1
|
Furukawa K, Ohmura H, Moriyama S, Uehara K, Ito M, Tsuchihashi K, Isobe T, Ariyama H, Fukata M, Kusaba H, Shiose A, Akashi K, Baba E. Treatment of malignant primary cardiac tumors requires attention to cardiovascular complications: a single-center, retrospective study. Jpn J Clin Oncol 2025; 55:113-122. [PMID: 39385509 DOI: 10.1093/jjco/hyae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Malignant primary cardiac tumors require multimodal approaches including surgery, chemotherapy and radiotherapy, but these treatments can be associated with cardiovascular complications. However, few reports have described the cardiovascular complications related to primary cardiac tumor treatment because of their rarity. METHODS Clinical records of patients with primary cardiac tumors treated at Kyushu University Hospital from January 2010 to August 2021 were retrospectively examined. RESULTS Of the 47 primary cardiac tumor patients, 13 (28%) were diagnosed with malignancy, including 5 angiosarcomas, 3 intimal sarcomas, 3 diffuse large B-cell lymphomas, 1 Ewing's sarcoma and 1 fibrosarcoma. Cardiovascular events were observed in 10 patients (77%), including cardiac dysfunction in 6 patients, arrhythmias in 5 patients, right heart failure in 2 patients, and excessively prolonged prothrombin time due to the combination of warfarin and chemotherapy in 1 patient. Two patients who showed notable cardiac complications are described. Case A involved a 69-year-old woman who underwent surgery for a left atrial intimal sarcoma, followed by postoperative chemotherapy with doxorubicin plus ifosfamide and radiotherapy. After three cycles of chemotherapy and sequential radiotherapy, her left ventricular ejection fraction decreased to 34%, and ongoing heart failure therapy was required. Case B involved a 66-year-old man who received chemotherapy for primary cardiac lymphoma, resulting in tumor shrinkage. However, due to tumor involvement of the intraventricular septum, atrioventricular block developed, requiring cardiac pacemaker implantation. CONCLUSION High incidences of cardiac failure and arrhythmias were observed during multimodal treatments for malignant primary cardiac tumors. Proper management of complications may lead to a favorable prognosis in patients with malignant primary cardiac tumors.
Collapse
Affiliation(s)
- Kanami Furukawa
- Department of Hematology/Oncology, Japan Community Healthcare Organization Kyushu Hospital, Kitakyushu, Fukuoka, Japan
| | - Hirofumi Ohmura
- Department of Oncology and Social Medicine, Kyushu University Graduate School of Medical Sciences, Higashi-ku, Fukuoka, Japan
| | - Shohei Moriyama
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Higashi-ku, Fukuoka, Japan
| | - Koki Uehara
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Higashi-ku, Fukuoka, Japan
| | - Mamoru Ito
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Higashi-ku, Fukuoka, Japan
| | - Kenji Tsuchihashi
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Higashi-ku, Fukuoka, Japan
| | - Taichi Isobe
- Department of Oncology and Social Medicine, Kyushu University Graduate School of Medical Sciences, Higashi-ku, Fukuoka, Japan
| | - Hiroshi Ariyama
- Department of Oncology, Kitakyushu Municipal Medical Center, Kitakyushu, Fukuoka, Japan
| | - Mitsuhiro Fukata
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Higashi-ku, Fukuoka, Japan
| | - Hitoshi Kusaba
- Department of Medical Oncology, Hamanomachi Hospital, Chuo-ku, Fukuoka, Japan
| | - Akira Shiose
- Department of Cardiovascular Surgery, Kyushu University Hospital, Higashi-ku, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Higashi-ku, Fukuoka, Japan
| | - Eishi Baba
- Department of Oncology and Social Medicine, Kyushu University Graduate School of Medical Sciences, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
2
|
Mumtaz A, Otey N, Afridi B, Khout H. Breast cancer in pregnancy: a comprehensive review of diagnosis, management, and outcomes. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2024; 5:21. [PMID: 39184929 PMCID: PMC11342000 DOI: 10.21037/tbcr-24-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Anam Mumtaz
- Nottingham Breast Institute, Nottingham City Hospital, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Noor Otey
- Mersey and West Lancashire Teaching Hospital NHS Trust, Prescot, UK
| | - Bushra Afridi
- Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - Hazem Khout
- Nottingham Breast Institute, Nottingham City Hospital, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
3
|
Baech J, Husby S, Trab T, Kragholm K, Brown P, Gørløv JS, Jørgensen JM, Gudbrandsdottir S, Severinsen MT, Grønbaek K, Larsen TS, Wästerlid T, Eloranta S, Smeland KB, Jakobsen LH, El-Galaly TC. Cardiovascular diseases after high-dose chemotherapy and autologous stem cell transplant for lymphoma: A Danish population-based study. Br J Haematol 2024; 204:967-975. [PMID: 38155503 DOI: 10.1111/bjh.19272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Cardiovascular diseases, especially congestive heart failure (CHF), are known complications of anthracyclines, but the risk for patients undergoing high-dose chemotherapy and autologous stem cell transplant (HDT-ASCT) is not well established. With T-cell therapies emerging as alternatives, studies of long-term complications after HDT-ASCT are warranted. Danish patients treated with HDT-ASCT for aggressive lymphoma between 2001 and 2017 were matched 1:5 on sex, birth year and Charlson comorbidity score to the general population. Events were captured using nationwide registers. A total of 787 patients treated with HDT-ASCT were identified. Median follow-up was 7.6 years. The risk of CHF was significantly increased in the HDT-ASCT population compared to matched comparators with an adjusted hazard ratio (HR) of 5.5 (3.8-8.1). The 10-year cumulative incidence of CHF was 8.0% versus 2.0% (p < 0.001). Male sex, ≥2 lines of therapy, hypertension and cumulative anthracycline dose (≥300 mg/m2 ) were risk factors for CHF. In a separate cohort of 4089 lymphoma patients, HDT-ASCT was also significantly associated with increased risk of CHF (adjusted HR of 2.6 [1.8-3.8]) when analysed as a time-dependent exposure. HDT-ASCT also increased the risk of other cardiac diseases. These findings are applicable for the benefit/risk assessment of HDT-ASCT versus novel therapies.
Collapse
Affiliation(s)
- Joachim Baech
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Simon Husby
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Trine Trab
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Kristian Kragholm
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Peter Brown
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Jette S Gørløv
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Judit M Jørgensen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Marianne Tang Severinsen
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Kirsten Grønbaek
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Tove Wästerlid
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra Eloranta
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Knut B Smeland
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Lasse Hjort Jakobsen
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Tarec C El-Galaly
- Department of Hematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Hematology, Odense University Hospital, Odense, Denmark
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Du J, Sudlow LC, Biswas H, Mitchell JD, Mollah S, Berezin MY. Identification Drug Targets for Oxaliplatin-Induced Cardiotoxicity without Affecting Cancer Treatment through Inter Variability Cross-Correlation Analysis (IVCCA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579390. [PMID: 38405766 PMCID: PMC10888841 DOI: 10.1101/2024.02.11.579390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The successful treatment of side effects of chemotherapy faces two major limitations: the need to avoid interfering with pathways essential for the cancer-destroying effects of the chemotherapy drug, and the need to avoid helping tumor progression through cancer promoting cellular pathways. To address these questions and identify new pathways and targets that satisfy these limitations, we have developed the bioinformatics tool Inter Variability Cross-Correlation Analysis (IVCCA). This tool calculates the cross-correlation of differentially expressed genes, analyzes their clusters, and compares them across a vast number of known pathways to identify the most relevant target(s). To demonstrate the utility of IVCCA, we applied this platform to RNA-seq data obtained from the hearts of the animal models with oxaliplatin-induced CTX. RNA-seq of the heart tissue from oxaliplatin treated mice identified 1744 differentially expressed genes with False Discovery Rate (FDR) less than 0.05 and fold change above 1.5 across nine samples. We compared the results against traditional gene enrichment analysis methods, revealing that IVCCA identified additional pathways potentially involved in CTX beyond those detected by conventional approaches. The newly identified pathways such as energy metabolism and several others represent promising target for therapeutic intervention against CTX, while preserving the efficacy of the chemotherapy treatment and avoiding tumor proliferation. Targeting these pathways is expected to mitigate the damaging effects of chemotherapy on cardiac tissues and improve patient outcomes by reducing the incidence of heart failure and other cardiovascular complications, ultimately enabling patients to complete their full course of chemotherapy with improved quality of life and survival rates.
Collapse
Affiliation(s)
- Junwei Du
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
- Institute of Materials Science & Engineering, Washington University, St. Louis, MO 63130, USA
| | - Leland C. Sudlow
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Hridoy Biswas
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Joshua D. Mitchell
- Cardio-Oncology Center of Excellence, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamim Mollah
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Mikhail Y. Berezin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
- Institute of Materials Science & Engineering, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
5
|
Guimarães LC, Fidale TM, Pereira TCR, Lopes PR, Ferreira-Junior MD, Deconte SR, Ferreira-Neto ML, Brito WS, Gomes RM, de Souza FR, Cavalcante KVN, Herrera GC, de Moura FBR, Resende ES. Cardioprotective Effects of Leucine Supplementation against Doxorubicin-Induced Cardiotoxicit. Cardiovasc Toxicol 2024; 24:122-132. [PMID: 38165500 DOI: 10.1007/s12012-023-09817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/18/2023] [Indexed: 01/03/2024]
Abstract
Doxorubicin is one of the most important antitumor drugs used in oncology; however, its cardiotoxic effect limits the therapeutic use and raises concerns regarding patient prognosis. Leucine is a branched-chain amino acid used in dietary supplementation and has been studied to attenuate the toxic effects of doxorubicin in animals, which increases oxidative stress. Oxidative stress in different organs can be estimated using several methods, including catalase expression analysis. This study aimed to analyze the effect of leucine on catalase levels in rat hearts after doxorubicin administration. Adult male Wistar rats were separated into two groups: Standard diet (SD) and 5% Leucine-Enriched Diet (LED). The animals had free access to diet from D0 to D28. At D14, the groups were subdivided in animals injected with Doxorubicin and animals injected with vehicle, until D28, and the groups were SD, SD + Dox, LED and LED + Dox. At D28, the animals were submitted do Transthoracic Echocardiography and euthanized. Despite Dox groups had impaired body weight gain, raw heart weight was not different between the groups. No substantial alterations were observed in macroscopic evaluation of the heart. Although, Doxorubicin treatment increased total interstitial collagen in the heart, which in addition to Type I collagen, is lower in LED groups. Western blot analysis showed that catalase expression in the heart of LED groups was lower than that in SD groups. In conclusion, leucine supplementation reduced both the precocious Dox-induced cardiac remodeling and catalase levels in the heart.
Collapse
Affiliation(s)
- Lucas C Guimarães
- Laboratory of Experimental Medicine, Department of Health Sciences - PGCS, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, Brazil.
| | - Thiago M Fidale
- Biotechnology Institute. Department of Medicine, Federal University of Catalão, Catalão, Goiás, Brazil
| | - Talita C R Pereira
- Institute of Biomedical Sciences, Department of Physiology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Paulo R Lopes
- School of Dentistry-FOAr, Department of Physiology and Pathology, Universidade Estadual Paulista "Júlio de Mesquita Filho"-UNESP, Araraquara, SP, Brazil
| | - Marcos D Ferreira-Junior
- Laboratory of Endocrine Physiology and Metabolism, ICB, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Simone R Deconte
- UFU-ICBIM. Department of Physiology and Biophysics, Federal University of Uberlândia, Uberlândia, Brazil
| | - Marcos L Ferreira-Neto
- UFU-ICBIM. Department of Physiology and Biophysics, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Rodrigo M Gomes
- Laboratory of Endocrine Physiology and Metabolism, ICB, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Fernanda R de Souza
- Laboratory of Experimental Medicine, Department of Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Keilah V N Cavalcante
- Laboratory of Endocrine Physiology and Metabolism, ICB, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Gustavo C Herrera
- The Veterinary Hospital, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Elmiro S Resende
- Laboratory of Experimental Medicine, Department of Health Sciences - PGCS, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, Brazil
- Postgraduate Program in Health Sciences-PGCS, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
6
|
Jaber M, Armand A, Rochette E, Monzy S, Greze V, Kanold J, Merlin E, Paysal J, Nottin S. Anthracycline-induced cardiotoxicity on regional myocardial work and left ventricular mechanical dispersion in adolescents and young adults in post-lymphoma remission. Cancer Med 2024; 13:e6857. [PMID: 38204211 PMCID: PMC10904967 DOI: 10.1002/cam4.6857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Myocardial work (MW) is a new echocardiographic tool with a high sensitivity to detect early and subtle alterations of myocardial function. We aimed to evaluate the late effects of anthracyclines by assessing the global and segmental MW and intraventricular mechanical dispersion from speckle tracking echocardiography in childhood lymphoma survivors (CLS). METHODS Thirty-one young adults including CLS and age-matched healthy controls were enrolled. All underwent echocardiography including an evaluation of left ventricular (LV) morphology and regional function. We assessed LV longitudinal (differentiating sub-endocardial and sub-epicardial layers), circumferential strains and twist, global and regional MW index (MWI). LV mechanical dispersion was assessed from the time dispersion of LV longitudinal strain, from myocardial wasted work (MWW) and myocardial work efficiency (MWE). RESULTS The longitudinal strains both at the level of the sub-endocardium and sub-epicardium were reduced in CLS compared to controls. The global MWI was also decreased (1668 ± 266 vs 1870 ± 264%.mmHg in CLS patients and controls, respectively, p < 0.05), especially on the apical segments. An increase of LV intraventricular mechanical dispersion was observed in CLS. MWW and MWE remained unchanged compared to controls. CONCLUSION Our results strongly support that cardiac remodeling is observed in CLS, characterized by a decrease in MW and an increase in LV mechanical dispersion. The apex is specifically altered, but its clinical significance remains uncertain. MW as a complement to strain seems interesting in cancer survivors to detect myocardial dysfunction at early stage and adapt their follow-up.
Collapse
Affiliation(s)
- Mohamed Jaber
- CHU Clermont‐Ferrand, Pédiatrie GénéraleClermont‐FerrandFrance
| | - Alexandre Armand
- CHU de Clermont‐Ferrand, Service Hématologie Oncologie PédiatriqueClermont‐FerrandFrance
| | - Emmanuelle Rochette
- CHU Clermont‐Ferrand, Pédiatrie GénéraleClermont‐FerrandFrance
- Université Clermont Auvergne, INSERMCIC 1405, CRECHE UnitClermont‐FerrandFrance
| | - Severine Monzy
- Cardiologue libéral, Pôle Santé RépubliqueClermont‐FerrandFrance
| | - Victoria Greze
- CHU de Clermont‐Ferrand, Service Hématologie Oncologie PédiatriqueClermont‐FerrandFrance
- Université Clermont Auvergne, INSERMCIC 1405, CRECHE UnitClermont‐FerrandFrance
| | - Justyna Kanold
- CHU de Clermont‐Ferrand, Service Hématologie Oncologie PédiatriqueClermont‐FerrandFrance
- Université Clermont Auvergne, INSERMCIC 1405, CRECHE UnitClermont‐FerrandFrance
| | - Etienne Merlin
- CHU Clermont‐Ferrand, Pédiatrie GénéraleClermont‐FerrandFrance
- CHU de Clermont‐Ferrand, Service Hématologie Oncologie PédiatriqueClermont‐FerrandFrance
| | - Justine Paysal
- CHU de Clermont‐Ferrand, Service Hématologie Oncologie PédiatriqueClermont‐FerrandFrance
- CHU Clermont‐Ferrand, Néonatologie et Réanimation PédiatriqueClermont‐FerrandFrance
| | - Stéphane Nottin
- Laboratory of Cardiovascular Adaptations to ExerciseAvignonFrance
| |
Collapse
|
7
|
Kinoshita T, Onda N, Ohno R, Ikeda T, Sugizaki Y, Ohara H, Nakagami T, Yuzawa H, Shimada H, Shimizu K, Ikeda T. Activation recovery interval as an electrocardiographic repolarization index to detect doxorubicin-induced cardiotoxicity. J Cardiol 2023; 82:473-480. [PMID: 37506822 DOI: 10.1016/j.jjcc.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/12/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND It has been reported that early detection and treatment of cancer therapy- related cardiac dysfunction (CTRCD) improves its prognosis. The detailed relationships between electrocardiographic repolarization indices and decreased left ventricular function in CTRCD have not been elucidated. We closely assessed such relationships in patients with doxorubicin (DOX)-induced CTRCD. METHODS This retrospective, single-center, cohort study included 471 consecutive patients with malignant lymphoma who received chemotherapy including DOX. Of them, 17 patients with CTRCD and 68 patients without CTRCD who underwent 12‑lead electrocardiogram and an echocardiogram before and after chemotherapy were eventually analyzed. The fluctuations of the following electrocardiographic repolarization indices were evaluated in lead V5: QT, JT, T peak to T end interval (Tp-e), and activation recovery interval (ARI). These indices were corrected by heart rate with the Fridericia formula. RESULTS The median period from the end of chemotherapy to the diagnosis of the CTRCD group was 346 days (IQR 170-1283 days). After chemotherapy, the QT interval was significantly prolonged in both with and without CTRCD groups compared with that before chemotherapy (pre QTc vs. post QTc in CTRCD group, 386 ± 27 ms vs. 411 ± 37 ms, p = 0.03, pre QTc vs. post QTc in non-CTRCD group, 388 ± 24 ms vs. 395 ± 25 ms, p = 0.04, respectively). ARIc after chemotherapy was characteristically observed only in the CTRCD group (pre ARIc vs. post ARIc in CTRCD group, 258 ± 53 ms vs. 211 ± 28 ms, p = 0.03, pre ARIc vs. post ARIc in non-CTRCD group, 221 ± 19 ms vs. 225 ± 23 ms, NS, respectively) and had negative correlations with left ventricular ejection fraction (r = -0.56, p < 0.001). Using the receiver-operating characteristic curve, the relationship between ARIc and CTRCD morbidity was examined. The optimal cut-off point of ARIc prolongation between before and after chemotherapy was 18 ms (sensitivity 75 %, specificity 79 %, area under the curve 0.76). CONCLUSIONS ARIc prolongation may be useful in the early detection of developing late-onset chronic DOX-induced CTRCD and lead to early treatment for cardiac protection.
Collapse
Affiliation(s)
- Toshio Kinoshita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan.
| | - Naoki Onda
- Division of Hematology and Oncology, Department of Medicine, Toho University Omori Medical Center, Tokyo, Japan
| | - Ruiko Ohno
- Division of Cardiovascular Medicine, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan
| | - Takushi Ikeda
- Division of Cardiovascular Medicine, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan
| | - Yuta Sugizaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan
| | - Hiroshi Ohara
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, Tokyo, Japan
| | - Takahiro Nakagami
- Division of Cardiovascular Medicine, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan
| | - Hitomi Yuzawa
- Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan
| | - Hideaki Shimada
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Shimizu
- Division of Cardiovascular Medicine, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Tsuda T, Davidow K, D'Aloisio G, Quillen J. Surveillance cardiopulmonary exercise testing can risk-stratify childhood cancer survivors: underlying pathophysiology of poor exercise performance and possible room for improvement. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2023; 9:42. [PMID: 37978571 PMCID: PMC10655267 DOI: 10.1186/s40959-023-00193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Asymptomatic childhood cancer survivors (CCS) frequently show decreased exercise performance. Poor exercise performance may indicate impaired future cardiovascular health. METHODS Cardiopulmonary exercise testing (CPET) was performed in asymptomatic off-treatment CCS (age ≥ 10 years). Patients were divided into Normal and Poor performance groups by %predicted maximum VO2 at 80%. Both peak and submaximal CPET values were analyzed. RESULTS Thirty-eight males (19 Normal, 19 Poor) and 40 females (18 Normal, 22 Poor) were studied. Total anthracycline dosage was comparable among 4 groups. The body mass index (BMI), although normal, and weight were significantly higher in Poor groups. Peak heart rate (HR) and peak respiratory exchange ratio (RER) were comparable in all four groups. Peak work rate (pWR)/kg, peak oxygen consumption (pVO2)/kg, peak oxygen pulse (pOP)/kg, and ventilatory anaerobic threshold (VAT)/kg were significantly lower, whereas heart rate (HR) increase by WR/kg (ΔHR/Δ[WR/kg] was significantly higher in Poor groups. Simultaneously plotting of weight & pVO2 and ΔHR/ΔWR & ΔVO2/ΔHR revealed a distinct difference between the Normal and Poor groups in both sexes, suggesting decreased skeletal muscle mass and decreased stroke volume reserve, respectively, in Poor CCS. The relationship between VAT and pVO2 was almost identical between the two groups in both sexes. Ventilatory efficiency was mildly diminished in the Poor groups. CONCLUSIONS Decreased skeletal muscle mass, decreased stroke volume reserve, and slightly decreased ventilatory efficiency characterize Poor CCS in both sexes. This unique combined CPET analysis provides useful clinical biomarkers to screen subclinical cardiovascular abnormality in CCS and identifies an area for improvement.
Collapse
Affiliation(s)
- Takeshi Tsuda
- Nemours Cardiac Center, Nemours Children's Health, 1600 Rockland Rd, Wilmington, DE, 19803, USA.
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Kimberly Davidow
- Nemours Center for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, DE, 19803, USA
| | - Gina D'Aloisio
- Nemours Cardiac Center, Nemours Children's Health, 1600 Rockland Rd, Wilmington, DE, 19803, USA
| | - Joanne Quillen
- Nemours Center for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, DE, 19803, USA
| |
Collapse
|
9
|
Yakkala PA, Penumallu NR, Shafi S, Kamal A. Prospects of Topoisomerase Inhibitors as Promising Anti-Cancer Agents. Pharmaceuticals (Basel) 2023; 16:1456. [PMID: 37895927 PMCID: PMC10609717 DOI: 10.3390/ph16101456] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Topoisomerases are very important enzymes that regulate DNA topology and are vital for biological actions like DNA replication, transcription, and repair. The emergence and spread of cancer has been intimately associated with topoisomerase dysregulation. Topoisomerase inhibitors have consequently become potential anti-cancer medications because of their ability to obstruct the normal function of these enzymes, which leads to DNA damage and subsequently causes cell death. This review emphasizes the importance of topoisomerase inhibitors as marketed, clinical and preclinical anti-cancer medications. In the present review, various types of topoisomerase inhibitors and their mechanisms of action have been discussed. Topoisomerase I inhibitors, which include irinotecan and topotecan, are agents that interact with the DNA-topoisomerase I complex and avert resealing of the DNA. The accretion of DNA breaks leads to the inhibition of DNA replication and cell death. On the other hand, topoisomerase II inhibitors like etoposide and teniposide, function by cleaving the DNA-topoisomerase II complex thereby effectively impeding the release of double-strand DNA breaks. Moreover, the recent advances in exploring the therapeutic efficacy, toxicity, and MDR (multidrug resistance) issues of new topoisomerase inhibitors have been reviewed in the present review.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Naveen Reddy Penumallu
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Syed Shafi
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India;
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal, Hyderabad 500078, India
- Telangana State Council of Science & Technology, Environment, Forests, Science & Technology Department, Hyderabad 500004, India
| |
Collapse
|
10
|
Eslami SS, Jafari D, Ghotaslou A, Amoupour M, Asri Kojabad A, Jafari R, Mousazadeh N, Tarighi P, Sadeghizadeh M. Combined Treatment of Dendrosomal-Curcumin and Daunorubicin Synergistically Inhibit Cell Proliferation, Migration and Induce Apoptosis in A549 Lung Cancer Cells. Adv Pharm Bull 2023; 13:539-550. [PMID: 37646049 PMCID: PMC10460814 DOI: 10.34172/apb.2023.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose Chemotherapy drugs used to treat lung cancer are associated with drug resistance and severe side effects. There have been rising demands for new therapeutic candidates and novel approaches, including combination therapy. Here, we aimed to investigate the combinatorial effect of a dendrosomal formulation of curcumin (DNC) and daunorubicin (DNR) on the A549 lung cancer cell line. Methods We performed cytotoxicity, apoptosis, cell migration, colony-formation capacity, and gene expression analysis to interpret the mechanism of action for a combination of DNC and DNR on A549 cells. Results Our results revealed that the combination of DNC and DNR could synergistically inhibit the A549 cells' growth. This synergistic cytotoxicity was further approved by flow cytometry, migration assessment, colony-forming capacity and gene expression analysis. DNR combination with DNC resulted in increased apoptosis to necrosis ratio compared to DNR alone. In addition, the migration and colony-forming capacity were at the minimal range when DNC was combined with DNR. Combined treatment decreased the expression level of MDR-1, hTERT and Bcl-2 genes significantly. In addition, the ratio of Bax/Bcl2 gene expression significantly increased. Our analysis by free curcumin, dendrosomes and DNC also showed that dendrosomes do not have any significant cytotoxic effect on the A549 cells, suggesting that this carrier has a high potential for enhancing the curcumin's biological effects. Conclusion Our observations suggest that the DNC formulation of curcumin synergistically enhances the antineoplastic effect of DNR on the A549 cell line through the modulation of apoptosis/necrosis ratio, as well as Bax/Bcl2 ratio, MDR-1 and hTERT gene expression.
Collapse
Affiliation(s)
- Seyed Sadegh Eslami
- Student Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davod Jafari
- Student Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Ghotaslou
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Amoupour
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Asri Kojabad
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Rasool Jafari
- Department of Medical Parasitology and Mycology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Mousazadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
11
|
Antoniadi K, Thomaidis N, Nihoyannopoulos P, Toutouzas K, Gikas E, Kelaidi C, Polychronopoulou S. Prognostic Factors for Cardiotoxicity among Children with Cancer: Definition, Causes, and Diagnosis with Omics Technologies. Diagnostics (Basel) 2023; 13:1864. [PMID: 37296716 PMCID: PMC10252297 DOI: 10.3390/diagnostics13111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Improvements in the treatment of childhood cancer have considerably enhanced survival rates over the last decades to over 80% as of today. However, this great achievement has been accompanied by the occurrence of several early and long-term treatment-related complications major of which is cardiotoxicity. This article reviews the contemporary definition of cardiotoxicity, older and newer chemotherapeutic agents that are mainly involved in cardiotoxicity, routine process diagnoses, and methods using omics technology for early and preventive diagnosis. Chemotherapeutic agents and radiation therapies have been implicated as a cause of cardiotoxicity. In response, the area of cardio-oncology has developed into a crucial element of oncologic patient care, committed to the early diagnosis and treatment of adverse cardiac events. However, routine diagnosis and the monitoring of cardiotoxicity rely on electrocardiography and echocardiography. For the early detection of cardiotoxicity, in recent years, major studies have been conducted using biomarkers such as troponin, N-terminal pro b-natriuretic peptide, etc. Despite the refinements in diagnostics, severe limitations still exist due to the increase in the above-mentioned biomarkers only after significant cardiac damage has occurred. Lately, the research has expanded by introducing new technologies and finding new markers using the omics approach. These new markers could be used not only for early detection but also for the early prevention of cardiotoxicity. Omics science, which includes genomics, transcriptomics, proteomics, and metabolomics, offers new opportunities for biomarker discovery in cardiotoxicity and may provide an understanding of the mechanisms of cardiotoxicity beyond traditional technologies.
Collapse
Affiliation(s)
- Kondylia Antoniadi
- Department of Pediatric Hematology-Oncology (T.A.O.), “Aghia Sophia” Children’s Hospital, Goudi, 11527 Athens, Greece
| | - Nikolaos Thomaidis
- Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Petros Nihoyannopoulos
- First Department of Cardiology, University of Athens, Hippokration Hospital, 11527 Athens, Greece
| | - Konstantinos Toutouzas
- First Department of Cardiology, University of Athens, Hippokration Hospital, 11527 Athens, Greece
| | - Evangelos Gikas
- Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Charikleia Kelaidi
- Department of Pediatric Hematology-Oncology (T.A.O.), “Aghia Sophia” Children’s Hospital, Goudi, 11527 Athens, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology (T.A.O.), “Aghia Sophia” Children’s Hospital, Goudi, 11527 Athens, Greece
| |
Collapse
|
12
|
Du J, Sudlow LC, Shahverdi K, Zhou H, Michie M, Schindler TH, Mitchell JD, Mollah S, Berezin MY. Oxaliplatin-induced cardiotoxicity in mice is connected to the changes in energy metabolism in the heart tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542198. [PMID: 37292714 PMCID: PMC10245950 DOI: 10.1101/2023.05.24.542198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxaliplatin is a platinum-based alkylating chemotherapeutic agent used for cancer treatment. At high cumulative dosage, the negative effect of oxaliplatin on the heart becomes evident and is linked to a growing number of clinical reports. The aim of this study was to determine how chronic oxaliplatin treatment causes the changes in energy-related metabolic activity in the heart that leads to cardiotoxicity and heart damage in mice. C57BL/6 male mice were treated with a human equivalent dosage of intraperitoneal oxaliplatin (0 and 10 mg/kg) once a week for eight weeks. During the treatment, mice were followed for physiological parameters, ECG, histology and RNA sequencing of the heart. We identified that oxaliplatin induces strong changes in the heart and affects the heart's energy-related metabolic profile. Histological post-mortem evaluation identified focal myocardial necrosis infiltrated with a small number of associated neutrophils. Accumulated doses of oxaliplatin led to significant changes in gene expression related to energy related metabolic pathways including fatty acid (FA) oxidation, amino acid metabolism, glycolysis, electron transport chain, and NAD synthesis pathway. At high accumulative doses of oxaliplatin, the heart shifts its metabolism from FAs to glycolysis and increases lactate production. It also leads to strong overexpression of genes in NAD synthesis pathways such as Nmrk2. Changes in gene expression associated with energy metabolic pathways can be used to develop diagnostic methods to detect oxaliplatin-induced cardiotoxicity early on as well as therapy to compensate for the energy deficit in the heart to prevent heart damage.
Collapse
Affiliation(s)
- Junwei Du
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
- Institute of Materials Science & Engineering Washington University, St. Louis, MO 63130, USA
| | - Leland C Sudlow
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Kiana Shahverdi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Haiying Zhou
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Megan Michie
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Thomas H Schindler
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Joshua D Mitchell
- Cardio-Oncology Center of Excellence, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamim Mollah
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Mikhail Y Berezin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
- Institute of Materials Science & Engineering Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
13
|
Ferrera A, Fiorentini V, Reale S, Solfanelli G, Tini G, Barbato E, Volpe M, Battistoni A. Anthracyclines-Induced Cardiac Dysfunction: What Every Clinician Should Know. Rev Cardiovasc Med 2023; 24:148. [PMID: 39076747 PMCID: PMC11273047 DOI: 10.31083/j.rcm2405148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 07/31/2024] Open
Abstract
Chemotherapies have changed the prognosis of patients affected by cancer over the last 20 years, with a significant increase in survival rates. However, they can cause serious adverse effects that may limit their use. In particular, anthracyclines, widely used to treat both hematologic cancers and solid cancers, may cause cardiac toxicity, leading to the development of heart failure in some cases. This review aims to explore current evidence with regards to anthracyclines' cardiotoxicity, with particular focus on the classifications and underlying molecular mechanisms, in order to provide an overview on the current methods of its diagnosis, treatment, and prevention. An attentive approach and a prompt management of patients undergoing treatment with anthracyclines is imperative to avoid preventable antineoplastic drug discontinuation and is conducive to improving both short-term and long-term cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Armando Ferrera
- Clinical and Molecular Medicine Department, Sapienza University of Rome,
00198 Rome, Italy
| | - Vincenzo Fiorentini
- Clinical and Molecular Medicine Department, Sapienza University of Rome,
00198 Rome, Italy
| | - Simone Reale
- Clinical and Molecular Medicine Department, Sapienza University of Rome,
00198 Rome, Italy
| | - Giorgio Solfanelli
- Clinical and Molecular Medicine Department, Sapienza University of Rome,
00198 Rome, Italy
| | - Giacomo Tini
- Clinical and Molecular Medicine Department, Sapienza University of Rome,
00198 Rome, Italy
| | - Emanuele Barbato
- Clinical and Molecular Medicine Department, Sapienza University of Rome,
00198 Rome, Italy
| | - Massimo Volpe
- Clinical and Molecular Medicine Department, Sapienza University of Rome,
00198 Rome, Italy
- IRCCS San Raffaele, 00163 Rome, Italy
| | - Allegra Battistoni
- Clinical and Molecular Medicine Department, Sapienza University of Rome,
00198 Rome, Italy
| |
Collapse
|
14
|
Pregnancy-Associated Breast Cancer: A Diagnostic and Therapeutic Challenge. Diagnostics (Basel) 2023; 13:diagnostics13040604. [PMID: 36832092 PMCID: PMC9955856 DOI: 10.3390/diagnostics13040604] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Pregnancy-associated breast cancer (PABC) is commonly defined as a breast cancer occurring during pregnancy, throughout 1 year postpartum, or during lactation. Despite being a rare circumstance, PABC is one of the most common types of malignancies occurring during pregnancy and lactation, with growing incidence in developed countries, due both to decreasing age at onset of breast cancer and to increasing maternal age. Diagnosis and management of malignancy in the prenatal and postnatal settings are challenging for practitioners, as the structural and functional changes that the breast undergoes may be misleading for both the radiologist and the clinician. Furthermore, safety concerns for the mother and child, as well as psychological aspects in this unique and delicate condition, need to be constantly considered. In this comprehensive review, clinical, diagnostic, and therapeutic aspects of PABC (including surgery, chemotherapy and other systemic treatments, and radiotherapy) are presented and fully discussed, based on medical literature, current international clinical guidelines, and systematic practice.
Collapse
|
15
|
Body Composition in Patients with Follicular Lymphoma: Asso-Ciations between Changes in Radiomic Parameters in Patients Treated with R-CHOP-like and R-B Regimens: LyRa 01F. Cancers (Basel) 2023; 15:cancers15040999. [PMID: 36831345 PMCID: PMC9954461 DOI: 10.3390/cancers15040999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023] Open
Abstract
In patients with follicular lymphoma (FL), therapeutic advances have led to improved survival, and within this framework, it is important to identify treatment strategies offering a better quality of life. Using (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT), in patients treated with R-CHOP-like or R-Bendamustine regimens, we assessed changes in the bone mineral density (BMD), musculoskeletal index (SMI), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) at disease onset and at the end of therapy. We evaluated whether the high-steroid regimen could lead to more significant radiological changes than those induced by the steroid-free regimen and whether a low BMD at disease onset is an unfavorable prognostic index. Seventy-nine patients between 60 and 80 years old with a new diagnosis of FL were included in the study. Evaluation of Delta values (pre- and post-therapy mean values) in the two immunochemotherapy regimens showed differences in radiomic parameters within the two patient cohorts. The R-CHOP-like regimen was associated with a significant reduction in BMD, an increase in SAT and VAT, and a reduction in skeletal muscle density (SMD) and SMI. Moreover, patients with high FLIPI showed a BMD below the cut-off value. This study represents the first study demonstrating a prognostic correlation between FLIPI and low BMD.
Collapse
|
16
|
Bikomeye JC, Terwoord JD, Santos JH, Beyer AM. Emerging mitochondrial signaling mechanisms in cardio-oncology: beyond oxidative stress. Am J Physiol Heart Circ Physiol 2022; 323:H702-H720. [PMID: 35930448 PMCID: PMC9529263 DOI: 10.1152/ajpheart.00231.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/27/2022]
Abstract
Many anticancer therapies (CTx) have cardiotoxic side effects that limit their therapeutic potential and cause long-term cardiovascular complications in cancer survivors. This has given rise to the field of cardio-oncology, which recognizes the need for basic, translational, and clinical research focused on understanding the complex signaling events that drive CTx-induced cardiovascular toxicity. Several CTx agents cause mitochondrial damage in the form of mitochondrial DNA deletions, mutations, and suppression of respiratory function and ATP production. In this review, we provide a brief overview of the cardiovascular complications of clinically used CTx agents and discuss current knowledge of local and systemic secondary signaling events that arise in response to mitochondrial stress/damage. Mitochondrial oxidative stress has long been recognized as a contributor to CTx-induced cardiotoxicity; thus, we focus on emerging roles for mitochondria in epigenetic regulation, innate immunity, and signaling via noncoding RNAs and mitochondrial hormones. Because data exploring mitochondrial secondary signaling in the context of cardio-oncology are limited, we also draw upon clinical and preclinical studies, which have examined these pathways in other relevant pathologies.
Collapse
Affiliation(s)
- Jean C Bikomeye
- Doctorate Program in Public and Community Health, Division of Epidemiology and Social Sciences, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Janée D Terwoord
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Sciences Department, Rocky Vista University, Ivins, Utah
| | - Janine H Santos
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Andreas M Beyer
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
17
|
Arrais TR, Cavalli GD, Dos Santos BT, Pereira GB, Migliavaca CB, Grossman GB, Biolo A. MIBG cardiac imaging compared to ejection fraction in evaluation of cardiotoxicity: a systematic review. J Nucl Cardiol 2022; 29:2274-2291. [PMID: 34228328 DOI: 10.1007/s12350-021-02610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Advances in diagnosis and treatment of cancer has improved survival but resulted in increased cardiotoxic effects. The decrease in left ventricular ejection fraction (EF), one of the pillars of diagnosis of cardiotoxicity, seems to be a late process in the evolution of the disease, so 123I-metaiodobenzylguanidine (MIBG) cardiac imaging has been proposed to detect early cardiac impairment. The aim of this systematic review was to evaluate the performance of MIBG cardiac scan in this scenario. METHODS AND RESULTS A systematic search was conducted in five international databases comparing MIBG parameters with EF for evaluation of cardiotoxicity. Twelve studies were included and separated in three groups. First, studies evaluating patients with established cardiotoxicity, in which EF was reduced and MIBG parameters were abnormal. Second, studies analyzing patients during or after treatment compared to controls, with MIBG parameters significantly different between groups in most studies, even when EF remained normal. Finally, studies analyzing anthracycline (ATC) dose-related changes, with alteration in MIBG parameters occurring even when EF was preserved. CONCLUSION Although studies had high methodological variability, cardiac sympathetic innervation imaging seems to be a promising tool for assessing early cardiotoxicity. Further studies are needed to analyze its diagnostic value in this scenario.
Collapse
Affiliation(s)
- Thaís Rossato Arrais
- Nuclear Medicine Department, Hospital Moinhos de Vento, Rua Ramiro Barcelos, 910-201, Porto Alegre, RS, 90035-001, Brazil.
- Post-graduate Program in Cardiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | | | - Celina Borges Migliavaca
- Post-graduate Program in Epidemiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriel Blacher Grossman
- Nuclear Medicine Department, Hospital Moinhos de Vento, Rua Ramiro Barcelos, 910-201, Porto Alegre, RS, 90035-001, Brazil
| | - Andréia Biolo
- Post-graduate Program in Cardiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Cardiology Department, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
18
|
Moro N, Dokshokova L, Perumal Vanaja I, Prando V, Cnudde SJA, Di Bona A, Bariani R, Schirone L, Bauce B, Angelini A, Sciarretta S, Ghigo A, Mongillo M, Zaglia T. Neurotoxic Effect of Doxorubicin Treatment on Cardiac Sympathetic Neurons. Int J Mol Sci 2022; 23:ijms231911098. [PMID: 36232393 PMCID: PMC9569551 DOI: 10.3390/ijms231911098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022] Open
Abstract
Doxorubicin (DOXO) remains amongst the most commonly used anti-cancer agents for the treatment of solid tumors, lymphomas, and leukemias. However, its clinical use is hampered by cardiotoxicity, characterized by heart failure and arrhythmias, which may require chemotherapy interruption, with devastating consequences on patient survival and quality of life. Although the adverse cardiac effects of DOXO are consolidated, the underlying mechanisms are still incompletely understood. It was previously shown that DOXO leads to proteotoxic cardiomyocyte (CM) death and myocardial fibrosis, both mechanisms leading to mechanical and electrical dysfunction. While several works focused on CMs as the culprits of DOXO-induced arrhythmias and heart failure, recent studies suggest that DOXO may also affect cardiac sympathetic neurons (cSNs), which would thus represent additional cells targeted in DOXO-cardiotoxicity. Confocal immunofluorescence and morphometric analyses revealed alterations in SN innervation density and topology in hearts from DOXO-treated mice, which was consistent with the reduced cardiotropic effect of adrenergic neurons in vivo. Ex vivo analyses suggested that DOXO-induced denervation may be linked to reduced neurotrophic input, which we have shown to rely on nerve growth factor, released from innervated CMs. Notably, similar alterations were observed in explanted hearts from DOXO-treated patients. Our data demonstrate that chemotherapy cardiotoxicity includes alterations in cardiac innervation, unveiling a previously unrecognized effect of DOXO on cardiac autonomic regulation, which is involved in both cardiac physiology and pathology, including heart failure and arrhythmias.
Collapse
Affiliation(s)
- Nicola Moro
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Lolita Dokshokova
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Induja Perumal Vanaja
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Valentina Prando
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Sophie Julie A Cnudde
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Riccardo Bariani
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome, 04100 Latina, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Annalisa Angelini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Sebastiano Sciarretta
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome, 04100 Latina, Italy
| | - Alessandra Ghigo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
- Correspondence: (M.M.); (T.Z.); Tel.: +39-0497923229 (M.M.); +39-0497923294 (T.Z.); Fax: +39-0497923250 (M.M.); +39-0497923250 (T.Z.)
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
- Correspondence: (M.M.); (T.Z.); Tel.: +39-0497923229 (M.M.); +39-0497923294 (T.Z.); Fax: +39-0497923250 (M.M.); +39-0497923250 (T.Z.)
| |
Collapse
|
19
|
Deterioration in myocardial work indices precedes changes in global longitudinal strain following anthracycline chemotherapy. Int J Cardiol 2022; 363:171-178. [PMID: 35780931 DOI: 10.1016/j.ijcard.2022.06.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS) have conventionally been used for surveillance of cardiac function after cancer therapy, but indices of myocardial work (MW) are potentially superior for this purpose because they take into account both myocardial deformation and loading conditions. OBJECTIVES We aimed to investigate the usefulness of MW in the follow-up of children and young adults following anthracycline chemotherapy. METHODS Conventional markers of LV function (LV fractional shortening [LVFS], LVEF, GLS) and MW indices (global work index [GWI], global constructive work [GCW], global wasted work [GWW], and global work efficiency [GWE]) were obtained from 2342 echocardiographic examinations in 598 patients (354 male, 12.2 [4.7-17.3] years at initiation of chemotherapy). RESULTS GWI, GCW, GLS, LVFS, and LVEF all deteriorated significantly during and after anthracycline chemotherapy, while GWW decreased and GWE was preserved. On multivariable analysis, MW indices were correlated with conventional markers of LV function and with clinical information relating to underlying malignancy and chemotherapy. Cox regression analysis revealed that similar levels of deterioration in GWW, GWI, and GCW preceded those in GLS, LFS, and LVEF. CONCLUSIONS Non-invasive MW indices correlate well with conventional markers of LV function. Indices of MW appear to provide an earlier and more sensitive marker of progression towards chemotherapy-related cardiac dysfunction. Future studies are warranted to validate whether the incorporation of non-invasive MW into the routine clinical surveillance in patients after chemotherapy would improve outcomes.
Collapse
|
20
|
Guida F, Masetti R, Andreozzi L, Zama D, Fabi M, Meli M, Prete A, Lanari M. The Role of Nutrition in Primary and Secondary Prevention of Cardiovascular Damage in Childhood Cancer Survivors. Nutrients 2022; 14:3279. [PMID: 36014785 PMCID: PMC9415958 DOI: 10.3390/nu14163279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
Innovative therapeutic strategies in childhood cancer led to a significant reduction in cancer-related mortality. Cancer survivors are a growing fragile population, at risk of long-term side effects of cancer treatments, thus requiring customized clinical attention. Antineoplastic drugs have a wide toxicity profile that can limit their clinical usage and spoil patients' life, even years after the end of treatment. The cardiovascular system is a well-known target of antineoplastic treatments, including anthracyclines, chest radiotherapy and new molecules, such as tyrosine kinase inhibitors. We investigated nutritional changes in children with cancer from the diagnosis to the end of treatment and dietary habits in cancer survivors. At diagnosis, children with cancer may present variable degrees of malnutrition, potentially affecting drug tolerability and prognosis. During cancer treatment, the usage of corticosteroids can lead to rapid weight gain, exposing children to overweight and obesity. Moreover, dietary habits and lifestyle often dramatically change in cancer survivors, who acquire sedentary behavior and weak adherence to dietary guidelines. Furthermore, we speculated on the role of nutrition in the primary prevention of cardiac damage, investigating the potential cardioprotective role of diet-derived compounds with antioxidative properties. Finally, we summarized practical advice to improve the dietary habits of cancer survivors and their families.
Collapse
Affiliation(s)
- Fiorentina Guida
- Specialty School of Paediatrics, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Riccardo Masetti
- Paediatric Oncology and Haematology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Laura Andreozzi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Daniele Zama
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Marianna Fabi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Matteo Meli
- Specialty School of Paediatrics, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Arcangelo Prete
- Paediatric Oncology and Haematology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Marcello Lanari
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
21
|
Schneider C, González-Jaramillo N, Marcin T, Campbell KL, Suter T, Bano A, Wilhelm M, Eser P. Time-Dependent Effect of Anthracycline-Based Chemotherapy on Central Arterial Stiffness: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2022; 9:873898. [PMID: 35865379 PMCID: PMC9295862 DOI: 10.3389/fcvm.2022.873898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background and Aims Anthracycline-based chemotherapy (ANTH-BC) has been proposed to increase arterial stiffness, however, the time-dependency of these effects remain unclear. This systematic review and meta-analysis aimed to investigate the time-dependent effect of ANTH-BC on markers of central aortic stiffness, namely aortic distensibility (AD) and pulse-wave-velocity (PWV) in cancer patients. Methods An extensive literature search without language restrictions was performed to identify all studies presenting longitudinal data on the effect of ANTH-BC on either AD and/or central PWV in cancer patients of all ages. An inverse-variance weighted random-effect model was performed with differences from before to after chemotherapy, as well as for short vs. mid-term effects. Results Of 2,130 articles identified, 9 observational studies with a total of 535 patients (mean age 52 ± 11; 73% women) were included, of which four studies measured AD and seven PWV. Short-term (2–4 months), there was a clinically meaningful increase in arterial stiffness, namely an increase in PWV of 2.05 m/s (95% CI 0.68–3.43) and a decrease in AD (albeit non-significant) of −1.49 mmHg-1 (−3.25 to 0.27) but a smaller effect was observed mid-term (6–12 months) for PWV of 0.88 m/s (−0.25 to 2.02) and AD of −0.37 mmHg-1 (−1.13 to 0.39). There was considerable heterogeneity among the studies. Conclusions Results from this analysis suggest that in the short-term, ANTH-BC increases arterial stiffness, but that these changes may partly be reversible after therapy termination. Future studies need to elucidate the long-term consequences of ANTH-BC on arterial stiffness, by performing repeated follow-up measurements after ANTH-BC termination. Systematic Review Registration [www.crd.york.ac.uk/prospero/], identifier [CRD42019141837].
Collapse
Affiliation(s)
- Caroline Schneider
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Nathalia González-Jaramillo
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Thimo Marcin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Thomas Suter
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Arjola Bano
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Matthias Wilhelm
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Prisca Eser
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- *Correspondence: Prisca Eser,
| |
Collapse
|
22
|
Cardio-oncology: Understanding the different mechanisms of cardiovascular toxicity. Rev Port Cardiol 2022; 41:587-597. [DOI: 10.1016/j.repc.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/03/2021] [Accepted: 04/15/2021] [Indexed: 11/19/2022] Open
|
23
|
Liu J, Chen ZZ, Patel J, Asnani A. Understanding Myocardial Metabolism in the Context of Cardio-Oncology. Heart Fail Clin 2022; 18:415-424. [PMID: 35718416 DOI: 10.1016/j.hfc.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cardiovascular events, ranging from arrhythmias to decompensated heart failure, are common during and after cancer therapy. Cardiovascular complications can be life-threatening, and from the oncologist's perspective, could limit the use of first-line cancer therapeutics. Moreover, an aging population increases the risk for comorbidities and medical complexity among patients who undergo cancer therapy. Many have established cardiovascular diagnoses or risk factors before starting these therapies. Therefore, it is essential to understand the molecular mechanisms that drive cardiovascular events in patients with cancer and to identify new therapeutic targets that may prevent and treat these 2 diseases. This review will discuss the metabolic interaction between cancer and the heart and will highlight current strategies of targeting metabolic pathways for cancer treatment. Finally, this review highlights opportunities and challenges in advancing our understanding of myocardial metabolism in the context of cancer and cancer treatment.
Collapse
Affiliation(s)
- Jing Liu
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Zsu-Zsu Chen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Jagvi Patel
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Aarti Asnani
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA.
| |
Collapse
|
24
|
Si Z, Zhong Y, Lao S, Wu Y, Zhong G, Zeng W. The Role of miRNAs in the Resistance of Anthracyclines in Breast Cancer: A Systematic Review. Front Oncol 2022; 12:899145. [PMID: 35664800 PMCID: PMC9157424 DOI: 10.3389/fonc.2022.899145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has been reported as the most common cancer in women globally, with 2.26 million new cases in 2020. While anthracyclines are the first-line drug for breast cancer, they cause a variety of adverse reactions and drug resistance, especially for triple-negative breast cancer, which can lead to poor prognosis, high relapse, and mortality rate. MicroRNAs (miRNAs) have been shown to be important in the initiation, development and metastasis of malignancies and their abnormal transcription levels may influence the efficacy of anthracyclines by participating in the pathologic mechanisms of breast cancer. Therefore, it is essential to understand the exact role of miRNAs in the treatment of breast cancer with anthracyclines. In this review, we outline the mechanisms and signaling pathways involved in miRNAs in the treatment of breast cancer using anthracyclines. The role of miRNA in the diagnosis, prognosis and treatment of breast cancer patients is discussed, along with the involvement of miRNAs in chemotherapy for breast cancer.
Collapse
Affiliation(s)
- Zihan Si
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Yan Zhong
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Sixian Lao
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Yufeng Wu
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Guoping Zhong
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Weiwei Zeng
- The Second People's Hospital of Longgang District, Shenzhen, China.,Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
25
|
Bhangu SK, Fernandes S, Beretta GL, Tinelli S, Cassani M, Radziwon A, Wojnilowicz M, Sarpaki S, Pilatis I, Zaffaroni N, Forte G, Caruso F, Ashokkumar M, Cavalieri F. Transforming the Chemical Structure and Bio-Nano Activity of Doxorubicin by Ultrasound for Selective Killing of Cancer Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107964. [PMID: 35100658 DOI: 10.1002/adma.202107964] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Reconfiguring the structure and selectivity of existing chemotherapeutics represents an opportunity for developing novel tumor-selective drugs. Here, as a proof-of-concept, the use of high-frequency sound waves is demonstrated to transform the nonselective anthracycline doxorubicin into a tumor selective drug molecule. The transformed drug self-aggregates in water to form ≈200 nm nanodrugs without requiring organic solvents, chemical agents, or surfactants. The nanodrugs preferentially interact with lipid rafts in the mitochondria of cancer cells. The mitochondrial localization of the nanodrugs plays a key role in inducing reactive oxygen species mediated selective death of breast cancer, colorectal carcinoma, ovarian carcinoma, and drug-resistant cell lines. Only marginal cytotoxicity (80-100% cell viability) toward fibroblasts and cardiomyocytes is observed, even after administration of high doses of the nanodrug (25-40 µg mL-1 ). Penetration, cytotoxicity, and selectivity of the nanodrugs in tumor-mimicking tissues are validated by using a 3D coculture of cancer and healthy cells and 3D cell-collagen constructs in a perfusion bioreactor. The nanodrugs exhibit tropism for lung and limited accumulation in the liver and spleen, as suggested by in vivo biodistribution studies. The results highlight the potential of this approach to transform the structure and bioactivity of anticancer drugs and antibiotics bearing sono-active moieties.
Collapse
Affiliation(s)
- Sukhvir Kaur Bhangu
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Chemistry, The University of Melbourne, Victoria, 3010, Australia
| | - Soraia Fernandes
- International Clinical Research Center (ICRC), St Anne's University Hospital, Brno, 65691, Czechia
| | - Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, Milan, 20133, Italy
| | - Stella Tinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, Milan, 20133, Italy
| | - Marco Cassani
- International Clinical Research Center (ICRC), St Anne's University Hospital, Brno, 65691, Czechia
| | - Agata Radziwon
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Marcin Wojnilowicz
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sophia Sarpaki
- BIOEMTECH, 27 Neapoleos st., Lefkippos Attica Technology Park - N.C.S.R. Demokritos, Athens, 15341, Greece
| | - Irinaios Pilatis
- BIOEMTECH, 27 Neapoleos st., Lefkippos Attica Technology Park - N.C.S.R. Demokritos, Athens, 15341, Greece
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, Milan, 20133, Italy
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St Anne's University Hospital, Brno, 65691, Czechia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | - Francesca Cavalieri
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", via della ricerca scientifica 1, Rome, 00133, Italy
| |
Collapse
|
26
|
Kim JS, Arango AS, Shah S, Arnold WR, Tajkhorshid E, Das A. Anthracycline derivatives inhibit cardiac CYP2J2. J Inorg Biochem 2022; 229:111722. [PMID: 35078036 PMCID: PMC8860876 DOI: 10.1016/j.jinorgbio.2022.111722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/20/2022]
Abstract
Anthracycline chemotherapeutics are highly effective, but their clinical usefulness is hampered by adverse side effects such as cardiotoxicity. Cytochrome P450 2J2 (CYP2J2) is a cytochrome P450 epoxygenase in human cardiomyocytes that converts arachidonic acid (AA) to cardioprotective epoxyeicosatrienoic acid (EET) regioisomers. Herein, we performed biochemical studies to understand the interaction of anthracycline derivatives (daunorubicin, doxorubicin, epirubicin, idarubicin, 5-iminodaunorubicin, zorubicin, valrubicin, and aclarubicin) with CYP2J2. We utilized fluorescence polarization (FP) to assess whether anthracyclines bind to CYP2J2. We found that aclarubicin bound the strongest to CYP2J2 despite it having large bulky groups. We determined that ebastine competitively inhibits anthracycline binding, suggesting that ebastine and anthracyclines may share the same binding site. Molecular dynamics and ensemble docking revealed electrostatic interactions between the anthracyclines and CYP2J2, contributing to binding stability. In particular, the glycosamine groups in anthracyclines are stabilized by binding to glutamate and aspartate residues in CYP2J2 forming salt bridge interactions. Furthermore, we used iterative ensemble docking schemes to gauge anthracycline influence on EET regioisomer production and anthracycline inhibition on AA metabolism. This was followed by experimental validation of CYP2J2-mediated metabolism of anthracycline derivatives using liquid chromatography tandem mass spectrometry fragmentation analysis and inhibition of CYP2J2-mediated AA metabolism by these derivatives. Taken together, we use both experimental and theoretical methodologies to unveil the interactions of anthracycline derivatives with CYP2J2. These studies will help identify alternative mechanisms of how anthracycline cardiotoxicity may be mediated through the inhibition of cardiac P450, which will aid in the design of new anthracycline derivatives with lower toxicity.
Collapse
Affiliation(s)
- Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Andres S Arango
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Swapnil Shah
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Aditi Das
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
27
|
Nicoletto RE, Ofner CM. Cytotoxic mechanisms of doxorubicin at clinically relevant concentrations in breast cancer cells. Cancer Chemother Pharmacol 2022; 89:285-311. [PMID: 35150291 DOI: 10.1007/s00280-022-04400-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent frequently used for the treatment of a variety of tumor types, such as breast cancer. Despite the long history of DOX, the mechanistic details of its cytotoxic action remain controversial. Rather than one key mechanism of cytotoxic action, DOX is characterized by multiple mechanisms, such as (1) DNA intercalation and adduct formation, (2) topoisomerase II (TopII) poisoning, (3) the generation of free radicals and oxidative stress, and (4) membrane damage through altered sphingolipid metabolism. Many past reviews of DOX cytotoxicity are based on supraclinical concentrations, and several have addressed the concentration dependence of these mechanisms. In addition, most reviews lack a focus on the time dependence of these processes. We aim to update the concentration and time-dependent trends of DOX mechanisms at representative clinical concentrations. Furthermore, attention is placed on DOX behavior in breast cancer cells due to the frequent use of DOX to treat this disease. This review provides insight into the mechanistic pathway(s) of DOX at levels found within patients and establishes the magnitude of effect for each mechanism.
Collapse
Affiliation(s)
- Rachel E Nicoletto
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA, 19101-4495, USA
| | - Clyde M Ofner
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA, 19101-4495, USA.
| |
Collapse
|
28
|
Zhang J, Zeng L, Wang Y, Pan J, Li X, Feng B, Yang Q. Gene Mutations Related to Glucocorticoid Resistance in Pediatric Acute Lymphoblastic Leukemia. Front Pediatr 2022; 10:831229. [PMID: 35733807 PMCID: PMC9207762 DOI: 10.3389/fped.2022.831229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To investigate the correlation between gene mutations and glucocorticoid resistance in pediatric acute lymphoblastic leukemia (ALL). METHODS A total of 71 children with ALL admitted to our center between September 2019 and September 2021 were enrolled. DNA obtained from bone marrow or peripheral blood samples at initial diagnosis was used for genetic testing via whole exome sequencing. Meanwhile, patient clinical information was collected. Subsequently, the correlations of gene mutations with clinical features and glucocorticoid resistance were analyzed. RESULTS Of the 71 children enrolled, 61 (85.9%) had B-cell ALL (B-ALL) and 10 (14.1%) had T-cell ALL (T-ALL). The five genes with the highest mutation frequency in B-ALL were TTN (24.4%), FLT3 (14.6%), TP53 (14.6%), MUC16 (9.8%), and EPPK1 (9.8%). In contrast, those with the highest frequency in T-ALL were NOTCH1 (54.5%), FBXW7 (27.3%), TTN (27.3%), MUC16 (27.3%), and PHF6 (18.2%). Upon statistical analysis, TTN and NOTCH1 mutations were found to be associated with prednisone resistance. Further, TTN and MUC16 mutations were associated with a lower age at diagnosis, and NOTCH1 mutations were associated with T-ALL in female patients. Leukocyte counts and LDH levels did not differ based on the presence of any common gene mutation, and no association between these gene mutations and overall survival was observed. CONCLUSIONS Our study is the first to demonstrate the association between TTN mutation and glucocorticoid resistance in ALL. Our findings could guide strategies for overcoming drug resistance and aid in the development of drug targets.
Collapse
Affiliation(s)
- JinFang Zhang
- Department of Paediatric Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - LingJi Zeng
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - YuLian Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - JianWei Pan
- Department of Paediatric Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - XingDong Li
- Department of Paediatric Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bei Feng
- Department of Paediatric Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Quan Yang
- Department of Paediatric Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
29
|
Viswanathan T, Lang CC, Petty RD, Baxter MA. Cardiotoxicity and Chemotherapy-The Role of Precision Medicine. Diseases 2021; 9:90. [PMID: 34940028 PMCID: PMC8699963 DOI: 10.3390/diseases9040090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer and cardiovascular disease are the leading causes of death in the United Kingdom. Many systemic anticancer treatments are associated with short- and long-term cardiotoxicity. With improving cancer survival and an ageing population, identifying those patients at the greatest risk of cardiotoxicity from their cancer treatment is becoming a research priority and has led to a new subspecialty: cardio-oncology. In this concise review article, we discuss cardiotoxicity and systemic anticancer therapy, with a focus on chemotherapy. We also discuss the challenge of identifying those at risk and the role of precision medicine as we strive for a personalised approach to this clinical scenario.
Collapse
Affiliation(s)
- Thyla Viswanathan
- Dundee School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD2 1SY, UK;
| | - Chim C. Lang
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee DD2 1SY, UK; (C.C.L.); (R.D.P.)
- UKM Medical Molecular Biology Institute (UMBI), Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Russell D. Petty
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee DD2 1SY, UK; (C.C.L.); (R.D.P.)
- Tayside Cancer Centre, Ninewells Hospital and Medical School, NHS Tayside, Dundee DD2 1SY, UK
| | - Mark A. Baxter
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee DD2 1SY, UK; (C.C.L.); (R.D.P.)
- Tayside Cancer Centre, Ninewells Hospital and Medical School, NHS Tayside, Dundee DD2 1SY, UK
| |
Collapse
|
30
|
Hafez AA, Jamali Z, Samiei S, Khezri S, Salimi A. Reduction of doxorubicin-induced cytotoxicity and mitochondrial damage by betanin in rat isolated cardiomyocytes and mitochondria. Hum Exp Toxicol 2021; 40:2123-2134. [PMID: 34105389 DOI: 10.1177/09603271211022800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Doxorubicin (DOX) is an anticancer drug which is used for treatment of several types of cancers. But the clinical use of doxorubicin is limited because of its cardiotoxicity and cardiomyopathy. Mitochondrial-dependent oxidative stress and cardiac inflammation appear to be involved in doxorubicin-induced cardiotoxicity. Betanin as a bioactive compound in Beetroot (Beta vulgaris L.) displays anti-radical, antioxidant gene regulatory and cardioprotective activities. In this current study, we investigated the protective effect of betanin on doxorubicin-induced cytotoxicity and mitochondrial-dependent oxidative stress in isolated cardiomyocytes and mitochondria. Isolated cardiomyocytes and mitochondria were treated with three concentrations of betanin (1, 5 and 10 µM) and doxorubicin (3.5 µM) for 6 h. The parameters of cellular and mitochondrial toxicity were analyzed using biochemical and flow cytometric methods. Our results showed a significant toxicity in isolated cardiomyocytes and mitochondria in presence of doxorubicin which was related to reactive oxygen species (ROS) formation, increase in malondialdehyde (MDA), increase in oxidation of GSH to GSSG, lysosomal/mitochondrial damages and mitochondrial swelling. While betanin pretreatment reverted doxorubicin-induced cytotoxicity and oxidative stress in isolated cardiomyocytes and mitochondria. These results suggest that betanin elicited a typical protective effect on doxorubicin-induced cytotoxicity and oxidative stress. It is possible that betanin could be used as a useful adjuvant in combination with doxorubicin chemotherapy for reduction of cardiotoxicity and cardiomyopathy.
Collapse
Affiliation(s)
- A A Hafez
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Z Jamali
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - S Samiei
- School of Medicine, Kordestan University of Medical Sciences, Sanandaj, Iran
| | - S Khezri
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - A Salimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
31
|
Kozhukhov SM, Dovganych NV, Smolanka II, Lygyrda OF, Bazyka OY, Lyalkin SA, Ivankova OM, Yarinkina OA, Tkhor NV. CARDIOTOXICITY RISK PREDICTION IN BREAST CANCER PATIENTS. PROBLEMY RADIATSIINOI MEDYTSYNY TA RADIOBIOLOHII 2021; 26:498-512. [PMID: 34965569 DOI: 10.33145/2304-8336-2021-26-498-512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 12/21/2022]
Abstract
Breast cancer patients receive combined antitumor treatment (surgery, chemotherapy, targeted drugs and radia-tion), so they are considered to be the patients with potentially high risk of cardiotoxicity (CT). Risk stratificationof cardiovascular complications before the beginning and during the cancer treatment is an important issue. OBJECTIVE to develop a CT risk model score taking into account cardiological, oncological and individual risks. MATERIAL AND METHODS The study included 52 breast cancer patients with retrospective analysis of their medicalhistory, risk factors, and echocardiographic parameters before the onset and in 12 months follow up. Based on theanalysis of the data, a CT risk model score was developed and recommended. The patients were divided into groupsaccording to the score: Group 1 - low risk of CT development - score < 4 points, Group 2 - moderate risk - 5-7points, Group 3 - high risk > 8 points. According to the scale, BC patients with a total of > 8 points are consideredto be at high risk for CT complications. Radiation therapy and anthracyclines, as well as associated cardiovasculardiseases were the most important risk factors of CT. RESULTS Based on the study of retrospective analysis of risk factors, data of heart function monitoring during follow-up,the risk model score of cardiotoxicity has been developed for the BC patients' stratification. According to the proposedscore risk model, BC patients with a total score of > 8 points considered to have high risk of cardiotoxic complications. CONCLUSIONS Using of the proposed risk model score with calculation of CT risk factors both before the beginningand during cancer therapy is important, because it allows predicting the risk of CT development - to identify high-risk patients, accordingly, to develop an individualized plan for cardiac function monitoring and to start timely cardioprotective therapy.
Collapse
Affiliation(s)
- S M Kozhukhov
- National Scientific Center «The M.D. Strazhesko Institute of Cardiology», 5 Narodnoho Opolchennia Str., Kyiv, 03680, Ukraine
| | - N V Dovganych
- National Scientific Center «The M.D. Strazhesko Institute of Cardiology», 5 Narodnoho Opolchennia Str., Kyiv, 03680, Ukraine
| | - I I Smolanka
- National Cancer Institute of the Ministry of Health of Ukraine, 33/43 Lomonosova Str., Kyiv, 03022, Ukraine
| | - O F Lygyrda
- National Cancer Institute of the Ministry of Health of Ukraine, 33/43 Lomonosova Str., Kyiv, 03022, Ukraine
| | - O Ye Bazyka
- National Scientific Center «The M.D. Strazhesko Institute of Cardiology», 5 Narodnoho Opolchennia Str., Kyiv, 03680, Ukraine
| | - S A Lyalkin
- National Cancer Institute of the Ministry of Health of Ukraine, 33/43 Lomonosova Str., Kyiv, 03022, Ukraine
| | - O M Ivankova
- National Cancer Institute of the Ministry of Health of Ukraine, 33/43 Lomonosova Str., Kyiv, 03022, Ukraine
| | - O A Yarinkina
- National Scientific Center «The M.D. Strazhesko Institute of Cardiology», 5 Narodnoho Opolchennia Str., Kyiv, 03680, Ukraine
| | - N V Tkhor
- National Scientific Center «The M.D. Strazhesko Institute of Cardiology», 5 Narodnoho Opolchennia Str., Kyiv, 03680, Ukraine
| |
Collapse
|
32
|
Xu N, Lu Y, Yao X, Zhao R, Li Z, Li J, Zhang Y, Li B, Zhou Y, Shen H, Wang L, Chen K, Yang L, Lu S. NMCP-2 polysaccharide purified from Morchella conica effectively prevents doxorubicin-induced cardiotoxicity by decreasing cardiomyocyte apoptosis and myocardial oxidative stress. Food Sci Nutr 2021; 9:6262-6273. [PMID: 34760256 PMCID: PMC8565241 DOI: 10.1002/fsn3.2586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic used in the clinical treatment of cancer, but its use is limited due to its cardiotoxic effects. Therefore, it is necessary to explore natural compounds that are effective in protecting against the cardiotoxicity caused by DOX. Neutral Morchella conica polysaccharides-2 (NMCP-2) is a natural polysaccharide with antioxidant activity that was isolated and purified from Morchella conica in our laboratory's previous study. This study aimed to investigate the possible protective effect of NMCP-2 on DOX-induced cardiotoxicity and the potential underlying mechanisms. The model of DOX-induced H9C2 cells and the model of DOX-induced mice were used in this study. In in vitro studies of H9C2 myocardial cells, NMCP-2 effectively increased the activity of H9C2 cells, reducing the levels of lactate dehydrogenase (LDH). In the mouse model of DOX-induced chronic cardiotoxicity, NMCP-2 significantly reduced the cardiac index, reduced the release of serum cardiac enzymes, and improved the pathology of murine myocardial tissues, thereby alleviating DOX-induced cardiotoxicity. Further mechanism studies showed that pretreatment with NMCP-2 counteracted the oxidative stress induced by DOX, as indicated by increasing superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) activities, and malondialdehyde (MDA) production decreased. In addition, we observed NMCP-2 inhibited the activation of the mitochondrial apoptosis pathway and regulated the disordered expression of Bcl-2 and Bax in the myocardial tissues of DOX-treated mice. These findings indicated that NMCP-2, a natural bioactive compound, could potentially be used as a food supplement to reduce the cardiotoxicity caused by DOX.
Collapse
Affiliation(s)
- Na Xu
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Yi Lu
- Key Laboratory of Zoonosis ResearchMinistry of EducationInstitute of ZoonosisCollege of Veterinary MedicineJilin UniversityChangchunChina
| | - Xinmiao Yao
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Rui Zhao
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Zhebin Li
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Jialei Li
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Yinglei Zhang
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Bo Li
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Ye Zhou
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Huifang Shen
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Liqun Wang
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Kaixin Chen
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Li Yang
- Key Laboratory of Zoonosis ResearchMinistry of EducationInstitute of ZoonosisCollege of Veterinary MedicineJilin UniversityChangchunChina
| | - Shuwen Lu
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| |
Collapse
|
33
|
Li C, Gou X, Gao H. Doxorubicin nanomedicine based on ginsenoside Rg1 with alleviated cardiotoxicity and enhanced antitumor activity. NANOMEDICINE (LONDON, ENGLAND) 2021; 16:2587-2604. [PMID: 34719938 DOI: 10.2217/nnm-2021-0329] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The authors aimed to develop Dox@Rg1 nanoparticles with decreased cardiotoxicity to expand their application in cancer. Materials & methods: Dox@Rg1 nanoparticles were developed by encapsulating doxorubicin (Dox) in a self-assembled Rg1. The antitumor effect of the nanoparticles was estimated using 4T1 tumor-bearing mice and the protective effect on the heart was investigated in vitro and in vivo. Results: Different from Dox, the Dox@Rg1 nanoparticles induced increased cytotoxicity to tumor cells, which was decreased in cardiomyocytes by the inhibition of apoptosis. The study in vivo revealed that the Dox@Rg1 nanoparticles presented a perfect tumor-targeting ability and improved antitumor effects. Conclusion: Dox@Rg1 nanoparticles could enhance the antitumor effects and decrease the cardiotoxicity of Dox.
Collapse
Affiliation(s)
- Chaoqi Li
- Tianjin Key Laboratory of Drug Targeting & Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Xiangbo Gou
- Tianjin Key Laboratory of Drug Targeting & Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Hui Gao
- Tianjin Key Laboratory of Drug Targeting & Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin, China.,State Key Laboratory of Separation Membranes & Membrane Processes, School of Materials Science & Engineering, Tiangong University, Tianjin, 300384, China
| |
Collapse
|
34
|
Gabani M, Castañeda D, Nguyen QM, Choi SK, Chen C, Mapara A, Kassan A, Gonzalez AA, Khataei T, Ait-Aissa K, Kassan M. Association of Cardiotoxicity With Doxorubicin and Trastuzumab: A Double-Edged Sword in Chemotherapy. Cureus 2021; 13:e18194. [PMID: 34589374 PMCID: PMC8459919 DOI: 10.7759/cureus.18194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/05/2022] Open
Abstract
Anticancer drugs play an important role in reducing mortality rates and increasing life expectancy in cancer patients. Treatments include monotherapy and/or a combination of radiation therapy, chemotherapy, hormone therapy, or immunotherapy. Despite great advances in drug development, some of these treatments have been shown to induce cardiotoxicity directly affecting heart function and structure, as well as accelerating the development of cardiovascular disease. Such side effects restrict treatment options and can negatively affect disease management. Consequently, when managing cancer patients, it is vital to understand the mechanisms causing cardiotoxicity to better monitor heart function, develop preventative measures against cardiotoxicity, and treat heart failure when it occurs in this patient population. This review discusses the role and mechanism of major chemotherapy agents with principal cardiovascular complications in cancer patients.
Collapse
Affiliation(s)
- Mohanad Gabani
- Internal Medicine, Harlem Hospital Center, New York, USA
| | - Diana Castañeda
- Basic Sciences, California State University, Los Angeles, USA
| | - Quynh My Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, USA
| | | | - Cheng Chen
- Department of Emergency and Critical Care, Shanghai General Hospital, Shanghai, CHN
| | - Ayesha Mapara
- Biological Sciences, Northeastern Illinois University, Chicago, USA
| | - Adam Kassan
- School of Pharmacy, West Coast University, Los Angeles, USA
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, CHL
| | | | | | - Modar Kassan
- Physiology, The University of Tennessee Health Science Center, Memphis, USA
| |
Collapse
|
35
|
Saleh Y, Abdelkarim O, Herzallah K, Abela GS. Anthracycline-induced cardiotoxicity: mechanisms of action, incidence, risk factors, prevention, and treatment. Heart Fail Rev 2021; 26:1159-1173. [PMID: 32410142 DOI: 10.1007/s10741-020-09968-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Anthracycline is a mainstay in treatment of many cancers including lymphoma and breast cancer among many others. However, anthracycline treatment can be cardiotoxic. Although anthracycline-induced cardiotoxicity is dose dependent, it can also occur early at the onset of treatment and even up to several years following completion of treatment. This review article focuses on the understanding of mechanisms of anthracycline-induced cardiotoxicity, the treatments, and recommended follow-up and preventive approaches.
Collapse
Affiliation(s)
- Yehia Saleh
- Department of Internal Medicine, Michigan State University, East Lansing, MI, USA
| | - Ola Abdelkarim
- Department of Internal Medicine, Cardiology, Michigan State University, 788 service road, Room B-208, Clinical Center, East Lansing, MI, USA
| | - Khader Herzallah
- Department of Internal Medicine, Michigan State University, East Lansing, MI, USA
| | - George S Abela
- Department of Internal Medicine, Cardiology, Michigan State University, 788 service road, Room B-208, Clinical Center, East Lansing, MI, USA.
| |
Collapse
|
36
|
Grafton F, Ho J, Ranjbarvaziri S, Farshidfar F, Budan A, Steltzer S, Maddah M, Loewke KE, Green K, Patel S, Hoey T, Mandegar MA. Deep learning detects cardiotoxicity in a high-content screen with induced pluripotent stem cell-derived cardiomyocytes. eLife 2021; 10:68714. [PMID: 34338636 PMCID: PMC8367386 DOI: 10.7554/elife.68714] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Drug-induced cardiotoxicity and hepatotoxicity are major causes of drug attrition. To decrease late-stage drug attrition, pharmaceutical and biotechnology industries need to establish biologically relevant models that use phenotypic screening to detect drug-induced toxicity in vitro. In this study, we sought to rapidly detect patterns of cardiotoxicity using high-content image analysis with deep learning and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We screened a library of 1280 bioactive compounds and identified those with potential cardiotoxic liabilities in iPSC-CMs using a single-parameter score based on deep learning. Compounds demonstrating cardiotoxicity in iPSC-CMs included DNA intercalators, ion channel blockers, epidermal growth factor receptor, cyclin-dependent kinase, and multi-kinase inhibitors. We also screened a diverse library of molecules with unknown targets and identified chemical frameworks that show cardiotoxic signal in iPSC-CMs. By using this screening approach during target discovery and lead optimization, we can de-risk early-stage drug discovery. We show that the broad applicability of combining deep learning with iPSC technology is an effective way to interrogate cellular phenotypes and identify drugs that may protect against diseased phenotypes and deleterious mutations.
Collapse
Affiliation(s)
| | - Jaclyn Ho
- Tenaya Therapeutics, South San Francisco, United States
| | - Sara Ranjbarvaziri
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, United States
| | | | | | | | | | | | | | - Snahel Patel
- Tenaya Therapeutics, South San Francisco, United States
| | - Tim Hoey
- Tenaya Therapeutics, South San Francisco, United States
| | | |
Collapse
|
37
|
Van Tine BA, Hirbe AC, Oppelt P, Frith AE, Rathore R, Mitchell JD, Wan F, Berry S, Landeau M, Heberton GA, Gorcsan J, Huntjens PR, Soyama Y, Vader JM, Alvarez-Cardona JA, Zhang KW, Lenihan DJ, Krone RJ. Interim Analysis of the Phase II Study: Noninferiority Study of Doxorubicin with Upfront Dexrazoxane plus Olaratumab for Advanced or Metastatic Soft-Tissue Sarcoma. Clin Cancer Res 2021; 27:3854-3860. [PMID: 33766818 PMCID: PMC8282681 DOI: 10.1158/1078-0432.ccr-20-4621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/22/2021] [Accepted: 03/18/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE To report the interim analysis of the phase II single-arm noninferiority trial, testing the upfront use of dexrazoxane with doxorubicin on progression-free survival (PFS) and cardiac function in soft-tissue sarcoma (STS). PATIENTS AND METHODS Patients with metastatic or unresectable STS who were candidates for first-line treatment with doxorubicin were deemed eligible. An interim analysis was initiated after 33 of 65 patients were enrolled. Using the historical control of 4.6 months PFS for doxorubicin in the front-line setting, we tested whether the addition of dexrazoxane affected the efficacy of doxorubicin in STS. The study was powered so that a decrease of PFS to 3.7 months would be considered noninferior. Secondary aims included cardiac-related mortality, incidence of heart failure/cardiomyopathy, and expansion of cardiac monitoring parameters including three-dimensional echocardiography. Patients were allowed to continue on doxorubicin beyond 600 mg/m2 if they were deriving benefit and were not demonstrating evidence of symptomatic cardiac dysfunction. RESULTS At interim analysis, upfront use of dexrazoxane with doxorubicin demonstrated a PFS of 8.4 months (95% confidence interval: 5.1-11.2 months). Only 3 patients were removed from study for cardiotoxicity, all on > 600 mg/m2 doxorubicin. No patients required cardiac hospitalization or had new, persistent cardiac dysfunction with left ventricular ejection fraction remaining below 50%. The median administered doxorubicin dose was 450 mg/m2 (interquartile range, 300-750 mg/m2). CONCLUSIONS At interim analysis, dexrazoxane did not reduce PFS in patients with STS treated with doxorubicin. Involvement of cardio-oncologists is beneficial for the monitoring and safe use of high-dose anthracyclines in STS.See related commentary by Benjamin and Minotti, p. 3809.
Collapse
Affiliation(s)
- Brian A Van Tine
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri.
- Division of Pediatric Hematology and Oncology, St. Louis Children's Hospital, St. Louis, Missouri
- Siteman Cancer Center, St. Louis, Missouri
| | - Angela C Hirbe
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
- Division of Pediatric Hematology and Oncology, St. Louis Children's Hospital, St. Louis, Missouri
- Siteman Cancer Center, St. Louis, Missouri
| | - Peter Oppelt
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, St. Louis, Missouri
| | - Ashley E Frith
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, St. Louis, Missouri
| | - Richa Rathore
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Joshua D Mitchell
- Siteman Cancer Center, St. Louis, Missouri
- Cardio-Oncology Center of Excellence, Washington University in St. Louis, St. Louis, Missouri
| | - Fei Wan
- Department of Biostatistics, Washington University in St. Louis, St. Louis, Missouri
| | - Shellie Berry
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Michele Landeau
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | | | - John Gorcsan
- Echocardiographic Core Laboratory, Washington University in St. Louis, St. Louis, Missouri
| | - Peter R Huntjens
- Echocardiographic Core Laboratory, Washington University in St. Louis, St. Louis, Missouri
| | - Yoku Soyama
- Echocardiographic Core Laboratory, Washington University in St. Louis, St. Louis, Missouri
| | - Justin M Vader
- Division of Cardiology, Washington University in St. Louis, St. Louis, Missouri
| | - Jose A Alvarez-Cardona
- Cardio-Oncology Center of Excellence, Washington University in St. Louis, St. Louis, Missouri
| | - Kathleen W Zhang
- Cardio-Oncology Center of Excellence, Washington University in St. Louis, St. Louis, Missouri
| | - Daniel J Lenihan
- Siteman Cancer Center, St. Louis, Missouri
- Cardio-Oncology Center of Excellence, Washington University in St. Louis, St. Louis, Missouri
| | - Ronald J Krone
- Cardio-Oncology Center of Excellence, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
38
|
Feitosa LADS, Carvalho JDS, Dantas CO, de Souza DS, de Vasconcelos CML, Miguel-Dos-Santos R, Lauton-Santos S, Quíntans-Júnior LJ, Santos MRV, de Santana-Filho VJ, Barreto AS. Resistance training improves cardiac function and cardiovascular autonomic control in doxorubicin-induced cardiotoxicity. Cardiovasc Toxicol 2021; 21:365-374. [PMID: 33387253 DOI: 10.1007/s12012-020-09627-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/14/2020] [Indexed: 02/02/2023]
Abstract
Doxorubicin (DOX) is an anticancer chemotherapy drug that is widely used in clinical practice. It is well documented that DOX impairs baroreflex responsiveness and left ventricular function and enhances sympathetic activity, cardiac sympathetic afferent reflexes and oxidative stress, which contribute to hemodynamic deterioration. Because resistance training (RT)-induced cardioprotection has been observed in other animal models, the objective of this study was to assess the effects of RT during DOX treatment on hemodynamics, arterial baroreflex, cardiac autonomic tone, left ventricular function and oxidative stress in rats with DOX-induced cardiotoxicity. Male Wistar rats were submitted to a RT protocol (3 sets of 10 repetitions, 40% of one-repetition maximum (1RM) of intensity, 3 times per week, for 8 weeks). The rats were separated into 3 groups: sedentary control, DOX sedentary (2.5 mg/kg of DOX intraperitoneal injection, once a week, for 6 weeks) and DOX + RT. After training or time control, the animals were anesthetized and 2 catheters were implanted for hemodynamic, arterial baroreflex and cardiac autonomic tone. Another group of animals was used to evaluate left ventricular function. We found that RT in DOX-treated rats decreased diastolic arterial pressure, heart rate, sympathetic tone and oxidative stress. In addition, RT increased arterial baroreflex sensitivity, vagal tone and left ventricular developed pressure in rats with DOX-induced cardiotoxicity. In summary, RT is a useful non-pharmacological strategy to attenuate DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
| | | | - Cácia Oliveira Dantas
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Diego Santos de Souza
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Rodrigo Miguel-Dos-Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Cardiac Exercise Research Group, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sandra Lauton-Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | | | - André Sales Barreto
- Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| |
Collapse
|
39
|
Wu J, Ni Y, Gu C, Gu X, Ji H, Li L, Zhu J, Huang L, Qiao Z. Study of effects of anthracycline drugs on myocardial function in breast cancer patients by quantitative analysis of layer-specific strain via 2D-STI technology. Am J Transl Res 2021; 13:1184-1196. [PMID: 33841648 PMCID: PMC8014361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This study aimed to explore the value of layer-specific strain analysis by two-dimensional speckle tracking imaging (2D-STI) in the assessment of myocardial toxicity in breast cancer patients receiving anthracycline chemotherapy. METHODS Thirty-four breast cancer patients receiving anthracycline chemotherapy were prospectively enrolled. Conventional echocardiography and 2D-STI were evaluated at baseline after the third and sixth cycles of anthracycline chemotherapy. The strains of different layers of left ventricle (LV) including peak systolic longitudinal strain (endo-LS, mid-LS, epi-LS) and circumferential strain (endo-CS, mid-CS, epi-CS) were measured using EchoPAC analysis software. Peak systolic longitudinal strain (MV-LS, PM-LS, AP-LS), circumferential strain (MV-CS, PM-CS, AP-CS) and radial strain (MV-RS, PM-RS, AP-RS) were measured at mitral valve, papillary muscle and apex levels of LV respectively. Global longitudinal strain (GLS), global circumferential strain (GCS), global radial strain (GRS), and left ventricular twist (LVtw) were also analyzed. RESULTS There was no significant difference in the structural and functional parameters of conventional 2D echocardiography in different cycles of anthracycline chemotherapy (P>0.05); layer specific LS and CS in various cycles decreased layer by layer from inside to outside. LS and CS increased from basal segment to apical segment, while RS showed no obvious gradient characteristics; compared with baseline, GLS and LSs (endo-PM, endo-AP, mid-PM, mid-AP and epi-AP) of LV decreased significantly after the third cycle of chemotherapy (P<0.05); LSs (epi-MV and epi-AP) decreased significantly after the sixth cycle of chemotherapy (P<0.05). No significant changes were detected in layer specific CS, RS and LVtw (P>0.05). CONCLUSION Layer-specific strain analysis by 2D-STI technology can quantitatively analyze global and regional functions of LV. The myocardial toxicity due to anthracycline chemotherapy can be detected by layer-specific LS of LV in early stage, which is great valuable to guiding clinical early intervention and improving prognosis.
Collapse
Affiliation(s)
- Jing Wu
- Department of Ultrasound, Nantong Third People’s Hospital, Nantong UniversityNantong, Jiangsu Province, China
| | - Yi Ni
- Breast Surgery, Nantong Third People’s Hospital, Nantong UniversityNantong, Jiangsu Province, China
| | - Changjiang Gu
- Department of Breast Surgery, Affiliated Hospital of Nantong UniversityNantong, Jiangsu Province, China
| | - Xingxing Gu
- Department of Ultrasound, Nantong Third People’s Hospital, Nantong UniversityNantong, Jiangsu Province, China
| | - Hanzhen Ji
- Library, Nantong Third People’s Hospital, Nantong UniversityNantong, Jiangsu Province, China
| | - Liqing Li
- Department of Ultrasound, Nantong Third People’s Hospital, Nantong UniversityNantong, Jiangsu Province, China
| | - Jia Zhu
- Department of Ultrasound, Nantong Third People’s Hospital, Nantong UniversityNantong, Jiangsu Province, China
| | - Lihong Huang
- Department of Biostatistics, Zhongshan Hospital, Fudan UniversityShanghai City, China
| | - Zhiqing Qiao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai City, China
| |
Collapse
|
40
|
Ahmed LA, Abdou FY, El Fiky AA, Shaaban EA, Ain-Shoka AA. Bradykinin-Potentiating Activity of a Gamma-Irradiated Bioactive Fraction Isolated from Scorpion (Leiurus quinquestriatus) Venom in Rats with Doxorubicin-Induced Acute Cardiotoxicity: Favorable Modulation of Oxidative Stress and Inflammatory, Fibrogenic and Apoptotic Pathways. Cardiovasc Toxicol 2021; 21:127-141. [PMID: 32860604 DOI: 10.1007/s12012-020-09602-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Although doxorubicin (Dox) is a backbone of chemotherapy, the search for an effective and safe therapy to revoke Dox-induced acute cardiotoxicity remains a critical matter in cardiology and oncology. The current study was the first to explore the probable protective effects of native and gamma-irradiated fractions with bradykinin-potentiating activity (BPA) isolated from scorpion (Leiurus quinquestriatus) venom against Dox-induced acute cardiotoxicity in rats. Native or irradiated fractions (1 μg/g) were administered intraperitoneally (i.p.) twice per week for 3 weeks, and Dox (15 mg/kg, i.p.) was administered on day 21 at 1 h after the last native or irradiated fraction treatment. Electrocardiographic (ECG) aberrations were ameliorated in the Dox-treated rats pretreated with the native fraction, and the irradiated fraction provided greater amelioration of ECG changes than that of the native fraction. The group pretreated with native protein with BPA also exhibited significant improvements in the levels of oxidative stress-related, inflammatory, angiogenic, fibrogenic, and apoptotic markers compared with those of the Dox group. Notably, the irradiated fraction restored these biomarkers to their normal levels. Additionally, the irradiated fraction ameliorated Dox-induced histological changes and alleviated the severity of cardiac injury to a greater extent than that of the native fraction. In conclusion, the gamma-irradiated detoxified fraction of scorpion venom elicited a better cardioprotective effect than that of the native fraction against Dox-induced acute cardiotoxicity in rats.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Fatma Y Abdou
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Nasr, Cairo, Egypt
| | - Abir A El Fiky
- ANDI Center of Excellence in Antivenom Research, Vacsera, Egypt
| | - Esmat A Shaaban
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Nasr, Cairo, Egypt
| | - Afaf A Ain-Shoka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
41
|
Carrasco R, Castillo RL, Gormaz JG, Carrillo M, Thavendiranathan P. Role of Oxidative Stress in the Mechanisms of Anthracycline-Induced Cardiotoxicity: Effects of Preventive Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8863789. [PMID: 33574985 PMCID: PMC7857913 DOI: 10.1155/2021/8863789] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/29/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022]
Abstract
Anthracycline-induced cardiotoxicity (AIC) persists as a significant cause of morbidity and mortality in cancer survivors. Although many protective strategies have been evaluated, cardiotoxicity remains an ongoing threat. The mechanisms of AIC remain unclear; however, several pathways have been proposed, suggesting a multifactorial origin. When the central role of topoisomerase 2β in the pathophysiology of AIC was described some years ago, the classical reactive oxygen species (ROS) hypothesis shifted to a secondary position. However, new insights have reemphasized the importance of the role of oxidative stress-mediated signaling as a common pathway and a critical modulator of the different mechanisms involved in AIC. A better understanding of the mechanisms of cardiotoxicity is crucial for the development of treatment strategies. It has been suggested that the available therapeutic interventions for AIC could act on the modulation of oxidative balance, leading to a reduction in oxidative stress injury. These indirect antioxidant effects make them an option for the primary prevention of AIC. In this review, our objective is to provide an update of the accumulated knowledge on the role of oxidative stress in AIC and the modulation of the redox balance by potential preventive strategies.
Collapse
Affiliation(s)
- Rodrigo Carrasco
- Division of Cardiology, Peter Munk Cardiac Centre and the Ted Rogers Centre for Heart Research, University Health Network, Toronto, Ontario, Canada
| | - Rodrigo L. Castillo
- Medicine Department, East Division, Faculty of Medicine, University of Chile. Santiago, Chile; Critical Care Patient Unit, Hospital Salvador, Santiago, Chile
| | - Juan G. Gormaz
- Faculty of Medicine, University of Chile, Santiago, Chile
| | - Montserrat Carrillo
- Division of Cardiology, Peter Munk Cardiac Centre and the Ted Rogers Centre for Heart Research, University Health Network, Toronto, Ontario, Canada
| | - Paaladinesh Thavendiranathan
- Division of Cardiology, Peter Munk Cardiac Centre and the Ted Rogers Centre for Heart Research, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Monahan DS, Almas T, Wyile R, Cheema FH, Duffy GP, Hameed A. Towards the use of localised delivery strategies to counteract cancer therapy-induced cardiotoxicities. Drug Deliv Transl Res 2021; 11:1924-1942. [PMID: 33449342 DOI: 10.1007/s13346-020-00885-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Cancer therapies have significantly improved cancer survival; however, these therapies can often result in undesired side effects to off target organs. Cardiac disease ranging from mild hypertension to heart failure can occur as a result of cancer therapies. This can warrant the discontinuation of cancer treatment in patients which can be detrimental, especially when the treatment is effective. There is an urgent need to mitigate cardiac disease that occurs as a result of cancer therapy. Delivery strategies such as the use of nanoparticles, hydrogels, and medical devices can be used to localise the treatment to the tumour and prevent off target side effects. This review summarises the advancements in localised delivery of anti-cancer therapies to tumours. It also examines the localised delivery of cardioprotectants to the heart for patients with systemic disease such as leukaemia where localised tumour delivery might not be an option.
Collapse
Affiliation(s)
- David S Monahan
- Anatomy & Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Science, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland.,Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Talal Almas
- School of Medicine, RCSI University of Medicine and Health Sciences, 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Robert Wyile
- Anatomy & Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Science, National University of Ireland Galway, Galway, Ireland
| | - Faisal H Cheema
- HCA Healthcare, Gulf Coast Division, Houston, TX, USA.,College of Medicine, University of Houston, Houston, TX, USA
| | - Garry P Duffy
- Anatomy & Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Science, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland.,Tissue Engineering Research Group (TERG), Department of Anatomy, RCSI University of Medicine and Health Sciences, 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland.,Advanced Materials for Biomedical Engineering and Regenerative Medicine (AMBER), National University of Ireland, Trinity College Dublin &, Galway, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Aamir Hameed
- Tissue Engineering Research Group (TERG), Department of Anatomy, RCSI University of Medicine and Health Sciences, 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland. .,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland.
| |
Collapse
|
43
|
Ben Abdallah I, Ben Nasr S, Chourabi C, Boukhris M, Ben Abdallah I, Zribi A, Fendri S, Balti M, Fehri W, Chraiet N, Haddaoui A. The Predictive Value of 2D Myocardial Strain for Epirubicin-Induced Cardiotoxicity. JOURNAL OF ONCOLOGY 2020; 2020:5706561. [PMID: 33335549 PMCID: PMC7723482 DOI: 10.1155/2020/5706561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/06/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Although epirubicin has significantly improved outcome in breast cancer (BC) patients, it is responsible for myocardial dysfunction that affects patients' quality of life. The use of 2D global longitudinal strain (GLS) has been reported to detect early myocardial dysfunction. The aim of this study was to evaluate how GLS changes can predict cardiotoxicity. METHODS We conducted a prospective study from March 2018 to March 2020 on 66 patients with no cardiovascular risk factors, who presented with BC and received epirubicin. We measured left ventricular ejection fraction (LVEF) and GLS before chemotherapy, at three months (T3), and at 12 months (T12) from the last epirubicin infusion. Chemotherapy-Related-Cardiac-Dysfunction (CTRCD) was defined as a decrease of 10% in LVEF to a value below 53% according to ASE and EACI 2014 expert consensus. RESULTS The mean age at diagnosis was 47 ± 9 years old. At baseline, median LVEF was 70% and median GLS was -21%. Shortly after chemotherapy completion, two patients presented with symptomatic heart failure while asymptomatic CTRCD was revealed in three other patients at T12. Three months after the last epirubicin infusion, median LVEF was 65%, median GLS was -19%, and median GLS variation was 5%. However, in patients who presented with subsequent CTRCD, median GLS at T3 was -16% and median GLS variation was 19% (p=0.002 and p < 0.001, respectively, when compared to patients who did not develop cardiotoxicity). Persistent GLS decrease at T3 was an independent predictor of CTRCD at T12. Age and left-sided thoracic irradiation did not increase the risk of cardiotoxicity in our study while the cumulative dose of epirubicin significantly affected cardiologic findings (p=0.001). CONCLUSION This was the first North African study that assesses the value of measuring GLS to early detect cardiotoxicity. Patients whose GLS remained decreased after 3 months from anthracyclines-base chemotherapy had an increased risk for developing subsequent CTRCD. Further studies with larger sample size are warranted to identify the best cardioprotective molecules to be initiated in these patients before LVEF declines.
Collapse
Affiliation(s)
- Ichrak Ben Abdallah
- Department of Medical Oncology, Military Hospital of Tunis, Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis 1007, Tunisia
| | - Sonia Ben Nasr
- Department of Medical Oncology, Military Hospital of Tunis, Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis 1007, Tunisia
| | - Chadia Chourabi
- Department of Cardiology, Military Hospital of Tunis Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis 1007, Tunisia
| | - Marouane Boukhris
- Division of Cardiology, Centre Hospitalier de l'université de Montréal, Montreal, Québec, Canada
| | - Israa Ben Abdallah
- Department of Business Analytics, Tunis Business School, El Mourouj, Tunisia
| | - Aref Zribi
- Department of Medical Oncology, Military Hospital of Tunis, Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis 1007, Tunisia
| | - Sana Fendri
- Department of Medical Oncology, Military Hospital of Tunis, Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis 1007, Tunisia
| | - Mehdi Balti
- Department of Medical Oncology, Military Hospital of Tunis, Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis 1007, Tunisia
| | - Wafa Fehri
- Department of Cardiology, Military Hospital of Tunis Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis 1007, Tunisia
| | - Nesrine Chraiet
- Department of Medical Oncology, Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis 1007, Tunisia
| | - Abderrazek Haddaoui
- Department of Medical Oncology, Military Hospital of Tunis, Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis 1007, Tunisia
| |
Collapse
|
44
|
Bredahl EC, Najdawi W, Pass C, Siedlik J, Eckerson J, Drescher K. Use of Creatine and Creatinine to Minimize Doxorubicin-Induced Cytotoxicity in Cardiac and Skeletal Muscle Myoblasts. Nutr Cancer 2020; 73:2597-2604. [PMID: 33135456 DOI: 10.1080/01635581.2020.1842893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Doxorubicin (DOX), an effective anticancer agent, can damage cardiac and skeletal muscle tissue via excessive generation of reactive oxygen species (ROS). Supplemental creatine (Cr) has been shown to have a therapeutic role in disease states characterized by increased oxidative stress. To investigate the effects of Cr and creatinine (CrN) on DOX-induced cytotoxicity. Cultured L6 and H9C2 myoblasts were exposed to 25 μM DOX, 10 mM Cr, 10 mM CrN, 25 μM DOX + 10 mM Cr, 25 μM DOX + 10 mM CrN, or control media for 12 h. Viability was assessed using Confocal and Widefield imaging. Immunoblotting was used to determine protein expression. Viability was lowest in the DOX-treated group regardless of cell type; however, when DOX was combined with Cr or CrN, viability was improved. Levels of oxidative stress, as measured by 4-hydroxynonenal (4HNE), were significantly (p < 0.05) higher in the DOX treated cells vs. controls; however, Cr + DOX and CrN + DOX significantly lowered 4HNE levels compared to DOX-treated cells. Creatine kinase (CK), a key marker of cellular damage, was significantly higher in DOX-treated H9c2 cells vs. controls. However, Cr or CrN in combination with DOX, resulted in no significant differences in CK vs. controls. Supplementation with Cr or CrN may preserve cell viability during DOX treatment.
Collapse
Affiliation(s)
- Eric Christopher Bredahl
- Department of Exercise Science & Pre-Health Professions, Creighton University, Omaha, Nebraska, USA
| | - Wisam Najdawi
- Department of Exercise Science & Pre-Health Professions, Creighton University, Omaha, Nebraska, USA
| | - Caroline Pass
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Jake Siedlik
- Department of Exercise Science & Pre-Health Professions, Creighton University, Omaha, Nebraska, USA
| | - Joan Eckerson
- Department of Exercise Science & Pre-Health Professions, Creighton University, Omaha, Nebraska, USA
| | - Kristen Drescher
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
| |
Collapse
|
45
|
Petrykey K, Andelfinger GU, Laverdière C, Sinnett D, Krajinovic M. Genetic factors in anthracycline-induced cardiotoxicity in patients treated for pediatric cancer. Expert Opin Drug Metab Toxicol 2020; 16:865-883. [DOI: 10.1080/17425255.2020.1807937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kateryna Petrykey
- Immune Diseases and Cancer, Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Université De Montréal (Quebec), Montreal, Canada
| | - Gregor U. Andelfinger
- Department of Pediatrics, Université De Montréal (Quebec), Canada
- Fetomaternal and Neonatal Pathologies, Sainte-JustineUniversity Health Center (SJUHC), Montreal, Quebec, Canada
| | - Caroline Laverdière
- Immune Diseases and Cancer, Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pediatrics, Université De Montréal (Quebec), Canada
| | - Daniel Sinnett
- Immune Diseases and Cancer, Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pediatrics, Université De Montréal (Quebec), Canada
| | - Maja Krajinovic
- Immune Diseases and Cancer, Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Université De Montréal (Quebec), Montreal, Canada
- Department of Pediatrics, Université De Montréal (Quebec), Canada
| |
Collapse
|
46
|
Koleva L, Bovt E, Ataullakhanov F, Sinauridze E. Erythrocytes as Carriers: From Drug Delivery to Biosensors. Pharmaceutics 2020; 12:E276. [PMID: 32197542 PMCID: PMC7151026 DOI: 10.3390/pharmaceutics12030276] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022] Open
Abstract
Drug delivery using natural biological carriers, especially erythrocytes, is a rapidly developing field. Such erythrocytes can act as carriers that prolong the drug's action due to its gradual release from the carrier; as bioreactors with encapsulated enzymes performing the necessary reactions, while remaining inaccessible to the immune system and plasma proteases; or as a tool for targeted drug delivery to target organs, primarily to cells of the reticuloendothelial system, liver and spleen. To date, erythrocytes have been studied as carriers for a wide range of drugs, such as enzymes, antibiotics, anti-inflammatory, antiviral drugs, etc., and for diagnostic purposes (e.g. magnetic resonance imaging). The review focuses only on drugs loaded inside erythrocytes, defines the main lines of research for erythrocytes with bioactive substances, as well as the advantages and limitations of their application. Particular attention is paid to in vivo studies, opening-up the potential for the clinical use of drugs encapsulated into erythrocytes.
Collapse
Affiliation(s)
- Larisa Koleva
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| | - Elizaveta Bovt
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| | - Fazoil Ataullakhanov
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
- Department of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow 119991, Russia
| | - Elena Sinauridze
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| |
Collapse
|
47
|
Ajzashokouhi AH, Bostan HB, Jomezadeh V, Hayes AW, Karimi G. A review on the cardioprotective mechanisms of metformin against doxorubicin. Hum Exp Toxicol 2020; 39:237-248. [PMID: 31735071 DOI: 10.1177/0960327119888277] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Doxorubicin (DOX) is an antineoplastic agent obtained from Streptomyces peucetius. It is utilized in treating different kinds of cancers, such as leukemia, lymphoma, and lung, and breast cancers. The main side effect of DOX is cardiotoxicity. Metformin (MET) is an antihyperglycemic drug used for type 2 diabetes treatment. It is proposed that MET has a protective effect against DOX cardiotoxicity. Our review demonstrated that MET has several possible mechanisms of action, which can prevent or at least reduce DOX cardiotoxicity including a decrease of free radical generation and oxidative stress, 5' adenosine monophosphate-activated protein kinase activation, and ferritin heavy chain expression in cardiomyocytes cells. The combination of MET and DOX has been shown to enhance the anticancer activity of DOX by a number of authors. The literature reviewed in the present report supports the hypothesis that MET can reduce the cardiotoxicity that often occurs with DOX treatment.
Collapse
Affiliation(s)
- A H Ajzashokouhi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H B Bostan
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - V Jomezadeh
- Department of Surgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A W Hayes
- University of South Florida, Tampa, FL, USA
- Michigan State University, East Lansing, MI, USA
| | - G Karimi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Shati AA. Doxorubicin-induces NFAT/Fas/FasL cardiac apoptosis in rats through activation of calcineurin and P38 MAPK and inhibition of mTOR signalling pathways. Clin Exp Pharmacol Physiol 2020; 47:660-676. [PMID: 31811646 DOI: 10.1111/1440-1681.13225] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 01/06/2023]
Abstract
This study investigated the role of NFAT/Fas/FasL axis in cardiomyocyte apoptosis following doxorubicin (DOX) treatment in rats and evaluated the involvement and regulation of all NFAT members in cardiac apoptosis. Forty adult male Wistar rats were divided equally into control or DOX-treated groups (15 mg/kg over 2 weeks). Cardiomyocytes were cultured and pre-incubated with various inhibitors and activators (10 μmol/L) prior to DOX exposure (1 μmol/L). In the left ventricles and cultured cells, DOX increased cytoplasmic protein levels of cytochrome C, Bax and increased the activities of caspase-8, caspase3, ERK1/2, JNK, and P38 mitogen-activated protein kinases (MAPKs), reducing levels of Bcl-2 and the activity of mTOR, and inducing cell death. In addition, DOX enhanced mRNA and protein levels of Fas and FasL. Furthermore, the nuclear and cytoplasmic levels of NFAT1 and nuclear accumulation of NFAT2-4were increased with DOX treatment. The inhibition of calcineurin with FK506 significantly inhibited the nuclear levels of NFAT2 and NFAT4 and the inhibition of P38 MAPK with SB203580 inhibited the nuclear and cytoplasmic accumulation of NFAT1. However, the activation of mTOR by IGF-1 significantly lowered NFAT3. In conclusion, NFAT/Fas/FasL-induced cell death in cardiac myocytes of DOX-treated rats is regulated, at least, by the activation of calcineurin and P38 MAPK and inhibition of mTOR.
Collapse
Affiliation(s)
- Ali A Shati
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
49
|
Lin K, Lengacher C. Anthracycline Chemotherapy–Induced Cardiotoxicity in Breast Cancer Survivors: A Systematic Review. Oncol Nurs Forum 2019; 46:E145-E158. [DOI: 10.1188/19.onf.e145-e158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Clark RA, Marin TS, McCarthy AL, Bradley J, Grover S, Peters R, Karapetis CS, Atherton JJ, Koczwara B. Cardiotoxicity after cancer treatment: a process map of the patient treatment journey. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2019; 5:14. [PMID: 32154020 PMCID: PMC7048085 DOI: 10.1186/s40959-019-0046-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND/AIM Cardiotoxicity is a potential complication of anticancer therapy. While guidelines have been developed to assist practitioners, an effective, evidence based clinical pathway for the treatment of cardiotoxicity has not yet been developed. The aim of this study was to describe the journey of patients who developed cardiotoxicity through the healthcare system in order to establish baseline data to inform the development and implementation of a patient-centred, evidence-based clinical pathway. METHODS Mixed-methods design with quantitative and qualitative components using process mapping at 3 large medical centres in 2 states between 2010 and 2015. RESULTS Fifty (50) confirmed cases of cardiotoxicity were reviewed (39 medical record reviews, 7 medical record review and interviews and 4 internview only). The mean age at cancer diagnosis of this group was 53.3 years (range 6-89 years); 50% female; 30% breast cancer, 23% non-Hodgkin's lymphoma; mean chemotherapy cycles 5.2 (median 6; range 1-18); 49 (89%) presented to chemotherapy with pre-existing cardiovascular risk factors; 39 (85%) had at least one modifiable risk factor and 11 (24%) had more than 4; 44 (96%) were diagnosed by echocardiogram and 27 (57%) were referred to a cardiologist (only 7 (15%) before chemotherapy). Post chemotherapy, 22 (48%) patients were referred to a multidisciplinary heart failure clinic; 8 (17%) to cardiac rehabilitation; 1 (2%) to cancer survivorship clinic and 10 (22%) to a palliative care service. There were 16 (34%) deaths during the timeframe of the study; 4 (25%) cardiac-related, 6 (38%) cancer-related, 4 (25%) due to sepsis and 2 (12%) other causes not recorded. The main concerns participants raised during the interviews were cancer professionals not discussing the potential for cardiotoxicity with them prior to treatment, nor risk modification strategies; a need for health education, particularly regarding risks for developing heart failure related to cancer treatment; and a lack of collaboration between oncologists and cardiologists. CONCLUSIONS Our results demonstrate that the clinical management of cancer patients with cardiotoxicity was variable and fragmented and not patient centered. This audit establishes practice gaps that can be addressed through the design of an evidence-based clinical pathway for cancer patients with, or at risk, of cardiotoxicity.
Collapse
Affiliation(s)
- Robyn A. Clark
- College of Nursing and Health Sciences, Flinders University, Adelaide, SA Australia
| | - Tania S. Marin
- Acute Care & Cardiovascular Research, College of Nursing and Health Sciences, Flinders University, Adelaide, SA Australia
| | - Alexandra L. McCarthy
- Faculty of Health and Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Julie Bradley
- Royal Adelaide Hospital, North Terrace, Adelaide, SA Australia
| | - Suchi Grover
- Flinders Cardiac Clinic, Flinders Private Hospital, Bedford Park, Adelaide, SA Australia
| | - Robyn Peters
- Heart Recovery Service, Cardiology Department, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Qld Australia
- The University of Queensland, St Lucia Campus, St Lucia, Qld Australia
| | - Christos S. Karapetis
- Department of Medical Oncology and Medical Oncology Clinical Research, Flinders Medical Centre, Flinders Drive, Bedford Park, SA Australia
- Southern Area Local Health Network, SA Health, Adelaide, Australia
- Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA Australia
| | - John J. Atherton
- Royal Brisbane and Women’s Hospital, University of Queensland School of Medicine, Butterfield St & Bowen Bridge Rd, Herston, Qld Australia
| | - Bogda Koczwara
- Flinders Centre for Innovation in Cancer, Flinders Drive, Bedford Park, SA Australia
- Flinders University, Adelaide, SA Australia
| |
Collapse
|