1
|
Visoiu IS, Jensen B, Rimbas RC, Mihaila-Baldea S, Nicula AI, Vinereanu D. How the trabecular layer impacts on left ventricular function. J Cardiol 2025; 85:17-27. [PMID: 39214511 DOI: 10.1016/j.jjcc.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The ventricular trabecular layer is crucial in embryonic life. In adults, the proportion of trabecular-to-compact myocardium varies substantially between individuals, within individuals over time, and yet exhibits almost no correlation to pump function since most individuals with excessive trabeculation are asymptomatic. The question of how functional is the myocardium of the trabecular layer, relative to the myocardium of the compact layer, has been difficult to answer but it is often assumed to be inferior. An answer is now emerging from recent advances and it can improve our understanding of how the trabecular layer impacts on pathogenicity. This narrative review concerns natural variation in trabeculation, tissue organization, transcriptomics, immunohistochemistry, vascularization, electrical propagation, diastolic function and compliance, systolic function, and ejection fraction. There are no overt transcriptional differences in the adult stage, and the myocardium is equally equipped with sarcomeric proteins, mitochondria, and vascular supply. The similar structural features are consistent with myocardium with a similar stroke work per gram tissue, along with a high ejection fraction of the trabecular layer. In conclusion, the myocardium of the trabecular and compact layers is highly similar and this offers a logical explanation for the reproducible observations that most individuals with excessive trabeculation are asymptomatic.
Collapse
Affiliation(s)
- Ionela Simona Visoiu
- Department of Cardiology and Cardiovascular Surgery, SEARCH-VASC Center of Excellence, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Roxana Cristina Rimbas
- Department of Cardiology and Cardiovascular Surgery, SEARCH-VASC Center of Excellence, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| | - Sorina Mihaila-Baldea
- Department of Cardiology and Cardiovascular Surgery, SEARCH-VASC Center of Excellence, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| | - Alina Ioana Nicula
- Department of Radiology, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| | - Dragos Vinereanu
- Department of Cardiology and Cardiovascular Surgery, SEARCH-VASC Center of Excellence, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| |
Collapse
|
2
|
Pereira FMAM, Mangueira DKA, Melchert A. Electrocardiographic parameters of chemically immobilized giant anteaters (Myrmecophaga tridactyla). Vet Res Commun 2024; 49:5. [PMID: 39546062 DOI: 10.1007/s11259-024-10589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
The giant anteater (Myrmecophaga tridactyla) is a vulnerable species that is threatened mostly due to anthropogenic pressure. The anteater is a highly specialized insectivore, challenging the species' ex situ maintenance and conservation efforts. Several dietary-associated health issues have been reported in captive anteaters, including heart conditions such as dilated cardiomyopathy. On the other hand, cardiopathy is mainly diagnosed only on necropsy, and lack of clinical reference is one of the constraints. This work describes electrocardiographic parameters in twelve zoo-kept giant anteaters (Myrmecophaga tridactyla). The giant anteaters were evaluated after chemical immobilization. Surface electrocardiography using a digital electrocardiograph was performed to acquire data on the six frontal plane leads. Four animals were placed in both left and right recumbencies to assess changes in waveforms. Nine anteaters were considered healthy and included in the statistics. The mean heart rate and electrical axis were 37.8 bpm ± 3.45 and 75.6º ± 11.43, respectively. ECG parameters results were P wave duration (ms) 89.7 ± 9.2, P wave amplitude (mV) 0.14 ± 0.05, PR segment duration (ms) 148.6 ± 23, R wave amplitude (mV) 1.55 ± 0.56, QRS complex duration (ms) 88.6 ± 12.0, QT interval duration (ms) 529.6 ± 71.2, and T wave amplitude (mV) 0.76 ± 0.21. There was no difference between left or right recumbency. Heart parameters of giant anteaters are similar to other mammals and seem to be influenced both by size and metabolic rate when comparing with other species. This is the first description of ECG parameters in giant anteaters.
Collapse
Affiliation(s)
- Fernanda Mara Aragão Macedo Pereira
- Department of Veterinary Clinics, Faculty of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Danyele Karoline Avante Mangueira
- Department of Veterinary Clinics, Faculty of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Alessandra Melchert
- Department of Veterinary Clinics, Faculty of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil
| |
Collapse
|
3
|
Jensen B, Wang T. The Elusive Hypertrophy of the Python Heart. Physiology (Bethesda) 2024; 39:0. [PMID: 38085014 DOI: 10.1152/physiol.00025.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
Abstract
The Burmese python, one of the world's largest snakes, has reached celebrity status for its dramatic physiological responses associated with digestion of enormous meals. The meals elicit a rapid gain of mass and function of most visceral organs, particularly the small intestine. There is also a manyfold elevation of oxygen consumption that demands the heart to deliver more oxygen. It therefore made intuitive sense when it was reported that the postprandial response entailed a 40% growth of heart mass that could accommodate a rise in stroke volume. Many studies, however, have not been able to reproduce the 40% growth of the heart. We collated published values on postprandial heart mass in pythons, which include several instances of no change in heart mass. On average, the heart mass is only 15% greater. The changes in heart mass did not correlate to the mass gain of the small intestine or peak oxygen consumption. Hemodynamic studies show that the rise in cardiac output does not require increased heart mass but can be fully explained by augmented cardiac filling and postprandial tachycardia. Under the assumption that hypertrophy is a contingent phenomenon, more recent experiments have employed two interventions such as feeding with a concomitant reduction in hematocrit. The results suggest that the postprandial response of the heart can be enhanced, but the 40% hypertrophy of the python heart remains elusive.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tobias Wang
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Jensen B, Moorman AFM. Evolutionary Aspects of Chamber Formation and Septation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:227-238. [PMID: 38884714 DOI: 10.1007/978-3-031-44087-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The formed hearts of vertebrates are widely different in anatomy and performance, yet their embryonic hearts are surprisingly similar. Developmental and molecular biology are making great advances in reconciling these differences by revealing an evolutionarily conserved building plan to the vertebrate heart. This suggests that perspectives from evolution may improve our understanding of the formation of the human heart. Here, we exemplify this approach by discussing atrial and ventricular septation and the associated processes of remodeling of the atrioventricular junction and formation of the atrioventricular insulating plane.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, The Netherlands.
| | - Antoon F M Moorman
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Elbrønd VS, Thomsen MB, Isaksen JL, Lunde ED, Vincenti S, Wang T, Tranum-Jensen J, Calloe K. Intramural Purkinje fibers facilitate rapid ventricular activation in the equine heart. Acta Physiol (Oxf) 2023; 237:e13925. [PMID: 36606541 DOI: 10.1111/apha.13925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/11/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND The Purkinje fibers convey the electrical impulses at much higher speed than the working myocardial cells. Thus, the distribution of the Purkinje network is of paramount importance for the timing and coordination of ventricular activation. The Purkinje fibers are found in the subendocardium of all species of mammals, but some mammals also possess an intramural Purkinje fiber network that provides for relatively instantaneous, burst-like activation of the entire ventricular wall, and gives rise to an rS configuration in lead II of the ECG. AIM To relate the topography of the horse heart and the distribution and histology of the conduction system to the pattern of ventricular activation as a mechanism for the unique electrical axis of the equine heart. METHODS The morphology and distribution of the cardiac conduction system was determined by histochemistry. The electrical activity was measured using ECG in the Einthoven and orthogonal configuration. RESULTS The long axis of the equine heart is close to vertical. Outside the nodal regions the conduction system consisted of Purkinje fibers connected by connexin 43 and long, slender parallel running transitional cells. The Purkinje fiber network extended deep into the ventricular walls. ECGs recorded in an orthogonal configuration revealed a mean electrical axis pointing in a cranial-to-left direction indicating ventricular activation in an apex-to-base direction. CONCLUSION The direction of the mean electrical axis in the equine heart is determined by the architecture of the intramural Purkinje network, rather than being a reflection of ventricular mass.
Collapse
Affiliation(s)
- Vibeke S Elbrønd
- Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Morten B Thomsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas L Isaksen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ester D Lunde
- Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Stefano Vincenti
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Wang
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jørgen Tranum-Jensen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Calloe
- Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
6
|
Ripplinger CM, Glukhov AV, Kay MW, Boukens BJ, Chiamvimonvat N, Delisle BP, Fabritz L, Hund TJ, Knollmann BC, Li N, Murray KT, Poelzing S, Quinn TA, Remme CA, Rentschler SL, Rose RA, Posnack NG. Guidelines for assessment of cardiac electrophysiology and arrhythmias in small animals. Am J Physiol Heart Circ Physiol 2022; 323:H1137-H1166. [PMID: 36269644 PMCID: PMC9678409 DOI: 10.1152/ajpheart.00439.2022] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/09/2023]
Abstract
Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.
Collapse
Affiliation(s)
- Crystal M Ripplinger
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Bastiaan J Boukens
- Department Physiology, University Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
- Department of Internal Medicine, University of California Davis School of Medicine, Davis, California
- Veterans Affairs Northern California Healthcare System, Mather, California
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Larissa Fabritz
- University Center of Cardiovascular Science, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf with DZHK Hamburg/Kiel/Luebeck, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Thomas J Hund
- Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
- Department of Biomedical Engineering, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Na Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Katherine T Murray
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Steven Poelzing
- Virginia Tech Carilon School of Medicine, Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech, Roanoke, Virginia
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Stacey L Rentschler
- Cardiovascular Division, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
- Department of Pediatrics, George Washington University School of Medicine, Washington, District of Columbia
| |
Collapse
|
7
|
Kuo C, Chan I, Lai C. Comparative electrocardiographic study of the Asian freshwater box turtle Cuora flavomarginata and the Asian yellow pond turtle Mauremys mutica using non-invasive methods. Vet Rec Open 2022; 9:e52. [PMID: 36514371 PMCID: PMC9732382 DOI: 10.1002/vro2.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/06/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
Background Evaluation of cardiac function is an integral part of clinical examination of chelonians. However, information about electrocardiography (ECG) in turtles and tortoises is limited and fragmentary. Its application is limited due to the lack of ECG reference values. This study aimed to compare specific ECG parameters using non-invasive methods in the Asian box turtle Cuora flavomarginata (CF) and the Asian yellow pond turtle Mauremys mutica (MM). Methods We included 116 clinically healthy and conscious turtles. Two non-invasive methods, using adhesive patches or crocodile clips, for ECG were applied where possible. The ambient temperature was within the preferred optimum temperature zone of both species. We used specific digital ECG monitoring equipment to record the ECG data and analysed the data using specific software. Results The MM group showed better ECG quality and lower heart rate than the CF group. Comparing both methods, the adhesive patches method yielded higher ECG quality in the CF group, while the crocodile clips method yielded higher ECG quality in the MM group. Conclusions The study population was selected as presumed healthy turtles; the presence of systemic or cardiac disease could not be excluded completely due to limited investigation. Both ECG methods were clinically potentially useful for obtaining ECG parameters; the ECG quality was influenced by the method used.
Collapse
Affiliation(s)
- Chin‐Chia Kuo
- Department of Veterinary MedicineCollege of Veterinary MedicineNational Chung Hsing UniversityTaichungTaiwan
- Chung Jen Animal HospitalTaichungTaiwan
| | - I‐Ping Chan
- Veterinary Medical Teaching Hospital, National Chung Hsing UniversityTaichungTaiwan
| | - Cheng‐Hung Lai
- Department of Veterinary MedicineCollege of Veterinary MedicineNational Chung Hsing UniversityTaichungTaiwan
- Veterinary Medical Teaching Hospital, National Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
8
|
Meyer S, Lauridsen H, Pedersen K, Andersson SA, van Ooij P, Willems T, Berger RMF, Ebels T, Jensen B. Opportunities and short-comings of the axolotl salamander heart as a model system of human single ventricle and excessive trabeculation. Sci Rep 2022; 12:20491. [PMID: 36443330 PMCID: PMC9705478 DOI: 10.1038/s41598-022-24442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Few experimental model systems are available for the rare congenital heart diseases of double inlet left ventricle (DILV), a subgroup of univentricular hearts, and excessive trabeculation (ET), or noncompaction. Here, we explore the heart of the axolotl salamander (Ambystoma mexicanum, Shaw 1789) as model system of these diseases. Using micro-echocardiography, we assessed the form and function of the heart of the axolotl, an amphibian, and compared this to human DILV (n = 3). The main finding was that both in the axolotl and DILV, blood flows of disparate oxygen saturation can stay separated in a single ventricle. In the axolotl there is a solitary ventricular inlet and outlet, whereas in DILV there are two separate inlets and outlets. Axolotls had a lower resting heart rate compared to DILV (22 vs. 72 beats per minute), lower ejection fraction (47 vs. 58%), and their oxygen consumption at rest was higher than peak oxygen consumption in DILV (30 vs. 17 ml min-1 kg-1). Concerning the ventricular myocardial organization, histology showed trabeculations in ET (n = 5) are much closer to the normal human setting than to the axolotl setting. We conclude that the axolotl heart resembles some aspects of DILV and ET albeit substantial species differences exist.
Collapse
Affiliation(s)
- Sophie Meyer
- Center for Congenital Heart Diseases, Department of Cardiothoracic Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Henrik Lauridsen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Kathrine Pedersen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | | | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| | - Tineke Willems
- Department of Radiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Tjark Ebels
- Center for Congenital Heart Diseases, Department of Cardiothoracic Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Shiels HA. Avian cardiomyocyte architecture and what it reveals about the evolution of the vertebrate heart. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210332. [PMID: 36189815 PMCID: PMC9527935 DOI: 10.1098/rstb.2021.0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022] Open
Abstract
Bird cardiomyocytes are long, thin and lack transverse (t)-tubules, which is akin to the cardiomyocyte morphology of ectothermic non-avian reptiles, who are typified by low maximum heart rates and low pressure development. However, birds can achieve greater contractile rates and developed pressures than mammals, whose wide cardiomyocytes contain a dense t-tubular network allowing for uniform excitation-contraction coupling and strong contractile force. To address this apparent paradox, this paper functionally links recent electrophysiological studies on bird cardiomyocytes with decades of ultrastructure measurements. It shows that it is the strong transsarcolemmal Ca2+ influx via the L-type Ca2+ current (ICaL) and the high gain of Ca2+-induced Ca2+ release from the sarcoplasmic reticulum (SR), coupled with an internal SR Ca2+ release relay system, that facilitates the strong fast contractions in the long thin bird cardiomyocytes, without the need for t-tubules. The maintenance of an elongated myocyte morphology following the post-hatch transition from ectothermy to endothermy in birds is discussed in relation to cardiac load, myocyte ploidy, and cardiac regeneration potential in adult cardiomyocytes. Overall, the paper shows how little we know about cellular Ca2+ dynamics in the bird heart and suggests how increased research efforts in this area would provide vital information in our quest to understand the role of myocyte architecture in the evolution of the vertebrate heart. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'. Please see glossary at the end of the paper for definitions of specialized terms.
Collapse
Affiliation(s)
- Holly A. Shiels
- Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
10
|
Badr A, Hassinen M, Vornanen M. Spatial uniformity of action potentials indicates base-to-apex depolarization and repolarization of rainbow trout (Oncorhynchus mykiss) ventricle. J Exp Biol 2022; 225:276292. [PMID: 35950359 DOI: 10.1242/jeb.244466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022]
Abstract
The spatial pattern of electrical activation is crucial for a full understanding of fish heart function. However, it remains unclear whether there is regional variation in action potential (AP) morphologies and underlying ion currents. Because the direction of depolarization and spatial differences in the durations of ventricular APs set limits to potential patterns of ventricular repolarization, we determined AP morphologies, underlying ion currents, and ion channel expression in 4 different regions (spongy myocardium; and apex, base, and middle of the compact myocardium), and correlated them with in vivo electrocardiogram (ECG) in rainbow trout (Oncorhynchus mykiss). ECG recorded from 3 leads indicated that the depolarization and repolarization of AP propagate from base-to-apex, and the main depolarization axis of the ventricle is between +90° and +120°. AP shape was uniform across the whole ventricle, and little regional differences were found in density of repolarizing K+ currents or depolarizing Ca2+ and Na+ currents and the underlying transcripts of ion channels, providing compelling evidence for the suggested excitation pattern. The spatial uniformity of AP durations and base-to-apex propagation of activation with a relatively slow velocity of propagation indicates no special ventricular conduction pathway in the trout ventricle like the His-Purkinje system of mammalian hearts. The sequence of repolarization is solely determined by activation time without being affected by regional differences in AP duration.
Collapse
Affiliation(s)
- Ahmed Badr
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland.,Sohag University, Faculty of Science, Department of Zoology, 82524 Sohag, Egypt
| | - Minna Hassinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland
| | - Matti Vornanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland
| |
Collapse
|
11
|
Abramochkin DV, Filatova TS, Pustovit KB, Voronina YA, Kuzmin VS, Vornanen M. Ionic currents underlying different patterns of electrical activity in working cardiac myocytes of mammals and non-mammalian vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111204. [PMID: 35346823 DOI: 10.1016/j.cbpa.2022.111204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
Abstract
The orderly contraction of the vertebrate heart is determined by generation and propagation of cardiac action potentials (APs). APs are generated by the integrated activity of time- and voltage-dependent ionic channels which carry inward Na+ and Ca2+ currents, and outward K+ currents. This review compares atrial and ventricular APs and underlying ion currents between different taxa of vertebrates. We have collected literature data and attempted to find common electrophysiological features for two or more vertebrate groups, show differences between taxa and cardiac chambers, and indicate gaps in the existing data. Although electrical excitability of the heart in all vertebrates is based on the same superfamily of channels, there is a vast variability of AP waveforms between atrial and ventricular myocytes, between different species of the same vertebrate class and between endothermic and ectothermic animals. The wide variability of AP shapes is related to species-specific differences in animal size, heart rate, stage of ontogenetic development, excitation-contraction coupling, temperature and oxygen availability. Some of the differences between taxa are related to evolutionary development of genomes, which appear e.g. in the expression of different Na+ and K+ channel orthologues in cardiomyocytes of vertebrates. There is a wonderful variability of AP shapes and underlying ion currents with which electrical excitability of vertebrate heart can be generated depending on the intrinsic and extrinsic conditions of animal body. This multitude of ionic mechanisms provides excellent material for studying how the function of the vertebrate heart can adapt or acclimate to prevailing physiological and environmental conditions.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia.
| | - Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Yana A Voronina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3(rd) Cherepkovskaya str., 15A, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
12
|
Schilliger L. Heart Diseases in Reptiles: Diagnosis and Therapy. Vet Clin North Am Exot Anim Pract 2022; 25:383-407. [PMID: 35422259 DOI: 10.1016/j.cvex.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The notion that poikilotherms do not suffer from cardiovascular conditions is being increasingly challenged as diagnostic tools used in companion animal practice are applied to reptiles. However, the cause, diagnosis, and treatment of cardiac conditions in reptiles is difficult because of the scarcity of published literature. Auscultation, electrocardiography, radiography, and ultrasonography are helpful diagnostic techniques in herpetologic practice. Although the pharmacokinetics and pharmacodynamics of cardiovascular drugs are poorly understood in these animals, basic principles remain applicable; these include pharmacologic and nonpharmacologic interventions. Further research is needed to establish species-specific cardiac reference ranges and evidence-based treatment options.
Collapse
Affiliation(s)
- Lionel Schilliger
- Clinique Vétérinaire du Village d'Auteuil, 35 rue Leconte de Lisle, Paris 75016, France.
| |
Collapse
|
13
|
Ren B, Yu Y, Poopal RK, Qiao L, Ren B, Ren Z. IR-Based Novel Device for Real-Time Online Acquisition of Fish Heart ECG Signals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4262-4271. [PMID: 35258949 DOI: 10.1021/acs.est.1c07732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We developed an infrared (IR)-based real-time online monitoring device (US Patent No: US 10,571,448 B2) to quantify heart electrocardiogram (ECG) signals to assess the water quality based on physiological changes in fish. The device is compact, allowing us to monitor cardiac function for an extended period (from 7 to 30 days depending on the rechargeable battery capacity) without function injury and disturbance of swimming activity. The electrode samples and the biopotential amplifier and microcontroller process the cardiac-electrical signals. An infrared transceiver transmits denoised electrocardiac signals to complete the signal transmission. The infrared receiver array and biomedical acquisition signal processing system send signals to the computer. The software in the computer processes the data in real time. We quantified ECG indexes (P-wave, Q-wave, R-wave, S-wave, T-wave, PR-interval, QRS-complex, and QT-interval) of carp precisely and incessantly under the different experimental setup (CuSO4 and deltamethrin). The ECG cue responses were chemical-specific based on CuSO4 and deltamethrin exposures. This study provides an additional technology for noninvasive water quality surveillance.
Collapse
Affiliation(s)
- Baixiang Ren
- Institute of Environment and Ecology, Shandong Normal University, 250358 Jinan, China
| | - Yaxin Yu
- Institute of Environment and Ecology, Shandong Normal University, 250358 Jinan, China
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, 250358 Jinan, China
| | - Linlin Qiao
- Institute of Environment and Ecology, Shandong Normal University, 250358 Jinan, China
| | - Baichuan Ren
- Institute of Environment and Ecology, Shandong Normal University, 250358 Jinan, China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, 250358 Jinan, China
| |
Collapse
|
14
|
Short B. Catecholamines help snakes have a change of heart. J Gen Physiol 2022; 154:e202213079. [PMID: 35061017 PMCID: PMC8789091 DOI: 10.1085/jgp.202213079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
JGP study on python snakes reveals that the regulation of ventricular repolarization by the sympathetic nervous system is evolutionarily conserved.
Collapse
|
15
|
Boukens BJD, Joyce W, Kristensen DL, Hooijkaas I, Jongejan A, Wang T, Jensen B. Catecholamines are key modulators of ventricular repolarization patterns in the ball python (Python regius). J Gen Physiol 2022; 154:212914. [PMID: 34910097 PMCID: PMC8679508 DOI: 10.1085/jgp.202012761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Ectothermic vertebrates experience daily changes in body temperature, and anecdotal observations suggest these changes affect ventricular repolarization such that the T-wave in the ECG changes polarity. Mammals, in contrast, can maintain stable body temperatures, and their ventricular repolarization is strongly modulated by changes in heart rate and by sympathetic nervous system activity. The aim of this study was to assess the role of body temperature, heart rate, and circulating catecholamines on local repolarization gradients in the ectothermic ball python (Python regius). We recorded body-surface electrocardiograms and performed open-chest high-resolution epicardial mapping while increasing body temperature in five pythons, in all of which there was a change in T-wave polarity. However, the vector of repolarization differed between individuals, and only a subset of leads revealed T-wave polarity change. RNA sequencing revealed regional differences related to adrenergic signaling. In one denervated and Ringer's solution-perfused heart, heating and elevated heart rates did not induce change in T-wave polarity, whereas noradrenaline did. Accordingly, electrocardiograms in eight awake pythons receiving intra-arterial infusion of the β-adrenergic receptor agonists adrenaline and isoproterenol revealed T-wave inversion in most individuals. Conversely, blocking the β-adrenergic receptors using propranolol prevented T-wave change during heating. Our findings indicate that changes in ventricular repolarization in ball pythons are caused by increased tone of the sympathetic nervous system, not by changes in temperature. Therefore, ventricular repolarization in both pythons and mammals is modulated by evolutionary conserved mechanisms involving catecholaminergic stimulation.
Collapse
Affiliation(s)
- Bastiaan J D Boukens
- University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - William Joyce
- Department of Biology, Zoophysiology, Aarhus University, Aarhus, Denmark
| | | | - Ingeborg Hooijkaas
- University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Aldo Jongejan
- University of Amsterdam, Amsterdam UMC, Department of Epidemiology & Data Science, Amsterdam, The Netherlands
| | - Tobias Wang
- Department of Biology, Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Bjarke Jensen
- University of Amsterdam, Amsterdam UMC, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Chang YH, Sheftel BI, Jensen B. Anatomy of the heart with the highest heart rate. J Anat 2022; 241:173-190. [PMID: 35128670 PMCID: PMC9178362 DOI: 10.1111/joa.13640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 11/26/2022] Open
Abstract
Shrews occupy the lower extreme of the seven orders of magnitude mammals range in size. Their hearts are large relative to body weight and heart rate can exceed a thousand beats a minute. It is not known whether traits typical of mammal hearts scale to these extremes. We assessed the heart of three species of shrew (genus Sorex) following the sequential segmental analysis developed for human hearts. Using micro‐computed tomography, we describe the overall structure and find, in agreement with previous studies, a large and elongate ventricle. The atrial and ventricular septums and the atrioventricular (AV) and arterial valves are typically mammalian. The ventricular walls comprise mostly compact myocardium and especially the right ventricle has few trabeculations on the luminal side. A developmental process of compaction is thought to reduce trabeculations in mammals, but in embryonic shrews the volume of trabeculations increase for every gestational stage, only slower than the compact volume. By expression of Hcn4, we identify a sinus node and an AV conduction axis which is continuous with the ventricular septal crest. Outstanding traits include pulmonary venous sleeve myocardium that reaches farther into the lungs than in any other mammals. Typical proportions of coronary arteries‐to‐aorta do not scale and the shrew coronary arteries are proportionally enormous, presumably to avoid the high resistance to blood flow of narrow vessels. In conclusion, most cardiac traits do scale to the miniscule shrews. The shrew heart, nevertheless, stands out by its relative size, elongation, proportionally large coronary vessels, and extent of pulmonary venous myocardium.
Collapse
Affiliation(s)
- Yun Hee Chang
- Department of Medical Biology University of Amsterdam, Amsterdam, Cardiovascular Sciences, Amsterdam UMC Amsterdam The Netherlands
| | - Boris I. Sheftel
- A.N. Severtsov Institute of Ecology and Evolution RAS (Russian Academy of Sciences) Moscow Russian Federation
| | - Bjarke Jensen
- Department of Medical Biology University of Amsterdam, Amsterdam, Cardiovascular Sciences, Amsterdam UMC Amsterdam The Netherlands
| |
Collapse
|
17
|
The zebrafish grime mutant uncovers an evolutionarily conserved role for Tmem161b in the control of cardiac rhythm. Proc Natl Acad Sci U S A 2021; 118:2018220118. [PMID: 33597309 DOI: 10.1073/pnas.2018220118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The establishment of cardiac function in the developing embryo is essential to ensure blood flow and, therefore, growth and survival of the animal. The molecular mechanisms controlling normal cardiac rhythm remain to be fully elucidated. From a forward genetic screen, we identified a unique mutant, grime, that displayed a specific cardiac arrhythmia phenotype. We show that loss-of-function mutations in tmem161b are responsible for the phenotype, identifying Tmem161b as a regulator of cardiac rhythm in zebrafish. To examine the evolutionary conservation of this function, we generated knockout mice for Tmem161b. Tmem161b knockout mice are neonatal lethal and cardiomyocytes exhibit arrhythmic calcium oscillations. Mechanistically, we find that Tmem161b is expressed at the cell membrane of excitable cells and live imaging shows it is required for action potential repolarization in the developing heart. Electrophysiology on isolated cardiomyocytes demonstrates that Tmem161b is essential to inhibit Ca2+ and K+ currents in cardiomyocytes. Importantly, Tmem161b haploinsufficiency leads to cardiac rhythm phenotypes, implicating it as a candidate gene in heritable cardiac arrhythmia. Overall, these data describe Tmem161b as a highly conserved regulator of cardiac rhythm that functions to modulate ion channel activity in zebrafish and mice.
Collapse
|
18
|
Williams CL, Hindle AG. Field Physiology: Studying Organismal Function in the Natural Environment. Compr Physiol 2021; 11:1979-2015. [PMID: 34190338 DOI: 10.1002/cphy.c200005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Continuous physiological measurements collected in field settings are essential to understand baseline, free-ranging physiology, physiological range and variability, and the physiological responses of organisms to disturbances. This article presents a current summary of the available technologies to continuously measure the direct physiological parameters in the field at high-resolution/instantaneous timescales from freely behaving animals. There is a particular focus on advantages versus disadvantages of available methods as well as emerging technologies "on the horizon" that may have been validated in captive or laboratory-based scenarios but have yet to be applied in the wild. Systems to record physiological variables from free-ranging animals are reviewed, including radio (VHF/UFH) telemetry, acoustic telemetry, and dataloggers. Physiological parameters that have been continuously measured in the field are addressed in seven sections including heart rate and electrocardiography (ECG); electromyography (EMG); electroencephalography (EEG); body temperature; respiratory, blood, and muscle oxygen; gastric pH and motility; and blood pressure and flow. The primary focal sections are heart rate and temperature as these can be, and have been, extensively studied in free-ranging organisms. Predicted aspects of future innovation in physiological monitoring are also discussed. The article concludes with an overview of best practices and points to consider regarding experimental designs, cautions, and effects on animals. © 2021 American Physiological Society. Compr Physiol 11:1979-2015, 2021.
Collapse
Affiliation(s)
- Cassondra L Williams
- National Marine Mammal Foundation, San Diego, California, USA.,Department of Ecology and Evolutionary Biology, School of Biological Science, University of California Irvine, Irvine, California, USA
| | - Allyson G Hindle
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
19
|
Filatova TS, Abramochkin DV, Pavlova NS, Pustovit KB, Konovalova OP, Kuzmin VS, Dobrzynski H. Repolarizing potassium currents in working myocardium of Japanese quail: a novel translational model for cardiac electrophysiology. Comp Biochem Physiol A Mol Integr Physiol 2021; 255:110919. [PMID: 33582263 DOI: 10.1016/j.cbpa.2021.110919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022]
|
20
|
Offerhaus JA, Snelderwaard PC, Algül S, Faber JW, Riebel K, Jensen B, Boukens BJ. High heart rate associated early repolarization causes J-waves in both zebra finch and mouse. Physiol Rep 2021; 9:e14775. [PMID: 33709567 PMCID: PMC7953022 DOI: 10.14814/phy2.14775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 11/24/2022] Open
Abstract
High heart rates are a feature of small endothermic—or warm‐blooded—mammals and birds. In small mammals, the QT interval is short, and local ventricular recordings reveal early repolarization that coincides with the J‐wave on the ECG, a positive deflection following the QRS complex. Early repolarization contributes to short QT‐intervals thereby enabling brief cardiac cycles and high heart rates. We therefore hypothesized high hearts rates associate with early repolarization and J‐waves on the ECG of endothermic birds. We tested this hypothesis by comparing isolated hearts of zebra finches and mice and recorded pseudo‐ECGs and optical action potentials (zebra finch, n = 8; mouse, n = 8). In both species, heart rate exceeded 300 beats per min, and total ventricular activation was fast (QRS < 10 ms). Ventricular activation progressed from the left to the right ventricle in zebra finch, whereas it progressed from apex‐to‐base in mouse. In both species, the early repolarization front followed the activation front, causing a positive J‐wave in the pseudo‐ECG. Inhibition of early repolarization by 4‐aminopyridine reduced J‐wave amplitude in both species. Action potential duration was similar between ventricles in zebra finch, whereas in mouse the left ventricular action potential was longer. Accordingly, late repolarization had opposite directions in zebra finch (left‐right) and mouse (right‐left). This caused a similar direction for the zebra finch J‐wave and T‐wave, whereas in the mouse they were discordant. Our findings demonstrate that early repolarization and the associated J‐wave may have evolved by convergence in association with high heart rates.
Collapse
Affiliation(s)
- Joost A Offerhaus
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | | | - Sila Algül
- Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Jaeike W Faber
- Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Katharina Riebel
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Bastiaan J Boukens
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands.,Department of Medical Biology, Academic Medical Center, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
21
|
Herndon C, Astley HC, Owerkowicz T, Fenton FH. Defibrillate You Later, Alligator: Q10 Scaling and Refractoriness Keeps Alligators from Fibrillation. Integr Org Biol 2021; 3:obaa047. [PMID: 33977229 PMCID: PMC8101277 DOI: 10.1093/iob/obaa047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Effective cardiac contraction during each heartbeat relies on the coordination of an electrical wave of excitation propagating across the heart. Dynamically induced heterogeneous wave propagation may fracture and initiate reentry-based cardiac arrhythmias, during which fast-rotating electrical waves lead to repeated self-excitation that compromises cardiac function and potentially results in sudden cardiac death. Species which function effectively over a large range of heart temperatures must balance the many interacting, temperature-sensitive biochemical processes to maintain normal wave propagation at all temperatures. To investigate how these species avoid dangerous states across temperatures, we optically mapped the electrical activity across the surfaces of alligator (Alligator mississippiensis) hearts at 23°C and 38°C over a range of physiological heart rates and compare them with that of rabbits (Oryctolagus cuniculus). We find that unlike rabbits, alligators show minimal changes in wave parameters (action potential duration and conduction velocity) which complement each other to retain similar electrophysiological wavelengths across temperatures and pacing frequencies. The cardiac electrophysiology of rabbits accommodates the high heart rates necessary to sustain an active and endothermic metabolism at the cost of increased risk of cardiac arrhythmia and critical vulnerability to temperature changes, whereas that of alligators allows for effective function over a range of heart temperatures without risk of cardiac electrical arrhythmias such as fibrillation, but is restricted to low heart rates. Synopsis La contracción cardíaca efectiva durante cada latido del corazón depende de la coordinación de una onda eléctrica de excitación que se propaga a través del corazón. Heterogéidades inducidas dinámicamente por ondas de propagación pueden resultar en fracturas de las ondas e iniciar arritmias cardíacas basadas en ondas de reingreso, durante las cuales ondas espirales eléctricas de rotación rápida producen una autoexcitación repetida que afecta la función cardíaca y pude resultar en muerte súbita cardíaca. Las especies que funcionan eficazmente en una amplia gama de temperaturas cardíacas deben equilibrar los varios procesos bioquímicos que interactúan, sensibles a la temperatura para mantener la propagación normal de ondas a todas las temperaturas. Para investigar cómo estas especies evitan los estados peligrosos a través de las temperaturas, mapeamos ópticamente la actividad eléctrica a través de las superficies de los corazones de caimanes (Alligator mississippiensis) a 23°C and 38°C sobre un rango de frecuencias fisiológicas del corazón y comparamos con el de los conejos (Oryctolagus cuniculus). Encontramos que a diferencia de los conejos, los caimanes muestran cambios mínimos en los parámetros de onda (duración potencial de acción y velocidad de conducción) que se complementan entre sí para retener longitudes de onda electrofisiológicas similares a través de los rangos de temperaturas y frecuencias de ritmo. La electrofisiología cardíaca de los conejos acomoda las altas frecuencias cardíacas necesarias para mantener un metabolismo activo y endotérmico a costa de un mayor riesgo de arritmia cardíaca y vulnerabilidad crítica a los cambios de temperatura, mientras que la de los caimanes permite un funcionamiento eficaz en una serie de temperaturas cardíacas sin riesgo de arritmias eléctricas cardíacas como la fibrilación, pero está restringida a bajas frecuencias cardíacas.
Collapse
Affiliation(s)
- Conner Herndon
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Henry C Astley
- Department of Biology, Biomimicry Research & Innovation Center, University of Akron, Akron, OH, USA
| | - Tomasz Owerkowicz
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
22
|
Filatova TS, Abramochkin DV, Shiels HA. Warmer, faster, stronger: Ca 2+ cycling in avian myocardium. J Exp Biol 2020; 223:jeb228205. [PMID: 32843363 DOI: 10.1242/jeb.228205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/17/2020] [Indexed: 11/20/2022]
Abstract
Birds occupy a unique position in the evolution of cardiac design. Their hearts are capable of cardiac performance on par with, or exceeding that of mammals, and yet the structure of their cardiomyocytes resembles those of reptiles. It has been suggested that birds use intracellular Ca2+ stored within the sarcoplasmic reticulum (SR) to power contractile function, but neither SR Ca2+ content nor the cross-talk between channels underlying Ca2+-induced Ca2+ release (CICR) have been studied in adult birds. Here we used voltage clamp to investigate the Ca2+ storage and refilling capacities of the SR and the degree of trans-sarcolemmal and intracellular Ca2+ channel interplay in freshly isolated atrial and ventricular myocytes from the heart of the Japanese quail (Coturnix japonica). A trans-sarcolemmal Ca2+ current (ICa) was detectable in both quail atrial and ventricular myocytes, and was mediated only by L-type Ca2+ channels. The peak density of ICa was larger in ventricular cells than in atrial cells, and exceeded that reported for mammalian myocardium recorded under similar conditions. Steady-state SR Ca2+ content of quail myocardium was also larger than that reported for mammals, and reached 750.6±128.2 μmol l-1 in atrial cells and 423.3±47.2 μmol l-1 in ventricular cells at 24°C. We observed SR Ca2+-dependent inactivation of ICa in ventricular myocytes, indicating cross-talk between sarcolemmal Ca2+ channels and ryanodine receptors in the SR. However, this phenomenon was not observed in atrial myocytes. Taken together, these findings help to explain the high-efficiency avian myocyte excitation-contraction coupling with regard to their reptilian-like cellular ultrastructure.
Collapse
Affiliation(s)
- Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str.,1, Moscow 117997, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str.,1, Moscow 117997, Russia
- Ural Federal University, Mira 19, Ekaterinburg 620002, Russia
- Laboratory of Cardiac Physiology, Institute of Physiology of komi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Pervomayskaya str., 50, 167982 Syktyvkar, Komi Republic, Russia
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, Core Technology Facility, 46 Grafton Street, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
23
|
Christoffels V, Jensen B. Cardiac Morphogenesis: Specification of the Four-Chambered Heart. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037143. [PMID: 31932321 DOI: 10.1101/cshperspect.a037143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Early heart morphogenesis involves a process in which embryonic precursor cells are instructed to form a cyclic contracting muscle tube connected to blood vessels, pumping fluid. Subsequently, the heart becomes structurally complex and its size increases several orders of magnitude to functionally keep up with the demands of the growing organism. Programmed transcriptional regulatory networks control the early steps of cardiac development. However, already during the early stages of its assembly, the heart tube starts to produce electrochemical potentials, contractions, and flow, which are transduced into signals that feed back into the process of morphogenesis itself. Heart morphogenesis, thus, involves the interplay between progressively changing genetic networks, function, and shape. Morphogenesis is evolutionarily conserved, but species-specific differences occur and in mouse, for instance, distinct phases of development become overlapping and compounded in an extremely fast gestation. Here, we review the early morphogenesis of the chambered heart that maintains a circulation supporting development of an organism rapidly growing in size and requirements.
Collapse
Affiliation(s)
- Vincent Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| |
Collapse
|
24
|
Jensen B, Christoffels VM. Reptiles as a Model System to Study Heart Development. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037226. [PMID: 31712265 DOI: 10.1101/cshperspect.a037226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A chambered heart is common to all vertebrates, but reptiles show unparalleled variation in ventricular septation, ranging from almost absent in tuataras to full in crocodilians. Because mammals and birds evolved independently from reptile lineages, studies on reptile development may yield insight into the evolution and development of the full ventricular septum. Compared with reptiles, mammals and birds have evolved several other adaptations, including compact chamber walls and a specialized conduction system. These adaptations appear to have evolved from precursor structures that can be studied in present-day reptiles. The increase in the number of studies on reptile heart development has been greatly facilitated by sequencing of several genomes and the availability of good staging systems. Here, we place reptiles in their phylogenetic context with a focus on features that are primitive when compared with the homologous features of mammals. Further, an outline of major developmental events is given, and variation between reptile species is discussed.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC 1105AZ, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Jensen B, Joyce W, Gregorovicova M, Sedmera D, Wang T, Christoffels VM. Low incidence of atrial septal defects in nonmammalian vertebrates. Evol Dev 2020; 22:241-256. [PMID: 31597012 PMCID: PMC9285691 DOI: 10.1111/ede.12322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The atrial septum enables efficient oxygen transport by separating the systemic and pulmonary venous blood returning to the heart. Only in placental mammals will the atrial septum form by the coming-together of the septum primum and the septum secundum. In up to one of four placental mammals, this complex morphogenesis is incomplete and yields patent foramen ovale. The incidence of incomplete atrial septum is unknown for groups with the septum primum only, such as birds and reptiles. We found a low incidence of incomplete atrial septum in 11 species of bird (0% of specimens) and 13 species of reptiles (3% of specimens). In reptiles, there was a trabecular interface between the atrial septum and the atrial epicardium which was without a clear boundary between left and right atrial cavities. In developing reptiles (four squamates and one crocodylian), the septum primum initiated as a sheet that acquired perforations and the trabecular interface developed late. We conclude that atrial septation from the septum primum only results in a low incidence of incompleteness. In reptiles, the atrial septum and atrial wall develop a trabecular interface, but previous studies on atrial hemodynamics suggest this interface has a very limited capacity for shunting.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - William Joyce
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Bioscience, ZoophysiologyAarhus UniversityAarhusDenmark
| | - Martina Gregorovicova
- Institute of Anatomy, First Medical Faculty, Czech Academy of SciencesCharles University and Institute of PhysiologyPragueCzech Republic
| | - David Sedmera
- Institute of Anatomy, First Medical Faculty, Czech Academy of SciencesCharles University and Institute of PhysiologyPragueCzech Republic
| | - Tobias Wang
- Department of Bioscience, ZoophysiologyAarhus UniversityAarhusDenmark
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
26
|
Abstract
In the 1950s, Arthur C. Guyton removed the heart from its pedestal in cardiovascular physiology by arguing that cardiac output is primarily regulated by the peripheral vasculature. This is counterintuitive, as modulating heart rate would appear to be the most obvious means of regulating cardiac output. In this Review, we visit recent and classic advances in comparative physiology in light of this concept. Although most vertebrates increase heart rate when oxygen demands rise (e.g. during activity or warming), experimental evidence suggests that this tachycardia is neither necessary nor sufficient to drive a change in cardiac output (i.e. systemic blood flow, Q̇ sys) under most circumstances. Instead, Q̇ sys is determined by the interplay between vascular conductance (resistance) and capacitance (which is mainly determined by the venous circulation), with a limited and variable contribution from heart function (myocardial inotropy). This pattern prevails across vertebrates; however, we also highlight the unique adaptations that have evolved in certain vertebrate groups to regulate venous return during diving bradycardia (i.e. inferior caval sphincters in diving mammals and atrial smooth muscle in turtles). Going forward, future investigation of cardiovascular responses to altered metabolic rate should pay equal consideration to the factors influencing venous return and cardiac filling as to the factors dictating cardiac function and heart rate.
Collapse
Affiliation(s)
- William Joyce
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark .,Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
27
|
Poelmann RE, Gittenberger-de Groot AC. Development and evolution of the metazoan heart. Dev Dyn 2019; 248:634-656. [PMID: 31063648 PMCID: PMC6767493 DOI: 10.1002/dvdy.45] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of the evolution and development of the heart in metazoans are highlighted, starting with the evolutionary origin of the contractile cell, supposedly the precursor of cardiomyocytes. The last eukaryotic common ancestor is likely a combination of several cellular organisms containing their specific metabolic pathways and genetic signaling networks. During evolution, these tool kits diversified. Shared parts of these conserved tool kits act in the development and functioning of pumping hearts and open or closed circulations in such diverse species as arthropods, mollusks, and chordates. The genetic tool kits became more complex by gene duplications, addition of epigenetic modifications, influence of environmental factors, incorporation of viral genomes, cardiac changes necessitated by air‐breathing, and many others. We evaluate mechanisms involved in mollusks in the formation of three separate hearts and in arthropods in the formation of a tubular heart. A tubular heart is also present in embryonic stages of chordates, providing the septated four‐chambered heart, in birds and mammals passing through stages with first and second heart fields. The four‐chambered heart permits the formation of high‐pressure systemic and low‐pressure pulmonary circulation in birds and mammals, allowing for high metabolic rates and maintenance of body temperature. Crocodiles also have a (nearly) separated circulation, but their resting temperature conforms with the environment. We argue that endothermic ancestors lost the capacity to elevate their body temperature during evolution, resulting in ectothermic modern crocodilians. Finally, a clinically relevant paragraph reviews the occurrence of congenital cardiac malformations in humans as derailments of signaling pathways during embryonic development. The cardiac regulatory toolkit contains many factors including epigenetic, genetic, viral, hemodynamic, and environmental factors, but also transcriptional activators, repressors, duplicated genes, redundancies and dose‐dependancies. Numerous toolkits regulate mechanisms including cell‐cell interactions, EMT, mitosis patterns, cell migration and differentiation and left/right sidedness involved in the development of endocardial cushions, looping, septum complexes, pharyngeal arch arteries, chamber and valve formation and conduction system. Evolutionary development of the yolk sac circulation likely preceded the advent of endothermy in amniotes. Parallel evolutionary traits regulate the development of contractile pumps in various taxa often in conjunction with the gut, lungs and excretory organs.
Collapse
Affiliation(s)
- Robert E Poelmann
- Institute of Biology, Department of Animal Sciences and Health, Leiden University, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
28
|
Faber JW, Boukens BJ, Oostra RJ, Moorman AFM, Christoffels VM, Jensen B. Sinus venosus incorporation: contentious issues and operational criteria for developmental and evolutionary studies. J Anat 2019; 234:583-591. [PMID: 30861129 PMCID: PMC6481585 DOI: 10.1111/joa.12962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2019] [Indexed: 01/11/2023] Open
Abstract
The sinus venosus is a cardiac chamber upstream of the right atrium that harbours the dominant cardiac pacemaker. During human heart development, the sinus venosus becomes incorporated into the right atrium. However, from the literature it is not possible to deduce the characteristics and importance of this process of incorporation, due to inconsistent terminology and definitions in the description of multiple lines of evidence. We reviewed the literature regarding the incorporation of the sinus venosus and included novel electrophysiological data. Most mammals that have an incorporated sinus venosus show a loss of a functional valve guard of the superior caval vein together with a loss of the electrical sinuatrial delay between the sinus venosus and the right atrium. However, these processes are not necessarily intertwined and in a few species only the sinuatrial delay may be lost. Sinus venosus incorporation can be characterised as the loss of the sinuatrial delay of which the anatomical and molecular underpinnings are not yet understood.
Collapse
Affiliation(s)
- Jaeike W Faber
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Roelof-Jan Oostra
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Antoon F M Moorman
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Kroneman JGH, Faber JW, Schouten JCM, Wolschrijn CF, Christoffels VM, Jensen B. Comparative analysis of avian hearts provides little evidence for variation among species with acquired endothermy. J Morphol 2019; 280:395-410. [PMID: 30667083 PMCID: PMC6590421 DOI: 10.1002/jmor.20952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/19/2018] [Accepted: 01/01/2019] [Indexed: 12/12/2022]
Abstract
Mammals and birds acquired high performance hearts and endothermy during their independent evolution from amniotes with many sauropsid features. A literature review shows that the variation in atrial morphology is greater in mammals than in ectothermic sauropsids. We therefore hypothesized that the transition from ectothermy to endothermy was associated with greater variation in cardiac structure. We tested the hypothesis in 14 orders of birds by assessing the variation in 15 cardiac structures by macroscopic inspection and histology, with an emphasis on the atria as they have multiple features that lend themselves to quantification. We found bird hearts to have multiple features in common with ectothermic sauropsids (synapomorphies), such as the presence of three sinus horns. Convergent features were shared with crocodylians and mammals, such as the cranial offset of the left atrioventricular junction. Other convergent features, like the compact organization of the atrial walls, were shared with mammals only. Pacemaker myocardium, identified by Isl1 expression, was anatomically node‐like (Mallard), thickened (Chicken), or indistinct (Lesser redpoll, Jackdaw). Some features were distinctly avian, (autapomorphies) including the presence of a left atrial antechamber and the ventral merger of the left and right atrial auricles, which was found in some species of parrots and passerines. Most features, however, exhibited little variation. For instance, there were always three systemic veins and two pulmonary veins, whereas among mammals there are 2–3 and 1–7, respectively. Our findings suggest that the transition to high cardiac performance does not necessarily lead to a greater variation in cardiac structure.
Collapse
Affiliation(s)
- Jelle G H Kroneman
- Department of Pathobiology, Anatomy and Physiology division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Jaeike W Faber
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Jacobine C M Schouten
- Department of Pathobiology, Anatomy and Physiology division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Claudia F Wolschrijn
- Department of Pathobiology, Anatomy and Physiology division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Jensen B, H Smit T. Examples of Weak, If Not Absent, Form-Function Relations in the Vertebrate Heart. J Cardiovasc Dev Dis 2018; 5:E46. [PMID: 30205545 PMCID: PMC6162483 DOI: 10.3390/jcdd5030046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
That form and function are related is a maxim of anatomy and physiology. Yet, form-function relations can be difficult to prove. Human subjects with excessive trabeculated myocardium in the left ventricle, for example, are diagnosed with non-compaction cardiomyopathy, but the extent of trabeculations may be without relation to ejection fraction. Rather than rejecting a relation between form and function, we may ask whether the salient function is assessed. Is there a relation to electrical propagation, mean arterial blood pressure, or propensity to form blood clots? In addition, how should the extent of trabeculated muscle be assessed? While reviewing literature on trabeculated muscle, we applied Tinbergen's four types of causation-how does it work, why does it work, how is it made, and why did it evolve-to better parse what is meant by form and function. The paper is structured around cases that highlight advantages and pitfalls of applying Tinbergen's questions. It further uses the evolution of lunglessness in amphibians to argue that lung reduction impacts on chamber septation and it considers the evolution of an arterial outflow in fishes to argue that reductions in energy consumption may drive structural changes with little consequences to function. Concerning trabeculations, we argue they relate to pumping function in the embryo in the few weeks before the onset of coronary circulation. In human fetal and postnatal stages, a spectrum of trabeculated-to-compact myocardium makes no difference to cardiac function and in this period, form and function may appear unrelated.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands.
| | - Theodoor H Smit
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|