1
|
Metallinou D, Karampas G, Pavlou ML, Louma MI, Mantzou A, Sarantaki A, Nanou C, Gourounti K, Tzeli M, Pantelaki N, Tzamakos E, Boutsikou T, Lykeridou A, Iacovidou N. Serum Neuron-Specific Enolase as a Biomarker of Neonatal Brain Injury-New Perspectives for the Identification of Preterm Neonates at High Risk for Severe Intraventricular Hemorrhage. Biomolecules 2024; 14:434. [PMID: 38672451 PMCID: PMC11048112 DOI: 10.3390/biom14040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Neonatal brain injury (NBI) is a critical condition for preterm neonates with potential long-term adverse neurodevelopmental outcomes. This prospective longitudinal case-control study aimed at investigating the levels and prognostic value of serum neuron-specific enolase (NSE) during the first 3 days of life in preterm neonates (<34 weeks) that later developed brain injury in the form of either periventricular leukomalacia (PVL) or intraventricular hemorrhage (IVH) during their hospitalization. Participants were recruited from one neonatal intensive care unit, and on the basis of birth weight and gestational age, we matched each case (n = 29) with a neonate who had a normal head ultrasound scan (n = 29). We report that serum NSE levels during the first three days of life do not differ significantly between control and preterm neonates with NBI. Nevertheless, subgroup analysis revealed that neonates with IVH had significantly higher concentrations of serum NSE in comparison to controls and neonates with PVL on the third day of life (p = 0.014 and p = 0.033, respectively). The same pattern on the levels of NSE on the third day of life was also observed between (a) neonates with IVH and all other neonates (PVL and control; p = 0.003), (b) neonates with II-IV degree IVH and all other neonates (p = 0.003), and (c) between control and the five (n = 5) neonates that died from the case group (p = 0.023). We conclude that NSE could be an effective and useful biomarker on the third day of life for the identification of preterm neonates at high risk of developing severe forms of IVH.
Collapse
Affiliation(s)
- Dimitra Metallinou
- Department of Midwifery, University of West Attica, 12243 Athens, Greece; (M.-L.P.); (A.S.); (C.N.); (K.G.); (M.T.); (N.P.); (E.T.); (A.L.)
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Grigorios Karampas
- Second Department of Obstetrics and Gynaecology, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Maria-Loukia Pavlou
- Department of Midwifery, University of West Attica, 12243 Athens, Greece; (M.-L.P.); (A.S.); (C.N.); (K.G.); (M.T.); (N.P.); (E.T.); (A.L.)
| | - Maria-Ioanna Louma
- Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Aimilia Mantzou
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Medical School, Aghia Sophia Children’s Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Antigoni Sarantaki
- Department of Midwifery, University of West Attica, 12243 Athens, Greece; (M.-L.P.); (A.S.); (C.N.); (K.G.); (M.T.); (N.P.); (E.T.); (A.L.)
| | - Christina Nanou
- Department of Midwifery, University of West Attica, 12243 Athens, Greece; (M.-L.P.); (A.S.); (C.N.); (K.G.); (M.T.); (N.P.); (E.T.); (A.L.)
| | - Kleanthi Gourounti
- Department of Midwifery, University of West Attica, 12243 Athens, Greece; (M.-L.P.); (A.S.); (C.N.); (K.G.); (M.T.); (N.P.); (E.T.); (A.L.)
| | - Maria Tzeli
- Department of Midwifery, University of West Attica, 12243 Athens, Greece; (M.-L.P.); (A.S.); (C.N.); (K.G.); (M.T.); (N.P.); (E.T.); (A.L.)
| | - Nikoletta Pantelaki
- Department of Midwifery, University of West Attica, 12243 Athens, Greece; (M.-L.P.); (A.S.); (C.N.); (K.G.); (M.T.); (N.P.); (E.T.); (A.L.)
| | - Evangelos Tzamakos
- Department of Midwifery, University of West Attica, 12243 Athens, Greece; (M.-L.P.); (A.S.); (C.N.); (K.G.); (M.T.); (N.P.); (E.T.); (A.L.)
| | - Theodora Boutsikou
- Department of Neonatology, School of Medicine, Aretaieio Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (T.B.); (N.I.)
| | - Aikaterini Lykeridou
- Department of Midwifery, University of West Attica, 12243 Athens, Greece; (M.-L.P.); (A.S.); (C.N.); (K.G.); (M.T.); (N.P.); (E.T.); (A.L.)
| | - Nicoletta Iacovidou
- Department of Neonatology, School of Medicine, Aretaieio Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (T.B.); (N.I.)
| |
Collapse
|
2
|
Bruschettini M, Badura A, Romantsik O. Stem cell-based interventions for the treatment of stroke in newborn infants. Cochrane Database Syst Rev 2023; 11:CD015582. [PMID: 37994736 PMCID: PMC10666199 DOI: 10.1002/14651858.cd015582.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
BACKGROUND Perinatal stroke refers to a diverse but specific group of cerebrovascular diseases that occur between 20 weeks of fetal life and 28 days of postnatal life. Acute treatment options for perinatal stroke are limited supportive care, such as controlling hypoglycemia and seizures. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, or regenerate injured brain tissue. Preclinical findings have culminated in ongoing human neonatal studies. OBJECTIVES To evaluate the benefits and harms of stem cell-based interventions for the treatment of stroke in newborn infants compared to control (placebo or no treatment) or stem-cell based interventions of a different type or source. SEARCH METHODS We searched CENTRAL, PubMed, Embase, and three trials registries in February 2023. We planned to search the reference lists of included studies and relevant systematic reviews for studies not identified by the database searches. SELECTION CRITERIA We attempted to include randomized controlled trials, quasi-randomized controlled trials, and cluster trials that evaluated any of the following comparisons. • Stem cell-based interventions (any type) versus control (placebo or no treatment) • Mesenchymal stem/stromal cells (MSCs) of a specifictype (e.g. number of doses or passages) or source (e.g. autologous/allogeneic or bone marrow/cord) versus MSCs of another type or source • Stem cell-based interventions (other than MSCs) of a specific type (e.g. mononuclear cells, oligodendrocyte progenitor cells, neural stem cells, hematopoietic stem cells, or induced pluripotent stem cell-derived cells) or source (e.g. autologous/allogeneic or bone marrow/cord) versus stem cell-based interventions (other than MSCs) of another type or source • MSCs versus stem cell-based interventions other than MSCs We planned to include all types of transplantation regardless of cell source (bone marrow, cord blood, Wharton's jelly, placenta, adipose tissue, peripheral blood), type of graft (autologous or allogeneic), and dose. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were all-cause neonatal mortality, major neurodevelopmental disability, and immune rejection or any serious adverse event. Our secondary outcomes included all-cause mortality prior to first hospital discharge, seizures, adverse effects, and death or major neurodevelopmental disability at 18 to 24 months of age. We planned to use GRADE to assess the certainty of evidence for each outcome. MAIN RESULTS We identified no completed or ongoing randomized trials that met our inclusion criteria. We excluded three studies: two were phase 1 trials, and one included newborn infants with conditions other than stroke (i.e. cerebral ischemia and anemia). Among the three excluded studies, we identified the first phase 1 trial on the use of stem cells for neonatal stroke. It reported that a single intranasal application of bone marrow-derived MSCs in term neonates with a diagnosis of perinatal arterial ischemic stroke (PAIS) was feasible and apparently not associated with severe adverse events. However, the trial included only 10 infants, and follow-up was limited to three months. AUTHORS' CONCLUSIONS No evidence is currently available to evaluate the benefits and harms of stem cell-based interventions for treatment of stroke in newborn infants. We identified no ongoing studies. Future clinical trials should focus on standardizing the timing and method of cell delivery and cell processing to optimize the therapeutic potential of stem cell-based interventions and safety profiles. Phase 1 and large animal studies might provide the groundwork for future randomized trials. Outcome measures should include all-cause mortality, major neurodevelopmental disability and immune rejection, and any other serious adverse events.
Collapse
Affiliation(s)
- Matteo Bruschettini
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Department of Research and Education, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anna Badura
- Department of Neonatology, University Children's Hospital Regensburg, Hospital St Hedwig of the Order of St John, University of Regensburg, Regensburg, Germany
| | - Olga Romantsik
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
3
|
Salafutdinov II, Gatina DZ, Markelova MI, Garanina EE, Malanin SY, Gazizov IM, Izmailov AA, Rizvanov AA, Islamov RR, Palotás A, Safiullov ZZ. A Biosafety Study of Human Umbilical Cord Blood Mononuclear Cells Transduced with Adenoviral Vector Carrying Human Vascular Endothelial Growth Factor cDNA In Vitro. Biomedicines 2023; 11:2020. [PMID: 37509661 PMCID: PMC10377014 DOI: 10.3390/biomedicines11072020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The biosafety of gene therapy remains a crucial issue for both the direct and cell-mediated delivery of recombinant cDNA encoding biologically active molecules for the pathogenetic correction of congenital or acquired disorders. The diversity of vector systems and cell carriers for the delivery of therapeutic genes revealed the difficulty of developing and implementing a safe and effective drug containing artificial genetic material for the treatment of human diseases in practical medicine. Therefore, in this study we assessed changes in the transcriptome and secretome of umbilical cord blood mononuclear cells (UCB-MCs) genetically modified using adenoviral vector (Ad5) carrying cDNA encoding human vascular endothelial growth factor (VEGF165) or reporter green fluorescent protein (GFP). A preliminary analysis of UCB-MCs transduced with Ad5-VEGF165 and Ad5-GFP with MOI of 10 showed efficient transgene expression in gene-modified UCB-MCs at mRNA and protein levels. The whole transcriptome sequencing of native UCB-MCs, UCB-MC+Ad5-VEGF165, and UCB-MC+Ad5-GFP demonstrated individual sample variability rather than the effect of Ad5 or the expression of recombinant vegf165 on UCB-MC transcriptomes. A multiplex secretome analysis indicated that neither the transduction of UCB-MCs with Ad5-GFP nor with Ad5-VEGF165 affects the secretion of the studied cytokines, chemokines, and growth factors by gene-modified cells. Here, we show that UCB-MCs transduced with Ad5 carrying cDNA encoding human VEGF165 efficiently express transgenes and preserve transcriptome and secretome patterns. This data demonstrates the biosafety of using UCB-MCs as cell carriers of therapeutic genes.
Collapse
Affiliation(s)
- Ilnur I Salafutdinov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Dilara Z Gatina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Maria I Markelova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Ekaterina E Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Sergey Yu Malanin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Ilnaz M Gazizov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
| | - Andrei A Izmailov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Rustem R Islamov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
| | - András Palotás
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Asklepios-Med (Private Medical Practice and Research Center), H-6722 Szeged, Hungary
- Tokaj-Hegyalja University, H-3910 Tokaj, Hungary
| | - Zufar Z Safiullov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
| |
Collapse
|
4
|
Efstathiou N, Soubasi V, Koliakos G, Kantziou K, Kyriazis G, Slavakis A, Dermentzoglou V, Michalettou I, Drosou-Agakidou V. Beyond brain injury biomarkers: chemoattractants and circulating progenitor cells as biomarkers of endogenous rehabilitation effort in preterm neonates with encephalopathy. Front Pediatr 2023; 11:1151787. [PMID: 37292373 PMCID: PMC10244884 DOI: 10.3389/fped.2023.1151787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/26/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Preclinical work and studies in adults have shown that endogenous regeneration efforts that involve mobilization of progenitor cells take place after brain injury. However, kinetics of endogenous circulating progenitor cells (CPCs) in preterm neonates is not well described, particularly their possible role regarding brain injury and regeneration. We aimed to assess the kinetics of CPCs in neonates with encephalopathy of prematurity in relation to brain injury biomarkers, chemoattractants and relevant antenatal and postanal clinical factors, in an effort to outline the related pathophysiology. Materials and methods 47 preterm neonates (of 28-33 weeks GA) were enrolled: 31 newborns with no or minimal brain injury (grade I IVH) and 16 prematures with encephalopathy (grade III or IV IVH, PVL or infarct). Peripheral blood samples obtained on days 1, 3, 9, 18 and 45 after birth were analyzed using flow cytometry, focusing on EPCs (early and late Endothelial Progenitor Cells), HSCs (Hematopoietic Stem Cells) and VSELs (Very Small Embryonic-Like Stem Cells). At the same time-points serum levels of S100B, Neuron-specific Enolase (NSE), Erythropoietin (EPO), Insulin-like growth factor-1 (IGF-1) and SDF-1 were also measured. Neonates were assessed postnatally with brain MRI, and with Bayley III developmental test at 2 years of corrected age. Results Preterms with brain injury proved to have significant increase of S100B and NSE, followed by increase of EPO and enhanced mobilization mainly of HSCs, eEPCs and lEPCs. IGF-1 was rather decreased in this group of neonates. IGF-1 and most CPCs were intense decreased in cases of antenatal or postnatal inflammation. S100B and NSE correlated with neuroimaging and language scale in Bayley III test, providing good prognostic ability. Conclusion The observed pattern of CPCs' mobilization and its association with neurotrophic factors following preterm brain injury indicate the existence of an endogenous brain regeneration process. Kinetics of different biomarkers and associations with clinical factors contribute to the understanding of the related pathophysiology and might help to early discriminate neonates with adverse outcome. Timely appropriate enhancement of the endogenous regeneration effort, when it is suppressed and insufficient, using neurotrophic factors and exogenous progenitor cells might be a powerful therapeutic strategy in the future to restore brain damage and improve the neurodevelopmental outcome in premature infants with brain injury.
Collapse
Affiliation(s)
- N. Efstathiou
- 1st Neonatal Department and NICU, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - V. Soubasi
- 2nd Neonatal Department and NICU, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - G. Koliakos
- Biochemistry Department, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - K. Kantziou
- 1st Neonatal Department and NICU, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - G. Kyriazis
- Immunology Laboratory, Pulmonology Department, Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A. Slavakis
- Biochemistry Department, Hippokration General Hospital, Thessaloniki, Greece
| | - V. Dermentzoglou
- Child Radiologist, Radiology Department, Agia Sofia Pediatric Hospital, Athens, Greece
| | - I. Michalettou
- Child Occupational Τherapist, Hippokration General Hospital, Thessaloniki, Greece
| | - V. Drosou-Agakidou
- 1st Neonatal Department and NICU, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Bruschettini M, Badura A, Romantsik O. Stem cell‐based interventions for the treatment of stroke in newborn infants. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2023; 2023:CD015582. [PMCID: PMC9933426 DOI: 10.1002/14651858.cd015582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To evaluate the benefits and harms of stem cell‐based interventions for the treatment of stroke in newborn infants compared to control (placebo or no treatment) or stem‐cell based interventions of a different type or source.
Collapse
Affiliation(s)
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, PaediatricsLund University, Skåne University HospitalLundSweden,Cochrane SwedenLund University, Skåne University HospitalLundSweden
| | | | - Olga Romantsik
- Department of Clinical Sciences Lund, PaediatricsLund University, Skåne University HospitalLundSweden
| |
Collapse
|
6
|
Romantsik O, Moreira A, Thébaud B, Ådén U, Ley D, Bruschettini M. Stem cell-based interventions for the prevention and treatment of intraventricular haemorrhage and encephalopathy of prematurity in preterm infants. Cochrane Database Syst Rev 2023; 2:CD013201. [PMID: 36790019 PMCID: PMC9932000 DOI: 10.1002/14651858.cd013201.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
BACKGROUND Germinal matrix-intraventricular haemorrhage (GMH-IVH) and encephalopathy of prematurity (EoP) remain substantial issues in neonatal intensive care units worldwide. Current therapies to prevent or treat these conditions are limited. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal studies. This is an update of the 2019 review, which did not include EoP. OBJECTIVES To evaluate the benefits and harms of stem cell-based interventions for prevention or treatment of GM-IVH and EoP in preterm infants. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search was April 2022. SELECTION CRITERIA We attempted to include randomised controlled trials, quasi-randomised controlled trials, and cluster trials comparing 1. stem cell-based interventions versus control; 2. mesenchymal stromal cells (MSCs) of type or source versus MSCs of other type or source; 3. stem cell-based interventions other than MSCs of type or source versus stem cell-based interventions other than MSCs of other type or source; or 4. MSCs versus stem cell-based interventions other than MSCs. For prevention studies, we included extremely preterm infants (less than 28 weeks' gestation), 24 hours of age or less, without ultrasound diagnosis of GM-IVH or EoP; for treatment studies, we included preterm infants (less than 37 weeks' gestation), of any postnatal age, with ultrasound diagnosis of GM-IVH or with EoP. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were 1. all-cause neonatal mortality, 2. major neurodevelopmental disability, 3. GM-IVH, 4. EoP, and 5. extension of pre-existing non-severe GM-IVH or EoP. We planned to use GRADE to assess certainty of evidence for each outcome. MAIN RESULTS We identified no studies that met our inclusion criteria. Three studies are currently registered and ongoing. Phase 1 trials are described in the 'Excluded studies' section. AUTHORS' CONCLUSIONS No evidence is currently available to evaluate the benefits and harms of stem cell-based interventions for treatment or prevention of GM-IVH or EoP in preterm infants. We identified three ongoing studies, with a sample size range from 20 to 200. In two studies, autologous cord blood mononuclear cells will be administered to extremely preterm infants via the intravenous route; in one, intracerebroventricular injection of MSCs will be administered to preterm infants up to 34 weeks' gestational age.
Collapse
Affiliation(s)
- Olga Romantsik
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Alvaro Moreira
- Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Bernard Thébaud
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Ulrika Ådén
- Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
7
|
Giva S, Abdelrahim A, Ojinna BT, Putrevu VP, Bornemann EA, Farhat H, Amaravadi K, Ben Abdallah M, Gutlapalli SD, Penumetcha SS. Safety and Efficacy of Mesenchymal Stem Cells for the Treatment of Evolving and Established Bronchopulmonary Dysplasia: A Systematic Literature Review. Cureus 2022; 14:e32598. [PMID: 36660501 PMCID: PMC9845515 DOI: 10.7759/cureus.32598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a frequent sequela of modern medicine when infants are born prematurely. Currently, there is no single treatment or combination of treatments to prevent or fully treat BPD. Mesenchymal stem cells (MSCs) have promising properties that could aid in the reversal of lung injury, as seen in patients with BPD. This study reviews the available evidence regarding the safety and efficacy of the use of MSCs for the treatment of evolving and established BPD. This systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We found eight studies that fulfilled the inclusion and exclusion criteria. While all studies proved the safety and efficacy of MSCs administered intravenously and intratracheally, the only available randomized controlled trial (RCT) failed to demonstrate the benefit of MSC administration in the early treatment of BPD. The remaining studies varied between phase I clinical trials and case reports, but all seemed to show some evidence that MSCs may be of benefit in the late treatment of established BPD. Considering some of the studies have less evidence, early treatment to prevent lung fibrosis may be more successful, particularly in the younger gestational ages where lung development is more immature, and research should focus on this.
Collapse
Affiliation(s)
- Sheiniz Giva
- Neonatology, Temple University Hospital, Dublin, IRL
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ahmed Abdelrahim
- Internal Medicine, Beaumont Hospital, Michigan, USA
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Blessing T Ojinna
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- General Medicine, University of Nigeria Nsukka, College of Medicine, Enugu, NGA
| | - Venkata Pravallika Putrevu
- Internal Medicine, Neurostar Multi-speciality Hospital, Kakinada, IND
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Elisa A Bornemann
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hadi Farhat
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, University of Balamand, Beirut, LBN
| | - Kavya Amaravadi
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mahmoud Ben Abdallah
- Internal Medicine, Manchester University NHS Foundation Trust, Manchester, GBR
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Sai Sri Penumetcha
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- General Medicine, Chalmeda Anand Rao Institute of Medical Sciences, Karimnagar, IND
| |
Collapse
|
8
|
Zdolińska-Malinowska I, Boruczkowski D, Hołowaty D, Krajewski P, Snarski E. Rationale for the Use of Cord Blood in Hypoxic-Ischaemic Encephalopathy. Stem Cells Int 2022; 2022:9125460. [PMID: 35599846 PMCID: PMC9117076 DOI: 10.1155/2022/9125460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Hypoxic-ischaemic encephalopathy (HIE) is a severe complication of asphyxia at birth. Therapeutic hypothermia, the standard method for HIE prevention, is effective in only 50% of the cases. As the understanding of the immunological basis of these changes increases, experiments have begun with the use of cord blood (CB) because of its neuroprotective properties. Mechanisms for the neuroprotective effects of CB stem cells include antiapoptotic and anti-inflammatory actions, stimulation of angiogenesis, production of trophic factors, and mitochondrial donation. In several animal models of HIE, CB decreased oxidative stress, cell death markers, CD4+ T cell infiltration, and microglial activation; restored normal brain metabolic activity; promoted neurogenesis; improved myelination; and increased the proportion of mature oligodendrocytes, neuron numbers in the motor cortex and somatosensory cortex, and brain weight. These observations translate into motor strength, limb function, gait, and cognitive function and behaviour. In humans, the efficacy and safety of CB administration were reported in a few early clinical studies which confirmed the feasibility and safety of this intervention for up to 10 years. The results of these studies showed an improvement in the developmental outcomes over hypothermia. Two phase-2 clinical studies are ongoing under the United States regulations, namely one controlled study and one blinded study.
Collapse
Affiliation(s)
| | - Dariusz Boruczkowski
- Polski Bank Komórek Macierzystych S.A. (FamiCord Group), Jana Pawła II 29, 00-86 Warsaw, Poland
| | - Dominika Hołowaty
- Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza Square 1/3, 02-015 Warsaw, Poland
| | - Paweł Krajewski
- Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza Square 1/3, 02-015 Warsaw, Poland
| | - Emilian Snarski
- Polski Bank Komórek Macierzystych S.A. (FamiCord Group), Jana Pawła II 29, 00-86 Warsaw, Poland
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Kharaziha M, Baidya A, Annabi N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100176. [PMID: 34251690 PMCID: PMC8489436 DOI: 10.1002/adma.202100176] [Citation(s) in RCA: 292] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/03/2021] [Indexed: 05/03/2023]
Abstract
With all the advances in tissue engineering for construction of fully functional skin tissue, complete regeneration of chronic wounds is still challenging. Since immune reaction to the tissue damage is critical in regulating both the quality and duration of chronic wound healing cascade, strategies to modulate the immune system are of importance. Generally, in response to an injury, macrophages switch from pro-inflammatory to an anti-inflammatory phenotype. Therefore, controlling macrophages' polarization has become an appealing approach in regenerative medicine. Recently, hydrogels-based constructs, incorporated with various cellular and molecular signals, have been developed and utilized to adjust immune cell functions in various stages of wound healing. Here, the current state of knowledge on immune cell functions during skin tissue regeneration is first discussed. Recent advanced technologies used to design immunomodulatory hydrogels for controlling macrophages' polarization are then summarized. Rational design of hydrogels for providing controlled immune stimulation via hydrogel chemistry and surface modification, as well as incorporation of cell and molecules, are also dicussed. In addition, the effects of hydrogels' properties on immunogenic features and the wound healing process are summarized. Finally, future directions and upcoming research strategies to control immune responses during chronic wound healing are highlighted.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Avijit Baidya
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
10
|
Alginate-Chitosan Microencapsulated Cells for Improving CD34+ Progenitor Maintenance and Expansion. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protocols for isolation, characterization, and transplantation of hematopoietic stem cells (HSCs) have been well established. However, difficulty in finding human leucocyte antigens (HLA)-matched donors and scarcity of HSCs are still the major obstacles of allogeneic transplantation. In this study, we developed a double-layered microcapsule to deliver paracrine factors from non-matched or low-matched HSCs to other cells. The umbilical cord blood-derived hematopoietic progenitor cells, identified as CD34+ cells, were entrapped in alginate polymer and further protected by chitosan coating. The microcapsules showed no toxicity for surrounding CD34+ cells. When CD34+ cells-loaded microcapsules were co-cultured with bare CD34+ cells that have been collected from unrelated donors, the microcapsules affected surrounding cells and increased the percentage of CD34+ cell population. This study is the first to report the potency of alginate-chitosan microcapsules containing non-HLA-matched cells for improving proliferation and progenitor maintenance of CD34+ cells.
Collapse
|
11
|
McAdams RM, Berube MW. Emerging therapies and management for neonatal encephalopathy-controversies and current approaches. J Perinatol 2021; 41:661-674. [PMID: 33712717 DOI: 10.1038/s41372-021-01022-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 01/31/2023]
Abstract
Neonatal encephalopathy (NE) continues to have a major impact on newborn survival and neurodevelopmental outcomes worldwide. In high-income settings, therapeutic hypothermia is the only established standard treatment for neonates with moderate-to-severe NE, with compelling evidence that cooling reduces mortality and major neurodevelopmental impairment in survivors. Despite therapeutic hypothermia, a significant proportion of cooled infants continue to suffer long-term disability from brain injury. Innovative therapies offer the possibility of further improving neurodevelopmental outcomes by working synergistically with therapeutic hypothermia to decrease hypoxia-ischemia-induced excitotoxicity, prevent progression to secondary energy failure, and in some cases, promote neuroregeneration in the developing neonatal brain. This review discusses emerging NE therapies currently under investigation, offers insight into controversies surrounding various approaches to clinical care during therapeutic hypothermia, and identifies ongoing knowledge deficits that hinder attainment of optimal outcomes for neonates with NE.
Collapse
Affiliation(s)
- Ryan M McAdams
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Megan W Berube
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
12
|
Chang Y, Lin S, Li Y, Liu S, Ma T, Wei W. Umbilical cord blood CD34 + cells administration improved neurobehavioral status and alleviated brain injury in a mouse model of cerebral palsy. Childs Nerv Syst 2021; 37:2197-2205. [PMID: 33559728 PMCID: PMC8263416 DOI: 10.1007/s00381-021-05068-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/02/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Cerebral palsy (CP) is the most common neuromuscular disease in children, and currently, there is no cure. Several studies have reported the benefits of umbilical cord blood (UCB) cell treatment for CP. However, these studies either examined the effects of UCB cell fraction with a short experimental period or used neonatal rat models for a long-term study which displayed an insufficient immunological reaction and clearance of human stem cells. Here, we developed a CP model by hypoxia-ischemic injury (HI) using immunodeficient mice and examined the effects of human UCB CD34+ hematopoietic stem cells (HSCs) on CP therapy over a period of 8 weeks. METHODS Sixty postnatal day-9 (P9) mouse pups were randomly divided into 4 groups (n = 15/group) as follows: (1) sham operation (control group), (2) HI-induced CP model, (3) CP model with CD34+ HSC transplantation, and (4) CP model with CD34- cell transplantation. Eight weeks after insult, the sensorimotor performance was analyzed by rotarod treadmill, gait dynamic, and open field assays. The pathological changes in brain tissue of mice were determined by HE staining, Nissl staining, and MBP immunohistochemistry of the hippocampus in the mice. RESULTS HI brain injury in mice pups resulted in significant behavioral deficits and loss of neurons. Both CD34+ HSCs and CD34- cells improved the neurobehavioral statuses and alleviated the pathological brain injury. In comparison with CD34- cells, the CD34+ HSC compartments were more effective. CONCLUSION These findings indicate that CD34+ HSC transplantation was neuroprotective in neonatal mice and could be an effective therapy for CP.
Collapse
Affiliation(s)
- Yanqun Chang
- Department of Medical Rehabilitation, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shouheng Lin
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yongsheng Li
- Guangdong Cord Blood Bank, Guangzhou, China. .,Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd., Guangzhou, China.
| | - Song Liu
- Guangzhou Reborn Health Management Consultation Co., Ltd., Guangzhou, China
| | - Tianbao Ma
- Guangdong Cord Blood Bank, Guangzhou, China ,Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd., Guangzhou, China
| | - Wei Wei
- Guangdong Cord Blood Bank, Guangzhou, China ,Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd., Guangzhou, China
| |
Collapse
|
13
|
Bruschettini M, Romantsik O, Moreira A, Ley D, Thébaud B. Stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants. Cochrane Database Syst Rev 2020; 8:CD013202. [PMID: 32813884 PMCID: PMC7438027 DOI: 10.1002/14651858.cd013202.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypoxic-ischaemic encephalopathy (HIE) is a leading cause of mortality and long-term neurological sequelae, affecting thousands of children worldwide. Current therapies to treat HIE are limited to cooling. Stem cell-based therapies offer a potential therapeutic approach to repair or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal trials. OBJECTIVES To determine the efficacy and safety of stem cell-based interventions for the treatment of hypoxic-ischaemic encephalopathy (HIE) in newborn infants. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2020, Issue 5), MEDLINE via PubMed (1966 to 8 June 2020), Embase (1980 to 8 June 2020), and CINAHL (1982 to 8 June 2020). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA Randomised controlled trials, quasi-randomised controlled trials and cluster trials comparing 1) stem cell-based interventions (any type) compared to control (placebo or no treatment); 2) use of mesenchymal stem/stromal cells (MSCs) of type (e.g. number of doses or passages) or source (e.g. autologous versus allogeneic, or bone marrow versus cord) versus MSCs of other type or source; 3) use of stem cell-based interventions other than MSCs of type (e.g. mononuclear cells, oligodendrocyte progenitor cells, neural stem cells, hematopoietic stem cells, and inducible pluripotent stem cells) or source (e.g. autologous versus allogeneic, or bone marrow versus cord) versus stem cell-based interventions other than MSCs of other type or source; or 4) MSCs versus stem cell-based interventions other than MSCs. DATA COLLECTION AND ANALYSIS For each of the included trials, two authors independently planned to extract data (e.g. number of participants, birth weight, gestational age, type and source of MSCs or other stem cell-based interventions) and assess the risk of bias (e.g. adequacy of randomisation, blinding, completeness of follow-up). The primary outcomes considered in this review are all-cause neonatal mortality, major neurodevelopmental disability, death or major neurodevelopmental disability assessed at 18 to 24 months of age. We planned to use the GRADE approach to assess the quality of evidence. MAIN RESULTS Our search strategy yielded 616 references. Two review authors independently assessed all references for inclusion. We did not find any completed studies for inclusion. Fifteen RCTs are currently registered and ongoing. We describe the three studies we excluded. AUTHORS' CONCLUSIONS There is currently no evidence from randomised trials that assesses the benefit or harms of stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants.
Collapse
Affiliation(s)
- Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
| | - Olga Romantsik
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Alvaro Moreira
- Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Bernard Thébaud
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
14
|
Zhang W, Zhu L, An C, Wang R, Yang L, Yu W, Li P, Gao Y. The blood brain barrier in cerebral ischemic injury – Disruption and repair. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2019.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
15
|
Romantsik O, Bruschettini M, Moreira A, Thébaud B, Ley D. Stem cell-based interventions for the prevention and treatment of germinal matrix-intraventricular haemorrhage in preterm infants. Cochrane Database Syst Rev 2019; 9:CD013201. [PMID: 31549743 PMCID: PMC6757514 DOI: 10.1002/14651858.cd013201.pub2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Germinal matrix-intraventricular haemorrhage (GMH-IVH) remains a substantial issue in neonatal intensive care units worldwide. Current therapies to prevent or treat GMH-IVH are limited. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, and/or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal studies. OBJECTIVES To determine the benefits and harms of stem cell-based interventions for prevention or treatment of germinal matrix-intraventricular haemorrhage (GM-IVH) in preterm infants. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2019, Issue 1), in the Cochrane Library; MEDLINE via PubMed (1966 to 7 January 2019); Embase (1980 to 7 January 2019); and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) (1982 to 7 January 2019). We also searched clinical trials databases, conference proceedings, and reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA We attempted to identify randomised controlled trials, quasi-randomised controlled trials, and cluster trials comparing (1) stem cell-based interventions versus control; (2) mesenchymal stromal cells (MSCs) of type or source versus MSCs of other type or source; (3) stem cell-based interventions other than MSCs of type or source versus stem cell-based interventions other than MSCs of other type or source; or (4) MSCs versus stem cell-based interventions other than MSCs. For prevention studies, we included extremely preterm infants (less than 28 weeks' gestation), 24 hours of age or less, without ultrasound diagnosis of GM-IVH; for treatment studies, we included preterm infants (less than 37 weeks' gestation), of any postnatal age, with ultrasound diagnosis of GM-IVH. DATA COLLECTION AND ANALYSIS For each of the included trials, two review authors independently planned to extract data (e.g. number of participants, birth weight, gestational age, type and source of MSCs, other stem cell-based interventions) and assess the risk of bias (e.g. adequacy of randomisation, blinding, completeness of follow-up). Primary outcomes considered in this review are all-cause neonatal mortality, major neurodevelopmental disability, GM-IVH, and extension of pre-existing non-severe GM-IVH. We planned to use the GRADE approach to assess the quality of evidence. MAIN RESULTS Our search strategy yielded 769 references. We did not find any completed studies for inclusion. One randomised controlled trial is currently registered and ongoing. Five phase 1 trials are described in the excluded studies. AUTHORS' CONCLUSIONS Currently no evidence is available to show the benefits or harms of stem cell-based interventions for treatment or prevention of GM-IVH in preterm infants.
Collapse
Affiliation(s)
- Olga Romantsik
- Lund University, Skåne University HospitalDepartment of Clinical Sciences Lund, PaediatricsLundSweden
| | - Matteo Bruschettini
- Lund University, Skåne University HospitalDepartment of Clinical Sciences Lund, PaediatricsLundSweden
- Skåne University HospitalCochrane SwedenWigerthuset, Remissgatan 4, first floorroom 11‐221LundSweden22185
| | - Alvaro Moreira
- University of Texas Health Science Center at San AntonioPediatrics, Division of NeonatologySan AntonioTexasUSA
| | - Bernard Thébaud
- Children's Hospital of Eastern OntarioDepartment of PediatricsOttawaONCanada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell ResearchOttawaCanada
- University of OttawaDepartment of Cellular and Molecular MedicineOttawaCanada
| | - David Ley
- Lund University, Skane University HospitalDepartment of Clinical Sciences Lund, PaediatricsLundSweden
| | | |
Collapse
|
16
|
Bruschettini M, Romantsik O, Moreira A, Ley D, Thébaud B. Stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants. Hippokratia 2018. [DOI: 10.1002/14651858.cd013202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Matteo Bruschettini
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
- Skåne University Hospital; Cochrane Sweden; Wigerthuset, Remissgatan 4, first floor room 11-221 Lund Sweden 22185
| | - Olga Romantsik
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Alvaro Moreira
- University of Texas Health Science Center at San Antonio; Pediatrics, Division of Neonatology; San Antonio Texas USA
| | - David Ley
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Bernard Thébaud
- Children's Hospital of Eastern Ontario; Department of Pediatrics; Ottawa ON Canada
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research; Ottawa Canada
- University of Ottawa; Department of Cellular and Molecular Medicine; Ottawa Canada
| |
Collapse
|
17
|
Romantsik O, Bruschettini M, Moreira A, Thébaud B, Ley D. Stem cell-based interventions for the prevention and treatment of germinal matrix-intraventricular haemorrhage in preterm infants. Hippokratia 2018. [DOI: 10.1002/14651858.cd013201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olga Romantsik
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Matteo Bruschettini
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
- Skåne University Hospital; Cochrane Sweden; Wigerthuset, Remissgatan 4, first floor room 11-221 Lund Sweden 22185
| | - Alvaro Moreira
- University of Texas Health Science Center at San Antonio; Pediatrics, Division of Neonatology; San Antonio Texas USA
| | - Bernard Thébaud
- Children's Hospital of Eastern Ontario; Department of Pediatrics; Ottawa ON Canada
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research; Ottawa Canada
- University of Ottawa; Department of Cellular and Molecular Medicine; Ottawa Canada
| | - David Ley
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| |
Collapse
|
18
|
The Neuroprotective Roles of Sonic Hedgehog Signaling Pathway in Ischemic Stroke. Neurochem Res 2018; 43:2199-2211. [DOI: 10.1007/s11064-018-2645-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/29/2018] [Accepted: 09/19/2018] [Indexed: 01/20/2023]
|
19
|
Ellery SJ, Kelleher M, Grigsby P, Burd I, Derks JB, Hirst J, Miller SL, Sherman LS, Tolcos M, Walker DW. Antenatal prevention of cerebral palsy and childhood disability: is the impossible possible? J Physiol 2018; 596:5593-5609. [PMID: 29928763 DOI: 10.1113/jp275595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
This review covers our current knowledge of the causes of perinatal brain injury leading to cerebral palsy-like outcomes, and argues that much of this brain damage is preventable. We review the experimental evidence that there are treatments that can be safely administered to women in late pregnancy that decrease the likelihood and extent of perinatal brain damage that occurs because of acute and severe hypoxia that arises during some births, and the additional impact of chronic fetal hypoxia, infection, inflammation, growth restriction and preterm birth. We discuss the types of interventions required to ameliorate or even prevent apoptotic and necrotic cell death, and the vulnerability of all the major cell types in the brain (neurons, astrocytes, oligodendrocytes, microglia, cerebral vasculature) to hypoxia/ischaemia, and whether a pan-protective treatment given to the mother before birth is a realistic prospect.
Collapse
Affiliation(s)
- Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Meredith Kelleher
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Peta Grigsby
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Irina Burd
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Jan B Derks
- Department of Perinatal Medicine University Medical Center Utrecht, The Netherlands, Gynaecology, Monash University, Melbourne, Australia
| | - Jon Hirst
- University of Newcastle, Newcastle, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Larry S Sherman
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Mary Tolcos
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia.,School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| |
Collapse
|
20
|
Abstract
With the advancements in antenatal steroid therapies and surfactant replacement, current clinical practices in neonatal intensive care units allow the survival of infants at very low gestational age. Despite these advances, there continues to be significant morbidity associated with extreme preterm birth that includes both short-term and long-term cardiorespiratory impairment. With no effective single therapy in preventing or treating developmental lung injuries, the need for new tools to treat and reduce risk of complications associated with extreme preterm birth is urgent. Stem cell-based therapies, in particular therapies utilizing mesenchymal stem (stromal) cells (MSCs), have shown promise in a number of animal models of lung pathologies relevant to neonatology. Recent studies in this field have consolidated the concept that the therapeutic mechanism of MSC action is paracrine, and this led to wide acceptance of the concept that the delivery of the MSC secretome rather than live cells may provide an alternative therapeutic approach for many complex diseases. Here, we summarize the significance and application of cell-free based therapies in preclinical models of neonatal lung injury. We emphasize the development of extracellular vesicle (EV)-based therapeutics and focus on the challenges that remain to be addressed before their application to clinical practice.
Collapse
|
21
|
Promoting neuroregeneration after perinatal arterial ischemic stroke: neurotrophic factors and mesenchymal stem cells. Pediatr Res 2018; 83:372-384. [PMID: 28949952 DOI: 10.1038/pr.2017.243] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/19/2017] [Indexed: 01/02/2023]
Abstract
Newborns suffering from perinatal arterial ischemic stroke (PAIS) are at risk of neurodevelopmental problems. Current treatment options for PAIS are limited and mainly focus on supportive care, as presentation of PAIS is beyond the time window of current treatment strategies. Therefore, recent focus has shifted to interventions that stimulate regeneration of damaged brain tissue. From animal models, it is known that the brain increases its neurogenic capability after ischemic injury, by promoting neural cell proliferation and differentiation. However, neurogenesis is not maintained at the long term, which consequently impedes full repair leading to adverse consequences later in life. Boosting neuroregeneration of the newborn brain using treatment with neurotrophic factors and/or mesenchymal stem cells (MSCs) may be promising novel therapeutic strategies to improve neurological prospects and quality of life of infants with PAIS. This review focuses on effectiveness of neurotrophic growth factors, including erythropoietin, brain-derived neurotrophic factor, vascular endothelial growth factor, glial-derived neurotrophic factor, and MSC therapy, in both experimental neonatal stroke studies and first clinical trials for neonatal ischemic brain injury.
Collapse
|
22
|
Umbilical cord blood cells for treatment of cerebral palsy; timing and treatment options. Pediatr Res 2018; 83:333-344. [PMID: 28937975 DOI: 10.1038/pr.2017.236] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022]
Abstract
Cerebral palsy is the most common cause of physical disability in children, and there is no cure. Umbilical cord blood (UCB) cell therapy for the treatment of children with cerebral palsy is currently being assessed in clinical trials. Although there is much interest in the use of UCB stem cells for neuroprotection and neuroregeneration, the mechanisms of action are not fully understood. Further, UCB contains many stem and progenitor cells of interest, and we will point out that individual cell types within UCB may elicit specific effects. UCB is a clinically proven source of hemotopoietic stem cells (HSCs). It also contains mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs), and immunosupressive cells such as regulatory T cells (Tregs) and monocyte-derived supressor cells. Each of these cell types may be individual candidates for the prevention of brain injury following hypoxic and inflammatory events in the perinatal period. We will discuss specific properties of cell types in UCB, with respect to their therapeutic potential and the importance of optimal timing of administration. We propose that tailored cell therapy and targeted timing of administration will optimize the results for future clinical trials in the neuroprotective treatment of perinatal brain injury.
Collapse
|
23
|
Nicotine-enhanced stemness and epithelial-mesenchymal transition of human umbilical cord mesenchymal stem cells promote tumor formation and growth in nude mice. Oncotarget 2017; 9:591-606. [PMID: 29416638 PMCID: PMC5787492 DOI: 10.18632/oncotarget.22712] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022] Open
Abstract
Cigarette smoking is a well-known risk factor in the development and progression of malignant diseases. Nicotine, the major constituent in cigarette smoke, has also shown negative effects on stem cells. Mesenchymal stem cells (MSCs) have been widely demonstrated to migrate into tumors and play key roles in cancer progression. However, the mechanisms by which nicotine impacts MSCs and tumorigenesis of lung cancer are still undetermined. In this study we investigated the effects of nicotine on human umbilical cord mesenchymal stem cells (hUC-MSCs) and the impacts of nicotine-treated hUC-MSCs on tumor formation and progression. We found that nicotine has a toxic effect on hUC-MSCs and changes the morphology, inhibits proliferation and promotes apoptosis of hUC-MSCs in a dose-dependent manner. Nicotine-treated hUC-MSCs produce higher level of IL-6. Moreover, nicotine promotes migration, stemness and epithelial-mesenchymal transition (EMT) of hUC-MSCs by inhibiting E-cadherin expression and upregulating mesenchymal markers such as N-cadherin and Vimentin, leading to the induction of stem cell markers Sox2, Nanog, Sall4, Oct4 and CD44. Migration and proliferation of non-small cell lung cancer A549 cells and breast cancer MCF-7 cells are promoted after their coculture with nicotine-treated hUC-MSCs in a cell-cell contact-independent manner. Furthermore, nicotine-treated hUC-MSCs promote tumor formation and growth of A549 cells in nude mice. These studies demonstrated that the enhanced stemness and EMT of hUC-MSCs induced by nicotine are critical for the development of tobacco-related cancers.
Collapse
|
24
|
Liska MG, Dela Peña I. Granulocyte-colony stimulating factor and umbilical cord blood cell transplantation: Synergistic therapies for the treatment of traumatic brain injury. Brain Circ 2017; 3:143-151. [PMID: 30276316 PMCID: PMC6057694 DOI: 10.4103/bc.bc_19_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is now characterized as a progressive, degenerative disease and continues to stand as a prevalent cause of death and disability. The pathophysiology of TBI is complex, with a variety of secondary cell death pathways occurring which may persist chronically following the initial cerebral insult. Current therapeutic options for TBI are minimal, with surgical intervention or rehabilitation therapy existing as the only viable treatments. Considering the success of stem-cell therapies in various other neurological diseases, their use has been proposed as a potential potent therapy for patients suffering TBI. Moreover, stem cells are highly amenable to adjunctive use with other therapies, providing an opportunity to overcome the inherent limitations of using a single therapeutic agent. Our research has verified this additive potential by demonstrating the efficacy of co-delivering human umbilical cord blood (hUCB) cells with granulocyte-colony stimulating factor (G-CSF) in a murine model of TBI, providing encouraging results which support the potential of this approach to treat patients suffering from TBI. These findings justify ongoing research toward uncovering the mechanisms which underlie the functional improvements exhibited by hUCB + G-CSF combination therapy, thereby facilitating its safe and effect transition into the clinic. This paper is a review article. Referred literature in this paper has been listed in the reference section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors’ experiences.
Collapse
Affiliation(s)
- Michael G Liska
- Center of Excellence for Aging and Brain Repair, Tampa, FL 33612, USA
| | - Ike Dela Peña
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, College of Pharmacy, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
25
|
Comparison of two methodologies for the enrichment of mononuclear cells from thawed cord blood products: The automated Sepax system versus the manual Ficoll method. Cytotherapy 2017; 19:433-439. [DOI: 10.1016/j.jcyt.2016.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 10/20/2022]
|
26
|
Patra A, Huang H, Bauer JA, Giannone PJ. Neurological consequences of systemic inflammation in the premature neonate. Neural Regen Res 2017; 12:890-896. [PMID: 28761416 PMCID: PMC5514858 DOI: 10.4103/1673-5374.208547] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Despite substantial progress in neonatal care over the past two decades leading to improved survival of extremely premature infants, extreme prematurity continues to be associated with long term neurodevelopmental impairments. Cerebral white matter injury is the predominant form of insult in preterm brain leading to adverse neurological consequences. Such brain injury pattern and unfavorable neurologic sequelae is commonly encountered in premature infants exposed to systemic inflammatory states such as clinical or culture proven sepsis with or without evidence of meningitis, prolonged mechanical ventilation, bronchopulmonary dysplasia, necrotizing enterocolitis and chorioamnionitis. Underlying mechanisms may include cytokine mediated processes without direct entry of pathogens into the brain, developmental differences in immune response and complex neurovascular barrier system that play a critical role in regulating the cerebral response to various systemic inflammatory insults in premature infants. Understanding of these pathologic mechanisms and clinical correlates of such injury based on serum biomarkers or brain imaging findings on magnetic resonance imaging will pave way for future research and translational therapeutic opportunities for the developing brain.
Collapse
Affiliation(s)
- Aparna Patra
- OMNI Academic Service Line and Division of Neonatology, Department of Pediatrics, Kentucky Children's Hospital, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Hong Huang
- OMNI Academic Service Line and Division of Neonatology, Department of Pediatrics, Kentucky Children's Hospital, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - John A Bauer
- OMNI Academic Service Line and Division of Neonatology, Department of Pediatrics, Kentucky Children's Hospital, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Peter J Giannone
- OMNI Academic Service Line and Division of Neonatology, Department of Pediatrics, Kentucky Children's Hospital, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
27
|
Putbrese B, Kennedy A. Findings and differential diagnosis of fetal intracranial haemorrhage and fetal ischaemic brain injury: what is the role of fetal MRI? Br J Radiol 2016; 90:20160253. [PMID: 27734711 DOI: 10.1259/bjr.20160253] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ventriculomegaly (VM) is a non-specific finding on fetal imaging. Identification of the specific aetiology is important, as it affects prognosis and may even change the course of current or future pregnancies. In this review, we will focus on the application of fetal MRI to demonstrate intracranial haemorrhage and ischaemic brain injury as opposed to other causes of VM. MRI is able to identify the specific aetiology of VM with much more sensitivity and specificity than ultrasound and should be considered whenever VM is identified on obstetric ultrasound. Advances in both fetal and neonatal MRI have the potential to shed further light on mechanisms of brain injury and the impact of chronic hypoxia; such information may guide future interventions.
Collapse
Affiliation(s)
- Bryn Putbrese
- Department of Radiology and Imaging Sciences, University of Utah Health Care, Salt Lake City, UT, USA
| | - Anne Kennedy
- Department of Radiology and Imaging Sciences, University of Utah Health Care, Salt Lake City, UT, USA
| |
Collapse
|
28
|
Scholkmann F, Miscio G, Tarquini R, Bosi A, Rubino R, di Mauro L, Mazzoccoli G. The circadecadal rhythm of oscillation of umbilical cord blood parameters correlates with geomagnetic activity - An analysis of long-term measurements (1999-2011). Chronobiol Int 2016; 33:1136-1147. [PMID: 27409251 DOI: 10.1080/07420528.2016.1202264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recently, we have shown that the contents of total nucleated cells (TNCs) and CD34+ hematopoietic stem and progenitor cells (CD34+ HSPCs) as well as the cord blood volume (CBV) in umbilical cord blood (UCB) show a circadecadal (~10 years) rhythm of oscillation. This observation was based on an analysis of 17,936 cord blood donations collected during 1999-2011. The aim of the present study was to investigate whether this circadecadal rhythm of oscillation in TNCs, CD34+ HSPCs and CBV is related to geomagnetic activity. For the analysis, the yearly averages of TNCs, CD34+ HSPCs and CBV in UCB were correlated with geomagnetic activity (Dcx index). Our analysis revealed that (i) all three UCB parameters were statistically significantly correlated with the level of geomagnetic activity, (ii) CBV showed a linear correlation with the Dcx index (r = 0.5290), (iii) the number of TNCs and CD34+ HSPCs were quadratic inversely correlated with the Dcx index (r = -0.5343 and r = -0.7749, respectively). Furthermore, (iv) CBV and the number of TNCs were not statistically significantly correlated with the number of either modest or intense geomagnetic storms per year, but (v) the number of CD34+ HSPCs was statistically significantly correlated with the number of modest (r = 0.9253) as well as intense (r = 0.8683) geomagnetic storms per year. In conclusion, our study suggests that UCB parameters correlate with the state of the geomagnetic field (GMF) modulated by solar activity. Possible biophysical mechanisms underlying this observation, as well as the outcome of these findings, are discussed.
Collapse
Affiliation(s)
- Felix Scholkmann
- a Research Office for Complex Physical and Biological Systems (ROCoS) , Zurich , Switzerland
| | - Giuseppe Miscio
- b Apulia Cord Blood Bank , IRCCS "Casa Sollievo della Sofferenza" , S. Giovanni Rotondo (FG) , Italy
| | - Roberto Tarquini
- c Department of Clinical and Experimental Medicine, School of Medicine , University of Florence , Florence , Italy.,d Interinstitutional Department for Continuity of Care of Empoli, School of Medicine , University of Florence , Florence , Italy
| | - Alberto Bosi
- e Department of Clinical and Experimental Medicine, Unit of Haematology, School of Medicine , University of Florence , Florence , Italy
| | - Rosa Rubino
- f Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit , IRCCS "Casa Sollievo della Sofferenza" , S. Giovanni Rotondo (FG) , Italy
| | - Lazzaro di Mauro
- b Apulia Cord Blood Bank , IRCCS "Casa Sollievo della Sofferenza" , S. Giovanni Rotondo (FG) , Italy
| | - Gianluigi Mazzoccoli
- f Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit , IRCCS "Casa Sollievo della Sofferenza" , S. Giovanni Rotondo (FG) , Italy
| |
Collapse
|
29
|
Mitsialis SA, Kourembanas S. Stem cell-based therapies for the newborn lung and brain: Possibilities and challenges. Semin Perinatol 2016; 40:138-51. [PMID: 26778234 PMCID: PMC4808378 DOI: 10.1053/j.semperi.2015.12.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There have been substantial advances in neonatal medical care over the past 2 decades that have resulted in the increased survival of very low birth weight infants, survival that in some centers extends to 22 weeks gestational age. Despite these advances, there continues to be significant morbidity associated with extreme preterm birth that includes both short-term and long-term pulmonary and neurologic consequences. No single therapy has proven to be effective in preventing or treating either developmental lung and brain injuries in preterm infants or the hypoxic-ischemic injury that can be inflicted on the full-term brain as a result of in utero or perinatal complications. Stem cell-based therapies are emerging as a potential paradigm-shifting approach for such complex diseases with multifactorial etiologies, but a great deal of work is still required to understand the role of stem/progenitor cells in normal development and in the repair of injured tissue. This review will summarize the biology of the various stem/progenitor cells, their effects on tissue repair in experimental models of lung and brain injury, the recent advances in our understanding of their mechanism of action, and the challenges that remain to be addressed before their eventual application to clinical care.
Collapse
|
30
|
Savitz SI, Parsha K. Enhancing Stroke Recovery with Cellular Therapies. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Titomanlio L, Fernández-López D, Manganozzi L, Moretti R, Vexler ZS, Gressens P. Pathophysiology and neuroprotection of global and focal perinatal brain injury: lessons from animal models. Pediatr Neurol 2015; 52:566-584. [PMID: 26002050 PMCID: PMC4720385 DOI: 10.1016/j.pediatrneurol.2015.01.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 01/16/2015] [Accepted: 01/24/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Arterial ischemic stroke occurs more frequently in term newborns than in the elderly, and brain immaturity affects mechanisms of ischemic injury and recovery. The susceptibility to injury of the brain was assumed to be lower in the perinatal period as compared with childhood. This concept was recently challenged by clinical studies showing marked motor disabilities after stroke in neonates, with the severity of motor and cortical sensory deficits similar in both perinatal and childhood ischemic stroke. Our understanding of the triggers and the pathophysiological mechanisms of perinatal stroke has greatly improved in recent years, but many factors remain incompletely understood. METHODS In this review, we focus on the pathophysiology of perinatal stroke and on therapeutic strategies that can protect the immature brain from the consequences of stroke by targeting inflammation and brain microenvironment. RESULTS Studies in neonatal rodent models of cerebral ischemia have suggested a potential role for soluble inflammatory molecules as important modulators of injury and recovery. A great effort is underway to investigate neuroprotective molecules based on our increasing understanding of the pathophysiology. CONCLUSION In this review, we provide a comprehensive summary of new insights concerning pathophysiology of focal and global perinatal brain injury and their implications for new therapeutic approaches.
Collapse
Affiliation(s)
- Luigi Titomanlio
- Pediatric Emergency Department, APHP, Robert Debré Hospital, Paris, France
- Inserm, U1141, F-75019 Paris, France
| | - David Fernández-López
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94158-0663, USA
| | - Lucilla Manganozzi
- Pediatric Emergency Department, APHP, Robert Debré Hospital, Paris, France
- Inserm, U1141, F-75019 Paris, France
| | | | - Zinaida S. Vexler
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94158-0663, USA
| | - Pierre Gressens
- Inserm, U1141, F-75019 Paris, France
- Univ Paris Diderot, Sorbonne Paris Cité, UMRS 676, F-75019 Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, King’s College, St Thomas’ Campus, London SE1 7EH, UK
| |
Collapse
|
32
|
Wei ZZ, Gu X, Ferdinand A, Lee JH, Ji X, Ji XM, Yu SP, Wei L. Intranasal Delivery of Bone Marrow Mesenchymal Stem Cells Improved Neurovascular Regeneration and Rescued Neuropsychiatric Deficits after Neonatal Stroke in Rats. Cell Transplant 2015; 24:391-402. [DOI: 10.3727/096368915x686887] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neonatal stroke is a major cause of mortality and long-term morbidity in infants and children. Currently, very limited therapeutic strategies are available to protect the developing brain against ischemic damage and promote brain repairs for pediatric patients. Moreover, children who experienced neonatal stroke often have developmental social behavior problems. Cellular therapy using bone marrow mesenchymal stem cells (BMSCs) has emerged as a regenerative therapy after stroke. In the present investigation, neonatal stroke of postnatal day 7 (P7) rat pups was treated with noninvasive and brain-specific intranasal delivery of BMSCs at 6 h and 3 days after stroke (1 × 106cells/animal). Prior to transplantation, BMSCs were subjected to hypoxic preconditioning to enhance their tolerance and regenerative properties. The effects on regenerative activities and stroke-induced sensorimotor and social behavioral deficits were specifically examined at P24 of juvenile age. The BMSC treatment significantly reduced infarct size and blood-brain barrier disruption, promoted angiogenesis, neurogenesis, neurovascular repair, and improved local cerebral blood flow in the ischemic cortex. BMSC-treated rats showed better sensorimotor and olfactory functional recovery than saline-treated animals, measured by the adhesive removal test and buried food finding test. In social behavioral tests, we observed functional and social behavioral deficits in P24 rats subjected to stroke at P7, while the BMSC treatment significantly improved the performance of stroke animals. Overall, intranasal BMSC transplantation after neonatal stroke shows neuroprotection and great potential as a regenerative therapy to enhance neurovascular regeneration and improve functional recovery observed at the juvenile stage of development.
Collapse
Affiliation(s)
- Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anwar Ferdinand
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaoya Ji
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xun Ming Ji
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
33
|
De La Peña I, Sanberg PR, Acosta S, Lin SZ, Borlongan CV. G-CSF as an adjunctive therapy with umbilical cord blood cell transplantation for traumatic brain injury. Cell Transplant 2015; 24:447-57. [PMID: 25646620 DOI: 10.3727/096368915x686913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI), a major contributor to deaths and permanent disability worldwide, has been recently described as a progressive cell death process rather than an acute event. TBI pathophysiology is complicated and can be distinguished by the initial primary injury and the subsequent secondary injury that ensues days after the trauma. Therapeutic opportunities for TBI remain very limited with patients subjected to surgery or rehabilitation therapy. The efficacy of stem cell-based interventions, as well as neuroprotective agents in other neurological disorders of which pathologies overlap with TBI, indicates their potential as alternative TBI treatments. Furthermore, their therapeutic limitations may be augmented when combination therapy is pursued instead of using a single agent. Indeed, we demonstrated remarkable combined efficacy of human umbilical cord blood (hUCB) cell therapy and granulocyte-colony-stimulating factor (G-CSF) treatment in TBI models, providing essential evidence for the translation of this approach to treat TBI. Further studies are warranted to determine the mechanisms underlying therapeutic benefits exerted by hUCB + G-CSF in order to enhance its safety and efficacy in the clinic.
Collapse
Affiliation(s)
- Ike De La Peña
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
34
|
Rua EDAO, Porto ML, Ramos JPL, Nogueira BV, Meyrelles SS, Vasquez EC, Pereira TC. Effects of tobacco smoking during pregnancy on oxidative stress in the umbilical cord and mononuclear blood cells of neonates. J Biomed Sci 2014; 21:105. [PMID: 25547987 PMCID: PMC4302517 DOI: 10.1186/s12929-014-0105-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/05/2014] [Indexed: 12/21/2022] Open
Abstract
Background Although cigarette smoke is known to be a complex mixture of over 4000 substances that can lead to damage through active or passive smoking, its mechanisms and biochemical consequences in pregnancy and neonates are not yet fully understood. Therefore, in the present study, we propose to study the impact of smoking during gestation on the viability of blood mononuclear cells (MNC) from umbilical cords of newborns to assess the degree of oxidative stress and cell viability. After childbirth, the cord blood and the umbilical cord were immediately collected in public hospitals in Greater Vitoria, ES, Brazil. Flow cytometry was used to analyze the cord blood followed by biochemical and histological tests to analyze possible changes in the umbilical cord. Results Pregnant smokers had a reduction of MNC viability from the umbilical cord (10%), an increase in the production of reactive oxygen species (ROS) and an increase in cell apoptosis (~2-fold) compared to pregnant non-smokers. In the umbilical cord, it was observed an increase of advanced oxidation protein products - AOPP (~2.5-fold) and a loss of the typical architecture and disposition of endothelial cells from the umbilical artery. Conclusions These data suggest that maternal cigarette smoking during pregnancy (even in small amounts) may compromise the viability of MNC cells and damage the umbilical cord structure, possibly by excessive ROS bioavailability.
Collapse
|
35
|
Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges. Front Med 2014; 9:20-9. [DOI: 10.1007/s11684-014-0371-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/12/2014] [Indexed: 01/01/2023]
|
36
|
Li C, Liu IKK, Tsao CY, Chan V. Neuronal differentiation of human placenta–derived multi-potent stem cells enhanced by cell body oscillation on gelatin hydrogel. J BIOACT COMPAT POL 2014; 29:529-544. [DOI: 10.1177/0883911514553903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Gelatin is a biocompatible material commonly employed in biomaterial design and tissue engineering. However, there is currently a lack of research into the development of gelatin hydrogels for facilitating specific lineage development of stem cells. In this study, the neuronal differentiation of human placenta–derived multi-potent (stem) cells was systematically optimized through the engineering of the gelatin hydrogel properties. The swelling ratio of Type A or Type B gelatin hydrogel changes during hydrogel formation in the gelatin concentration ranges from 16 to 6 wt%. In general, placenta-derived multi-potent (stem) cells effectively adhere on both, acidic and basic gelatin hydrogels with different swelling ratios as shown by the high attachment ratio of around 80%. Interestingly, adhered placenta-derived multi-potent (stem) cells had significant cell body oscillations on either 6 or 10 wt% gelatin hydrogels during the first 3 h of cell seeding. For placenta-derived multi-potent (stem) cells pre-cultured on 6 and 10 wt% gelatin hydrogel for either 2 or 12 h and subjected to 3-isobutyl-1-methylxanthine to induce neuronal differentiation, the periodic contraction and extension of placenta-derived multi-potent (stem) cells pre-cultured for 2 h successfully directed the cells into neuron-like lineages. In contrast, the lack of cell body oscillation restrained the placenta-derived multi-potent (stem) cells pre-cultured for 12 h from differentiating into neuronal cells on the same gelatin hydrogels in response to 3-isobutyl-1-methylxanthine stimulation. Overall, the possibility of engineering the properties of gelatin hydrogel to trigger stem cell development into a neuronal lineage through cell body oscillations was clearly demonstrated.
Collapse
Affiliation(s)
- Chuan Li
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
- Department of Mechanical Engineering, National Central University, Jhongli, Taiwan
| | - Isaac K-K Liu
- School of Engineering, The University of Warwick, Coventry, UK
| | - CY Tsao
- Department of Mechanical Engineering, National Central University, Jhongli, Taiwan
| | - Vincent Chan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
37
|
Zhao F, Qu Y, Liu H, Du B, Mu D. Umbilical cord blood mesenchymal stem cells co-modified by TERT and BDNF: a novel neuroprotective therapy for neonatal hypoxic-ischemic brain damage. Int J Dev Neurosci 2014; 38:147-54. [PMID: 24999119 DOI: 10.1016/j.ijdevneu.2014.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/18/2014] [Accepted: 06/25/2014] [Indexed: 01/01/2023] Open
Abstract
Hypoxic-ischemic brain damage (HIBD), a leading cause of perinatal disability and death, has limited therapeutic options. Stem cell therapy has been demonstrated as a potential novel therapy for neurological disorders. Compared with other types of stem cells, umbilical cord blood mesenchymal stem cells (UCB-MSCs) have several unique characteristics, such as a higher rate of cell proliferation and clonality. However, the limited life span of UCB-MSCs hinders their clinical application. Therefore, efforts are urgently needed to circumvent this disadvantage. Telomerase reverse transcriptase (TERT), which promotes cell proliferation and survival, plays a protective role in hypoxic-ischemic (HI) brain injury. Thus, it is reasonable to propose that UCB-MSCs modified by exogenous TERT expression might have a longer lifespan and increased viability. Moreover, brain-derived neurotrophic factor (BDNF), a neurotrophin that regulates development, regeneration, survival and maintenance of neurons, facilitates post-injury recovery when administered by infusion or virus-mediated delivery. Therefore, TERT- and BDNF-modified UCB-MSCs may have a longer lifespan and also maintain neural differentiation, thus promoting the recovery of neurological function following hypoxic-ischemic brain damage (HIBD) and thereby representing a new effective strategy for HIBD in neonates.
Collapse
Affiliation(s)
- Fengyan Zhao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Haiting Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Baowen Du
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China; Department of Pediatrics and Neurology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
38
|
Pham PV, Vu NB, Pham VM, Truong NH, Pham TLB, Dang LTT, Nguyen TT, Bui ANT, Phan NK. Good manufacturing practice-compliant isolation and culture of human umbilical cord blood-derived mesenchymal stem cells. J Transl Med 2014; 12:56. [PMID: 24565047 PMCID: PMC3939935 DOI: 10.1186/1479-5876-12-56] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/19/2014] [Indexed: 12/26/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are an attractive source of stem cells for clinical applications. These cells exhibit a multilineage differentiation potential and strong capacity for immune modulation. Thus, MSCs are widely used in cell therapy, tissue engineering, and immunotherapy. Because of important advantages, umbilical cord blood-derived MSCs (UCB-MSCs) have attracted interest for some time. However, the applications of UCB-MSCs are limited by the small number of recoverable UCB-MSCs and fetal bovine serum (FBS)-dependent expansion methods. Hence, this study aimed to establish a xenogenic and allogeneic supplement-free expansion protocol. Methods UCB was collected to prepare activated platelet-rich plasma (aPRP) and mononuclear cells (MNCs). aPRP was applied as a supplement in Iscove modified Dulbecco medium (IMDM) together with antibiotics. MNCs were cultured in complete IMDM with four concentrations of aPRP (2, 5, 7, or 10%) or 10% FBS as the control. The efficiency of the protocols was evaluated in terms of the number of adherent cells and their expansion, the percentage of successfully isolated cells in the primary culture, surface marker expression, and in vitro differentiation potential following expansion. Results The results showed that primary cultures with complete medium containing 10% aPRP exhibited the highest success, whereas expansion in complete medium containing 5% aPRP was suitable. UCB-MSCs isolated using this protocol maintained their immunophenotypes, multilineage differentiation potential, and did not form tumors when injected at a high dose into athymic nude mice. Conclusion This technique provides a method to obtain UCB-MSCs compliant with good manufacturing practices for clinical application.
Collapse
Affiliation(s)
- Phuc Van Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh city, Vietnam.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Effects of intravenous administration of umbilical cord blood CD34(+) cells in a mouse model of neonatal stroke. Neuroscience 2014; 263:148-58. [PMID: 24444827 DOI: 10.1016/j.neuroscience.2014.01.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/06/2014] [Accepted: 01/06/2014] [Indexed: 12/16/2022]
Abstract
Neonatal stroke occurs in approximately 1/4000 live births and results in life-long neurological impairments: e.g., cerebral palsy. Currently, there is no evidence-based specific treatment for neonates with stroke. Several studies have reported the benefits of umbilical cord blood (UCB) cell treatment in rodent models of neonatal brain injury. However, all of the studies examined the effects of administering either the UCB mononuclear cell fraction or UCB-derived mesenchymal stem cells in neonatal rat models. The objective of this study was to examine the effects of human UCB CD34(+) cells (hematopoietic stem cell/endothelial progenitor cells) in a mouse model of neonatal stroke, which we recently developed. On postnatal day 12, immunocompromized (SCID) mice underwent permanent occlusion of the left middle cerebral artery (MCAO). Forty-eight hours after MCAO, human UCB CD34(+) cells (1×10(5)cells) were injected intravenously into the mice. The area in which cerebral blood flow (CBF) was maintained was temporarily larger in the cell-treated group than in the phosphate-buffered saline (PBS)-treated group at 24h after treatment. With cell treatment, the percent loss of ipsilateral hemispheric volume was significantly ameliorated (21.5±1.9%) compared with the PBS group (25.6±5.1%) when assessed at 7weeks after MCAO. The cell-treated group did not exhibit significant differences from the PBS group in either rotarod (238±46s in the sham-surgery group, 175±49s in the PBS group, 203±54s in the cell-treated group) or open-field tests. The intravenous administration of human UCB CD34(+) cells modestly reduced histological ischemic brain damage after neonatal stroke in mice, with a transient augmentation of CBF in the peri-infarct area.
Collapse
|
40
|
Achyut BR, Varma NRS, Arbab AS. Application of Umbilical Cord Blood Derived Stem Cells in Diseases of the Nervous System. ACTA ACUST UNITED AC 2014; 4. [PMID: 25599002 DOI: 10.4172/2157-7633.1000202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Umbilical cord blood (UCB) derived multipotent stem cells are capable of giving rise hematopoietic, epithelial, endothelial and neural progenitor cells. Thus suggested to significantly improve graft-versus-host disease and represent the distinctive therapeutic option for several malignant and non-malignant diseases. Recent advances in strategies to isolate, expand and shorten the timing of UCB stem cells engraftment have tremendously improved the efficacy of transplantations. Nervous system has limited regenerative potential in disease conditions such as cancer, neurodegeneration, stroke, and several neural injuries. This review focuses on application of UCB derived stem/progenitor cells in aforementioned pathological conditions. We have discussed the possible attempts to make use of UCB therapies to generate neural cells and tissues with developmental and functional similarities to neuronal cells. In addition, emerging applications of UCB derived AC133+ (CD133+) endothelial progenitor cells (EPCs) as imaging probe, regenerative agent, and gene delivery vehicle are mentioned that will further improve the understanding of use of UCB cells in therapeutic modalities. However, safe and effective protocols for cell transplantations are still required for therapeutic efficacy.
Collapse
Affiliation(s)
- Bhagelu R Achyut
- Tumor Angiogenesis Lab, Cancer Center, Georgia Regents University, Augusta, GA 30912, USA
| | | | - Ali S Arbab
- Tumor Angiogenesis Lab, Cancer Center, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|