1
|
Huang R, Zhou C, Wang T, Chen Y, Xie Z, Wei L, Duan Y, Liao C, Ma C, Yang X. Lycopene inhibits doxorubicin-induced heart failure by inhibiting ferroptosis through the Nrf2 signaling pathway. Life Sci 2025:123452. [PMID: 39923835 DOI: 10.1016/j.lfs.2025.123452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
AIMS Lycopene (LYC) is a dietary nutrient that plays a protective role in various cardiovascular diseases. Doxorubicin (DOX)-induced cardiotoxicity is an important cause of poor prognosis in many cancer patients treated with anthracyclines. This study aims to investigate the protective effects of LYC against DOX-induced HF and specific underlying mechanisms. MATERIALS AND METHODS DOX was used to establish HF model in cardiomyocytes and C57BL/6J mice to assess the protection of LYC against DOX-induced HF on inflammation, oxidative stress, and ferroptosis. KEY FINDINGS LYC ameliorated DOX-induced deterioration of cardiac function. Mechanistically, LYC reduced collagen content and fibrosis by inhibiting the expression of matrix metalloproteinase 2 (MMP-2) and MMP-9. Additionally, LYC inhibited reactive oxygen species (ROS) production by upregulating antioxidant enzymes expression. LYC enhanced B-cell lymphoma 2 (Bcl-2), but reduced apoptosis positive cells by reducing tumor protein 53 (p53), Bcl-2 associated X protein (Bax), and cleaved-Caspase 3 (c-Casp3) levels. Besides, LYC reduced inflammatory cytokine levels through activating peroxisome proliferator activated receptor gamma (PPARγ). Moreover, LYC ameliorated DOX-induced ferroptosis both in vivo and in vitro. Furthermore, we showed that LYC inhibited DOX-induced ferroptosis via binding to nuclear factor-erythroid 2-related factor 2 (Nrf2) to enhance its expression. SIGNIFICANCE LYC improved DOX-induced cardiac dysfunction by reducing oxidative stress and inflammation, which was contributed by the reduction of ferroptosis. At molecular levels, LYC ameliorated DOX-induced ferroptosis through activating the Nrf2 signaling pathway. These findings indicate the potential of LYC as a therapeutic option for HF treatment.
Collapse
Affiliation(s)
- Rong Huang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chao Zhou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tianxiang Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhouling Xie
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lingling Wei
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
2
|
Sharif SM, Hydock D. Insights into mitochondrial creatine kinase: examining preventive role of creatine supplement in doxorubicin-induced cardiotoxicity. Toxicol Mech Methods 2025; 35:136-145. [PMID: 39169611 DOI: 10.1080/15376516.2024.2393825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Doxorubicin (Dox) is an effective and commonly used anticancer drug; however, it leads to several side effects including cardiotoxicity which contributes to poor quality of life for cancer patients. Creatine (Cr) is a promising intervention to alleviate Dox-induced cardiotoxicity. This study aimed to examine the effects of Cr beforeDox on cardiac mitochondrial creatine kinase (MtCK). Male rats were randomly assigned to one of two 4-week Cr feeding interventions (standard Cr diet or Cr loading diet) or a control diet (Con, n = 20). Rats in the standard Cr diet (Cr1, n = 20) were fed 2% Cr for 4-weeks. Rats in the Cr loading diet (Cr2, n = 20) were fed 4% Cr for 1-week followed by 2% Cr for 3-weeks. After 4-weeks, rats received either a bolus injection of 15 mg/kg Dox or a placebo saline injection (Sal). Five days post-injections left ventricle (LV) was excised and analyzed for MtCK expression using Western blot and ELISA. A significant drug effect was observed for LV mass (p < 0.05), post hoc testing revealed LV mass of Con + Dox and Cr2 + Dox was significantly lower than Con + Sal (p < 0.05). A significant drug effect was observed for MtCK (p = 0.03) through Western blot. A significant drug effect (p = 0.03) and interaction (p = 0.02) was observed for MtCK using ELISA. Post hoc testing revealed that Cr2 + Dox had significantly higher MtCK than Cr1 + Sal and Cr2 + Sal. Data suggest that a reduction in LV mass and MtCK may contribute to Dox-induced cardiotoxicity, and Cr supplementation may play a potential role in mitigating cardiotoxicity by preserving mitochondrial CK.
Collapse
Affiliation(s)
- Salaheddin M Sharif
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - David Hydock
- Department of Kinesiology, Nutrition, and Dietetics, University of Northern Colorado, Greeley, Colorado, USA
| |
Collapse
|
3
|
Li D, Yao Y, Wang K, Lei C, Peng X, Cao C, Zhu K, Zhu Z, Shao F. Targeted delivery of Saikosaponin A and doxorubicin via hyaluronic acid-modified ZIF-8 nanoparticles for TNBC treatment: Inhibiting metastasis and reducing cardiotoxicity. BIOMATERIALS ADVANCES 2025; 167:214114. [PMID: 39549369 DOI: 10.1016/j.bioadv.2024.214114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the absence of estrogen receptors, progesterone receptors, and HER2 expression, making traditional hormone and targeted therapies ineffective. Chemotherapy remains the primary treatment for TNBC; however, it has failed to adequately address the high rates of recurrence and metastasis, underscoring the urgent need for new therapeutic strategies. This study investigates Saikosaponin A (SSA), a compound extracted from traditional Chinese medicine, for its potential to enhance the efficacy of doxorubicin (DOX) chemotherapy while reducing TNBC metastasis and mitigating DOX-induced cardiotoxicity. We first confirmed SSA's cardioprotective effects against DOX-induced cardiotoxicity, highlighting its potential as an adjunctive therapy for TNBC chemotherapy. Subsequently, through network pharmacology analysis, we identified that SSA may inhibit TNBC progression and metastasis by downregulating integrin β3, a key regulatory factor in tumor development. This was further validated through both in vivo and in vitro experiments. To address the poor bioavailability of SSA, we developed a novel drug delivery system utilizing hyaluronic acid (HA)-modified zeolitic imidazolate framework-8 (ZIF-8) nanoparticles for the co-delivery of SSA and DOX. This nano-drug system exhibited excellent stability and high drug-loading capacity, with loading efficiencies of 40.07 % for SSA and 43.07 % for DOX. After 24 h of nano-drug administration, the DOX concentration in the group using the nano-delivery system was 5.01 times higher than control group, demonstrated enhanced tumor-targeting capability. Furthermore, after 14 days of treatment, the tumor volume was reduced by 80.8 % compared to the control group, indicating significantly improved therapeutic efficacy (all P < 0.05). This study systematically evaluates the potential of this dual drug-loaded nanocarrier in improving TNBC treatment, reducing DOX-induced cardiotoxicity, and inhibiting metastasis, offering a novel therapeutic approach that integrates traditional medicine with advanced nanotechnology.
Collapse
Affiliation(s)
- Dandan Li
- Department of Nuclear Medicine, The First People's Hospital of Zigong, Zigong, Sichuan 643000, China
| | - Yu Yao
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, School of Medicine, Tongji University, Shanghai 200072, China
| | - Kun Wang
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Chunyu Lei
- Department of Nuclear Medicine, The First People's Hospital of Zigong, Zigong, Sichuan 643000, China
| | - Xianfeng Peng
- Department of Nuclear Medicine, The First People's Hospital of Zigong, Zigong, Sichuan 643000, China
| | - Chengjian Cao
- Department of Clinical Laboratory, Zigong First People's Hospital, Zigong, Sichuan 643000, China
| | - Ke Zhu
- Department of Nuclear Medicine, The First People's Hospital of Zigong, Zigong, Sichuan 643000, China; Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Ziyang Zhu
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Fuqiang Shao
- Department of Nuclear Medicine, The First People's Hospital of Zigong, Zigong, Sichuan 643000, China.
| |
Collapse
|
4
|
Hong W, Tang H, Wang D, Qian D, Xu Y, Zheng Y, Li S, Zheng Q, Meng X, Liu X. Xihuang pill suppresses breast cancer malignancy by inhibiting TGF-β signaling and acquires chemotherapy benefits. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:119000. [PMID: 39490714 DOI: 10.1016/j.jep.2024.119000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Breast cancer (BC) has an extremely high global incidence rate. The Xihuang pill (XHP), a traditional Chinese formula, originates from Hongxu Wang's "Life-Saving Manual of Diagnosis and Treatment of External Diseases" written during the Qing Dynasty. In this book, XHP, was first suggested as an anticancer treatment for BC. However, the regulatory mechanism of XHP on BC requires further investigated. AIM OF THE STUDY To assess the effects of XHP on BC and elucidate the underlying associated signaling network. MATERIALS AND METHODS The influence of XHP on cellular viability, proliferation, and apoptosis of MDA-MB-231 and BT-549 cells were examined. The ability to metastasize was evaluated using Transwell invasion and wound healing tests. Western blotting was used to examine the epithelial-mesenchymal transition (EMT) markers expression. RNA sequencing and bioinformatic analysis were utilized to investigate the regulation mechanism of XHP. A subcutaneous tumor model was developed to study the tumor-inhibitory effects of XHP or/and Doxorubicin (Dox) on BALB/c nude mice, and the EMT marker levels in tumor tissues were determined using immunohistochemical labeling. RESULTS XHP demonstrated anticancer effects on BC cells by suppressing cell proliferation, inducing cellular apoptosis, and inhibiting EMT progression. XHP may regulate the EMT via the TGF-β axis, as shown by RNA sequencing and Western blotting analysis. Furthermore, the combination of XHP and Dox had a stronger therapeutic effect on BC cell proliferation, apoptosis, and metastasis in both cellular and animal models. CONCLUSIONS We were the first to reveal that XHP abrogated EMT progression via modulating the TGF-β axis. Furthermore, the combination therapy of XHP and Dox presents a promising novel therapeutic candidate for BC patients.
Collapse
Affiliation(s)
- Weimin Hong
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China
| | - Hongchao Tang
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China
| | - Danhong Wang
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, 215500, Jiangsu Province, China
| | - Yadan Xu
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China
| | - Yiwen Zheng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China
| | - Shujin Li
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China
| | - Qinghui Zheng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China
| | - Xuli Meng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China.
| | - Xiaozhen Liu
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, China; Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
5
|
Yin B, Ren J, Liu X, Zhang Y, Zuo J, Wen R, Pei H, Lu M, Zhu S, Zhang Z, Wang Z, Zhai Y, Ma Y. Astaxanthin mitigates doxorubicin-induced cardiotoxicity via inhibiting ferroptosis and autophagy: a study based on bioinformatic analysis and in vivo/ vitro experiments. Front Pharmacol 2025; 16:1524448. [PMID: 39906141 PMCID: PMC11790656 DOI: 10.3389/fphar.2025.1524448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
Background Doxorubicin (DOX), a widely employed chemotherapeutic agent in cancer treatment, has seen restricted use in recent years owing to its associated cardiotoxicity. Current reports indicate that doxorubicin-induced cardiotoxicity (DIC) is a complex phenomenon involving various modes of cell death. Astaxanthin (ASX), a natural carotenoid pigment, has garnered significant attention for its numerous health benefits. Recent studies have shown that ASX has a broad and effective cardiovascular protective effect. Our study aims to investigate the protective effects of ASX against DIC and elucidate its underlying mechanisms. This has substantial practical significance for the clinical application of DOX. Methods Bioinformatic analyses were conducted using transcriptomic data from the gene expression omnibus (GEO) database to identify key mechanisms underlying DIC. Network pharmacology was employed to predict the potential pathways and targets through which ASX exerts its effects on DIC. In vitro experiments, following pretreatment with ASX, H9C2 cells were exposed to DOX. Cell viability, injury and the protein expression levels associated with ferroptosis and autophagy were assessed. In the animal experiments, rats underwent 4 weeks of gavage treatment with various doses of ASX, followed by intraperitoneal injections of DOX every 2 days during the final week. Histological, serum, and protein analyses were conducted to evaluate the effects of ASX on DIC. Results The bioinformatics analysis revealed that ferroptosis and autophagy are closely associated with the development of DIC. ASX may exert an anti-DIC effect by modulating ferroptosis and autophagy. The experimental results show that ASX significantly mitigates DOX-induced myocardial tissue damage, inflammatory response, oxidative stress, and damage to H9C2 cells. Mechanistically, ASX markedly ameliorates levels of ferroptosis and autophagy both in vitro and in vivo. Specifically, ASX upregulates solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), while downregulating the expression of transferrin receptor 1 (TFRC), ferritin heavy chain (FTH1) and ferritin light chain (FTL). Additionally, ASX enhances the expression of P62 and decreases levels of Beclin1 and microtubule-associated proteins light chain 3 (LC3). Conclusion Our results indicate that ferroptosis and autophagy are critical factors influencing the occurrence and progression of DOX-induced cardiotoxicity. ASX can alleviate DIC by inhibiting ferroptosis and autophagy.
Collapse
Affiliation(s)
- Bowen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Xuanyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yadong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Jinshi Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Rui Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Huanting Pei
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Miaomiao Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Siqi Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Zhenao Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Ziyi Wang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yanyi Zhai
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| |
Collapse
|
6
|
Jin Q, Lin B, Lu L. Potential therapeutic value of dietary polysaccharides in cardiovascular disease: Extraction, mechanisms, applications, and challenges. Int J Biol Macromol 2025; 296:139573. [PMID: 39793800 DOI: 10.1016/j.ijbiomac.2025.139573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Dietary polysaccharides, recognised as significant natural bioactive compounds, have demonstrated promising potential for the prevention and treatment of cardiovascular disease (CVD). This review provides an overview of the biological properties and classification of polysaccharides, with particular emphasis on their extraction and purification methods. The paper then explores the diverse mechanisms by which polysaccharides exert their effects in CVD, including their antioxidant activity, protection against ischemia-reperfusion injury, anti-apoptotic properties, protection against diabetic cardiomyopathy, anticoagulant and antithrombotic effects, prevention of ventricular remodeling, and protection against vascular injury. Furthermore, this paper summarises the current status of clinical trials involving polysaccharides in CVD and analyzes the support and challenges posed by these studies for the practical application of polysaccharides. Finally, the major challenges facing the therapeutic use of polysaccharides in CVD are discussed, particularly the issues of low bioavailability and lack of standardized quality control. Through this review, we aimed to provide a reference and guidance for further research on and application of dietary polysaccharides in CVD.
Collapse
Affiliation(s)
- Qiqi Jin
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Bin Lin
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China.
| | - Lingfen Lu
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou 325000, China.
| |
Collapse
|
7
|
Mohsenizadeh SA, Rajaeinejad M, Khoshfetrat M, Arefizadeh R, Mousavi SH, Mosaed R, Kazemi-Galougahi MH, Jalaeikhoo H, Faridfar A, Nikandish M, Alavi-Moghadam S, Arjmand B. Anthracycline-Induced Cardiomyopathy in Cancer Survivors: Management and Long-Term Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:179-199. [PMID: 38842787 DOI: 10.1007/5584_2024_804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Recent advancements in personalized treatments, such as anthracycline chemotherapy, coupled with timely diagnoses, have contributed to a decrease in cancer-specific mortality rates and an improvement in cancer prognosis. Anthracyclines, a potent class of antibiotics, are extensively used as anticancer medications to treat a broad spectrum of tumors. Despite these advancements, a considerable number of cancer survivors face increased risks of treatment complications, particularly the cardiotoxic effects of chemotherapeutic drugs like anthracyclines. These effects can range from subclinical manifestations to severe consequences such as irreversible heart failure and death, highlighting the need for effective management of chemotherapy side effects for improved cancer care outcomes. Given the lack of specific treatments, early detection of subclinical cardiac events post-anthracycline therapy and the implementation of preventive strategies are vital. An interdisciplinary approach involving cardiovascular teams is crucial for the prevention and efficient management of anthracycline-induced cardiotoxicity. Various factors, such as age, gender, duration of treatment, and comorbidities, should be considered significant risk factors for developing chemotherapy-related cardiotoxicity. Tools such as electrocardiography, echocardiography, nuclear imaging, magnetic resonance imaging, histopathologic evaluations, and serum biomarkers should be appropriately used for the early detection of anthracycline-related cardiotoxicity. Furthermore, understanding the underlying biological mechanisms is key to developing preventive measures and personalized treatment strategies to mitigate anthracycline-induced cardiotoxicity. Exploring specific cardiotoxic mechanisms and identifying genetic variations can offer fresh perspectives on innovative, personalized treatments. This chapter aims to discuss cardiomyopathy following anthracycline therapy, with a focus on molecular mechanisms, preventive strategies, and emerging treatments.
Collapse
Affiliation(s)
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mehran Khoshfetrat
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Arefizadeh
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Mousavi
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, AJA University of Medical Sciences, Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Olajossy B, Wronski N, Madej E, Komperda J, Szczygieł M, Wolnicka-Glubisz A. RIPK4 Downregulation Reduces ABCG2 Expression, Increasing BRAF-Mutated Melanoma Cell Susceptibility to Cisplatin- and Doxorubicin-Induced Apoptosis. Biomolecules 2024; 14:1573. [PMID: 39766280 PMCID: PMC11674099 DOI: 10.3390/biom14121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Melanoma cells remain resistant to chemotherapy with cisplatin (CisPt) and doxorubicin (DOX). The abnormal expression of Receptor-Interacting Protein Kinase 4 (RIPK4) in certain melanomas contributes to tumour growth through the NFκB and Wnt/β-catenin signalling pathways, which are known to regulate chemoresistance and recurrence. Despite this, the role of RIPK4 in response to chemotherapeutics in melanoma has not been reported. In this study, we examined how the downregulation and overexpression of RIPK4 affect the sensitivity of BRAF-mutated melanoma cells (A375 and WM266.4) to CisPt and DOX along with determining the underlying mechanism. Using two RIPK4 silencing methods (siRNA and CRISPR/Cas9) and overexpression (dCas9-VPR), we assessed CisPt and DOX-induced apoptosis using caspase 3/7 activity, annexin V/7AAD staining, and FASC analysis. In addition, qRT-PCR and Western blotting were used to detect apoptosis-related genes and proteins such as cleaved PARP, p53, and cyclin D1. We demonstrated that the overexpression of RIPK4 inhibits, while its downregulation enhances, CisPt- or DOX-induced apoptosis in melanoma cells. The effects of downregulation are similar to those observed with pre-incubation with cyclosporin A, an ABCG2 inhibitor. Additionally, our findings provide preliminary evidence of crosstalk between RIPK4, BIRC3, and ABCG2. The results of these studies suggest the involvement of RIPK4 in the observed resistance to CisPt or DOX.
Collapse
Affiliation(s)
- Bartlomiej Olajossy
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; (B.O.); (N.W.); (E.M.); (M.S.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Norbert Wronski
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; (B.O.); (N.W.); (E.M.); (M.S.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Ewelina Madej
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; (B.O.); (N.W.); (E.M.); (M.S.)
| | - Joanna Komperda
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; (B.O.); (N.W.); (E.M.); (M.S.)
| | - Małgorzata Szczygieł
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; (B.O.); (N.W.); (E.M.); (M.S.)
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; (B.O.); (N.W.); (E.M.); (M.S.)
| |
Collapse
|
9
|
Liang W, Long H, Zhang H, Bai J, Jiang B, Wang J, Fu L, Ming W, Zhao J, Zeng B. Bone scaffolds-based localized drugs delivery for osteosarcoma: current status and future perspective. Drug Deliv 2024; 31:2391001. [PMID: 39239763 PMCID: PMC11382735 DOI: 10.1080/10717544.2024.2391001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
A common malignant bone neoplasm in teenagers is Osteosarcoma. Chemotherapy, surgical therapy, and radiation therapy together comprise the usual clinical course of treatment for Osteosarcoma. While Osteosarcoma and other bone tumors are typically treated surgically, however, surgical resection frequently fails to completely eradicate tumors, and in turn becomes the primary reason for postoperative recurrence and metastasis, ultimately leading to a high rate of mortality. Patients still require radiation and/or chemotherapy after surgery to stop the spread of the tumor and its metastases, and both treatments have an adverse influence on the body's organ systems. In the postoperative management of osteosarcoma, bone scaffolds can load cargos (growth factors or drugs) and function as drug delivery systems (DDSs). This review describes the different kinds of bone scaffolds that are currently available and highlights key studies that use scaffolds as DDSs for the treatment of osteosarcomas. The discussion also includes difficulties and perspectives regarding the use of scaffold-based DDSs. The study may serve as a source for outlining efficient and secure postoperative osteosarcoma treatment plans.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiangwei Wang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Wenyi Ming
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bin Zeng
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
10
|
Sarı U, Zaman F, Özdemir İ, Öztürk Ş, Tuncer MC. Gallic Acid Induces HeLa Cell Lines Apoptosis via the P53/Bax Signaling Pathway. Biomedicines 2024; 12:2632. [PMID: 39595196 PMCID: PMC11591794 DOI: 10.3390/biomedicines12112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Cervical cancer is a type of cancer that originates from the endometrium and is more common in developed countries and its incidence is increasing day by day in developing countries. The most commonly prescribed chemotherapeutic drugs limit their use due to serious side effects and the development of drug resistance. For this reason, interest in new active ingredients obtained from natural products is increasing. This study aimed to reveal the apoptotic and antiproliferative effects of gallic acid and doxorubicin combination therapy against the HeLa cell line. METHODS We investigated the anti-cancer effects of doxorubicin and gallic acid in the human HeLa cervical cell line by using the MTT test, Nucblue staining for the identification of apoptotic cells due to nuclear condensation using fluorescent substance, and apoptotic markers P53 and Bax for the RT-PCR test. RESULTS The highest cytotoxic effect obtained in the study, the highest increase in apoptotic induction, and a significant difference in P53/Bax levels were seen in the gallic acid/doxorubicin combination. Additionally, it was determined that gallic acid exhibited an effective cytotoxic effect on HeLa and HaCat cells within 48 and 72 h of application. CONCLUSIONS The obtained findings show that the gallic acid/doxorubicin combination applied to HeLa cells may be an alternative treatment against both the cytotoxic effect size and the side effects of the chemotherapy agent.
Collapse
Affiliation(s)
- Umut Sarı
- Department of Gynecology and Obstetrics, Umut Sarı Clinic, 34371 Istanbul, Turkey;
| | - Fuat Zaman
- Department of Obstetrics and Gynecology, Diyarlife Hospital, 21100 Diyarbakır, Turkey;
| | - İlhan Özdemir
- Private Buhara Hospital, Gynecology and Obstetrics Clinic IVF Center, 25070 Erzurum, Turkey;
| | - Şamil Öztürk
- Vocational School of Health Care Services, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Turkey;
| | - Mehmet Cudi Tuncer
- Department of Anatomy, Faculty of Medicine, Dicle University, 21200 Diyarbakir, Turkey
| |
Collapse
|
11
|
Ou W, Liu H, Chen C, Yang C, Zhao X, Zhang Y, Zhang Z, Huang S, Mo H, Lu W, Wang X, Chen A, Yan J, Song X. Spexin inhibits excessive autophagy-induced ferroptosis to alleviate doxorubicin-induced cardiotoxicity by upregulating Beclin 1. Br J Pharmacol 2024; 181:4195-4213. [PMID: 38961632 DOI: 10.1111/bph.16484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Doxorubicin is widely used in the treatment of malignant tumours, but doxorubicin-induced cardiotoxicity severely limits its clinical application. Spexin is a neuropeptide that acts as a novel biomarker in cardiovascular disease. However, the effects of spexin on doxorubicin-induced cardiotoxicity is unclear. EXPERIMENTAL APPROACH We established a model of doxorubicin-induced cardiotoxicity both in vivo and in vitro. Levels of cardiac damage in mice was assessed through cardiac function assessment, determination of serum cardiac troponin T and CKMB levels and histological examination. CCK8 and PI staining were used to assess the doxorubicin-induced toxicity in cultures of cardiomyocytes in vitro. Ferroptosis was assessed using FerroOrange staining, determination of MDA and 4-HNE content and ferroptosis-associated proteins SLC7A11 and GPX4. Mitochondrial membrane potential and lipid peroxidation levels were measured using TMRE and C11-BODIPY 581/591 probes, respectively. Myocardial autophagy was assessed by expression of P62 and Beclin1. KEY RESULTS Spexin treatment improved heart function of mice with doxorubicin-induced cardiotoxicity, and attenuated doxorubicin-induced cardiotoxicity by decreasing iron accumulation, abnormal lipid metabolism and inhibiting ferroptosis. Interestingly, doxorubicin caused excessive autophagy in cardiomyocyte in culture, which could be alleviated by treatment with spexin. Knockdown of Beclin 1 eliminated the protective effects of spexin in mice with DIC. CONCLUSION AND IMPLICATIONS Spexin ameliorated doxorubicin-induced cardiotoxicity by inhibiting excessive autophagy-induced ferroptosis, suggesting that spexin could be a drug candidate against doxorubicin-induced cardiotoxicity. Beclin 1 might be critical in mediating the protective effect of spexin against doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wen Ou
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Haiqiong Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Department of Cardiology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Chaobo Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Xiaoqing Zhao
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Zhiyin Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Shuwen Huang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Huaqiang Mo
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, China
| | - Weizhe Lu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Xianbao Wang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Aihua Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Yan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Xudong Song
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Khan SH, Anees M, Zofair SFF, Rasool F, Khan MA, Moin S, Younus H. Fucoidan based polymeric nanoparticles encapsulating epirubicin: A novel and effective chemotherapeutic formulation against colorectal cancer. Int J Pharm 2024; 664:124622. [PMID: 39197799 DOI: 10.1016/j.ijpharm.2024.124622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/26/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Colorectal cancer (CRC) is one of the most common and challenging malignancy that needs some effective and safer chemotherapeutic agents for the treatment. In this study, anticancer agent epirubicin (Epi) was loaded in polymeric polyethylene glycol-polylactic acid-nanoparticles (mPEG-PLA-NPs) coated with a marine anti-cancer non-toxic polysaccharide fucoidan (FC), to achieve a synergistic activity against CRC. The characterization of the NPs revealed that they were spherical, monodispersed, stable, with a negative zeta potential, and exhibited good biocompatibility and controlled release. In vitro anti-cancer activity of the NPs on HCT116 cell line was found to be promising, and corroborated well with in vivo studies involving BALB/C mice injected with C26 murine cancer cells. The outcome of MTT assay demonstrated that IC50 value of free Epi was 3.72 µM, and that of non-coated and coated Epi nano-formulations was 33.67 and 10.19 µM, respectively. Higher tumor regression, better survival and reduced off-side cardiotoxicity were observed when this novel NPs formulation was used to treat tumor-bearing mice. Free FC and Epi treated mice showed 37.73 % and 61.49 % regression in tumor size, whereas there was 79.76 % and 90.34 % tumor regression in mice treated with non-coated Epi NPs and coated Epi NPs, respectively. Therefore, mPEG-PLA-FC-Epi-NPs hold a potential to be used as an effective chemotherapeutic formulation against CRC, since it exhibited better efficacy and lower toxicity.
Collapse
Affiliation(s)
- Shaheer Hasan Khan
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Mohd Anees
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Syeda Fauzia Farheen Zofair
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Fayyaz Rasool
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida 201314, India
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Shagufta Moin
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
13
|
Ünlü İ, Özdemir İ, Tuncer MC. Napabucasin Inhibits Proliferation and Migration of Glioblastoma Cells (U87) by Regulating JAK2/STAT3 Signaling Pathway. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1715. [PMID: 39459502 PMCID: PMC11509140 DOI: 10.3390/medicina60101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Napabucasin (NP) was discovered as a natural compound that suppresses cancer stemness by inhibiting the signal transducer and activator of the transcription 3 (STAT3) signaling pathway. In this study, the anti-proliferative and apoptotic effects of NP and the chemotherapy agent doxorubicin (DX), a natural compound, on glioblastoma cells (U87) were investigated. Materials and Methods: In this study, the effects of NP and DX on cell viability on the glioblastoma U87 cell line were determined by MTT test. Expressions of Jak2/Stat3 genes were examined by qRT-PCR. Apoptosis was evaluated by Hoescht 33258 staining. Moreover, NP, its antagonistic-synergistic effects and IC50 doses of the combined treatment of DX were determined. Results: Napabucacin and doxorubicin were found to inhibit glioblastoma U87 cell proliferation. It was determined that NP applied in the range of 0.3-1 µM and its combination with DX killed almost all of the glioblastoma cells in 48 h of application. Additionally, it was observed that Jak2/Stat3 expressions downregulated. Conclusions: These results show that NP suppresses the proliferation of glioblastoma cells. It was shown that the combination of NP and DX can prevent invasion of the U87 cell line due to its Jak2/Stat3 inhibitory effect. Since it can suppress Jak2/Stat3, an important cancer cell proliferation pathway in glioblastoma, the combination of NP and DX can be used as an alternative treatment agent. But no synergistic effect of NP and DX on the U87 cells of the glioblastoma cell line was observed.
Collapse
Affiliation(s)
- İlker Ünlü
- Department of Neurosurgery, Faculty of Medicine, Beykent University, İstanbul 34398, Turkey;
| | - İlhan Özdemir
- Department of Gynecology and Obstetrics, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey;
| | - Mehmet Cudi Tuncer
- Department of Anatomy, Faculty of Medicine, Dicle University, Diyarbakır 21280, Turkey
| |
Collapse
|
14
|
Xie L, Xue F, Cheng C, Sui W, Zhang J, Meng L, Lu Y, Xiong W, Bu P, Xu F, Yu X, Xi B, Zhong L, Yang J, Zhang C, Zhang Y. Cardiomyocyte-specific knockout of ADAM17 alleviates doxorubicin-induced cardiomyopathy via inhibiting TNFα-TRAF3-TAK1-MAPK axis. Signal Transduct Target Ther 2024; 9:273. [PMID: 39406701 PMCID: PMC11480360 DOI: 10.1038/s41392-024-01977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The pathogenesis of doxorubicin-induced cardiomyopathy remains unclear. This study was carried out to test our hypothesis that ADAM17 aggravates cardiomyocyte apoptosis induced by doxorubicin and inhibition of ADAM17 may ameliorate doxorubicin-induced cardiomyopathy. C57BL/6J mice were intraperitoneally injected with a cumulative dose of doxorubicin to induce cardiomyopathy. Cardiomyocyte-specific ADAM17-knockout (A17α-MHCKO) and ADAM17-overexpressing (AAV9-oeA17) mice were generated. In addition, RNA sequencing of the heart tissues in different mouse groups and in vitro experiments in neonatal rat cardiomyocytes (NRCMs) receiving different treatment were performed. Mouse tumor models were constructed in A17fl/fl and A17α-MHCKO mice. In addition, cardiomyocyte-specific TRAF3-knockdown and TRAF3-overexpressing mice were generated. ADAM17 expression and activity were markedly upregulated in doxorubicin-treated mouse hearts and NRCMs. A17α-MHCKO mice showed less cardiomyocyte apoptosis induced by doxorubicin than A17fl/fl mice, and cardiomyocyte ADAM17 deficiency did not affect the anti-tumor effect of doxorubicin. In contrast, AAV9-oeA17 mice exhibited markedly aggravated cardiomyocyte apoptosis relative to AAV9-oeNC mice after doxorubicin treatment. Mechanistically, doxorubicin enhanced the expression of transcription factor C/EBPβ, leading to increased expression and activity of ADAM17 in cardiomyocyte, which enhanced TNF-α shedding and upregulated the expression of TRAF3. Increased TRAF3 promoted TAK1 autophosphorylation, resulting in activated MAPKs pathway and cardiomyocyte apoptosis. ADAM17 acted as a positive regulator of cardiomyocyte apoptosis and cardiac remodeling and dysfunction induced by doxorubicin by upregulating TRAF3/TAK1/MAPKs signaling. Thus, targeting ADAM17/TRAF3/TAK1/MAPKs signaling holds a promising potential for treating doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Lin Xie
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Xue
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Cheng
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wenhai Sui
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Linlin Meng
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yue Lu
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjing Xiong
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Peili Bu
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Zhong
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jianmin Yang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Cheng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Yun Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
15
|
Matusik K, Kamińska K, Sobiborowicz-Sadowska A, Borzuta H, Buczma K, Cudnoch-Jędrzejewska A. The significance of the apelinergic system in doxorubicin-induced cardiotoxicity. Heart Fail Rev 2024; 29:969-988. [PMID: 38990214 PMCID: PMC11306362 DOI: 10.1007/s10741-024-10414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Cancer is the leading cause of death worldwide, and the number of cancer-related deaths is expected to increase. Common types of cancer include skin, breast, lung, prostate, and colorectal cancers. While clinical research has improved cancer therapies, these treatments often come with significant side effects such as chronic fatigue, hair loss, and nausea. In addition, cancer treatments can cause long-term cardiovascular complications. Doxorubicin (DOX) therapy is one example, which can lead to decreased left ventricle (LV) echocardiography (ECHO) parameters, increased oxidative stress in cellular level, and even cardiac fibrosis. The apelinergic system, specifically apelin and its receptor, together, has shown properties that could potentially protect the heart and mitigate the damages caused by DOX anti-cancer treatment. Studies have suggested that stimulating the apelinergic system may have therapeutic benefits for heart damage induced by DOX. Further research in chronic preclinical models is needed to confirm this hypothesis and understand the mechanism of action for the apelinergic system. This review aims to collect and present data on the effects of the apelinergic system on doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Katarzyna Matusik
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Kamińska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Aleksandra Sobiborowicz-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Hubert Borzuta
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Kasper Buczma
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Sharma AK, Sharma R, Chauhan N, Das A, Satpati D. Peptide-drug conjugate designated for targeted delivery to HER2-expressing cancer cells. J Pept Sci 2024; 30:e3602. [PMID: 38600778 DOI: 10.1002/psc.3602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Targeted therapy of the highest globally incident breast cancer shall resolve the issue of off-target toxicity concurring with augmented killing of specific diseased cells. Thus, the goal of this study was to prepare a peptide-drug conjugate targeting elevated expression of HER2 receptors in breast cancer. Towards this, the rL-A9 peptide was conjugated with the chemotherapeutic drug doxorubicin (DOX) through a N-succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) linker. The synthesized peptide-drug conjugate, rL-A9-DOX, was characterized by mass spectrometry. Molecular docking studies, based on binding energy data, suggested a stronger interaction of rL-A9-DOX with the HER2 receptor in comparison to the unconjugated peptide, rL-A9. The cytotoxic effect of the rL-A9-DOX conjugate was observed to be higher in HER2-positive SKOV3 cells compared to HER2-negative MDA-MB-231 cells, indicating selective cell killing. Cellular internalization of the rL-A9-DOX conjugate was evident from the flow cytometry analysis, where a noticeable shift in mean fluorescent intensity (MFI) was observed for the conjugate compared to the control group. This data was further validated by confocal microscopy, where the fluorescent signal ascertained nuclear accumulation of rL-A9-DOX. The present studies highlight the promising potential of rL-A9-DOX for targeted delivery of the drug into a defined group of cancer cells.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Nitish Chauhan
- Homi Bhabha National Institute, Mumbai, India
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Amit Das
- Homi Bhabha National Institute, Mumbai, India
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
17
|
Yuan J, Guo L, Ma J, Zhang H, Xiao M, Li N, Gong H, Yan M. HMGB1 as an extracellular pro-inflammatory cytokine: Implications for drug-induced organic damage. Cell Biol Toxicol 2024; 40:55. [PMID: 39008169 PMCID: PMC11249443 DOI: 10.1007/s10565-024-09893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Drug-induced organic damage encompasses various intricate mechanisms, wherein HMGB1, a non-histone chromosome-binding protein, assumes a significant role as a pivotal hub gene. The regulatory functions of HMGB1 within the nucleus and extracellular milieu are interlinked. HMGB1 exerts a crucial regulatory influence on key biological processes including cell survival, inflammatory regulation, and immune response. HMGB1 can be released extracellularly from the cell during these processes, where it functions as a pro-inflammation cytokine. HMGB1 interacts with multiple cell membrane receptors, primarily Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE), to stimulate immune cells and trigger inflammatory response. The excessive or uncontrolled HMGB1 release leads to heightened inflammatory responses and cellular demise, instigating inflammatory damage or exacerbating inflammation and cellular demise in different diseases. Therefore, a thorough review on the significance of HMGB1 in drug-induced organic damage is highly important for the advancement of pharmaceuticals, ensuring their effectiveness and safety in treating inflammation as well as immune-related diseases. In this review, we initially outline the characteristics and functions of HMGB1, emphasizing their relevance in disease pathology. Then, we comprehensively summarize the prospect of HMGB1 as a promising therapeutic target for treating drug-induced toxicity. Lastly, we discuss major challenges and propose potential avenues for advancing the development of HMGB1-based therapeutics.
Collapse
Affiliation(s)
- JianYe Yuan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, The Eight Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lin Guo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaTing Ma
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HeJian Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - MingXuan Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ning Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
18
|
Yoshikawa N, Hirata N, Kurone Y, Shimoeda S. Red ginseng prevents doxorubicin-induced cardiomyopathy by inhibiting cell death via activating the Nrf2 pathway. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:39. [PMID: 38909271 PMCID: PMC11193215 DOI: 10.1186/s40959-024-00242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Doxorubicin (DXR) is an effective chemotherapeutic agent. DOX-induced cardiomyopathy (DICM), a major limitation of DXR, is a complication with limited treatment options. We previously reported that Red Ginseng (steamed and dried the root of Panax Ginseng cultivated for over six years; RGin) is beneficial for the treatment of DICM. However, the mechanism underlying the action of RGin remains unclear. In this study, we investigated the mechanism of action underlying the efficacy of RGin in the treatment of DICM. METHODS Four-week-old DBA/2 mice were divided into: vehicle, DXR, RGin, and DXR + RGin (n = 10/group). Mice were treated with DXR (4 mg/kg, once a week, accumulated 20 mg/kg, i.p.) or RGin (0.5 g/kg, three times a week, i.p.). To evaluate efficacy, the survival rate and left ventricular ejection fraction (LVEF) were measured as a measure of cardiac function, and cardiomyocytes were subjected to Masson trichrome staining. To investigate the mechanism of action, western blotting was performed to evaluate the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1, transferrin receptor (TfR), and other related proteins. Data were analyzed using the Easy R software. Between-group comparisons were performed using one-way analysis of variance and analyzed using a post-hoc Tukey test. Survival rates were estimated using the Kaplan-Meier method and compared using the log-rank test. P < 0.05 was considered statistically significant in all analyses. RESULTS RGin treatment prolongs survival and protects against reduced LVEF. In the DXR group, Nrf2 was not activated and cell death was accelerated. Furthermore, there was an increase in the TfR levels, suggesting abnormal iron metabolism. However, the DXR + RGin group showed activation of the Nrf2 pathway and suppression of myocardial cell death. Furthermore, there was no increase in TfR expression, suggesting that there were no abnormalities in iron metabolism. Therefore, the mechanism of action of RGin in DICM involves an increase in antioxidant activity and inhibition of cell death through activation of the Nrf2 pathway. CONCLUSION RGin is a useful therapeutic candidate for DICM. Its efficacy is supported by the activation of the Nrf2 pathway, which enhances antioxidant activity and inhibits cell death.
Collapse
Affiliation(s)
- Naoki Yoshikawa
- Department of Pharmaceutical Health Care and Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Naoto Hirata
- Department of Pharmaceutical Health Care and Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yuichiro Kurone
- Department of Pharmaceutical Health Care and Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Sadahiko Shimoeda
- Department of Pharmaceutical Health Care and Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
19
|
Ni B, Xue K, Wang J, Zhou J, Wang L, Wang X, Liu T, Ye N, Jiang J. Integrating Chinese medicine into mainstream cancer therapies: a promising future. Front Oncol 2024; 14:1412370. [PMID: 38957318 PMCID: PMC11217489 DOI: 10.3389/fonc.2024.1412370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Malignant tumors are complex systemic chronic diseases and one of the major causes of human mortality. Targeted therapy, chemotherapy, immunotherapy, and radiotherapy are examples of mainstream allopathic medicine treatments that effective for intermediate and advanced malignant tumors. The ongoing use of conventional allopathic medicine has resulted in adverse responses and drug resistance, which have hampered its efficacy. As an important component of complementary and alternative medicine, Chinese medicine has been found to have antitumor effects and has played an important role in enhancing the therapeutic sensitivity of mainstream allopathic medicine, reducing the incidence of adverse events and improving immune-related functions. The combined application of adjuvant Chinese medicine and mainstream allopathic medicine has begun to gain acceptance and is gradually used in the field of antitumor therapy. Traditional natural medicines and their active ingredients, as well as Chinese patent medicines, have been proven to have excellent therapeutic efficacy and good safety in the treatment of various malignant tumors. This paper focuses on the mechanism of action and research progress of combining the above drugs with mainstream allopathic medicine to increase therapeutic sensitivity, alleviate drug resistance, reduce adverse reactions, and improve the body's immune function. To encourage the clinical development and use of Chinese herb adjuvant therapy as well as to provide ideas and information for creating safer and more effective anticancer medication combinations, the significant functions of Chinese herb therapies as adjuvant therapies for cancer treatment are described in detail.
Collapse
Affiliation(s)
- Baoyi Ni
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Kaiyuan Xue
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Jilai Zhou
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lankang Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinmiao Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Naijing Ye
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiakang Jiang
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
20
|
Schneider C, Dierks A, Rabaglio M, Campbell KL, Wilhelm M, Eser P. Timing of cardio-oncological rehabilitation and cardiorespiratory fitness in patients receiving cardiotoxic chemotherapy: a longitudinal observational study. Swiss Med Wkly 2024; 154:3588. [PMID: 38885132 DOI: 10.57187/s.3588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
AIMS Anthracycline-based chemotherapy has well-known cardiotoxic effects, butmay also cause skeletal muscle myopathy and negatively affect cardiorespiratory fitness and quality of life. The effectiveness of exercise training in improving cardiorespiratory fitness and quality of life during chemotherapy is highly variable. We set out to determine how the effect of exercise training on cardiorespiratory fitness (primary outcome) and quality of life (secondary outcome) in cancer patients is affected by the type of therapy they receive (cardiotoxic therapy with or without anthracyclines; non-cardiotoxic therapy) and the timing of the exercise training (during or after therapy). METHODS Consecutive patients with cancer who participated in an exercise-based cardio-oncology rehabilitation programme at a university hospital in Switzerland between January 2014 and February 2022 were eligible. Patients were grouped based on chemotherapy (anthracycline vs non-anthracycline) and timing of exercise training (during vs after chemotherapy). Peak oxygen uptake (VO2) was assessed with cardiopulmonary exercise testing (n = 200), and quality of life with the Functional Assessment of Cancer Therapies questionnaire (n = 77). Robust linear models were performed for change in peak VO2 including type and timing of cardiotoxic therapies, age, training impulse and baseline peak VO2; change in quality of life was analysed with cumulative linked models. RESULTS In all patients with valid VO2 (n = 164), median change in peak VO2 from before to after exercise training was 2.3 ml/kg/min (range: -10.1-15.9). The highest median change in peak VO2 was 4.1 ml/kg/min (interquartile range [IQR]: 0.7-7.7) in patients who completed exercise training during non-anthracycline cardiotoxic or non-cardiotoxic therapies, followed by 2.8 ml/kg/min (IQR: 1.2-5.3) and 2.3 ml/kg/min (IQR: 0.1-4.6) in patients who completed exercise training after anthracycline and after non-anthracycline cardiotoxic or non-cardiotoxic therapies, respectively. In patients who completed exercise training during anthracycline therapy, peak VO2 decreased by a median of -2.1 ml/kg/min (IQR: -4.7-2.0). In the robust linear model, there was a significant interaction between type and timing of cancer treatment for anthracycline therapy, with greater increases in peak VO2 when exercise training was performed after anthracycline therapy. For quality of life, higher baseline scores were negatively associated with changes in quality of life. CONCLUSION In our cohort, the increase in cardiorespiratory fitness was diminished when exercise training was performed concurrently with anthracyclines. For patients with cardiotoxic treatments other than anthracyclines, cardiorespiratory fitness and quality of life was not associated with timing of exercise training.
Collapse
Affiliation(s)
- Caroline Schneider
- Rehabilitation and Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Annika Dierks
- Rehabilitation and Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manuela Rabaglio
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Kristin L Campbell
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Matthias Wilhelm
- Rehabilitation and Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Prisca Eser
- Rehabilitation and Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Choksey A, Carter RD, Thackray BD, Ball V, Kennedy BWC, Ha LHT, Sharma E, Broxholme J, Castro-Guarda M, Murphy MP, Heather LC, Tyler DJ, Timm KN. AICAR confers prophylactic cardioprotection in doxorubicin-induced heart failure in rats. J Mol Cell Cardiol 2024; 191:12-22. [PMID: 38643934 DOI: 10.1016/j.yjmcc.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Doxorubicin (DOX) is a widely used chemotherapeutic agent that can cause serious cardiotoxic side effects, leading to heart failure (HF). Impaired mitochondrial function is thought to be key factor driving progression into HF. We have previously shown in a rat model of DOX-HF that heart failure with reduced ejection fraction correlates with mitochondrial loss and dysfunction. Adenosine monophosphate-dependent kinase (AMPK) is a cellular energy sensor, regulating mitochondrial biogenesis and energy metabolism, including fatty acid oxidation. We hypothesised that AMPK activation could restore mitochondrial function and therefore be a novel cardioprotective strategy for the prevention of DOX-HF. Consequently, we set out to assess whether 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an activator of AMPK, could prevent cardiac functional decline in this chronic intravenous rat model of DOX-HF. In line with our hypothesis, AICAR improved cardiac systolic function. AICAR furthermore improved cardiac mitochondrial fatty acid oxidation, independent of mitochondrial number, and in the absence of observable AMPK-activation. In addition, we found that AICAR prevented loss of myocardial mass. RNAseq analysis showed that this may be driven by normalisation of pathways associated with ribosome function and protein synthesis, which are impaired in DOX-treated rat hearts. AICAR furthermore prevented dyslipidemia and excessive body-weight loss in DOX-treated rats, which may contribute to preservation of myocardial mass. Though it is unclear whether AICAR exerted its cardioprotective effect through cardiac or extra-cardiac AMPK-activation or via an AMPK-independent effect, these results show promise for the use of AICAR as a cardioprotective agent in DOX-HF to both preserve cardiac function and mass.
Collapse
Affiliation(s)
- Anurag Choksey
- Department of Physiology Anatomy and Genetics, University of Oxford, UK
| | - Ryan D Carter
- Department of Physiology Anatomy and Genetics, University of Oxford, UK; Doctoral Training Centre, University of Oxford, Keble Road, Oxford, OX1 3NP, UK
| | | | - Vicky Ball
- Department of Physiology Anatomy and Genetics, University of Oxford, UK
| | - Brett W C Kennedy
- Department of Physiology Anatomy and Genetics, University of Oxford, UK; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK
| | | | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7BN, UK
| | - John Broxholme
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7BN, UK
| | | | | | - Lisa C Heather
- Department of Physiology Anatomy and Genetics, University of Oxford, UK
| | - Damian J Tyler
- Department of Physiology Anatomy and Genetics, University of Oxford, UK; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK
| | - Kerstin N Timm
- Department of Physiology Anatomy and Genetics, University of Oxford, UK; Department of Pharmacology, University of Oxford, UK.
| |
Collapse
|
22
|
Kariuki N, Kimani E, Jowi C, Wamalwa D, Suen JY, Fraser JF, Obonyo NG. Early myocardial injury in children on doxorubicin for cancer chemotherapy: a cross-sectional study in a tertiary referral centre in Kenya. BMC Cardiovasc Disord 2024; 24:260. [PMID: 38769516 PMCID: PMC11103839 DOI: 10.1186/s12872-024-03922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION Use of doxorubicin, an anthracycline chemotherapeutic agent has been associated with late-occurring cardiac toxicities. Detection of early-occurring cardiac effects of cancer chemotherapy is essential to prevent occurrence of adverse events including toxicity, myocardial dysfunction, and death. OBJECTIVE To investigate the prevalence of elevated cardiac troponin T (cTnT) and associated factors of myocardial injury in children on doxorubicin cancer chemotherapy. METHODS Design: A cross-sectional study. SETTING AND SUBJECTS A hospital-based study conducted on children aged 1-month to 12.4-years who had a diagnosis of cancer and were admitted at Kenyatta National Hospital (KNH). INTERVENTIONS AND OUTCOMES The patients underwent Echocardiography (ECHO) before their scheduled chemotherapy infusion. Twenty-four (24) hours after the chemotherapy infusion the patients had an evaluation of the serum cardiac troponin T (cTnT) and a repeat ECHO. Myocardial injury was defined as cTnT level > 0.014 ng/ml or a Fractional Shortening (FS) of < 29% on ECHO. RESULTS One hundred (100) children were included in the final analysis. Thirty-two percent (32%) of the study population had an elevated cTnT. A cumulative doxorubicin dose of > 175 mg/m2 was significantly associated with and elevated cTnT (OR, 10.76; 95% CI, 1.18-97.92; p = 0.035). Diagnosis of nephroblastoma was also associated with an elevated cTnT (OR, 3.0; 95% CI, 1.23-7.26) but not statistically significant (p = 0.105). Nine percent (9%) of the participants had echocardiographic evidence of myocardial injury. CONCLUSION When compared to echocardiography, elevated levels of cTnT showed a higher association with early-occurring chemotherapy-induced myocardial injury among children on cancer treatment at a tertiary teaching and referral hospital in Kenya.
Collapse
Affiliation(s)
- Nyambura Kariuki
- Department of Paediatrics and Child Health, School of Medicine, College of Health Sciences, University of Nairobi, KNH, P. O. Box, Nairobi, 19676-00202, Kenya.
| | - Esther Kimani
- Department of Paediatrics and Child Health, School of Medicine, College of Health Sciences, University of Nairobi, KNH, P. O. Box, Nairobi, 19676-00202, Kenya
| | - Christine Jowi
- Department of Paediatrics and Child Health, School of Medicine, College of Health Sciences, University of Nairobi, KNH, P. O. Box, Nairobi, 19676-00202, Kenya
| | - Dalton Wamalwa
- Department of Paediatrics and Child Health, School of Medicine, College of Health Sciences, University of Nairobi, KNH, P. O. Box, Nairobi, 19676-00202, Kenya
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Chermside, 4032, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, 4067, Queensland, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Chermside, 4032, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, 4067, Queensland, Australia
| | - Nchafatso G Obonyo
- Initiative to Develop African Research Leaders (IDeAL)/KEMRI-Wellcome Trust Research Programme, P. O. Box 230-80108, Kilifi, Kenya.
- Kenya Medical Association, Nairobi, Kenya.
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Chermside, 4032, Queensland, Australia.
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, 4067, Queensland, Australia.
| |
Collapse
|
23
|
Drinković N, Beus M, Barbir R, Debeljak Ž, Tariba Lovaković B, Kalčec N, Ćurlin M, Bekavac A, Gorup D, Mamić I, Mandić D, Micek V, Turčić P, Günday-Türeli N, Türeli E, Vinković Vrček I. Novel PLGA-based nanoformulation decreases doxorubicin-induced cardiotoxicity. NANOSCALE 2024; 16:9412-9425. [PMID: 38650478 DOI: 10.1039/d3nr06269d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Nanotechnology has the potential to provide formulations of antitumor agents with increased selectivity towards cancer tissue thereby decreasing systemic toxicity. This in vivo study evaluated the potential of novel nanoformulation based on poly(lactic-co-glycolic acid) (PLGA) to reduce the cardiotoxic potential of doxorubicin (DOX). In vivo toxicity of PLGADOX was compared with clinically approved non-PEGylated, liposomal nanoformulation of DOX (LipoDOX) and conventional DOX form (ConvDOX). The study was performed using Wistar Han rats of both sexes that were treated intravenously for 28 days with 5 doses of tested substances at intervals of 5 days. Histopathological analyses of heart tissues showed the presence of myofiber necrosis, degeneration processes, myocytolysis, and hemorrhage after treatment with ConvDOX, whereas only myofiber degeneration and hemorrhage were present after the treatment with nanoformulations. All DOX formulations caused an increase in the troponin T with the greatest increase caused by convDOX. qPCR analyses revealed an increase in the expression of inflammatory markers IL-6 and IL-8 after ConvDOX and an increase in IL-8 expression after lipoDOX treatments. The mass spectra imaging (MSI) of heart tissue indicates numerous metabolic and lipidomic changes caused by ConvDOX, while less severe cardiac damages were found after treatment with nanoformulations. In the case of LipoDOX, autophagy and apoptosis were still detectable, whereas PLGADOX induced only detectable mitochondrial toxicity. Cardiotoxic effects were frequently sex-related with the greater risk of cardiotoxicity observed mostly in male rats.
Collapse
Affiliation(s)
| | - Maja Beus
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Željko Debeljak
- JJ Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia
- University Hospital Osijek, Osijek, Croatia
| | | | - Nikolina Kalčec
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | | | - Ana Bekavac
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Dunja Gorup
- Department of Neuroradiology, Klinik für Neuroradiology, Universitätspital Zürich Universitätsspital Zürich, 8006 Zürich, Switzerland
| | - Ivan Mamić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | | | - Vedran Micek
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Petra Turčić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | | | | | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
- University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
24
|
Song YH, Cho HM, Ryu YC, Hwang BH, Seo JH. Electrosprayable Levan-Coated Nanoclusters and Ultrasound-Responsive Drug Delivery for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21509-21521. [PMID: 38642038 DOI: 10.1021/acsami.3c18774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
In this study, we synthesized levan shell hydrophobic silica nanoclusters encapsulating doxorubicin (L-HSi-Dox) and evaluated their potential as ultrasound-responsive drug delivery systems for cancer treatment. L-HSi-Dox nanoclusters were successfully fabricated by integrating a hydrophobic silica nanoparticle-doxorubicin complex as the core and an amphiphilic levan carbohydrate polymer as the shell by using an electrospray technique. Characterization analyses confirmed the stability, size, and composition of the nanoclusters. In particular, the nanoclusters exhibited a controlled release of Dox under aqueous conditions, demonstrating their potential as efficient drug carriers. The levanic groups of the nanoclusters enhanced the targeted delivery of Dox to specific cancer cells. Furthermore, the synergism between the nanoclusters and ultrasound effectively reduced cell viability and induced cell death, particularly in the GLUT5-overexpressing MDA-MB-231 cells. In a tumor xenograft mouse model, treatment with the nanoclusters and ultrasound significantly reduced the tumor volume and weight without affecting the body weight. Collectively, these results highlight the potential of the L-HSi-Dox nanoclusters and ultrasound as promising drug delivery systems with an enhanced therapeutic efficacy for biomedical applications.
Collapse
Affiliation(s)
- Young Hoon Song
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Hye Min Cho
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Yeong Chae Ryu
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Byeong Hee Hwang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, South Korea
- Division of Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
25
|
Wang PX, Mu XN, Huang SH, Hu K, Sun ZG. Cellular and molecular mechanisms of oroxylin A in cancer therapy: Recent advances. Eur J Pharmacol 2024; 969:176452. [PMID: 38417609 DOI: 10.1016/j.ejphar.2024.176452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Seeking an effective and safe scheme is the common goal of clinical treatment of tumor patients. In recent years, traditional Chinese medicine has attracted more and more attention in order to discover new drugs with good anti-tumor effects. Oroxylin A (OA) is a compound found in natural Oroxylum indicum and Scutellaria baicalensis Georgi plants and has been used in the treatment of various cancers. Studies have shown that OA has a wide range of powerful biological activities and plays an important role in neuroprotection, anti-inflammation, anti-virus, anti-allergy, anti-tumor and so on. OA shows high efficacy in tumor treatment. Therefore, it has attracted great attention of researchers all over the world. This review aims to discuss the anti-tumor effects of OA from the aspects of cell cycle arrest, induction of cell proliferation and apoptosis, induction of autophagy, anti-inflammation, inhibition of glycolysis, angiogenesis, invasion, metastasis and reversal of drug resistance. In addition, the safety and toxicity of the compound were also discussed. As a next step, to clarify the benefits and adverse effects of Oroxylin A in cancer patients further experiments, especially clinical trials, are needed.
Collapse
Affiliation(s)
- Peng-Xin Wang
- Departments of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China; Medical College, Jining Medical University, Jining 272067, Shandong, China
| | - Xiao-Nan Mu
- Health Care (& Geriatrics) Ward 1, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Shu-Hong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Kang Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Zhi-Gang Sun
- Departments of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China.
| |
Collapse
|
26
|
Aktaş İ, Gur FM, Bilgiç S. Protective effect of misoprostol against paclitaxel-induced cardiac damage in rats. Prostaglandins Other Lipid Mediat 2024; 171:106813. [PMID: 38253234 DOI: 10.1016/j.prostaglandins.2024.106813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
OBJECTIVE One of the most critical reasons for limiting cancer treatment is the toxic effects of anti-cancer drugs on healthy tissues and organs. This study aims to investigate the possible protective effects of misoprostol (MS) against the damage that arises from paclitaxel (PT), an anti-cancer pharmacological agent, in the rat heart using histopathological and biochemical analyses. METHODS In this study, four groups, each containing seven animals, were formed by random selection from 28 Sprague Dawley female rats. Control group rats were administered 1 ml of normal saline orally and intraperitoneally (i.p.) for six days. While the PT group rats were administered PT at a dose of 2 mg/kg intraperitoneally (i.p.) on days 0, 2, 4, and 6, the MS group was administered MS at a dose of 0.2 mg/kg in 1 ml normal saline by oral gavage for six days. PT and MS were administered to the PT + MS group rats in the same dose and route as the previous groups. RESULTS Administration of PT increased serum lactate dehydrogenase (LDH), cardiac troponin I (cTn-I), creatine kinase isoenzyme MB (CK-MB), and brain natriuretic peptide (BNP) levels. PT administration also decreased the levels of glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) in the heart tissue while increasing the level of malondialdehyde (MDA) (p < 0.05). In histopathological examinations, pathological changes, such as edema, congestion, hemorrhage, apoptosis, and degeneration, occurred in the heart tissue of PT-treated rats. The negative changes in histopathological and biochemical parameters that occurred in the PT group were almost not observed in the PT + MS group (p < 0.005). CONCLUSION When the findings were evaluated, it was concluded that MS protects the heart tissue from the harmful effects of PT, probably due to its antioxidant, anti-apoptotic and TNF-alpha suppressive effects.
Collapse
Affiliation(s)
- İbrahim Aktaş
- Adıyaman University, Department of Pharmacology, Vocational School of Health Services, Adıyaman, Turkey
| | - Fatih Mehmet Gur
- Niğde Ömer Halisdemir University, Department of Histology and Embryology, Faculty of Medicine, Nigde, Turkey
| | - Sedat Bilgiç
- Adıyaman University, Department of Medical Biochemistry, Vocational School of Health Services, Adıyaman, Turkey.
| |
Collapse
|
27
|
Chen J, Xu X, Shao Y, Bian X, Li R, Zhang Y, Xiao Y, Lu M, Jiang Q, Zeng Y, Yan F, Ye J, Li Z. AKT2 deficiency alleviates doxorubicin-induced cardiac injury via alleviating oxidative stress in cardiomyocytes. Int J Biochem Cell Biol 2024; 169:106539. [PMID: 38290690 DOI: 10.1016/j.biocel.2024.106539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Doxorubicin (DOX), a widely used chemotherapy agent in cancer treatment, encounters limitations in clinical efficacy due to associated cardiotoxicity. This study aims to explore the role of AKT serine/threonine kinase 2 (AKT2) in mitigating DOX-induced oxidative stress within the heart through both intracellular and extracellular signaling pathways. Utilizing Akt2 knockout (KO) and Nrf2 KO murine models, alongside neonatal rat cardiomyocytes (NRCMs), we systematically investigate the impact of AKT2 deficiency on DOX-induced cardiac injury. Our findings reveal that DOX administration induces significant oxidative stress, a primary contributor to cardiac injury. Importantly, Akt2 deficiency exhibits a protective effect by alleviating DOX-induced oxidative stress. Mechanistically, Akt2 deficiency facilitates nuclear translocation of NRF2, thereby suppressing intracellular oxidative stress by promoting the expression of antioxidant genes. Furthermore, We also observed that AKT2 inhibition facilitates superoxide dismutase 2 (SOD2) expression both inside macrophages and SOD2 secretion to the extracellular matrix, which is involved in lowering oxidative stress in cardiomyocytes upon DOX stimulation. The present study underscores the important role of AKT2 in mitigating DOX-induced oxidative stress through both intracellular and extracellular signaling pathways. Additionally, our findings propose promising therapeutic strategies for addressing DOX-induced cardiomyopathy in clinic.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaozhi Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yuru Shao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaohong Bian
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Ruiyan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yubin Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meiling Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Qizhou Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan Zeng
- Clinical Pharmacology and Bioanalytics, Pfizer (China) Research and Development Co., Ltd, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Junmei Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhe Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular research Institute, Wuhan University, Wuhan 430060, China.
| |
Collapse
|
28
|
Alanazi R, Aljizeeri A, Alsaileek A, Alrashid A, Alolayan A, Alkaiyat M, Alenazy B, Shehata H, Alqahtani J, Ardah H, Alshammari K. Cardiac Morbidity and Mortality in Patients with Sarcoma: A Population-Based Study. Clin Med Insights Oncol 2024; 18:11795549241237703. [PMID: 38558879 PMCID: PMC10979535 DOI: 10.1177/11795549241237703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Background Soft tissue sarcoma (STS) is a rare malignancy that affects soft tissues. It encompasses various subtypes and requires different treatment strategies. Doxorubicin is a commonly used anthracycline in the management of localized and metastatic STS. However, high doses of doxorubicin are associated with cardiotoxicity, which can significantly impact patients' long-term outcomes. This study aimed to evaluate doxorubicin's effect on cardiac function in patients with sarcoma and to correlate the frequency of cardiotoxicity with potential risk factors. Methods A retrospective analysis was conducted on patients with sarcoma who were treated with doxorubicin between 2016 and 2022 at King Abdulaziz Medical City in Saudi Arabia. Patient demographic information, comorbidities, cardiac measurements, laboratory values, systemic therapy, and treatment outcomes were collected from electronic medical records. A statistical analysis was performed to assess the association between cardiotoxicity and various factors. Results A total of 133 patients were included in the study, with a median age of 30 years. Cardiotoxicity was observed in 9% of the patients. Female patients had a significantly higher risk of developing cardiotoxicity. Patients with a higher Eastern Cooperative Oncology Group (ECOG) performance status and lower troponin I levels also had an increased risk of cardiotoxicity. However, there was no significant association between cardiotoxicity and the number of chemotherapy cycles, total cumulative dose of doxorubicin, or history of radiation. Furthermore, patients with cardiotoxicity had a higher risk of mortality. The overall survival of the patients was 18 months. Conclusion Doxorubicin-associated cardiotoxicity is a concern for patients with sarcoma. Female patients and patients with a higher ECOG performance status are at an increased risk of developing cardiotoxicity. Careful monitoring and risk assessment are crucial for mitigating the adverse effects of doxorubicin treatment in patients with sarcoma. Future studies are warranted to validate these findings and explore preventive strategies for doxorubicin-induced cardiotoxicity in patients with sarcoma.
Collapse
Affiliation(s)
- Rakan Alanazi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Ahmed Aljizeeri
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
- King Abdulaziz Cardiac Center, Ministry of the National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Ahmed Alsaileek
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
- King Abdulaziz Cardiac Center, Ministry of the National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Azzam Alrashid
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Ashwaq Alolayan
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
- Department of Medical Oncology, King Abdulaziz Medical City, Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Alkaiyat
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
- Department of Medical Oncology, King Abdulaziz Medical City, Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Basel Alenazy
- King Abdullah International Medical Research Center, Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
- King Abdulaziz Cardiac Center, Ministry of the National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Hussam Shehata
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
- Department of Medical Oncology, King Abdulaziz Medical City, Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Joud Alqahtani
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
- Department of Medical Oncology, King Abdulaziz Medical City, Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Husam Ardah
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Kanan Alshammari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
- Department of Medical Oncology, King Abdulaziz Medical City, Ministry of the National Guard-Health Affairs, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
29
|
Nagy A, Börzsei D, Hoffmann A, Török S, Veszelka M, Almási N, Varga C, Szabó R. A Comprehensive Overview on Chemotherapy-Induced Cardiotoxicity: Insights into the Underlying Inflammatory and Oxidative Mechanisms. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07574-0. [PMID: 38492161 DOI: 10.1007/s10557-024-07574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
While oncotherapy has made rapid progress in recent years, side effects of anti-cancer drugs and treatments have also come to the fore. These side effects include cardiotoxicity, which can cause irreversible cardiac damages with long-term morbidity and mortality. Despite the continuous in-depth research on anti-cancer drugs, an improved knowledge of the underlying mechanisms of cardiotoxicity are necessary for early detection and management of cardiac risk. Although most reviews focus on the cardiotoxic effect of a specific individual chemotherapeutic agent, the aim of our review is to provide comprehensive insight into various agents that induced cardiotoxicity and their underlying mechanisms. Characterization of these mechanisms are underpinned by research on animal models and clinical studies. In order to gain insight into these complex mechanisms, we emphasize the role of inflammatory processes and oxidative stress on chemotherapy-induced cardiac changes. A better understanding and identification of the interplay between chemotherapy and inflammatory/oxidative processes hold some promise to prevent or at least mitigate cardiotoxicity-associated morbidity and mortality among cancer survivors.
Collapse
Affiliation(s)
- András Nagy
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Denise Börzsei
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Alexandra Hoffmann
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Szilvia Török
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Médea Veszelka
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Nikoletta Almási
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Renáta Szabó
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary.
| |
Collapse
|
30
|
Moustafa I, Connolly C, Anis M, Mustafa H, Oosthuizen F, Viljoen M. A prospective study to evaluate the efficacy and safety of vitamin E and levocarnitine prophylaxis against doxorubicin-induced cardiotoxicity in adult breast cancer patients. J Oncol Pharm Pract 2024; 30:354-366. [PMID: 37157803 DOI: 10.1177/10781552231171114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Doxorubicin induces acute and chronic cardiotoxicity. This study is aimed to evaluate the efficacy and safety of vitamin E and levocarnitine (EL) as cardioprotective agents against acute doxorubicin cardiotoxicity in female adult breast cancer patients. METHODS A prospective, randomized controlled study was conducted in patients treated with doxorubicin and cyclophosphamide (AC). Patients were randomly assigned to EL plus AC or AC alone for the duration of 4 cycles. Cardiac enzymes (B-type natriuretic peptide, creatine kinase, troponin I (Trop)) and cardiac events were monitored during treatment to evaluate the cardioprotective efficacy of EL. RESULTS Seventy-four patients were recruited and received four cycles of chemotherapy. The intervention group (n = 35) showed a significant reduction in both the B-type natriuretic peptide and creatine kinase cardiac enzymes compared to the control group (n = 39). The median (IQR) change for BNP was 0.80 (0.00-4.00) for IG versus 1.80 (0.40-3.60) for CG groups (p < 0.001); creatine kinase was -0.08 (-0.25-0.05) for IG versus 0.20 (0.05-0.50) for CG (p < 0.001). The addition of EL decreased the cardiac events by 24.2% (p = 0.02). All adverse events were tolerable and manageable. CONCLUSION This study supports the addition of EL as prophylaxis against acute doxorubicin cardiotoxicity and it was also very well tolerated by a majority of the patients. The co-administration of EL at higher doxorubicin (240 mg/m2) dose should be further investigated.
Collapse
Affiliation(s)
- Iman Moustafa
- Department of Pharmacology, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmacy, King Abdulaziz Hospital, Ministry of the National Guard - Health Affairs, Al-Ahsa, Saudi Arabia
- King Abdullah International Medical Research Center, Al-Ahsa, Saudi Arabia
| | - Catherine Connolly
- Department of Pharmacology, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Malik Anis
- Department of Pharmacy, King Abdulaziz Hospital, Ministry of the National Guard - Health Affairs, Al-Ahsa, Saudi Arabia
| | - Hani Mustafa
- Department of Pharmacy, King Abdulaziz Hospital, Ministry of the National Guard - Health Affairs, Al-Ahsa, Saudi Arabia
| | - Frasia Oosthuizen
- Department of Pharmacology, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Michelle Viljoen
- Department of Pharmacology, School of Pharmacy, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
31
|
Musigk N, Suwalski P, Golpour A, Fairweather D, Klingel K, Martin P, Frustaci A, Cooper LT, Lüscher TF, Landmesser U, Heidecker B. The inflammatory spectrum of cardiomyopathies. Front Cardiovasc Med 2024; 11:1251780. [PMID: 38464847 PMCID: PMC10921946 DOI: 10.3389/fcvm.2024.1251780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Infiltration of the myocardium with various cell types, cytokines and chemokines plays a crucial role in the pathogenesis of cardiomyopathies including inflammatory cardiomyopathies and myocarditis. A more comprehensive understanding of the precise immune mechanisms involved in acute and chronic myocarditis is essential to develop novel therapeutic approaches. This review offers a comprehensive overview of the current knowledge of the immune landscape in cardiomyopathies based on etiology. It identifies gaps in our knowledge about cardiac inflammation and emphasizes the need for new translational approaches to improve our understanding thus enabling development of novel early detection methods and more effective treatments.
Collapse
Affiliation(s)
- Nicolas Musigk
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Phillip Suwalski
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Ainoosh Golpour
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Karin Klingel
- Cardiopathology Institute for Pathology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Thomas F. Lüscher
- GZO-Zurich Regional Health Centre, Wetzikon & Cardioimmunology, Centre for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Royal Brompton & Harefield Hospitals and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Bettina Heidecker
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
32
|
Guimarães LC, Fidale TM, Pereira TCR, Lopes PR, Ferreira-Junior MD, Deconte SR, Ferreira-Neto ML, Brito WS, Gomes RM, de Souza FR, Cavalcante KVN, Herrera GC, de Moura FBR, Resende ES. Cardioprotective Effects of Leucine Supplementation against Doxorubicin-Induced Cardiotoxicit. Cardiovasc Toxicol 2024; 24:122-132. [PMID: 38165500 DOI: 10.1007/s12012-023-09817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/18/2023] [Indexed: 01/03/2024]
Abstract
Doxorubicin is one of the most important antitumor drugs used in oncology; however, its cardiotoxic effect limits the therapeutic use and raises concerns regarding patient prognosis. Leucine is a branched-chain amino acid used in dietary supplementation and has been studied to attenuate the toxic effects of doxorubicin in animals, which increases oxidative stress. Oxidative stress in different organs can be estimated using several methods, including catalase expression analysis. This study aimed to analyze the effect of leucine on catalase levels in rat hearts after doxorubicin administration. Adult male Wistar rats were separated into two groups: Standard diet (SD) and 5% Leucine-Enriched Diet (LED). The animals had free access to diet from D0 to D28. At D14, the groups were subdivided in animals injected with Doxorubicin and animals injected with vehicle, until D28, and the groups were SD, SD + Dox, LED and LED + Dox. At D28, the animals were submitted do Transthoracic Echocardiography and euthanized. Despite Dox groups had impaired body weight gain, raw heart weight was not different between the groups. No substantial alterations were observed in macroscopic evaluation of the heart. Although, Doxorubicin treatment increased total interstitial collagen in the heart, which in addition to Type I collagen, is lower in LED groups. Western blot analysis showed that catalase expression in the heart of LED groups was lower than that in SD groups. In conclusion, leucine supplementation reduced both the precocious Dox-induced cardiac remodeling and catalase levels in the heart.
Collapse
Affiliation(s)
- Lucas C Guimarães
- Laboratory of Experimental Medicine, Department of Health Sciences - PGCS, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, Brazil.
| | - Thiago M Fidale
- Biotechnology Institute. Department of Medicine, Federal University of Catalão, Catalão, Goiás, Brazil
| | - Talita C R Pereira
- Institute of Biomedical Sciences, Department of Physiology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Paulo R Lopes
- School of Dentistry-FOAr, Department of Physiology and Pathology, Universidade Estadual Paulista "Júlio de Mesquita Filho"-UNESP, Araraquara, SP, Brazil
| | - Marcos D Ferreira-Junior
- Laboratory of Endocrine Physiology and Metabolism, ICB, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Simone R Deconte
- UFU-ICBIM. Department of Physiology and Biophysics, Federal University of Uberlândia, Uberlândia, Brazil
| | - Marcos L Ferreira-Neto
- UFU-ICBIM. Department of Physiology and Biophysics, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Rodrigo M Gomes
- Laboratory of Endocrine Physiology and Metabolism, ICB, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Fernanda R de Souza
- Laboratory of Experimental Medicine, Department of Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Keilah V N Cavalcante
- Laboratory of Endocrine Physiology and Metabolism, ICB, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Gustavo C Herrera
- The Veterinary Hospital, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Elmiro S Resende
- Laboratory of Experimental Medicine, Department of Health Sciences - PGCS, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, Brazil
- Postgraduate Program in Health Sciences-PGCS, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
33
|
Reis-Mendes A, Ferreira M, Padrão AI, Duarte JA, Duarte-Araújo M, Remião F, Carvalho F, Sousa E, Bastos ML, Costa VM. The Role of Nrf2 and Inflammation on the Dissimilar Cardiotoxicity of Doxorubicin in Two-Time Points: a Cardio-Oncology In Vivo Study Through Time. Inflammation 2024; 47:264-284. [PMID: 37833616 PMCID: PMC10799157 DOI: 10.1007/s10753-023-01908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023]
Abstract
Doxorubicin (DOX) is a topoisomerase II inhibitor used in cancer therapy. Despite its efficacy, DOX causes serious adverse effects, such as short- and long-term cardiotoxicity. This work aimed to assess the short- and long-term cardiotoxicity of DOX and the role of inflammation and antioxidant defenses on that cardiotoxicity in a mice model. Adult CD-1 male mice received a cumulative dose of 9.0 mg/kg of DOX (2 biweekly intraperitoneal injections (ip), for 3 weeks). One week (1W) or 5 months (5M) after the last DOX administration, the heart was collected. One week after DOX, a significant increase in p62, tumor necrosis factor receptor (TNFR) 2, glutathione peroxidase 1, catalase, inducible nitric oxide synthase (iNOS) cardiac expression, and a trend towards an increase in interleukin (IL)-6, TNFR1, and B-cell lymphoma 2 associated X (Bax) expression was observed. Moreover, DOX induced a decrease on nuclear factor erythroid-2 related factor 2 (Nrf2) cardiac expression. In both 1W and 5M, DOX led to a high density of infiltrating M1 macrophages, but only the 1W-DOX group had a significantly higher number of nuclear factor κB (NF-κB) p65 immunopositive cells. As late effects (5M), an increase in Nrf2, myeloperoxidase, IL-33, tumor necrosis factor-α (TNF-α), superoxide dismutase 2 (SOD2) expression, and a trend towards increased catalase expression were observed. Moreover, B-cell lymphoma 2 (Bcl-2), cyclooxygenase-2 (COX-2), and carbonylated proteins expression decreased, and a trend towards decreased p38 mitogen-activated protein kinase (MAPK) expression were seen. Our study demonstrated that DOX induces adverse outcome pathways related to inflammation and oxidative stress, although activating different time-dependent response mechanisms.
Collapse
Affiliation(s)
- Ana Reis-Mendes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Mariana Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana Isabel Padrão
- Research Center in Physical Activity, Faculty of Sport, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - José Alberto Duarte
- Research Center in Physical Activity, Faculty of Sport, University of Porto, Porto, Portugal
- 1H-TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Margarida Duarte-Araújo
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
- Department of Immuno-Physiology and Pharmacology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemistry Department, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal
| | - Maria Lourdes Bastos
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
34
|
Aktay I, Bitirim CV, Olgar Y, Durak A, Tuncay E, Billur D, Akcali KC, Turan B. Cardioprotective role of a magnolol and honokiol complex in the prevention of doxorubicin-mediated cardiotoxicity in adult rats. Mol Cell Biochem 2024; 479:337-350. [PMID: 37074505 DOI: 10.1007/s11010-023-04728-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/02/2023] [Indexed: 04/20/2023]
Abstract
Doxorubicin (DOXO) induces marked cardiotoxicity, though increased oxidative stress while there are some documents related with cardioprotective effects of some antioxidants against organ-toxicity during cancer treatment. Although magnolia bark has some antioxidant-like effects, its action in DOXO-induced heart dysfunction has not be shown clearly. Therefore, here, we aimed to investigate the cardioprotective action of a magnolia bark extract with active component magnolol and honokiol complex (MAHOC; 100 mg/kg) in DOXO-treated rat hearts. One group of adult male Wistar rats was injected with DOXO (DOXO-group; a cumulative dose of 15 mg/kg in 2-week) or saline (CON-group). One group of DOXO-treated rats was administered with MAHOC before DOXO (Pre-MAHOC group; 2-week) while another group was administered with MAHOC following the 2-week DOXO (Post-MAHOC group). MAHOC administration, before or after DOXO, provided full survival of animals during 12-14 weeks, and significant recoveries in the systemic parameters of animals such as plasma levels of manganese and zinc, total oxidant and antioxidant statuses, and also systolic and diastolic blood pressures. This treatment also significantly improved heart function including recoveries in end-diastolic volume, left ventricular end-systolic volume, heart rate, cardiac output, and prolonged P-wave duration. Furthermore, the MAHOC administrations improved the structure of left ventricles such as recoveries in loss of myofibrils, degenerative nuclear changes, fragmentation of cardiomyocytes, and interstitial edema. Biochemical analysis in the heart tissues provided the important cardioprotective effect of MAHOC on the redox regulation of the heart, such as improvements in activities of glutathione peroxidase and glutathione reductase, and oxygen radical-absorbing capacity of the heart together with recoveries in other systemic parameters of animals, while all of these benefits were observed in the Pre-MAHOC treatment group, more prominently. Overall, one can point out the beneficial antioxidant effects of MAHOC in chronic heart diseases as a supporting and complementing agent to the conventional therapies.
Collapse
Affiliation(s)
- Irem Aktay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ceylan Verda Bitirim
- Stem Cell Institute, Ankara University, Ankara, Turkey
- Ankara University Stem cell Institute, Ankara, Turkey
| | - Yusuf Olgar
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Aysegul Durak
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Deniz Billur
- Department of Histology and Embryology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Kamil Can Akcali
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
- Department of Biophysics, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
35
|
Zhou Y, Dong J, Wang M, Liu Y. New insights of platelet endocytosis and its implication for platelet function. Front Cardiovasc Med 2024; 10:1308170. [PMID: 38264257 PMCID: PMC10803655 DOI: 10.3389/fcvm.2023.1308170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Endocytosis constitutes a cellular process in which cells selectively encapsulate surface substances into endocytic vesicles, also known as endosomes, thereby modulating their interaction with the environment. Platelets, as pivotal hematologic elements, play a crucial role not only in regulating coagulation and thrombus formation but also in facilitating tumor invasion and metastasis. Functioning as critical components in the circulatory system, platelets can internalize various endosomal compartments, such as surface receptors, extracellular proteins, small molecules, and pathogens, from the extracellular environment through diverse endocytic pathways, including pinocytosis, phagocytosis, and receptor-mediated endocytosis. We summarize recent advancements in platelet endocytosis, encompassing the catalog of cargoes, regulatory mechanisms, and internal trafficking routes. Furthermore, we describe the influence of endocytosis on platelet regulatory functions and related physiological and pathological processes, aiming to offer foundational insights for future research into platelet endocytosis.
Collapse
Affiliation(s)
- Yangfan Zhou
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianzeng Dong
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- National Clinical Research Centre for Cardiovascular Diseases, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mengyu Wang
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yangyang Liu
- Department of Cardiology, Cardiovascular Center, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
36
|
Shuey A, Patricelli C, Oxford JT, Pu X. Effects of doxorubicin on autophagy in fibroblasts. Hum Exp Toxicol 2024; 43:9603271241231947. [PMID: 38324556 PMCID: PMC11648171 DOI: 10.1177/09603271241231947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Objectives: Doxorubicin (DOX) is a highly effective chemotherapeutic used to treat many adult and pediatric cancers, such as solid tumors, leukemia, lymphomas and breast cancer. It can also cause injuries to multiple organs, including the heart, liver, and brain or kidney, although cardiotoxicity is the most prominent side effect of DOX. In this study, we examined the potential effects of DOX on autophagy activity in two different mouse fibroblasts.Methods: Mouse embryonic fibroblasts (NIH3T3) and mouse primary cardiac fibroblasts (CFs) were treated with DOX to assess changes in the expression of two commonly used autophagy protein markers, LC3II and p62. We also examined the effects of DOX the on expression of key genes that encode components of the molecular machinery and regulators modulating autophagy in response to both extracellular and intracellular signals.Results: We observed that LC3II levels increased and p62 levels decreased following the DOX treatment in NIH3T3 cells. However, similar effects were not observed in primary cardiac fibroblasts. In addition, DOX treatment induced the upregulation of a significant number of genes involved in autophagy in NIH3T3 cells, but not in primary cardiac fibroblasts.Conclusions: Taken together, these results indicate that DOX upregulates autophagy in fibroblasts in a cell-specific manner.
Collapse
Affiliation(s)
- Anna Shuey
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Conner Patricelli
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Julia T Oxford
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
- Biomolecular Research Center, Boise State University, Boise, ID, USA
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID, USA
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| |
Collapse
|
37
|
Schneider C, Ryffel C, Stütz L, Rabaglio M, Suter TM, Campbell KL, Eser P, Wilhelm M. Supervised exercise training in patients with cancer during anthracycline-based chemotherapy to mitigate cardiotoxicity: a randomized-controlled-trial. Front Cardiovasc Med 2023; 10:1283153. [PMID: 38111886 PMCID: PMC10725952 DOI: 10.3389/fcvm.2023.1283153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
Background Exercise training (ET) has been shown to mitigate cardiotoxicity of anthracycline-based chemotherapies (AC) in animal models. Data from randomized controlled trials in patients with cancer are sparse. Methods Patients with breast cancer or lymphoma receiving AC were recruited from four cancer centres and randomly assigned to 3 months supervised ET. Primary outcome was change in left ventricular global longitudinal strain (GLS) from baseline (before AC) to post AC (AC-end) compared between the EXduringAC group, who participated in an exercise intervention during AC including the provision of an activity tracker, and the control group EXpostAC, who received an activity tracker only. Secondary outcome parameters were changes in high sensitivity Troponin T (hsTnT), NT-pro-brain natriuretic peptide (NT-proBNP), peak oxygen consumption (peak VO2) and objectively measured physical activity (PA) during this same time-period. All assessments were repeated at a 12-week follow-up from AC-end, when also the EXpostAC group had completed the ET, that started after AC. In exploratory analyses, robust linear models were performed to assess the association of PA with changes in echocardiographic parameters and biomarkers of LV function. Results Fifty-seven patients (median age 47 years; 95% women) were randomized to EXduringAC (n = 28) and EXpostAC (n = 29) group. At AC-end, GLS deteriorated in both study groups (albeit insignificantly) with 7.4% and 1.0% in EXduringAC (n = 18) and EXpostAC (n = 18), respectively, and hsTnT and NT-proBNP significantly increased in both groups, without difference between groups for any parameter. Change in peak VO2 (-1.0 and -1.1 ml/kg/min) at AC-end was also similar between groups as was duration of moderate-to-vigorous PA (MVPA) with a median of 33 [26, 47] min/day and 32 [21, 59] min/day in the EXduringAC and EXpostAC group, respectively. In the robust linear model including the pooled patient population, MVPA was significantly associated with a more negative GLS and lesser increase in hsTnT at AC-end. Conclusion In this small scale RCT, supervised ET during AC was not superior to wearing a PA tracker to mitigate cardiotoxicity. The dose-response relationship between PA and cardioprotective effects during AC found in our and previous data supports the notion that PA should be recommended to patients undergoing AC. Clinical Trial Registration ClinicalTrials.gov, identifier NCT03850171.
Collapse
Affiliation(s)
- Caroline Schneider
- Centre for Rehabilitation & Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Christoph Ryffel
- Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Laura Stütz
- Centre for Rehabilitation & Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manuela Rabaglio
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Thomas M. Suter
- Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Kristin L. Campbell
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Prisca Eser
- Centre for Rehabilitation & Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Matthias Wilhelm
- Centre for Rehabilitation & Sports Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
38
|
Villalobo A. Ca 2+ Signaling and Src Functions in Tumor Cells. Biomolecules 2023; 13:1739. [PMID: 38136610 PMCID: PMC10741856 DOI: 10.3390/biom13121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Signaling by calcium ion (Ca2+) plays a prominent role in cell physiology, and these mechanisms are frequently altered in tumor cells. In this review, we consider the interplay of Ca2+ signaling and the functions of the proto-oncogene non-receptor tyrosine kinase c-Src in tumor cells, and the viral oncogenic variant v-Src in transformed cells. Also, other members of the Src-family kinases are considered in this context. The role of Ca2+ in the cell is frequently mediated by Ca2+-binding proteins, where the Ca2+-sensor protein calmodulin (CaM) plays a prominent, essential role in many cellular signaling pathways. Thus, we cover the available information on the role and direct interaction of CaM with c-Src and v-Src in cancerous cells, the phosphorylation of CaM by v-Src/c-Src, and the actions of different CaM-regulated Ser/Thr-protein kinases and the CaM-dependent phosphatase calcineurin on v-Src/c-Src. Finally, we mention some clinical implications of these systems to identify mechanisms that could be targeted for the therapeutic treatment of human cancers.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area-Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
| |
Collapse
|
39
|
Li Y, Tian C, Huang S, Wang Y, Qiu J, Ning F, Guo J, Chen Q, Chen R, Ma G. Potential Biomarker of Acute Anthracycline-induced Cardiotoxicity Among Children With Acute Lymphoblastic Leukemia: Cardiac Adriamycin-responsive Protein. J Cardiovasc Pharmacol 2023; 82:489-495. [PMID: 37678278 DOI: 10.1097/fjc.0000000000001479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
ABSTRACT This study aimed to investigate whether serum cardiac adriamycin-responsive protein (CARP) can serve as a sensitive and specific biomarker of anthracyclines (ANT)-induced cardiotoxicity. Fifty-five children with acute lymphoblastic leukemia were recruited. Before and after the administration of ANT, serum levels of CARP, high-sensitivity troponin T, creatine kinase-MB, and electrocardiogram were measured. Postchemotherapeutic clinical manifestations of cardiotoxicity were also investigated. Adverse cardiac events (ACEs) were graded according to the Common Terminology Criteria for Adverse Events 4.0. Then, the CARP expression was statistically analyzed among different groups. The receiver operating characteristic curve was used to evaluate the efficacy of CARP in predicting acute ANT-induced cardiotoxicity. After ANT chemotherapy, the serum CARP concentration increased in the non-ACEs group but decreased in the ACEs group ( P < 0.05). In addition, not only the serum CARP levels (△CARP) was negatively correlated with the grade of ACEs (R=-0.754, P < 0.0001) but also the extent of QT interval corrected (QTc) prolongation (△QTc; R=-0.5592, P < 0.01). The area under the receiver operating characteristic curve of CARP was 90.94% ( P < 0.0001), and the sensitivity and specificity were 88.64% and 91.67%, respectively, all of which are superior to △high-sensitivity troponin T, △creatine kinase-MB, and △QTc. In conclusion, serum CARP could serve as a novel sensitive and specific biomarker of acute ANT-induced cardiotoxicity, which is negatively associated with ACE grade.
Collapse
Affiliation(s)
- Yiyang Li
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuan Tian
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Si Huang
- Foshan Fosun Chancheng Hospital, Foshan, China; and
| | - Yajun Wang
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
| | - Jiapeng Qiu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fan Ning
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
| | - Junhao Guo
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
| | - Qikang Chen
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
| | - Riling Chen
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guoda Ma
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
| |
Collapse
|
40
|
Yu W, Xu H, Sun Z, Du Y, Sun S, Abudureyimu M, Zhang M, Tao J, Ge J, Ren J, Zhang Y. TBC1D15 deficiency protects against doxorubicin cardiotoxicity via inhibiting DNA-PKcs cytosolic retention and DNA damage. Acta Pharm Sin B 2023; 13:4823-4839. [PMID: 38045047 PMCID: PMC10692480 DOI: 10.1016/j.apsb.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 12/05/2023] Open
Abstract
Clinical application of doxorubicin (DOX) is heavily hindered by DOX cardiotoxicity. Several theories were postulated for DOX cardiotoxicity including DNA damage and DNA damage response (DDR), although the mechanism(s) involved remains to be elucidated. This study evaluated the potential role of TBC domain family member 15 (TBC1D15) in DOX cardiotoxicity. Tamoxifen-induced cardiac-specific Tbc1d15 knockout (Tbc1d15CKO) or Tbc1d15 knockin (Tbc1d15CKI) male mice were challenged with a single dose of DOX prior to cardiac assessment 1 week or 4 weeks following DOX challenge. Adenoviruses encoding TBC1D15 or containing shRNA targeting Tbc1d15 were used for Tbc1d15 overexpression or knockdown in isolated primary mouse cardiomyocytes. Our results revealed that DOX evoked upregulation of TBC1D15 with compromised myocardial function and overt mortality, the effects of which were ameliorated and accentuated by Tbc1d15 deletion and Tbc1d15 overexpression, respectively. DOX overtly evoked apoptotic cell death, the effect of which was alleviated and exacerbated by Tbc1d15 knockout and overexpression, respectively. Meanwhile, DOX provoked mitochondrial membrane potential collapse, oxidative stress and DNA damage, the effects of which were mitigated and exacerbated by Tbc1d15 knockdown and overexpression, respectively. Further scrutiny revealed that TBC1D15 fostered cytosolic accumulation of the cardinal DDR element DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Liquid chromatography-tandem mass spectrometry and co-immunoprecipitation denoted an interaction between TBC1D15 and DNA-PKcs at the segment 594-624 of TBC1D15. Moreover, overexpression of TBC1D15 mutant (∆594-624, deletion of segment 594-624) failed to elicit accentuation of DOX-induced cytosolic retention of DNA-PKcs, DNA damage and cardiomyocyte apoptosis by TBC1D15 wild type. However, Tbc1d15 deletion ameliorated DOX-induced cardiomyocyte contractile anomalies, apoptosis, mitochondrial anomalies, DNA damage and cytosolic DNA-PKcs accumulation, which were canceled off by DNA-PKcs inhibition or ATM activation. Taken together, our findings denoted a pivotal role for TBC1D15 in DOX-induced DNA damage, mitochondrial injury, and apoptosis possibly through binding with DNA-PKcs and thus gate-keeping its cytosolic retention, a route to accentuation of cardiac contractile dysfunction in DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wenjun Yu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China
| | - Haixia Xu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhe Sun
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yuxin Du
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Shiqun Sun
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Miyesaier Abudureyimu
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200030, China
| | - Mengjiao Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Junbo Ge
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| |
Collapse
|
41
|
Zhang C, Liu Z, Wang F, Zhang B, Zhang X, Guo P, Li T, Tai S, Zhang C. Nanomicelles for GLUT1-targeting hepatocellular carcinoma therapy based on NADPH depletion. Drug Deliv 2023; 30:2162160. [PMID: 36579634 PMCID: PMC9809347 DOI: 10.1080/10717544.2022.2162160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor leading cancer-associated high mortality worldwide. Unfortunately, the most commonly used drug therapeutics not only lack of target ability and efficiency, but also exhibit severe systemic toxicity to normal tissues. Thus, effective and targeted nanodrug of HCC therapy is emerging as a more important issue. Here, we design and develop the novel nanomicelles, namely Mannose-polyethylene glycol 600-Nitroimidazole (Man-NIT). This micelle compound with high purity comprise two parts, which can self-assemble into nanoscale micelle. The outer shell is selected mannose as hydrophilic moiety, while the inner core is nitroimidazole as hydrophobic moiety. In the cell experiment, Man-NIT was more cellular uptake by HCCLM3 cells due to the mannose modification. Mannose as a kind of glucose transporter 1 (GLUT1) substrate, can specifically recognize and bind to over-expressed GLUT1 on carcinoma cytomembrane. The nitroimidazole moiety of Man-NIT was reduced by the over-expressed nitroreductase with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as the cofactor, resulting in transient deletion of NADPH and glutathione (GSH). The increase of reactive oxygen species (ROS) in HCCLM3 cells disturbed the balance of redox, and finally caused the death of tumor cells. Additional in vivo experiment was conducted using twenty-four male BALB/c nude mice to build the tumor model. The results showed that nanomicelles were accumulated in the liver of mice. The tumor size and pathological features were obviously improved after nanomicelles treatment. It indicates that namomicelles have a tumor inhibition effect, especially Man-NIT, which may be a potential nanodrug of chemotherapeutics for HCC therapy.
Collapse
Affiliation(s)
- Congyi Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zehui Liu
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Bin Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xirui Zhang
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Peiwen Guo
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Tianwei Li
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng Tai
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China,CONTACT Sheng Tai
| | - Changmei Zhang
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China,Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, China,Changmei Zhang Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, China
| |
Collapse
|
42
|
Al-Chlaihawi M, Janabi A. Azilsartan improves doxorubicin-induced cardiotoxicity via inhibiting oxidative stress, proinflammatory pathway, and apoptosis. J Med Life 2023; 16:1783-1788. [PMID: 38585516 PMCID: PMC10994606 DOI: 10.25122/jml-2023-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/28/2023] [Indexed: 04/09/2024] Open
Abstract
Azilsartan, a known angiotensin receptor blocker, has shown potential in reducing 24-hour blood pressure and may have protective effects against cardiac complications. Increased oxidative stress in cardiac tissue is directly related to the cardiac complications of doxorubicin. This study investigated whether azilsartan could mitigate doxorubicin-induced cardiotoxicity. We divided 28 male rats into four groups: the control group receiving a standard diet and water, the vehicle group given DMSO orally for two weeks, doxorubicin group receiving 2.5 mg/kg of doxorubicin three times a week for two weeks, and azilsartan group treated with 5 mg/kg/day of azilsartan orally and doxorubicin. Doxorubicin-induced cardiotoxicity was evidenced by a significant increase in TNF-α, IL-1β, MDA, and caspase-3 levels and significantly decreased TAC and Bcl-2 levels in the cardiac tissues of treated rats compared to the DMSO and control groups. Azilsartan significantly decreased doxorubicin-induced cardiotoxicity, as evidenced by a decline in serum levels of both TNF-α and IL-1β. Additionally, MDA significantly decreased in the cardiac tissue, although TAC was significantly increased when comparing the azilsartan group to the group receiving doxorubicin-only. These results suggest that azilsartan effectively reduced doxorubicin-induced cardiotoxicity, likely by mitigating apoptosis, inflammation, and oxidative stress in cardiac tissues.
Collapse
Affiliation(s)
- Mohammed Al-Chlaihawi
- Department of Pharmacy, Kufa Technical Institute, Al-Furat Al-Awsat Technical University, Najaf, Iraq
| | - Ali Janabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Kufa, Najaf, Iraq
| |
Collapse
|
43
|
Yuan Hsieh DJ, Islam MN, Kuo WW, Shibu MA, Lai CH, Lin PY, Lin SZ, Chen MYC, Huang CY. A combination of isoliquiritigenin with Artemisia argyi and Ohwia caudata water extracts attenuates oxidative stress, inflammation, and apoptosis by modulating Nrf2/Ho-1 signaling pathways in SD rats with doxorubicin-induced acute cardiotoxicity. ENVIRONMENTAL TOXICOLOGY 2023; 38:3026-3042. [PMID: 37661764 DOI: 10.1002/tox.23936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Ohwia caudata (Thunb.) H. Ohashi (Leguminosae) also called as "Evergreen shrub" and Artemisia argyi H.Lév. and Vaniot (Compositae) also named as "Chinese mugwort" those two-leaf extracts frequently used as herbal medicine, especially in south east Asia and eastern Asia. Anthracyclines such as doxorubicin (DOX) are commonly used as effective chemotherapeutic drugs in anticancer therapy around the world. However, chemotherapy-induced cardiotoxicity, dilated cardiomyopathy, and congestive heart failure are seen in patients who receive DOX therapy, with the mechanisms underlying DOX-induced cardiac toxicity remaining unclear. Mitochondrial dysfunction, oxidative stress, inflammatory response, and cardiomyocytes have been shown to play crucial roles in DOX-induced cardiotoxicity. Isoliquiritigenin (ISL, 10 mg/kg) is a bioactive flavonoid compound with protective effects against inflammation, neurodegeneration, cancer, and diabetes. Here, in this study, our aim is to find out the Artemisia argyi (AA) and Ohwia caudata (OC) leaf extract combination with Isoliquiritigenin in potentiating and complementing effect against chemo drug side effect to ameliorate cardiac damage and improve the cardiac function. In this study, we showed that a combination of low (AA 300 mg/kg; OC 100 mg/kg) and high-dose(AA 600 mg/kg; OC 300 mg/kg) AA and OC water extract with ISL activated the cell survival-related AKT/PI3K signaling pathway in DOX-treated cardiac tissue leading to the upregulation of the antioxidant markers SOD, HO-1, and Keap-1 and regulated mitochondrial dysfunction through the Nrf2 signaling pathway. Moreover, the water extract of AA and OC with ISL inhibited the inflammatory response genes IL-6 and IL-1β, possibly through the NFκB/AKT/PI3K/p38α/NRLP3 signaling pathways. The water extract of AA and OC with ISL could be a potential herbal drug treatment for cardiac hypertrophy, inflammatory disease, and apoptosis, which can lead to sudden heart failure.
Collapse
Affiliation(s)
- Dennis Jine Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Md Nazmul Islam
- Cardiovascular and Mitochondria Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- PhD Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | | | - Chin-Hu Lai
- Division of Cardiovascular Surgery, Department of Surgery, Taichung Armed Force General Hospital, Taichung City, Taiwan
- National Defense Medical Center, Taipei, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | - Shinn-Zong Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Michael Yu-Chih Chen
- Department of Cardiology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan
| |
Collapse
|
44
|
Skaggs C, Nick S, Patricelli C, Bond L, Woods K, Woodbury L, Oxford JT, Pu X. Effects of Doxorubicin on Extracellular Matrix Regulation in Primary Cardiac Fibroblasts from Mice. BMC Res Notes 2023; 16:340. [PMID: 37974221 PMCID: PMC10655342 DOI: 10.1186/s13104-023-06621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE Doxorubicin (DOX) is a highly effective chemotherapeutic used to treat many adult and pediatric cancers. However, its use is limited due to a dose-dependent cardiotoxicity, which can lead to lethal cardiomyopathy. In contrast to the extensive research efforts on toxic effects of DOX in cardiomyocytes, its effects and mechanisms on cardiac extracellular matrix (ECM) homeostasis and remodeling are poorly understood. In this study, we examined the potential effects of DOX on cardiac ECM to further our mechanistic understanding of DOX-induced cardiotoxicity. RESULTS DOX-induced significant down-regulation of several ECM related genes in primary cardiac fibroblasts, including Adamts1, Adamts5, Col4a1, Col4a2, Col5a1, Fbln1, Lama2, Mmp11, Mmp14, Postn, and TGFβ. Quantitative proteomics analysis revealed significant global changes in the fibroblast proteome following DOX treatment. A pathway analysis using iPathwayGuide of the differentially expressed proteins revealed changes in a list of biological pathways that involve cell adhesion, cytotoxicity, and inflammation. An apparent increase in Picrosirius red staining indicated that DOX-induced an increase in collagen production in cardiac primary fibroblasts after 3-day treatment. No significant changes in collagen organization nor glycoprotein production were observed.
Collapse
Affiliation(s)
- Cameron Skaggs
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Steve Nick
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Conner Patricelli
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
| | - Laura Bond
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Kali Woods
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Luke Woodbury
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
| | - Julia Thom Oxford
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA.
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA.
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
45
|
Zhou X, Weng Y, Jiang T, Ou W, Zhang N, Dong Q, Tang X. Influencing factors of anthracycline-induced subclinical cardiotoxicity in acute leukemia patients. BMC Cancer 2023; 23:976. [PMID: 37833648 PMCID: PMC10571315 DOI: 10.1186/s12885-023-11060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/12/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Current treatment of acute leukemia is based on anthracycline chemotherapy. Anthracyclines, despite improving patient survival, have serious cardiotoxicity and therefore cardiac monitoring should be a priority. The purpose of this study is to explore the possible early predictors of anthracycline-induced subclinical cardiotoxicity(AISC)in acute leukemia patients. METHODS We conducted a prospective observational study involving 51 patients with acute leukemia treated with anthracycline. Demographic data, clinical variables, echocardiography variables and biochemical variables were collected at baseline and after 3 cycles of chemotherapy. Patients were divided into the AISC and No-AISC groups according to changes of global longitudinal peak systolic strain. Regression models and receiver operating characteristic curve analysis were used to explore the relationship between the variables and AISC. RESULT 17 of the patients suffered subclinical cardiotoxicity after 3 cycles of anthracycline treatment. Multiple logistic regression analysis showed a significant association of DBil (OR 0.612, 95% CI 0.409-0.916, p = 0.017), TBil (OR 0.841, 95% CI 0.717-0.986, p = 0.033), PLT (OR 1.012, 95% CI 1.002-1.021, p = 0.016) and Glu (OR 1.873, 95% CI 1.009-3.475, p = 0.047) with the development of AISC. After 3 cycles of chemotherapy, there was a significant difference in PLT between the AISC and NO-AISC groups. Moreover, the dynamic changes in PLT from baseline to after 3 cycles of chemotherapy were each statistically significant in the AISC and NO-AISC groups. The combination of PLT and N-terminal pro-B-type natriuretic peptide (NT-proBNP) had the highest area under curves (AUC) for the diagnosis of AISC than PLT and NT-proBNP alone (AUC = 0.713, 95%CI: 0.56-0.87, P = 0.017). CONCLUSION Total bilirubin (TBil), direct bilirubin (DBil), platelets (PLT) and blood glucose (Glu) are independent influencing factors for AISC in acute leukemia patients receiving anthracycline therapy. Bilirubin may be a protective factor and PLT may be a contributing factor for AISC. The combination of baseline PLT and baseline NT-proBNP shows satisfactory predictive ability for AISC in acute leukemia cases treated with 3 cycles of chemotherapy.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Hematopathology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Yue Weng
- Department of Hematopathology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Tiantian Jiang
- Department of Hematopathology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Wenxin Ou
- Department of Hematopathology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Nan Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Qian Dong
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.
| | - Xiaoqiong Tang
- Department of Hematopathology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.
| |
Collapse
|
46
|
Li W, Lv M, Zhang T, Zhou M, Zheng L, Song T, Zhao M. Peptide Characterization of Bovine Myocardium Hydrolysates and Its Ameliorative Effects on Doxorubicin-Induced Myocardial Injury in H9c2 Cells and in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14562-14574. [PMID: 37782333 DOI: 10.1021/acs.jafc.3c02339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The prevalence and mortality of heart disease have a persistent existence, and it is important to develop active substances with cardioprotective properties. It has been reported that peptides from animal heart hydrolysates possess cardioprotective activity, but those mechanisms and the sequence of peptides are still unrevealed. In the present study, the extracts of bovine myocardium were prepared by enzymatic hydrolysis (BHH-A) and water extraction (BHH-W). The cardioprotective function of peptides was verified in the DOX-induced H9c2 cells and myocardial injury mice. The mass spectrometry was used to contrast the differences of active ingredients between BHH-W and BHH-A. Results suggested that both BHH-A and BHH-W could increase the activity of antioxidant enzymes in cardiomyocytes and reduce the inflammatory level and apoptosis of myocardial cells. The improvement effects of BHH-A on myocardial injury in mice were better than those of BHH-W. The analysis of peptide composition demonstrated that the contents with N-segment hydrophobic amino acids were higher in the peptides identified in BHH-A. Hence, BHH-A could be used as a potential active substance to improve DOX-induced myocardial injury by reducing oxidative damage, inflammation, and cardiomyocyte apoptosis, and its activity may be related to the richness of small molecular peptides and hydrophobic amino acids.
Collapse
Affiliation(s)
- Wen Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Miao Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Tiantian Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Minzhi Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Tianyuan Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
47
|
Kamińska K, Cudnoch-Jędrzejewska A. A Review on the Neurotoxic Effects of Doxorubicin. Neurotox Res 2023; 41:383-397. [PMID: 37351828 PMCID: PMC10499694 DOI: 10.1007/s12640-023-00652-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
Anthracyclines, a class of drugs considered as most effective anticancer drugs, used in the various regimens of cancer chemotherapy, induce long-term impairment of mitochondrial respiration, increase reactive oxygen species, and induce other mechanisms potentially leading to neurotoxicity. According to literature findings, one drug of this class - doxorubicin used to treat e.g. breast cancer, bladder cancer, lymphoma, and acute lymphocytic leukemia may induce such effects in the nervous system. Doxorubicin has poor penetration into the brain due to the lack of drug penetration through the blood-brain barrier, thus the toxicity of this agent is the result of its peripheral action. This action is manifested by cognitive impairment and anatomical changes in the brain and peripheral nervous system found in both preclinical and clinical studies in adult patients. Furthermore, more than 50% of children with cancer are treated with anthracyclines including doxorubicin, which may affect their nervous system, and lead to lifelong damage in many areas of their life. Despite ongoing research into the side effects of this drug, the mechanism of its neurotoxicity action on the central and peripheral nervous system is still not well understood. This review aims to summarize the neurotoxic effects of doxorubicin in preclinical (in vitro and in vivo) research and in clinical studies. Furthermore, it discusses the possible mechanisms of the toxic action of this agent on the nervous system.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| |
Collapse
|
48
|
Cronin M, Seher M, Arsang-Jang S, Lowery A, Kerin M, Wijns W, Soliman O. Multimodal Imaging of Cancer Therapy-Related Cardiac Dysfunction in Breast Cancer-A State-of-the-Art Review. J Clin Med 2023; 12:6295. [PMID: 37834939 PMCID: PMC10573256 DOI: 10.3390/jcm12196295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND This review focuses on multimodality imaging of cardiotoxicity in cancer patients, with the aim of evaluating the effectiveness of different techniques in detecting and monitoring cardiac changes associated with cancer therapy. METHODS Eight studies were included in the review, covering various imaging modalities such as cardiac magnetic resonance imaging, echocardiography, and multigated acquisition scanning. RESULTS Cardiac magnetic resonance imaging emerged as the most definitive modality, offering real-time detection, comprehensive assessment of cardiac function, the ability to detect early myocardial changes, and superior detection of cardiotoxicity when compared to the other imaging modalities. The studies also emphasize the importance of parameters such as left ventricular ejection fraction and global longitudinal strain in assessing cardiac function and predicting cardiotoxicity. CONCLUSION Due to the common use of HER2 agents and anthracyclines within the breast cancer population, the LVEF as a critical prognostic measurement for assessing heart health and estimating the severity of left-sided cardiac malfunction is a commonly used endpoint. CTRCD rates differed between imaging modalities, with cardiac MRI the most sensitive. The use of multimodal cardiac imaging remains a nuanced area, influenced by local availability, the clinical question at hand, body habits, and medical comorbidities. All of the imaging modalities listed have a role to play in current care; however, focus should be given to increasing the provision of cardiac MRI for breast cancer patients in the future to optimize the detection of CTRCD and patient outcomes thereafter.
Collapse
Affiliation(s)
- Michael Cronin
- CORRIB Core Laboratory, University of Galway, H91 TK33 Galway, Irelandm.-- (M.S.)
| | - Mehreen Seher
- CORRIB Core Laboratory, University of Galway, H91 TK33 Galway, Irelandm.-- (M.S.)
| | - Shahram Arsang-Jang
- CORRIB Core Laboratory, University of Galway, H91 TK33 Galway, Irelandm.-- (M.S.)
| | - Aoife Lowery
- Precision Cardio-Oncology Research Enterprise (P-CORE), H91 TK33 Galway, Ireland
- CURAM Centre for Medical Devices, H91 TK33 Galway, Ireland
| | - Michael Kerin
- Precision Cardio-Oncology Research Enterprise (P-CORE), H91 TK33 Galway, Ireland
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland
| | - William Wijns
- CORRIB Core Laboratory, University of Galway, H91 TK33 Galway, Irelandm.-- (M.S.)
- Precision Cardio-Oncology Research Enterprise (P-CORE), H91 TK33 Galway, Ireland
- CURAM Centre for Medical Devices, H91 TK33 Galway, Ireland
| | - Osama Soliman
- CORRIB Core Laboratory, University of Galway, H91 TK33 Galway, Irelandm.-- (M.S.)
- Precision Cardio-Oncology Research Enterprise (P-CORE), H91 TK33 Galway, Ireland
- CURAM Centre for Medical Devices, H91 TK33 Galway, Ireland
- Discipline of Cardiology, Saolta Group, Galway University Hospital, Health Service Executive and CORRIB Core Laboratory, National University of Ireland Galway (NUIG), H91 TK33 Galway, Ireland
| |
Collapse
|
49
|
Morales-Rubio R, Bernal-Ramírez J, Rubio-Infante N, Luévano-Martínez LA, Ríos A, Escalante BA, García-Rivas G, Rodríguez González J. Cellular shortening and calcium dynamics are improved by noisy stimulus in a model of cardiomyopathy. Sci Rep 2023; 13:14898. [PMID: 37689752 PMCID: PMC10492796 DOI: 10.1038/s41598-023-41611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
Noise is present in cell biology. The capability of cells to respond to noisy environment have become essential. This study aimed to investigate whether noise can enhance the contractile response and Ca2+ handling in cardiomyocytes from a cardiomyopathy model. Experiments were conducted in an experimental setup with Gaussian white noise, frequency, and amplitude control to stimulate myocytes. Cell shortening, maximal shortening velocity, time to peak shortening, and time to half relaxation variables were recorded to cell shortening. Ca2+ transient amplitude and raise rate variables were registered to measure Ca2+ transients. Our results for cell shortening, Ca2+ transient amplitude, and raise rate suggest that cell response improve when myocytes are noise stimulated. Also, cell shortening, maximal shortening velocity, Ca2+ transient amplitude, and raise improves in control cells. Altogether, these findings suggest novel characteristics in how cells improve their response in a noisy environment.
Collapse
Affiliation(s)
- Russell Morales-Rubio
- Centro de Investigación y de Estudios Avanzados del I.P.N-Unidad Monterrey, Vía del Conocimiento 201, Parque de Investigación e Innovación Tecnológica, 66600, Apodaca, NL, México
| | - Judith Bernal-Ramírez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, México
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| | - Nestor Rubio-Infante
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, México
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| | - Luis A Luévano-Martínez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, México
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| | - Amelia Ríos
- Centro de Investigación y de Estudios Avanzados del I.P.N-Unidad Monterrey, Vía del Conocimiento 201, Parque de Investigación e Innovación Tecnológica, 66600, Apodaca, NL, México
| | - Bruno A Escalante
- Centro de Investigación y de Estudios Avanzados del I.P.N-Unidad Monterrey, Vía del Conocimiento 201, Parque de Investigación e Innovación Tecnológica, 66600, Apodaca, NL, México
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, México
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| | - Jesús Rodríguez González
- Centro de Investigación y de Estudios Avanzados del I.P.N-Unidad Monterrey, Vía del Conocimiento 201, Parque de Investigación e Innovación Tecnológica, 66600, Apodaca, NL, México.
| |
Collapse
|
50
|
Al-Amir H, Janabi A, Hadi NR. Ameliorative effect of nebivolol in doxorubicin-induced cardiotoxicity. J Med Life 2023; 16:1357-1363. [PMID: 38107721 PMCID: PMC10719778 DOI: 10.25122/jml-2023-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/27/2023] [Indexed: 12/19/2023] Open
Abstract
This study aimed to investigate the potential of nebivolol in preventing doxorubicin-induced cardiotoxicity by targeting the inflammatory, oxidative, and apoptotic pathways. Twenty-eight male rats were randomly divided into four groups, each consisting of seven rats. The control group received standard diets and unrestricted access to water. The rats in the normal saline (N/S) group were administered a 0.9% normal saline solution for two weeks. The doxorubicin group (the "induced group") received doxorubicin at a dosage of 2.5 mg/kg three times per week for two weeks. The nebivolol group received an oral dose of 4 mg/kg of nebivolol for the same duration. The cardiac tissues of rats treated with doxorubicin exhibited increased levels of tumor necrosis factor, interleukin-1, malondialdehyde, and caspase-3 compared to the normal saline control group (p<0.05), along with decreased levels of total antioxidant capacity and Bcl-2. These results show that doxorubicin is harmful to the heart. The administration of nebivolol significantly reduced the cardiotoxic effects induced by doxorubicin, as indicated by a statistically significant decrease in the levels of inflammatory markers, specifically tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) (p<0.05). The nebivolol group exhibited a significant decrease in malondialdehyde levels, which serves as a signal of oxidation, in cardiac tissue compared to the doxorubicin-only group (p<0.05). Additionally, the nebivolol group showed a significant increase in overall antioxidant capacity. Nebivolol dramatically attenuated doxorubicin-induced cardiotoxicity in rats, likely by interfering with oxidative stress, the inflammatory response, and the apoptotic pathway.
Collapse
Affiliation(s)
| | - Ali Janabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Kufa, Najaf, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Kufa, Najaf, Iraq
| |
Collapse
|