1
|
Lushchekina S, Weiner L, Ashani Y, Emrizal R, Firdaus‐Raih M, Silman I, Sussman JL. Why is binding of a divalent metal cation to a structural motif containing four carboxylate residues not accompanied by a conformational change? Protein Sci 2024; 33:e5206. [PMID: 39548604 PMCID: PMC11567836 DOI: 10.1002/pro.5206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/18/2024]
Abstract
We earlier showed that Torpedo californica acetylcholinesterase (AChE) contains a cluster of four conserved aspartates that can strongly bind divalent cations, which we named the 4D motif. Binding of the divalent metal cations greatly increases its thermal stability. Here we systematically examined all available crystallographic structures of T. californica AChE. Two additional metal-binding sites were identified, both composed of acidic and histidine residues. Relative binding to the 4D and additional sites was studied using metadynamics simulations. It was observed that in crystal structures devoid of metal ions in the 4D site, the conformation of T. californica AChE is almost identical to that in structures in which it is occupied by a divalent metal ion. Closer examination of the 4D motif reveals that three of the four acidic residues form ion pairs with conserved basic residues surrounding them. We named this new motif the 4A/3B motif. Molecular dynamics with quantum potential simulations was used to quantify the 4D motif's binding strength compared with that of the metal-binding site in the protein fXIIIa, which consists of four aspartates, but is devoid of adjacent cationic residues. Whereas fXIIIa's 4D site, in the absence of a metal cation, expanded significantly in the simulation, that of Torpedo AChE displayed only minor periodic changes in size. Furthermore, the energy of metal ion unbinding from the two sites differs by ca. 10 kcal/mol. We identified several other proteins in the PDB that contain the 4A/3B motif, whose conformations are identical in the presence or absence of a metal ion. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at https://proteopedia.org/w/Journal:Protein_Science:4.
Collapse
Affiliation(s)
- Sofya Lushchekina
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Lev Weiner
- Department of Brain SciencesWeizmann Institute of ScienceRehovotIsrael
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Yacov Ashani
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Reeki Emrizal
- Department of Applied Physics, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
| | - Mohd Firdaus‐Raih
- Department of Applied Physics, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
- Institute of Systems BiologyUniversiti Kebangsaan MalaysiaBangiMalaysia
| | - Israel Silman
- Department of Brain SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Joel L. Sussman
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovotIsrael
- Structural Proteomics Unit, Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
2
|
Pashirova T, Shaihutdinova Z, Tatarinov D, Titova A, Malanyeva A, Vasileva O, Gabdurakhmanov K, Dudnikov S, Schopfer LM, Lockridge O, Masson P. Pharmacokinetics and fate of free and encapsulated IRD800CW-labelled human BChE intravenously administered in mice. Int J Biol Macromol 2024; 282:137305. [PMID: 39515732 DOI: 10.1016/j.ijbiomac.2024.137305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Human butyrylcholinesterase (BChE) is an efficient bioscavenger of toxicants. Highly purified BChE was labelled with the near infrared fluorescent IRDye800CW. The goal was to determine the pharmacokinetics and fate of enzyme in mice. BChE-IRDye800CW was encapsulated in polyethylene glycol-polypropylene sulfide-based spherical polymersome nanoreactors with the following characteristics: 140 nm diameter, ξ = -6 mV, PDI ≤ 0.2, 1 year stability. Encapsulation did not alter the functional properties of BChE. Free and encapsulated enzyme were injected intravenously to CD-1 mice (single dose of enzyme 1.5 mg/kg and PEG-PPS polymersomes 25 mg/kg) and were analyzed for 8 days using an in vivo imaging system. Results showed that the pharmacokinetic distribution α-phase of encapsulated BChE (t1/2 = 17.6 h) was longer than for free enzyme (t1/2 = 6.6 h). The mean half-time for elimination β-phase was 2-time longer for encapsulated enzyme than for free enzyme (150 vs 72 h). Transient changes in infrared fluorescence in organs showed that BChE is eliminated from liver. However, free and encapsulated enzymes were cleared via different pathways. This first study of pharmacokinetics and fate of BChE encapsulated in polymersomes initiates research of new formulations of bioscavengers aimed at increasing the residence time of enzymes in the blood stream.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation.
| | - Zukhra Shaihutdinova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation
| | - Dmitry Tatarinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russian Federation
| | - Angelina Titova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Albina Malanyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Olga Vasileva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Kamil Gabdurakhmanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | - Sergei Dudnikov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation
| | | | - Oksana Lockridge
- University of Nebraska Medical Center, Eppley Institute, Omaha, NE, USA
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, 18 Kremlyovskaya St., Russian Federation.
| |
Collapse
|
3
|
Veríssimo SN, Paiva VH, Cunha SC, Cerveira LR, Fernandes JO, Pereira JM, Ramos JA, Dos Santos I, Norte AC. Physiology and fertility of two gull species in relation to plastic additives' exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175128. [PMID: 39084383 DOI: 10.1016/j.scitotenv.2024.175128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Understanding the impact of plastic and its additives on wild species is crucial as their presence in the environment increases. Polybrominated diphenyl ethers (PBDEs), once used as flame retardants, were restricted due to known toxic effects, but are still detected in the environment. Naturally occurring methoxylated PBDEs (MeO-BDEs) can result from PBDE transformation and may cause similar hazardous effects. Yellow-legged gulls (Larus michahellis, YLG) and Audouin's gulls (Ichthyaetus audouinii, AG) are highly susceptible to plastic additives, due to their distribution, trophic position, and behaviour. In this study, we assessed PBDEs and MeO-BDEs uptake in different tissues and their effects on physiological and reproductive parameters. Findings indicate that, apart from annual differences, adult AG accumulated more MeO-BDEs than YLG in a natural breeding habitat (Deserta), while the latter had lower PBDE levels than YLG breeding in the city of Porto. In relation to chicks, only YLG from Deserta showed higher PBDE concentrations than AG chicks. Individual analysis of each physiological parameter revealed impacts only for adult YLG from Deserta, with neurofunction and immune system inhibition at higher MeO-BDE concentrations. For chicks, AG showed impaired neurofunction, while YLG chicks from Porto exhibited potential genotoxicity effects triggered by higher MeO-BDE levels. Overall health analysis showed activation of antioxidant defences and compromised immune system in YLG adults from Porto due to high values of PBDEs, while chicks from Deserta exhibited inflammation and oxidative stress with high concentrations of MeO-BDEs in the same species. Fertility parameters showed significant differences for sperm counts though suggesting individuals may be able to compensate any exposure effects. This study confirms the widespread presence of plastic-associated compounds and their harmful effects on gulls, particularly on neurofunction, immune system, oxidative balance and fertility, especially due to the presence of MeO-BDEs.
Collapse
Affiliation(s)
- S N Veríssimo
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - V H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - S C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - L R Cerveira
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - J O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - J M Pereira
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - J A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - I Dos Santos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; Littoral Environnement et Sociétés (LIENSs), La Rochelle University - CNRS, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - A C Norte
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
4
|
Liu H, Jang J, French AS, Torkkeli PH. Sequence analysis, homology modeling, tissue expression, and potential functions of seven putative acetylcholinesterases in the spider Cupiennius salei. Eur J Neurosci 2024; 60:5785-5811. [PMID: 39230060 DOI: 10.1111/ejn.16524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Acetylcholine esterases (AChEs) are essential enzymes in cholinergic synapses, terminating neurotransmission by hydrolysing acetylcholine. While membrane bound AChEs at synaptic clefts efficiently perform this task, soluble AChEs are less stable and effective, but function over broader areas. In vertebrates, a single gene produces alternatively spliced forms of AChE, whereas invertebrates often have multiple genes, producing both enzyme types. Despite their significance as pesticide targets, the physiological roles of invertebrate AChEs remain unclear. Here, we characterized seven putative AChEs in the wandering spider, Cupiennius salei, a model species for neurophysiological studies. Sequence analyses and homology modeling predicted CsAChE7 as the sole stable, membrane-bound enzyme functioning at synaptic clefts, while the others are likely soluble enzymes. In situ hybridization of sections from the spider's nervous system revealed CsAChE7 transcripts co-localizing with choline acetyltransferase in cells that also exhibited AChE activity. CsAChE7 transcripts were also found in rapidly adapting mechanosensory neurons, suggesting a role in precise and transient activation of postsynaptic cells, contrasting with slowly adapting, also cholinergic, neurons expressing only soluble AChEs, which allow prolonged activation of postsynaptic cells. These findings suggest that cholinergic transmission is influenced not only by postsynaptic receptors but also by the enzymatic properties regulating acetylcholine clearance. We also show that acetylcholine is a crucial neurotransmitter in the spider's visual system and sensory and motor pathways, but absent in excitatory motor neurons at neuromuscular junctions, consistent with other arthropods. Our findings on sequence structures may have implications for the development of neurological drugs and pesticides.
Collapse
Affiliation(s)
- Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Jinwon Jang
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
5
|
Zlobin A, Smirnov I, Golovin A. Dynamic interchange between two protonation states is characteristic of active sites of cholinesterases. Protein Sci 2024; 33:e5100. [PMID: 39022909 PMCID: PMC11255601 DOI: 10.1002/pro.5100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024]
Abstract
Cholinesterases are well-known and widely studied enzymes crucial to human health and involved in neurology, Alzheimer's, and lipid metabolism. The protonation pattern of active sites of cholinesterases influences all the chemical processes within, including reaction, covalent inhibition by nerve agents, and reactivation. Despite its significance, our comprehension of the fine structure of cholinesterases remains limited. In this study, we employed enhanced-sampling quantum-mechanical/molecular-mechanical calculations to show that cholinesterases predominantly operate as dynamic mixtures of two protonation states. The proton transfer between two non-catalytic glutamate residues follows the Grotthuss mechanism facilitated by a mediator water molecule. We show that this uncovered complexity of active sites presents a challenge for classical molecular dynamics simulations and calls for special treatment. The calculated proton transfer barrier of 1.65 kcal/mol initiates a discussion on the potential existence of two coupled low-barrier hydrogen bonds in the inhibited form of butyrylcholinesterase. These findings expand our understanding of structural features expressed by highly evolved enzymes and guide future advances in cholinesterase-related protein and drug design studies.
Collapse
Affiliation(s)
- Alexander Zlobin
- Institute for Drug DiscoveryLeipzig University Medical SchoolLeipzigGermany
- Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
| | - Ivan Smirnov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussia
| | - Andrey Golovin
- Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussia
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
6
|
Zhang W, Wang X, Yin S, Wang Y, Li Y, Ding Y. Improvement of functional dyspepsia with Suaeda salsa (L.) Pall via regulating brain-gut peptide and gut microbiota structure. Eur J Nutr 2024; 63:1929-1944. [PMID: 38703229 DOI: 10.1007/s00394-024-03401-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE The traditional Chinese herbal medicine Suaeda salsa (L.) Pall (S. salsa) with a digesting food effect was taken as the research object, and its chemical composition and action mechanism were explored. METHODS The chemical constituents of S. salsa were isolated and purified by column chromatography, and their structures were characterized by nuclear magnetic resonance. The food accumulation model in mice was established, and the changes of the aqueous extract of S. salsa in gastric emptying and intestinal propulsion rate, colonic tissue lesions, serum brain-gut peptide hormone, colonic tissue protein expression, and gut microbiota structure were compared. RESULTS Ten compounds were isolated from S. salsa named as naringenin (1), hesperetin (2), baicalein (3), luteolin (4), isorhamnetin (5), taxifolin (6), isorhamnetin-3-O-β-D-glucoside (7), luteolin-3'-D-glucuronide (8), luteolin-7-O-β-D-glucuronide (9), and quercetin-3-O-β-D-glucuronide (10), respectively. The aqueous extract of S. salsa can improve the pathological changes of the mice colon and intestinal peristalsis by increasing the rate of gastric emptying and intestinal propulsion. By adjusting the levels of 5-HT, CCK, NT, SS, VIP, GT-17, CHE, MTL, and ghrelin, it can upregulate the levels of c-kit, SCF, and GHRL protein, and restore the imbalanced structure of gut microbiota, further achieve the purpose of treating the syndrome of indigestion. The effect is better with the increase of dose. CONCLUSION S. salsa has a certain therapeutic effect on mice with the syndrome of indigestion. From the perspective of "brain-gut-gut microbiota", the mechanism of digestion and accumulation of S. salsa was discussed for the first time, which provided an experimental basis for further exploring the material basis of S. salsa.
Collapse
Affiliation(s)
- Wenjun Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Xueyu Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Shuanghui Yin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Ye Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| |
Collapse
|
7
|
Pashirova T, Salah-Tazdaït R, Tazdaït D, Masson P. Applications of Microbial Organophosphate-Degrading Enzymes to Detoxification of Organophosphorous Compounds for Medical Countermeasures against Poisoning and Environmental Remediation. Int J Mol Sci 2024; 25:7822. [PMID: 39063063 PMCID: PMC11277490 DOI: 10.3390/ijms25147822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Mining of organophosphorous (OPs)-degrading bacterial enzymes in collections of known bacterial strains and in natural biotopes are important research fields that lead to the isolation of novel OP-degrading enzymes. Then, implementation of strategies and methods of protein engineering and nanobiotechnology allow large-scale production of enzymes, displaying improved catalytic properties for medical uses and protection of the environment. For medical applications, the enzyme formulations must be stable in the bloodstream and upon storage and not susceptible to induce iatrogenic effects. This, in particular, includes the nanoencapsulation of bioscavengers of bacterial origin. In the application field of bioremediation, these enzymes play a crucial role in environmental cleanup by initiating the degradation of OPs, such as pesticides, in contaminated environments. In microbial cell configuration, these enzymes can break down chemical bonds of OPs and usually convert them into less toxic metabolites through a biotransformation process or contribute to their complete mineralization. In their purified state, they exhibit higher pollutant degradation efficiencies and the ability to operate under different environmental conditions. Thus, this review provides a clear overview of the current knowledge about applications of OP-reacting enzymes. It presents research works focusing on the use of these enzymes in various bioremediation strategies to mitigate environmental pollution and in medicine as alternative therapeutic means against OP poisoning.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Rym Salah-Tazdaït
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, 10 Rue des Frères Oudek, El Harrach, Algiers 16200, Algeria; (R.S.-T.); (D.T.)
| | - Djaber Tazdaït
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, 10 Rue des Frères Oudek, El Harrach, Algiers 16200, Algeria; (R.S.-T.); (D.T.)
- Department of Nature and Life Sciences, University of Algiers, Benyoucef Benkhedda, 2 Rue Didouche Mourad, Algiers 16000, Algeria
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia;
| |
Collapse
|
8
|
Andolpho GA, Ramalho TC. Pnictogen bond-driven control of the molecular interaction between organophosphorus and acetylcholinesterase enzyme. J Comput Chem 2024; 45:1303-1315. [PMID: 38363124 DOI: 10.1002/jcc.27328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
This study addresses a comprehensive assessment of the interaction between chemical warfare agents (CWA) and acetylcholinesterase (AChE) systems, focus on the intriguing pnictogen-bond interaction (PnB). Utilizing the crystallographic data from the Protein Data Bank pertaining to the AChE-CWA complex involving Sarin (GB), Cyclosarin (GF), 2-[fluoro(methyl)phosphoryl]oxy-1,1-dimethylcyclopentane (GP) and venomous agent X (VX) agents, the CWA is systematically displaced by increments of 0.1 Å along the PO bond axis, extending its distance by 4 Å from the original position. The AIM analysis was carried out and consistently revealed the presence of a significant interaction along the PO bond. Investigating the intrinsic nature of the PnB, the NBO and the EDA analysis unearthed the contribution of orbital factors to the overall energy of the system. Strikingly, this observation challenges the conventional σ-hole explanation commonly associated with such interactions. This finding adds a layer of complexity to understanding of PnB, encouraging further exploration into the underlying mechanisms governing these intriguing chemical phenomena.
Collapse
Affiliation(s)
- Gustavo A Andolpho
- Chemistry Department, Institute of Natural Sciences, Universidade Federal de Lavras, Lavras, Brazil
| | - Teodorico C Ramalho
- Chemistry Department, Institute of Natural Sciences, Universidade Federal de Lavras, Lavras, Brazil
- Center for Basic and Applied Research, University Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
Shaihutdinova Z, Masson P. Pre-Steady-State and Steady-State Kinetic Analysis of Butyrylcholinesterase-Catalyzed Hydrolysis of Mirabegron, an Arylacylamide Drug. Molecules 2024; 29:2356. [PMID: 38792217 PMCID: PMC11124411 DOI: 10.3390/molecules29102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The β-adrenergic drug Mirabegron, a drug initially used for the treatment of an overactive bladder, has new potential indications and is hydrolyzed by butyrylcholinesterase (BChE). This compound is one of the only arylacylamide substrates to be catabolized by BChE. A steady-state kinetic analysis at 25 °C and pH 7.0 showed that the enzyme behavior is Michaelian with this substrate and displays a long pre-steady-state phase characterized by a burst. The induction time, τ, increased with substrate concentration (τ ≈ 18 min at maximum velocity). The kinetic behavior was interpreted in terms of hysteretic behavior, resulting from a slow equilibrium between two enzyme active forms, E and E'. The pre-steady-state phase with the highest activity corresponds to action of the E form, and the steady state corresponds to action of the E' form. The catalytic parameters were determined as kcat = 7.3 min-1 and Km = 23.5 μM for the initial (burst) form E, and kcat = 1.6 min-1 and Km = 3.9 μM for the final form E'. Thus, the higher affinity of E' for Mirabegron triggers the slow enzyme state equilibrium toward a slow steady state. Despite the complexity of the reaction mechanism of Mirabegron with BChE, slow BChE-catalyzed degradation of Mirabegron in blood should have no impact on the pharmacological activities of this drug.
Collapse
Affiliation(s)
| | - Patrick Masson
- Laboratory of Biochemical Neuropharmacology, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia;
| |
Collapse
|
10
|
Hanisch DT, Schneider MF. Specific Regulation of Enzymatic Activity by Interface Pulses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38330005 DOI: 10.1021/acs.langmuir.3c02658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The thermodynamic state of the interface in which an enzyme is embedded can regulate the enzymatic activity. Indeed, it has been demonstrated by others and us that close to the maximum in compressibility, the activity of the enzyme is at a maximum as well. Pulses propagating along the interface can modulate the interface state and were demonstrated to be able to modulate the activity of interface-associated acetylcholinesterase (AChE). Here, we demonstrate that enzyme activity modulation by interface pulses depends specifically on the pulse type. Using membrane-embedded enzyme phospholipase A2 (PLA2), enzyme activity can be monitored by detecting the lateral pressure without an additional assay required. We show that pulses that shift the state toward higher pressure and higher lateral density increase the enzymatic activity, while pulses that reduce the pressure induce the opposite effect. These results further support a physical mechanism for enzyme-enzyme communication where compressibility, lateral density, and pressure (thermodynamic state) and not specific molecular modifications regulate enzymatic activity.
Collapse
Affiliation(s)
- Daniel T Hanisch
- Medical and Biological Physics, Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund, Germany
| | - Matthias F Schneider
- Medical and Biological Physics, Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund, Germany
| |
Collapse
|
11
|
Berrino E, Carradori S, Carta F, Melfi F, Gallorini M, Poli G, Tuccinardi T, Fernández-Bolaños JG, López Ó, Petzer JP, Petzer A, Guglielmi P, Secci D, Supuran CT. A Multitarget Approach against Neuroinflammation: Alkyl Substituted Coumarins as Inhibitors of Enzymes Involved in Neurodegeneration. Antioxidants (Basel) 2023; 12:2044. [PMID: 38136164 PMCID: PMC10740956 DOI: 10.3390/antiox12122044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Neurodegenerative disorders (NDs) include a large range of diseases characterized by neural dysfunction with a multifactorial etiology. The most common NDs are Alzheimer's disease and Parkinson's disease, in which cholinergic and dopaminergic systems are impaired, respectively. Despite different brain regions being affected, oxidative stress and inflammation were found to be common triggers in the pathogenesis and progression of both diseases. By taking advantage of a multi-target approach, in this work we explored alkyl substituted coumarins as neuroprotective agents, capable to reduce oxidative stress and inflammation by inhibiting enzymes involved in neurodegeneration, among which are Carbonic Anhydrases (CAs), Monoamine Oxidases (MAOs), and Cholinesterases (ChEs). The compounds were synthesized and profiled against the three targeted enzymes. The binding mode of the most promising compounds (7 and 9) within MAO-A and -B was analyzed through molecular modeling studies, providing and explanation for the different selectivities observed for the MAO isoforms. In vitro biological studies using LPS-stimulated rat astrocytes showed that some compounds were able to counteract the oxidative stress-induced neuroinflammation and hamper interleukin-6 secretion, confirming the success of this multitarget approach.
Collapse
Affiliation(s)
- Emanuela Berrino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (E.B.); (P.G.); (D.S.)
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy; (F.C.); (C.T.S.)
| | - Simone Carradori
- Department of Pharmacy, ‘‘G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (M.G.)
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy; (F.C.); (C.T.S.)
| | - Francesco Melfi
- Department of Pharmacy, ‘‘G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (M.G.)
| | - Marialucia Gallorini
- Department of Pharmacy, ‘‘G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (M.G.)
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (G.P.); (T.T.)
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (G.P.); (T.T.)
| | - José G. Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, 41012 Seville, Spain; (J.G.F.-B.); (Ó.L.)
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, 41012 Seville, Spain; (J.G.F.-B.); (Ó.L.)
| | - Jacobus P. Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.P.P.); (A.P.)
| | - Anél Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.P.P.); (A.P.)
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (E.B.); (P.G.); (D.S.)
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (E.B.); (P.G.); (D.S.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy; (F.C.); (C.T.S.)
| |
Collapse
|
12
|
Masson P, Mukhametgalieva AR. Partial Reversible Inhibition of Enzymes and Its Metabolic and Pharmaco-Toxicological Implications. Int J Mol Sci 2023; 24:12973. [PMID: 37629158 PMCID: PMC10454656 DOI: 10.3390/ijms241612973] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Partial reversible inhibition of enzymes, also called hyperbolic inhibition, is an uncommon mechanism of reversible inhibition, resulting from a productive enzyme-inhibitor complex. This type of inhibition can involve competitive, mixed, non-competitive and uncompetitive inhibitors. While full reversible inhibitors show linear plots for reciprocal enzyme initial velocity versus inhibitor concentration, partial inhibitors produce hyperbolic plots. Similarly, dose-response curves show residual fractional activity of enzymes at high doses. This article reviews the theory and methods of analysis and discusses the significance of this type of reversible enzyme inhibition in metabolic processes, and its implications in pharmacology and toxicology.
Collapse
Affiliation(s)
- Patrick Masson
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, 18 ul. Kremlevskaya, 420008 Kazan, Russia
| | | |
Collapse
|
13
|
Mukhametgalieva AR, Nemtarev AV, Sykaev VV, Pashirova TN, Masson P. Activation/Inhibition of Cholinesterases by Excess Substrate: Interpretation of the Phenomenological b Factor in Steady-State Rate Equation. Int J Mol Sci 2023; 24:10472. [PMID: 37445649 DOI: 10.3390/ijms241310472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Cholinesterases (ChEs) display a non-michaelian behavior with positively charged substrates. In the steady-state rate equation, the b factor describes this behavior: if b > 1 there is substrate activation, if b < 1 there is substrate inhibition. The mechanistic significance of the b factor was investigated to determine whether this behavior depends on acylation, deacylation or on both steps. Kinetics of human acetyl- (AChE) and butyryl-cholinesterase (BChE) were performed under steady-state conditions and using a time-course of complete substrate hydrolysis. For the hydrolysis of short acyl(thio)esters, where acylation and deacylation are partly rate-limiting, steady-state kinetic analysis could not decide which step determines b. However, the study of the hydrolysis of an arylacylamide, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), where acetylation is rate-limiting, showed that b depends on the acylation step. The magnitude of b and opposite b values between AChE and BChE for the hydrolysis of acetyl(thio)- versus benzoyl-(thio) esters, then indicated that the productive adjustment of substrates in the active center at high concentration depends on motions of both the Ω and the acyl-binding loops. Benzoylcholine was shown to be a poor substrate of AChE, and steady-state kinetics showed a sudden inhibition at high concentration, likely due to the non-dissociation of hydrolysis products. The poor catalytic hydrolysis of this bulky ester by AChE illustrates the importance of the fine adjustment of substrate acyl moiety in the acyl-binding pocket. Molecular modeling and QM/MM simulations should definitively provide evidence for this statement.
Collapse
Affiliation(s)
- Aliya R Mukhametgalieva
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, 18 Ul. Kremlevskaya, 420008 Kazan, Russia
| | - Andrey V Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Ul. Arbuzov, 420088 Kazan, Russia
| | - Viktor V Sykaev
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Ul. Arbuzov, 420088 Kazan, Russia
| | - Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Ul. Arbuzov, 420088 Kazan, Russia
| | - Patrick Masson
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, 18 Ul. Kremlevskaya, 420008 Kazan, Russia
| |
Collapse
|
14
|
Afolabi OB, Olasehinde OR, Olanipon DG, Mabayoje SO, Familua OM, Jaiyesimi KF, Agboola EK, Idowu TO, Obafemi OT, Olaoye OA, Oloyede OI. Antioxidant evaluation and computational prediction of prospective drug-like compounds from polyphenolic-rich extract of Hibiscus cannabinus L. seed as antidiabetic and neuroprotective targets: assessment through in vitro and in silico studies. BMC Complement Med Ther 2023; 23:203. [PMID: 37337198 DOI: 10.1186/s12906-023-04023-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Reports have implicated diabetes mellitus (DM) and Alzheimer's disease (AD) as some of the global persistent health challenges with no lasting solutions, despite of significant inputs of modern-day pharmaceutical firms. This study therefore, aimed to appraise the in vitro antioxidant potential, enzymes inhibitory activities, and as well carry out in silico study on bioactive compounds from polyphenolic-rich extract of Hibiscus cannabinus seed (PEHc). METHODS In vitro antioxidant assays were performed on PEHc using standard methods while the identification of phytoconstituents was carried out with high performance liquid chromatography (HPLC). For the in silico molecular docking using Schrodinger's Grid-based ligand docking with energetics software, seven target proteins were retrieved from the database ( https://www.rcsb.org/ ). RESULTS HPLC technique identified twelve chemical compounds in PEHc, while antioxidant quantification revealed higher total phenolic contents (243.5 ± 0.71 mg GAE/g) than total flavonoid contents (54.06 ± 0.09 mg QE/g) with a significant (p < 0.05) inhibition of ABTS (IC50 = 218.30 ± 0.87 µg/ml) and 1, 1-diphenyl-2-picrylhydrazyl free radicals (IC50 = 227.79 ± 0.74 µg/ml). In a similar manner, the extract demonstrated a significant (p < 0.05) inhibitory activity against α-amylase (IC50 = 256.88 ± 6.15 µg/ml) and α-glucosidase (IC50 = 183.19 ± 0.23 µg/ml) as well as acetylcholinesterase (IC50 = 262.95 ± 1.47 µg/ml) and butyrylcholinesterase (IC50 = 189.97 ± 0.82 µg/ml), respectively. Furthermore, In silico study showed that hibiscetin (a lead) revealed a very strong binding affinity energies for DPP-4, (PDB ID: 1RWQ) and α-amylase (PDB ID: 1SMD), gamma-tocopherol ( for peptide-1 receptor; PDB ID: 3C59, AChE; PDB ID: 4EY7 and BChE; PDB ID: 7B04), cianidanol for α-glucosidase; PDB ID: 7KBJ and kaempferol for Poly [ADP-ribose] polymerase 1 (PARP-1); PDB ID: 6BHV, respectively. More so, ADMET scores revealed drug-like potentials of the lead compounds identified in PEHc. CONCLUSION As a result, the findings of this study point to potential drug-able compounds in PEHc that could be useful for the management of DM and AD.
Collapse
Affiliation(s)
- Olakunle Bamikole Afolabi
- Phytomedicine and Toxicology Unit, Biochemistry Programme, Department of Chemical Sciences, College of Sciences, Afe-Babalola University, P.M.B 5454, Ado-Ekiti, Ekiti State, Nigeria.
| | - Oluwaseun Ruth Olasehinde
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Afe Babalola University, P.M.B 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Damilola Grace Olanipon
- Department of Biological Sciences, College of Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Samson Olatunde Mabayoje
- Department of Biological Sciences, College of Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Olufemi Michael Familua
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Kikelomo Folake Jaiyesimi
- Phytomedicine and Toxicology Unit, Biochemistry Programme, Department of Chemical Sciences, College of Sciences, Afe-Babalola University, P.M.B 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Esther Kemi Agboola
- Phytomedicine and Toxicology Unit, Biochemistry Programme, Department of Chemical Sciences, College of Sciences, Afe-Babalola University, P.M.B 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Tolulope Olajumoke Idowu
- Medicinal Plant Unit, Chemistry Programme, Department of Chemical Sciences, College of Sciences, Afe-Babalola University, P.M.B 5454, Ado- Ekiti, Ekiti State, Nigeria
| | - Olabisi Tajudeen Obafemi
- Phytomedicine and Toxicology Unit, Biochemistry Programme, Department of Chemical Sciences, College of Sciences, Afe-Babalola University, P.M.B 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Oyindamola Adeniyi Olaoye
- Phytomedicine and Toxicology Unit, Biochemistry Programme, Department of Chemical Sciences, College of Sciences, Afe-Babalola University, P.M.B 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Omotade Ibidun Oloyede
- Department of Biochemistry, Ekiti State University, P.M.B 5363, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
15
|
Dzhafarova AM, Saidov MB, Klichkhanov NK. The Time Profile of the Effects of Moderate Hypothermia on Synaptic Acetylcholinesterase in Rat Brain. Bull Exp Biol Med 2023; 175:191-195. [PMID: 37462806 DOI: 10.1007/s10517-023-05833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 07/28/2023]
Abstract
Hypothermia in homeotherms significantly affects the neurotransmitter systems of the brain, including the cholinergic system. The function of the brain cholinergic system during prolonged moderate hypothermia is not known yet. We studied the effects of moderate hypothermia of various durations on the activity and kinetic parameters of synaptic acetylcholinesterase in rat brain. Immediately after body temperature decrease to 30°C, the efficiency of synaptic acetylcholinesterase catalysis significantly increases due to changes in both the maximum rate of reaction (Vmax; the rate of reaction when the enzyme is saturated with substrate) and Michaelis constant (Km). However, in the dynamics of prolonged hypothermia (1-3 h), it decreases to a level of intact animals, which was associated with normalization of the kinetic parameters of the enzyme. The detected changes in the kinetic parameters of the enzyme are compensatory and can be associated with both its reversible post-translational modifications and changes in the annular lipids.
Collapse
Affiliation(s)
- A M Dzhafarova
- Dagestan State University, Makhachkala, Republic of Dagestan, Russia.
| | - M B Saidov
- Dagestan State University, Makhachkala, Republic of Dagestan, Russia
| | - N K Klichkhanov
- Dagestan State University, Makhachkala, Republic of Dagestan, Russia
| |
Collapse
|
16
|
Gomes AR, Guimarães ATB, Matos LPD, Silva AM, Rodrigues ASDL, de Oliveira Ferreira R, Islam ARMT, Rahman MM, Ragavendran C, Kamaraj C, Silva FG, Malafaia G. Potential ecotoxicity of substrate-enriched zinc oxide nanoparticles to Physalaemus cuvieri tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162382. [PMID: 36828072 DOI: 10.1016/j.scitotenv.2023.162382] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Although the ecotoxicological effects of ZnO nanoparticles (ZnO NPs) have already been reported in different taxa, little is known about their impacts on amphibians. Thus, we aimed to evaluate the potential effects of exposure of Physalaemus cuvieri tadpoles to substrates enriched with ZnO NPs (and with its ionic counterpart, Zn+2, ZnCl2 - both at 100 mg/kg) previously used in the cultivation of Panicum maximum (Guinea grass). We showed that although exposure for 21 days did not impact the survival, growth, and development of tadpoles, we noted an increase in the frequency of erythrocyte nuclear abnormalities in the "ZnCl2" and "ZnONP" groups, which was associated with suppression of antioxidant activity in the animals (inferred by SOD and CAT activity and DPPH free radical scavenging capacity). In the tadpoles of the "ZnONP" group, we also noticed a reduction in creatinine and bilirubin levels, alpha-amylase activity, and an increase in alkaline phosphatase activity. But the treatments did not alter the activity of the enzymes lactate dehydrogenase and gamma-glutamyl-transferase and total protein and carbohydrate levels. On the other hand, we report a cholinesterase and hypotriglyceridemic effect in the "ZnCl2" and "ZnONP" groups. Zn bioaccumulation in animals, from ZnO NPs, from Zn+2 released from them, or both, has been associated with causing these changes. Finally, principal component analysis (PCA) and the values of the "Integrated Biomarker Response" index revealed that the exposure of animals to substrates enriched with ZnO NPs caused more pronounced effects than those attributed to its ionic counterpart. Therefore, our study reinforces the need to consider the environmental risks of using these nanomaterials for agricultural purposes for amphibians.
Collapse
Affiliation(s)
- Alex Rodrigues Gomes
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Agronomy, Goiano Federal Institute - Campus Rio Verde, GO, Brazil
| | | | - Letícia Paiva de Matos
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Abner Marcelino Silva
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Raíssa de Oliveira Ferreira
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Fabiano Guimarães Silva
- Post-Graduation Program in Agronomy, Goiano Federal Institute - Campus Rio Verde, GO, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
17
|
Marlais T, Bickford-Smith J, Talavera-López C, Le H, Chowdhury F, Miles MA. A comparative 'omics' approach for prediction of candidate Strongyloides stercoralis diagnostic coproantigens. PLoS Negl Trop Dis 2023; 17:e0010777. [PMID: 37068106 PMCID: PMC10138266 DOI: 10.1371/journal.pntd.0010777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/27/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023] Open
Abstract
Human infection with the intestinal nematode Strongyloides stercoralis is persistent unless effectively treated, and potentially fatal in immunosuppressed individuals. Epidemiological data are lacking, partially due to inadequate diagnosis. A rapid antigen detection test is a priority for population surveillance, validating cure after treatment, and for screening prior to immunosuppression. We used a targeted analysis of open access 'omics' data sets and used online predictors to identify S. stercoralis proteins that are predicted to be present in infected stool, Strongyloides-specific, and antigenic. Transcriptomic data from gut and non-gut dwelling life cycle stages of S. stercoralis revealed 328 proteins that are differentially expressed. Strongyloides ratti proteomic data for excreted and secreted (E/S) proteins were matched to S. stercoralis, giving 1,057 orthologues. Five parasitism-associated protein families (SCP/TAPS, prolyl oligopeptidase, transthyretin-like, aspartic peptidase, acetylcholinesterase) were compared phylogenetically between S. stercoralis and outgroups, and proteins with least homology to the outgroups were selected. Proteins that overlapped between the transcriptomic and proteomic datasets were analysed by multiple sequence alignment, epitope prediction and 3D structure modelling to reveal S. stercoralis candidate peptide/protein coproantigens. We describe 22 candidates from seven genes, across all five protein families for further investigation as potential S. stercoralis diagnostic coproantigens, identified using open access data and freely-available protein analysis tools. This powerful approach can be applied to many parasitic infections with 'omic' data to accelerate development of specific diagnostic assays for laboratory or point-of-care field application.
Collapse
Affiliation(s)
- Tegwen Marlais
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jack Bickford-Smith
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carlos Talavera-López
- Institute of Computational Biology, Computational Health Centre, Helmholtz Munich, Neuherberg, Germany
| | - Hai Le
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fatima Chowdhury
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael A Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
18
|
Guo MS, Wu Q, Dong TT, Tsim KWK. The UV-induced uptake of melanosome by skin keratinocyte is triggered by α7 nicotinic acetylcholine receptor-mediated phagocytosis. FEBS J 2023; 290:724-744. [PMID: 36048140 DOI: 10.1111/febs.16613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023]
Abstract
The melanosome is an organelle that produces melanin for skin pigmentation, which is synthesized by epidermal melanocytes, subsequently transported and internalized by epidermal keratinocytes. Exposure to ultraviolet (UV) from sunlight radiation is a major stimulator of melanosome uptake by keratinocytes. Acetylcholine (ACh) is known to be released by keratinocytes under UV exposure, which regulates melanin production in melanocytes by participating in which has been named as 'skin synapse'. Here, the role of cholinergic molecules, i.e. ACh and α7 nicotinic acetylcholine receptor (nAChR), in regulating melanosome uptake through phagocytosis by keratinocytes was illustrated. In cultured keratinocytes (HaCaT cells), the fluorescent beads at different sizes imitating melanosomes, or melanosomes, were phagocytosed under UV exposure. The UV-induced phagocytosis in keratinocytes was markedly increased by applied ACh, an acetylcholinesterase (AChE) inhibitor or an α7 nAChR agonist. By contrast, the antagonist of α7 nAChR was able to fully block the UV-induced phagocytosis, suggesting the role of α7 nAChR in this event. The intracellular Ca++ mobilization was triggered by UV exposure, accounting for the initiation of phagocytosis. The blockage of UV-mediated Ca++ mobilization, triggered by BAPTA-AM or α7 nAChR antagonist, resulted in a complete termination of phagocytosis. Besides, the phosphorylation of cofilin, as well as expression and activation of RhoA, accounting for phagocytosis was induced by UV exposure: the phosphorylation was blocked by BAPTA-AM or α7 nAChR antagonist. The result suggests that the cholinergic system, especially α7 nAChR, is playing a regulatory role in modulating melanosome uptake in keratinocytes being induced by UV exposure.
Collapse
Affiliation(s)
- Maggie Suisui Guo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qiyun Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina Tingxia Dong
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.,Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Karl Wah Keung Tsim
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.,Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
19
|
Gok M, Cicek C, Sari S, Bodur E. Novel activity of human BChE: Lipid hydrolysis. Biochimie 2023; 204:127-135. [PMID: 36126749 DOI: 10.1016/j.biochi.2022.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/01/2022] [Accepted: 09/10/2022] [Indexed: 01/12/2023]
Abstract
Acetylcholinesterase and butyrylcholinesterase (BChE) typically hydrolyze the neurotransmitter acetylcholine. The multifunctional enzyme BChE is associated with lipid metabolism through an undefined mechanism. Based on lipid-related studies and by comparing the structural similarities between lipases and BChE we postulated that the association of BChE with lipid metabolism could occur through hydrolytic activity. Utilizing purified BChE enzymes from different sources and several lipases as controls, the ability of BChE to hydrolyze 4-methylumbelliferyl (4-mu) palmitate is investigated. Using lectin affinity, inhibition kinetics, and molecular modeling, we demonstrated that purified BChE hydrolyzed 4-mu palmitate at pH 8 as effectively as wheat germ lipase. The affinity Km value of the enzymes for 4-mu palmitate as substrate is found as 10.4 μM, 34.2 μM, 129.8 μM, and 186 μM for wheat germ lipase, purified BChE, pancreatic lipase, and commercial BChE, respectively. Analysis of the inhibitory effect of 4-mu palmitate on BChE using butyrylthiocholine as substrate revealed competitive inhibition with Ki and IC50 values of 448 μM and 987.2 μM, respectively. The binding affinity and interactions of 4-mu palmitate with BChE and pancreatic lipase were predicted by molecular docking. These results suggest that BChE possesses lipolytic activity. The possibility that BChE hydrolyzes not only 4-mu palmitate but also other types of lipids will lead to a new approach to those disease states associated with increased BChE activity/expression.
Collapse
Affiliation(s)
- Muslum Gok
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey; Department of Medical Biochemistry, Faculty of Medicine, Mugla Sitki Kocman University, 48000, Mugla, Turkey.
| | - Cigdem Cicek
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey; Department of Medical Biochemistry, Faculty of Medicine, Yuksek Ihtisas University, 06520, Ankara, Turkey.
| | - Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| | - Ebru Bodur
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
20
|
Gonzalez G, Kvasnica M, Svrčková K, Štěpánková Š, Santos JRC, Peřina M, Jorda R, Lopes SMM, Melo TMVDPE. Ring-fused 3β-acetoxyandrost-5-enes as novel neuroprotective agents with cholinesterase inhibitory properties. J Steroid Biochem Mol Biol 2023; 225:106194. [PMID: 36162631 DOI: 10.1016/j.jsbmb.2022.106194] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 02/01/2023]
Abstract
Alzheimer´s disease (AD) is an intellectual disorder caused by organic brain damage and cerebral atrophy, characterized by the loss of memory, judgment, and abstract thinking followed by declining cognitive functions, language, and the ability to perform daily living activities. Many efforts have been made to decrease the effects of the disease but also to block the neurodegenerative process. Cholinesterase inhibitors (ChEIs) are a group of medicines that act at the neurotransmission of acetylcholine, preventing its excessive breakdown and helping to improve cognitive functions in patients with AD. In this work, 16 chiral steroids, namely ring-fused 3β-acetoxyandrost-5-ene derivatives, their precursor and two 16-dehydroprogesterone-derived dioximes, were assessed as cholinesterase inhibitors and neuroprotective agents. The results demonstrated that some of the tested steroids are cholinesterase inhibitors and the majority selective for acetylcholinesterase inhibition. Albeit, one ring-fused 3β-acetoxyandrost-5-ene containing N-methylpiperidine ring (compound 2g) demonstrated to be a selective and potent inhibitor of the butyrylcholinesterase enzyme. (S)- 4,4a,5,6,7,8-(hexahydronaphthalen-2-one)-fused 3β-acetoxyandrost-5-ene (compound 6) showed high neuroprotective effect, high ability to restore the mitochondrial membrane potential from glutamate intoxication, and dramatic improvement in cell morphology. The described results provided relevant structure-activity relationship data.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371 Olomouc, Czech Republic; Department of Neurology, University Hospital Olomouc, I. P. Pavlova 6, 77520 Olomouc, Czech Republic
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc, and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Katarína Svrčková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Joana R C Santos
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Miroslav Peřina
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Radek Jorda
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| | - Susana M M Lopes
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - Teresa M V D Pinho E Melo
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, 3004-535 Coimbra, Portugal
| |
Collapse
|
21
|
Masson P, Lushchekina S. Conformational Stability and Denaturation Processes of Proteins Investigated by Electrophoresis under Extreme Conditions. Molecules 2022; 27:6861. [PMID: 36296453 PMCID: PMC9610776 DOI: 10.3390/molecules27206861] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
The functional structure of proteins results from marginally stable folded conformations. Reversible unfolding, irreversible denaturation, and deterioration can be caused by chemical and physical agents due to changes in the physicochemical conditions of pH, ionic strength, temperature, pressure, and electric field or due to the presence of a cosolvent that perturbs the delicate balance between stabilizing and destabilizing interactions and eventually induces chemical modifications. For most proteins, denaturation is a complex process involving transient intermediates in several reversible and eventually irreversible steps. Knowledge of protein stability and denaturation processes is mandatory for the development of enzymes as industrial catalysts, biopharmaceuticals, analytical and medical bioreagents, and safe industrial food. Electrophoresis techniques operating under extreme conditions are convenient tools for analyzing unfolding transitions, trapping transient intermediates, and gaining insight into the mechanisms of denaturation processes. Moreover, quantitative analysis of electrophoretic mobility transition curves allows the estimation of the conformational stability of proteins. These approaches include polyacrylamide gel electrophoresis and capillary zone electrophoresis under cold, heat, and hydrostatic pressure and in the presence of non-ionic denaturing agents or stabilizers such as polyols and heavy water. Lastly, after exposure to extremes of physical conditions, electrophoresis under standard conditions provides information on irreversible processes, slow conformational drifts, and slow renaturation processes. The impressive developments of enzyme technology with multiple applications in fine chemistry, biopharmaceutics, and nanomedicine prompted us to revisit the potentialities of these electrophoretic approaches. This feature review is illustrated with published and unpublished results obtained by the authors on cholinesterases and paraoxonase, two physiologically and toxicologically important enzymes.
Collapse
Affiliation(s)
- Patrick Masson
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlievskaya Str. 18, 420111 Kazan, Russia
| | - Sofya Lushchekina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin Str. 4, 119334 Moscow, Russia
| |
Collapse
|
22
|
Gok M, Madrer N, Zorbaz T, Bennett ER, Greenberg D, Bennett DA, Soreq H. Altered levels of variant cholinesterase transcripts contribute to the imbalanced cholinergic signaling in Alzheimer's and Parkinson's disease. Front Mol Neurosci 2022; 15:941467. [PMID: 36117917 PMCID: PMC9479005 DOI: 10.3389/fnmol.2022.941467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Acetylcholinesterase and butyrylcholinesterase (AChE and BChE) are involved in modulating cholinergic signaling, but their roles in Alzheimer's and Parkinson's diseases (AD and PD) remain unclear. We identified a higher frequency of the functionally impaired BCHE-K variant (rs1803274) in AD and PD compared to controls and lower than in the GTEx dataset of healthy individuals (n = 651); in comparison, the prevalence of the 5'-UTR (rs1126680) and intron 2 (rs55781031) single-nucleotide polymorphisms (SNPs) of BCHE and ACHE's 3'-UTR (rs17228616) which disrupt AChE mRNA targeting by miR-608 remained unchanged. qPCR validations confirmed lower levels of the dominant splice variant encoding the "synaptic" membrane-bound ACHE-S in human post-mortem superior temporal gyrus samples from AD and in substantia nigra (but not amygdala) samples from PD patients (n = 79, n = 67) compared to controls, potentially reflecting region-specific loss of cholinergic neurons. In contradistinction, the non-dominant "readthrough" AChE-R mRNA variant encoding for soluble AChE was elevated (p < 0.05) in the AD superior temporal gyrus and the PD amygdala, but not in the neuron-deprived substantia nigra. Elevated levels of BChE (p < 0.001) were seen in AD superior temporal gyrus. Finally, all three ACHE splice variants, AChE-S, AChE-R, and N-extended AChE, were elevated in cholinergic-differentiated human neuroblastoma cells, with exposure to the oxidative stress agent paraquat strongly downregulating AChE-S and BChE, inverse to their upregulation under exposure to the antioxidant simvastatin. The multi-leveled changes in cholinesterase balance highlight the role of post-transcriptional regulation in neurodegeneration. (235).
Collapse
Affiliation(s)
- Muslum Gok
- Department of Biochemistry, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nimrod Madrer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamara Zorbaz
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Estelle R. Bennett
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Greenberg
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David A. Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Hermona Soreq
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
23
|
Su JC, Pan Q, Xu X, Wei X, Lei X, Zhang P. Structurally diverse steroids from an endophyte of Aspergillus tennesseensis 1022LEF attenuates LPS-induced inflammatory response through the cholinergic anti-inflammatory pathway. Chem Biol Interact 2022; 362:109998. [DOI: 10.1016/j.cbi.2022.109998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 11/25/2022]
|
24
|
Onder S, Schopfer LM, Jiang W, Tacal O, Lockridge O. Butyrylcholinesterase in SH-SY5Y human neuroblastoma cells. Neurotoxicology 2022; 90:1-9. [PMID: 35189179 PMCID: PMC9124689 DOI: 10.1016/j.neuro.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
Abstract
Cultured SH-SY5Y human neuroblastoma cells are used in neurotoxicity assays. These cells express markers of the cholinergic and dopaminergic systems. Acetylcholinesterase (AChE) activity has been reported in these cells. Neurotoxic organophosphate compounds that inhibit AChE, also inhibit butyrylcholinesterase (BChE). We confirmed the presence of AChE in the cell lysate by activity assays, Western blot, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of immunopurified AChE. A nondenaturing gel stained for AChE activity identified the catalytically active AChE in SH-SY5Y cells as the unstable monomer. We also identified immature BChE in the cell lysate. The concentration of active BChE protein was similar to that of active AChE protein. The rate of substrate hydrolysis by AChE was 10-fold higher than substrate hydrolysis by BChE. The higher rate was due to the 10-fold higher specific activity of AChE over BChE (5000 units/mg for AChE; 500 units/mg for BChE). Neither cholinesterase was secreted. Tryptic peptides of immunopurified AChE and BChE were identified by LC-MS/MS on an Orbitrap Lumos Fusion mass spectrometer. The unfolded protein chaperone, binding immunoglobulin protein BiP/GRP78, was identified in the mass spectral data from all cholinesterase samples, suggesting that BiP was co-extracted with cholinesterase. This suggests that the cytoplasmic cholinesterases are immature forms of AChE and BChE that bind to BiP. It was concluded that SH-SY5Y cells express active AChE and active BChE, but the proteins do not mature to glycosylated tetramers.
Collapse
|
25
|
Schnitzler LG, Baumgartner K, Kolb A, Braun B, Westerhausen C. Acetylcholinesterase Activity Influenced by Lipid Membrane Area and Surface Acoustic Waves. MICROMACHINES 2022; 13:mi13020287. [PMID: 35208411 PMCID: PMC8877910 DOI: 10.3390/mi13020287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022]
Abstract
According to the current model of nerve propagation, the function of acetylcholinesterase (AChE) is to terminate synaptic transmission of nerve signals by hydrolyzing the neurotransmitter acetylcholine (ACh) in the synaptic cleft to acetic acid (acetate) and choline. However, extra-synaptic roles, which are known as ‘non-classical’ roles, have not been fully elucidated. Here, we measured AChE activity with the enzyme bound to lipid membranes of varying area per enzyme in vitro using the Ellman assay. We found that the activity was not affected by density fluctuations in a supported lipid bilayer (SLB) induced by standing surface acoustic waves. Nevertheless, we found twice as high activity in the presence of small unilamellar vesicles (SUV) compared to lipid-free samples. We also showed that the increase in activity scaled with the available membrane area per enzyme.
Collapse
Affiliation(s)
- Lukas G. Schnitzler
- Experimental Physics I, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany; (L.G.S.); (K.B.); (A.K.); (B.B.)
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität Munich, 80799 Munich, Germany
| | - Kathrin Baumgartner
- Experimental Physics I, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany; (L.G.S.); (K.B.); (A.K.); (B.B.)
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität Munich, 80799 Munich, Germany
- Physiology, Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Anna Kolb
- Experimental Physics I, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany; (L.G.S.); (K.B.); (A.K.); (B.B.)
| | - Benedikt Braun
- Experimental Physics I, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany; (L.G.S.); (K.B.); (A.K.); (B.B.)
| | - Christoph Westerhausen
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität Munich, 80799 Munich, Germany
- Physiology, Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
- Augsburg Center for Innovative Technologies (ACIT), 86159 Augsburg, Germany
- Correspondence:
| |
Collapse
|
26
|
Hepatocellular BChE as a therapeutic target to ameliorate hypercholesterolemia through PRMT5 selective degradation to restore LDL receptor transcription. Life Sci 2022; 293:120336. [PMID: 35065166 DOI: 10.1016/j.lfs.2022.120336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 11/22/2022]
Abstract
AIMS Individuals with nonalcoholic hepatosteatosis (NAFLD) have a worse atherogenic lipoprotein profile and are susceptible to cardiovascular diseases. The MEK-ERK signaling cascades are central regulators of the levels of LDL receptor (LDLR), a major determinant of circulating cholesterol. It is elusive how hepatic steatosis contributes to dyslipidemia, especially hypercholesterolemia. MAIN METHODS The effects of BChE on signaling pathways were determined by immunoblotting in a BChE knockout hepatocyte cell line. DiI-LDL probe was used to explore the effect of BChE expression on LDL internalization. Co-immunoprecipitation and LC-MS were used to explore the interacting proteins with BChE. Finally, a hepatocyte-restricted BChE silencing mouse model was established by AAV8-Tbg-shRNA, and the hypercholesterolemia was induced by 65% kcal% high-fat, high-sucrose diet feeding. MAIN FINDINGS Here we demonstrate that butyrylcholinesterase (BChE) governs the LDL receptor levels and LDL uptake capacity through the MEK-ERK signaling cascades to promote Ldlr transcription. BChE interacts and co-localizes with PRMT5, a protein methylation modifier controlling the ERK signaling. PRMT5 regulates LDLR-dependent LDL uptake and is a substrate of chaperone-mediated autophagy (CMA). BChE deficiency induces the PRTM5 degradation dependent on CMA activity, possibly through facilitating the HSC70 (Heat shock cognate 71 kDa) recognition of PRMT5. Remarkably, in vivo hepatocyte-restricted BChE silencing reduces plasma cholesterol levels substantially. In contrast, the BChE knockout mice are predisposed to hypercholesterolemia. SIGNIFICANCE Taken together, these findings outline a regulatory role for the BChE-PRMT5-ERK-LDLR axis in hepatocyte cholesterol metabolism, and suggest that targeting liver BChE is an effective therapeutic strategy to treat hypercholesterolemia.
Collapse
|
27
|
Kirilovsky ER, Anguiano OL, Bongiovanni GA, Ferrari A. Effects of acute arsenic exposure in two different populations of Hyalella curvispina amphipods from North Patagonia Argentina. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:71-88. [PMID: 34496719 DOI: 10.1080/15287394.2021.1975589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Arsenic (As) is a toxic metalloid present in high levels in diverse regions of Argentina. The aim of this study was to determine acute As-mediated toxicity in two different populations of autochthonous Hyalella curvispina amphipods from a reference site (LB) and an agricultural one (FO) within North Patagonia Argentina. Previously, both populations exhibited significant differences in pesticide susceptibility. Lab assays were performed to determine acute lethal concentrations, as well as some biochemical parameters. Lethal concentration (LC50) values obtained after 48 and 96 hr As exposure were not significantly different between these populations, although FO amphipods appeared slightly less susceptible. LC50-48 hr values were 3.33 and 3.92 mg/L As, while LC50-96 hr values were 1.76 and 2.14 mg/L As for LB and FO amphipods. The no observed effect concentration (NOEC) values were 0.5 mg/L As. Cholinesterase (ChE) activity was significantly diminished by As acute exposure (0.5-1.5 mg/L As), indicative of a significant neurotoxic action for this metalloid in both amphipod populations. Activities of catalase (CAT) and glutathione S-transferase (GST) and levels of reduced glutathione (GSH) were differentially altered following As exposure. CAT activity was increased after 96 hr As exposure. GST activity and GSH levels were significantly elevated followed by either a decrease or a return to control values after 96 hr treatment. However, additional studies are necessary to understand the mechanisms underlying the As-mediated oxidative effects in H. curvispina. Our findings suggest that measurement of ChE activity in H. curvispina amphipods might serve as a useful biomarker of As exposure and effect.
Collapse
Affiliation(s)
- Eva R Kirilovsky
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ciencias Médicas, Universidad Nacional Del Comahue (UNCo), Río Negro, Argentina
| | - Olga L Anguiano
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ingeniería, Universidad Nacional Del Comahue (UNCo), Neuquén, Argentina
| | - Guillermina A Bongiovanni
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ciencias Agrarias, Universidad Nacional Del Comahue (UNCo), Neuquén, Argentina
| | - Ana Ferrari
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ciencias Médicas, Universidad Nacional Del Comahue (UNCo), Río Negro, Argentina
| |
Collapse
|
28
|
Mukhametgalieva AR, Lushchekina SV, Aglyamova AR, Masson P. Steady-state kinetic analysis of human cholinesterases over wide concentration ranges of competing substrates. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140733. [PMID: 34662731 DOI: 10.1016/j.bbapap.2021.140733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Substrate competition for human acetylcholinesterase (AChE) and human butyrylcholinesterase (BChE) was studies under steady-state conditions using wide range of substrate concentrations. Competing couples of substates were acetyl-(thio)esters. Phenyl acetate (PhA) was the reporter substrate and competitor were either acetylcholine (ACh) or acetylthiocholine (ATC). The common point between investigated substrates is that the acyl moiety is acetate, i.e. same deacylation rate constant for reporter and competitor substrate. Steady-state kinetics of cholinesterase-catalyzed hydrolysis of PhA in the presence of ACh or ATC revealed 3 phases of inhibition as concentration of competitor increased: a) competitive inhibition, b) partially mixed inhibition, c) partially uncompetitive inhibition for AChE and partially uncompetitive activation for BChE. This sequence reflects binding of competitor in the active centrer at low concentration and on the peripheral anionic site (PAS) at high concentration. In particular, it showed that binding of a competing ligand on PAS may affect the catalytic behavior of AChE and BChE in an opposite way, i.e. inhibition of AChE and activation of BChE, regardless the nature of the reporter substrate. For both enzymes, progress curves for hydrolysis of PhA at very low concentration (≪Km) in the presence of increasing concentration of ATC showed that: a) the competing substrate and the reporter substrate are hydrolyzed at the same time, b) complete hydrolysis of PhA cannot be reached above 1 mM competing substrate. This likely results from accumulation of hydrolysis products (P) of competing substrate and/or accumulation of acetylated enzyme·P complex that inhibit hydrolysis of the reporter substrate.
Collapse
Affiliation(s)
- Aliya R Mukhametgalieva
- Kazan Federal University, Neuropharmacology Laboratory, 18 ul. Kremlevskaya, 420008 Kazan, Russian Federation
| | - Sofya V Lushchekina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 ul. Kosygina, Moscow 119334, Russian Federation
| | - Aliya R Aglyamova
- Kazan Federal University, Neuropharmacology Laboratory, 18 ul. Kremlevskaya, 420008 Kazan, Russian Federation
| | - Patrick Masson
- Kazan Federal University, Neuropharmacology Laboratory, 18 ul. Kremlevskaya, 420008 Kazan, Russian Federation.
| |
Collapse
|
29
|
Onder S, van Grol M, Fidder A, Xiao G, Noort D, Yerramalla U, Tacal O, Schopfer LM, Lockridge O. Rabbit Antidiethoxyphosphotyrosine Antibody, Made by Single B Cell Cloning, Detects Chlorpyrifos Oxon-Modified Proteins in Cultured Cells and Immunopurifies Modified Peptides for Mass Spectrometry. J Proteome Res 2021; 20:4728-4745. [PMID: 34469172 PMCID: PMC8491160 DOI: 10.1021/acs.jproteome.1c00383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Chronic low-dose
exposure to organophosphorus pesticides is associated
with the risk of neurodegenerative disease. The mechanism of neurotoxicity
is independent of acetylcholinesterase inhibition. Adducts on tyrosine,
lysine, threonine, and serine can occur after exposure to organophosphorus
pesticides, the most stable being adducts on tyrosine. Rabbit monoclonal
1C6 to diethoxyphosphate-modified tyrosine (depY) was created by single
B cell cloning. The amino acid sequence and binding constant (Kd 3.2 × 10–8 M) were
determined. Cultured human neuroblastoma SH-SY5Y and mouse neuroblastoma
N2a cells incubated with a subcytotoxic dose of 10 μM chlorpyrifos
oxon contained depY-modified proteins detected by monoclonal 1C6 on
Western blots. depY-labeled peptides from tryptic digests of cell
lysates were immunopurified by binding to immobilized 1C6. Peptides
released with 50% acetonitrile and 1% formic acid were analyzed by
liquid chromatography tandem mass spectrometry (LC-MS/MS) on an Orbitrap
Fusion Lumos mass spectrometer. Protein Prospector database searches
identified 51 peptides modified on tyrosine by diethoxyphosphate in
SH-SY5Y cell lysate and 73 diethoxyphosphate-modified peptides in
N2a cell lysate. Adducts appeared most frequently on the cytoskeleton
proteins tubulin, actin, and vimentin. It was concluded that rabbit
monoclonal 1C6 can be useful for studies that aim to understand the
mechanism of neurotoxicity resulting from low-dose exposure to organophosphorus
pesticides.
Collapse
Affiliation(s)
- Seda Onder
- Department of Biochemistry, School of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Marco van Grol
- TNO Organisation for Applied Scientific Research, 2280 AA Rijswijk, The Netherlands
| | - Alex Fidder
- TNO Organisation for Applied Scientific Research, 2280 AA Rijswijk, The Netherlands
| | - Gaoping Xiao
- Syd Labs, Inc., Hopkinton, Massachusetts 01748, United States
| | - Daan Noort
- TNO Organisation for Applied Scientific Research, 2280 AA Rijswijk, The Netherlands
| | | | - Ozden Tacal
- Department of Biochemistry, School of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Lawrence M Schopfer
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
30
|
Liu W, Cao Y, Lin Y, Tan KS, Zhao H, Guo H, Tan W. Enhancement of Fear Extinction Memory and Resistance to Age-Related Cognitive Decline in Butyrylcholinesterase Knockout Mice and ( R)-Bambuterol Treated Mice. BIOLOGY 2021; 10:biology10050404. [PMID: 34062954 PMCID: PMC8147965 DOI: 10.3390/biology10050404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/24/2021] [Accepted: 05/01/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary Fear extinction is the driving mechanism to reduce the fear response, and it is the basis of exposure-based cognitive-behavioral therapy. Butyrylcholinesterase (BChE) seems to be involved in regulating cognitive function, and its relationship with fear extinction memory has not been reported. BChE knockout mice and wild-type mice with administration of (R)-bambuterol, a BChE inhibitor, were used in this study. In addition to immunohistochemistry and metabolite analysis using mass spectrometry imaging, the influence of age on the conditioned fear test, Morris water maze experiment, and open field test were carefully evaluated. Our results showed that BChE inhibition accelerates the fear extinction memory in mice and delays the cognitive decline in the early stages of aging. Abstract Butyrylcholinesterase (BChE) is detected in plaques preferentially in Alzheimer’s disease (AD) and may be associated with stress disorders. However, the physiological function of BChE in the central nervous system remains to be further investigated. BChE knockout (KO) mice and wild-type (WT) mice with orally or intranasal administration of (R)-bambuterol were used to explore the effect of BChE on behavior changes. (R)-bambuterol is a specific and reversible inhibitor of BChE. The behavior changes were evaluated and compared among 3–10 month old mice. Our finding showed that BChE KO and (R)-bambuterol administration enhanced episodic memory, including fear conditioning memory and fear extinction memory in fear conditioning and fear extinction test. BChE KO and (R)-bambuterol administered mice rescued age-related spatial memory and general activity in the water maze test and open field test. The brain metabolomics were imaged using a desorption electrospray ionization mass spectrometry imaging (DESI-MSI). The image of DESI-MS demonstrated that glutamine content increased in the brain of BChE KO mice. In conclusion, this study found that inhibition of BChE ameliorated episodic and spatial memories. This study also suggested that (R)-bambuterol as a BChE inhibitor has the potential application in the treatment of post-traumatic stress disorder (PTSD) and early cognitive decline.
Collapse
Affiliation(s)
- Weiwei Liu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.L.); (Y.L.); (H.Z.); (H.G.)
| | - Yan Cao
- YZ Health-tech Inc., Hengqin District, Zhuhai 519000, China; (Y.C.); (K.S.T.)
- School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yue Lin
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.L.); (Y.L.); (H.Z.); (H.G.)
| | - Keai Sinn Tan
- YZ Health-tech Inc., Hengqin District, Zhuhai 519000, China; (Y.C.); (K.S.T.)
- School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Haishan Zhao
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.L.); (Y.L.); (H.Z.); (H.G.)
| | - Haihua Guo
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.L.); (Y.L.); (H.Z.); (H.G.)
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.L.); (Y.L.); (H.Z.); (H.G.)
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
31
|
Angeloni S, Spinozzi E, Maggi F, Sagratini G, Caprioli G, Borsetta G, Ak G, Sinan KI, Zengin G, Arpini S, Mombelli G, Ricciutelli M. Phytochemical Profile and Biological Activities of Crude and Purified Leonurus cardiaca Extracts. PLANTS (BASEL, SWITZERLAND) 2021; 10:195. [PMID: 33494336 PMCID: PMC7911824 DOI: 10.3390/plants10020195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
Leonurus cardiaca L. (Lamiaceae) is a perennial herb distributed in Asia and Southeastern Europe and has been used in traditional medicine since antiquity for its role against cardiac and gynecological disorders. The polar extracts obtained from L. cardiaca aerial parts contain several compounds among which alkaloids, iridoids, labdane diterpenes, and phenylethanoid glycosides play a major role in conferring protection against the aforementioned diseases. On the other hand, the antioxidant activities and the enzyme inhibitory properties of these extracts have not yet been deeply studied. On the above, in the present study, crude and purified extracts were prepared from the aerial parts of L. cardiaca and have been chemically characterized by spectrophotometric assays and HPLC-DAD-MS analyses. Notably, the content of twelve secondary metabolites, namely phenolic acids (chlorogenic, caffeic, caffeoylmalic and trans-ferulic acids), flavonoids (rutin and quercetin), phenylethanoid glycosides (verbascoside and lavandulifolioside), guanidine pseudoalkaloids (leonurine), iridoids (harpagide), diterpenes (forskolin), and triterpenes (ursolic acid), has been determined. Furthermore, the extracts were tested for their antioxidant capabilities (phosphomolybdenum, DPPH, ABTS, FRAP, CUPRAC, and ferrous chelating assays) and enzyme inhibitory properties against cholinesterase, tyrosinase, amylase, and glucosidase. The purified extracts contained higher phytochemical content than the crude ones, with caffeoylmalic acid and verbascoside as the most abundant compounds. A linear correlation between total phenolics, radical scavenging activity, and reducing power of extracts has been found. Notably, quercetin, caffeic acid, lavandulifolioside, verbascoside, chlorogenic acid, rutin, and ursolic acid influenced the main variations in the bioactivities found in L. cardiaca extracts. Our findings provide further insights into the chemico-biological traits of L. cardiaca and a scientific basis for the development of nutraceuticals and food supplements.
Collapse
Affiliation(s)
- Simone Angeloni
- School of Pharmacy, University of Camerino, via Sant’Agostino 1, I-62032 Camerino, Italy; (S.A.); (E.S.); (G.S.); (G.C.); (G.B.); (M.R.)
- International Hub for Coffee Research and Innovation, I-62020 Belforte del Chienti, Italy
| | - Eleonora Spinozzi
- School of Pharmacy, University of Camerino, via Sant’Agostino 1, I-62032 Camerino, Italy; (S.A.); (E.S.); (G.S.); (G.C.); (G.B.); (M.R.)
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, via Sant’Agostino 1, I-62032 Camerino, Italy; (S.A.); (E.S.); (G.S.); (G.C.); (G.B.); (M.R.)
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, via Sant’Agostino 1, I-62032 Camerino, Italy; (S.A.); (E.S.); (G.S.); (G.C.); (G.B.); (M.R.)
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, via Sant’Agostino 1, I-62032 Camerino, Italy; (S.A.); (E.S.); (G.S.); (G.C.); (G.B.); (M.R.)
| | - Germana Borsetta
- School of Pharmacy, University of Camerino, via Sant’Agostino 1, I-62032 Camerino, Italy; (S.A.); (E.S.); (G.S.); (G.C.); (G.B.); (M.R.)
| | - Gunes Ak
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; (G.A.); (K.I.S.); (G.Z.)
| | - Kouadio Ibrahime Sinan
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; (G.A.); (K.I.S.); (G.Z.)
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; (G.A.); (K.I.S.); (G.Z.)
| | | | | | - Massimo Ricciutelli
- School of Pharmacy, University of Camerino, via Sant’Agostino 1, I-62032 Camerino, Italy; (S.A.); (E.S.); (G.S.); (G.C.); (G.B.); (M.R.)
| |
Collapse
|