-60203 Compiègne, France
| | - Michel Zivy
- AgroParisTech, GQE—Le Moulon, PAPPSO, Université Paris-Saclay, INRAE, CNRS, F-91190 Gif-sur-Yvette, France
| | - Jean-Pierre Renou
- Institut Agro, SFR QUASAV, IRHS, Université Angers, INRAE, F-49000 Angers, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, Toulouse INP, CNRS, F-31320 Auzeville-Tolosane, France
| | - Sébastien Aubourg
- Institut Agro, SFR QUASAV, IRHS, Université Angers, INRAE, F-49000 Angers, France
| |
Collapse
|