1
|
Maneira C, Chamas A, Lackner G. Engineering Saccharomyces cerevisiae for medical applications. Microb Cell Fact 2025; 24:12. [PMID: 39789534 PMCID: PMC11720383 DOI: 10.1186/s12934-024-02625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid. MAIN TEXT In this review, we scrutinize the main applications of engineered S. cerevisiae in the medical field focusing on its use as a cell factory for pharmaceuticals and vaccines, a biosensor for diagnostic and biomimetic assays, and as a live biotherapeutic product for the smart in situ treatment of intestinal ailments. An extensive view of these fields' academic and commercial developments as well as main hindrances is presented. CONCLUSION Although the field still faces challenges, the development of yeast-based medical applications is often considered a success story. The rapid advances in synthetic biology strongly support the case for a future where engineered yeasts play an important role in medicine.
Collapse
Affiliation(s)
- Carla Maneira
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany
| | - Alexandre Chamas
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gerald Lackner
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.
| |
Collapse
|
2
|
Mallick D, Tyagi V, Saroj A, Bhutkar M, Kumar V, Das M, Madhukalya R, Choudhary S, Gupta R, Singh V, Kumar D, Tomar S, Kumar R. Optimized high-yield expression of envelope glycoprotein domain III from dengue virus serotypes 1 to 4. Biochimie 2024:S0300-9084(24)00296-7. [PMID: 39672456 DOI: 10.1016/j.biochi.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Dengue virus (DENV) envelope glycoprotein Domain III (EDIII) is critical for viral entry, highly immunogenic, and induces robust neutralizing antibody response. It is a prominent candidate for designing subunit-based vaccines and can also be harnessed as an antigenic bait for isolation of neutralizing human mAbs. Here, we describe an optimized method for high-yield expression of recombinant domain EDIII protein from DENV serotypes 1 to 4 in different Escherichia coli (E. coli) expression strains. The DENV EDIII proteins show differential expression patterns in tested E. coli expression strains. The structural integrity of the purified and refolded proteins is further validated using the Circular Dichroism (CD) spectroscopy and Fourier Transform Infrared (FTIR) spectroscopic analysis. The functional validation of the purified refolded DENV EDIII proteins through Enzyme-linked Immunosorbent Assay (ELISA) and co-immunoprecipitation (Co-IP) exhibits efficient binding with a well-characterized humanized neutralizing mAb 513. Further, we compared the potency of purified EDIII in blocking viral through competitive inhibition assay. Our study highlights that a universal expression system may not be an ideal approach for all DENV EDIII protein expression.
Collapse
Affiliation(s)
- Disharee Mallick
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Vanshika Tyagi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Anjali Saroj
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Mandar Bhutkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Vivek Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Manjima Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Rishav Madhukalya
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Rohit Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Dilip Kumar
- Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, India; Department of Biology, Ashoka University, Sonipat, Haryana, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Rajesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand, India.
| |
Collapse
|
3
|
Le NMT, So KK, Chun J, Kim DH. Expression of virus-like particles (VLPs) of foot-and-mouth disease virus (FMDV) using Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2024; 108:81. [PMID: 38194136 PMCID: PMC10776484 DOI: 10.1007/s00253-023-12902-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 01/10/2024]
Abstract
We engineered Saccharomyces cerevisiae to express structural proteins of foot-and-mouth disease virus (FMDV) and produce virus-like particles (VLPs). The gene, which encodes four structural capsid proteins (VP0 (VP4 and VP2), VP3, and VP1), followed by a translational "ribosomal skipping" sequence consisting of 2A and protease 3C, was codon-optimized and chemically synthesized. The cloned gene was used to transform S. cerevisiae 2805 strain. Western blot analysis revealed that the polyprotein consisting of VP0, VP3, and VP1 was processed into the discrete capsid proteins. Western blot analysis of 3C confirmed the presence of discrete 3C protein, suggesting that the 2A sequence functioned as a "ribosomal skipping" signal in the yeast for an internal re-initiation of 3C translation from a monocistronic transcript, thereby indicating polyprotein processing by the discrete 3C protease. Moreover, a band corresponding to only VP2, which was known to be non-enzymatically processed from VP0 to both VP4 and VP2 during viral assembly, further validated the assembly of processed capsid proteins into VLPs. Electron microscopy showed the presence of the characteristic icosahedral VLPs. Our results clearly demonstrate that S. cerevisiae processes the viral structural polyprotein using a viral 3C protease and the resulting viral capsid subunits are assembled into virion particles. KEY POINTS: • Ribosomal skipping by self-cleaving FMDV peptide in S. cerevisiae. • Proteolytic processing of a structural polyprotein from a monocistronic transcript. • Assembly of the processed viral capsid proteins into a virus-like particle.
Collapse
Affiliation(s)
- Ngoc My Tieu Le
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, 54896, Jeollabuk-do, Republic of Korea
| | - Kum-Kang So
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Jeonbuk National University, Jeonju, Jeollabuk-Do, Republic of Korea
| | - Jeesun Chun
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Jeonbuk National University, Jeonju, Jeollabuk-Do, Republic of Korea
| | - Dae-Hyuk Kim
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, 54896, Jeollabuk-do, Republic of Korea.
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Jeonbuk National University, Jeonju, Jeollabuk-Do, Republic of Korea.
| |
Collapse
|
4
|
Sookhoo JRV, Schiffman Z, Ambagala A, Kobasa D, Pardee K, Babiuk S. Protein Expression Platforms and the Challenges of Viral Antigen Production. Vaccines (Basel) 2024; 12:1344. [PMID: 39772006 PMCID: PMC11680109 DOI: 10.3390/vaccines12121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Several protein expression platforms exist for a wide variety of biopharmaceutical needs. A substantial proportion of research and development into protein expression platforms and their optimization since the mid-1900s is a result of the production of viral antigens for use in subunit vaccine research. This review discusses the seven most popular forms of expression systems used in the past decade-bacterial, insect, mammalian, yeast, algal, plant and cell-free systems-in terms of advantages, uses and limitations for viral antigen production in the context of subunit vaccine research. Post-translational modifications, immunogenicity, efficacy, complexity, scalability and the cost of production are major points discussed. Examples of licenced and experimental vaccines are included along with images which summarize the processes involved.
Collapse
Affiliation(s)
- Jamie R. V. Sookhoo
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada;
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
5
|
Le NMT, So KK, Kim DH. Oral immunization against foot-and-mouth disease virus using recombinant Saccharomyces cerevisiae with the improved expression of the codon-optimized VP1 fusion protein. Vet Microbiol 2024; 296:110192. [PMID: 39032444 DOI: 10.1016/j.vetmic.2024.110192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
VP1, a major immunogenic protein of foot-and-mouth disease virus (FMDV), facilitates viral attachment and entry into host cells. VP1 possesses critical epitope sequences responsible for inducing neutralizing antibodies but its expression using Saccharomyces cerevisiae has been hampered despite evidence that the presence of VP1 does not negatively impact the yeast's biology. In this study, we fused proteins to enhance VP1 expression using S. cerevisiae. Among short P1 chimeras containing VP1 including VP3-VP1 and VP2-VP1, VP3-VP1 fusion proteins showed higher expression levels than VP2-VP1. We subsequently designed new fusion proteins, of which 20 amino acids of N-terminal VP3 fused with VP1-Co1 (referred to 20aaVP3-VP1-Co1) showed the highest expression level. Lowering the culture temperature from 30 ⁰C to 20 ⁰C further enhanced fusion protein production. The highest expression level of 20aaVP3-VP1-Co1 was estimated to be 7.7 mg/L, which is comparable to other heterologous proteins produced using our S. cerevisiae expression system. Oral administration of the cell expressing 20aaVP3-VP1-Co1 induced VP1-specific IgG and IgA responses in mice. The S. cerevisiae-expressed 20aaVP3-VP1-Co1 fusion protein induced a significant immune response to the FMDV structural epitope protein, which opens the possibility of an oral FMDV vaccine.
Collapse
Affiliation(s)
- Ngoc My Tieu Le
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Kum-Kang So
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
| | - Dae-Hyuk Kim
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea; Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea; Department of Molecular Biology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
6
|
Nguyen HM, V Le KT, Nguyen NL, Tran-Van H, Ho GT, Nguyen TT, Haltrich D, Nguyen TH. Surface-Displayed Mannanolytic and Chitinolytic Enzymes Using Peptidoglycan Binding LysM Domains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12655-12664. [PMID: 38775266 DOI: 10.1021/acs.jafc.4c01938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Using Lactiplantibacillus plantarum as a food-grade carrier to create non-GMO whole-cell biocatalysts is gaining popularity. This work evaluates the immobilization yield of a chitosanase (CsnA, 30 kDa) from Bacillus subtilis and a mannanase (ManB, 40 kDa) from B. licheniformis on the surface of L. plantarum WCFS1 using either a single LysM domain derived from the extracellular transglycosylase Lp_3014 or a double LysM domain derived from the muropeptidase Lp_2162. ManB and CsnA were fused with the LysM domains of Lp_3014 or Lp_2162, produced in Escherichia coli and anchored to the cell surface of L. plantarum. The localization of the recombinant proteins on the bacterial cell surface was successfully confirmed by Western blot and flow cytometry analysis. The highest immobilization yields (44-48%) and activities of mannanase and chitosanase on the displaying cell surface (812 and 508 U/g of dry cell weight, respectively) were obtained when using the double LysM domain of Lp_2162 as an anchor. The presence of manno-oligosaccharides or chito-oligosaccharides in the reaction mixtures containing appropriate substrates and ManB or CsnA-displaying cells was determined by high-performance anion exchange chromatography. This study indicated that non-GMO Lactiplantibacillus chitosanase- and mannanase-displaying cells could be used to produce potentially prebiotic oligosaccharides.
Collapse
Affiliation(s)
- Hoang-Minh Nguyen
- Department of Biotechnology, Faculty of Chemical Engineering, The University of Da Nang─University of Science and Technology, 54 Nguyen Luong Bang, Da Nang 550000, Vietnam
| | - Khanh-Trang V Le
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
- Faculty of Biology and Environmental Science, The University of Da Nang - University of Science and Education, Da Nang 550000, Vietnam
| | - Ngoc-Luong Nguyen
- Hue University, College of Sciences, 77 Nguyen Hue, Hue 70000, Vietnam
| | - Hieu Tran-Van
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science, Vietnam National University, Ho Chi Minh City 70000, Vietnam
| | - Giap T Ho
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City 700000, Vietnam
| | - Tien-Thanh Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No.1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Vietnam
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Thu-Ha Nguyen
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
7
|
Gwon Y, So KK, Chun J, Kim DH. Metabolic engineering of Saccharomyces cerevisiae for the biosynthesis of a fungal pigment from the phytopathogenic fungus Cladosporium phlei. J Biol Eng 2024; 18:33. [PMID: 38741106 DOI: 10.1186/s13036-024-00429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Cladosporium phlei is a phytopathogenic fungus that produces a pigment called phleichrome. This fungal perylenequinone plays an important role in the production of a photosensitizer that is a necessary component of photodynamic therapy. We applied synthetic biology to produce phleichrome using Saccharomyces cerevisiae. RESULTS The gene Cppks1, which encodes a non-reducing polyketide synthase (NR-PKS) responsible for the biosynthesis of phleichrome in C. phlei, was cloned into a yeast episomal vector and used to transform S. cerevisiae. In addition, a gene encoding a phosphopantetheinyl transferase (PPTase) of Aspergillus nidulans was cloned into a yeast integrative vector and also introduced into S. cerevisiae for the enzymatic activation of the protein product of Cppks1. Co-transformed yeasts were screened on a leucine/uracil-deficient selective medium and the presence of both integrative as well as episomal recombinant plasmids in the yeast were confirmed by colony PCR. The episomal vector for Cppks1 expression was so dramatically unstable during cultivation that most cells lost their episomal vector rapidly in nonselective media. This loss was also observed to a less degree in selective media. This data strongly suggests that the presence of the Cppks1 gene exerts a significant detrimental effect on the growth of transformed yeast cells and that selection pressure is required to maintain the Cppks1-expressing vector. The co-transformants on the selective medium showed the distinctive changes in pigmentation after a period of prolonged cultivation at 20 °C and 25 °C, but not at 30 °C. Furthermore, thin layer chromatography (TLC) revealed the presence of a spot corresponding with the purified phleichrome in the extract from the cells of the co-transformants. Liquid chromatography (LC/MS/MS) verified that the newly expressed pigment was indeed phleichrome. CONCLUSION Our results indicate that metabolic engineering by multiple gene expression is possible and capable of producing fungal pigment phleichrome in S. cerevisiae. This result adds to our understanding of the characteristics of fungal PKS genes, which exhibit complex structures and diverse biological activities.
Collapse
Affiliation(s)
- Yeji Gwon
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kum-Kang So
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Department of Molecular Biology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jeesun Chun
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Department of Molecular Biology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dae-Hyuk Kim
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Department of Molecular Biology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
8
|
Jain S, Vimal N, Angmo N, Sengupta M, Thangaraj S. Dengue Vaccination: Towards a New Dawn of Curbing Dengue Infection. Immunol Invest 2023; 52:1096-1149. [PMID: 37962036 DOI: 10.1080/08820139.2023.2280698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dengue is an infectious disease caused by dengue virus (DENV) and is a serious global burden. Antibody-dependent enhancement and the ability of DENV to infect immune cells, along with other factors, lead to fatal Dengue Haemorrhagic Fever and Dengue Shock Syndrome. This necessitates the development of a robust and efficient vaccine but vaccine development faces a number of hurdles. In this review, we look at the epidemiology, genome structure and cellular targets of DENV and elaborate upon the immune responses generated by human immune system against DENV infection. The review further sheds light on various challenges in development of a potent vaccine against DENV which is followed by presenting a current account of different vaccines which are being developed or have been licensed.
Collapse
Affiliation(s)
- Sidhant Jain
- Independent Researcher, Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, India
| | - Neha Vimal
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Nilza Angmo
- Maitreyi College, University of Delhi, Delhi, India
| | - Madhumita Sengupta
- Janki Devi Bajaj Government Girls College, University of Kota, Kota, India
| | - Suraj Thangaraj
- Swami Ramanand Teerth Rural Government Medical College, Maharashtra University of Health Sciences, Ambajogai, India
| |
Collapse
|
9
|
So KK, Le NMT, Nguyen NL, Kim DH. Improving expression and assembly of difficult-to-express heterologous proteins in Saccharomyces cerevisiae by culturing at a sub-physiological temperature. Microb Cell Fact 2023; 22:55. [PMID: 36959657 PMCID: PMC10035479 DOI: 10.1186/s12934-023-02065-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/19/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Escherichia coli heat labile toxin B subunit (LTB) is one of the most popular oral vaccine adjuvants and intestine adsorption enhancers. It is often expressed as a fusion partner with target antigens to enhance their immunogenicity as well as gut absorbability. However, high expression levels of a fusion protein are critical to the outcome of immunization experiments and the success of subsequent vaccine development efforts. In order to improve the expression and functional assembly of LTB-fusion proteins using Saccharomyces cerevisiae, we compared their expression under culture conditions at a sub-physiological temperature 20 °C with their expression under a standard 30 °C. RESULTS The assembled expression of LTB-EDIII2 (LTB fused to the envelope domain III (EDIII) of Dengue virus serotype 2), which was expressed at the level of 20 µg/L in our previous study, was higher when the expression temperature was 20 °C as opposed to 30 °C. We also tested whether the expression and functional assembly of a difficult-to-express LTB fusion protein could be increased. The assembled expression of the difficult-to-express LTB-VP1 fusion protein (LTB fused to VP1 antigen of Foot-and-Mouth Disease Virus) dramatically increased, although the total amount of expressed protein was still lower than that of LTB-EDIII2. Slight but significant increase in the expression of well-known reporter protein eGFP, which has previously been shown to be increased by cultivation at 20 °C, was also observed in our expression system. As no significant changes in corresponding transcripts levels and cell growth were observed between 20 °C and 30 °C, we infer that translation and post-translational assembly are responsible for these enhancements. CONCLUSIONS The effects of lowering the expression temperature from 30 °C to 20 °C on protein expression and folding levels in S. cerevisiae, using several proteins as models, are reported. When heterologous proteins are expressed at 20 °C, a greater amount of (specially, more assembled) functional proteins accumulated than at 30 °C. Although further studies are required to understand the molecular mechanisms, our results suggest that lowering the expression temperature is a convenient strategy for improving the expression of relatively complexly structured and difficult-to-express proteins in S. cerevisiae.
Collapse
Affiliation(s)
- Kum-Kang So
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Jeonbuk National University, Jeonju, Jeollabuk-Do, 54896, Republic of Korea
| | - Ngoc My Tieu Le
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Jeollabuk-Do, 54896, Republic of Korea
| | - Ngoc-Luong Nguyen
- Department of Biology, College of Sciences, Hue University, Hue, 530000, Vietnam.
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Jeonbuk National University, Jeonju, Jeollabuk-Do, 54896, Republic of Korea.
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Jeollabuk-Do, 54896, Republic of Korea.
| |
Collapse
|
10
|
Chun J, Ko YH, Kim DH. Interaction between hypoviral-regulated fungal virulence factor laccase3 and small heat shock protein Hsp24 from the chestnut blight fungus Cryphonectria parasitica. J Microbiol 2021; 60:57-62. [PMID: 34826098 DOI: 10.1007/s12275-022-1498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
Laccase3 is an important virulence factor of the fungus Cryphonectria parasitica. Laccase3 gene (lac3) transcription is induced by tannic acid, a group of phenolic compounds found in chestnut trees, and its induction is regulated by the hypovirus CHV1 infection. CpHsp24, a small heat shock protein gene of C. parasitica, plays a determinative role in stress adaptation and pathogen virulence. Having uncovered in our previous study that transcriptional regulation of the CpHsp24 gene in response to tannic acid supplementation and CHV1 infection was similar to that of the lac3, and that conserved phenotypic changes of reduced virulence were observed in mutants of both genes, we inferred that both genes were implicated in a common pathway. Building on this finding, in this paper we examined whether the CpHsp24 protein (CpHSP24) was a molecular chaperone for the lac3 protein (LAC3). Our pull-down experiment indicated that the protein products of the two genes directly interacted with each other. Heterologous co-expression of CpHsp24 and lac3 genes using Saccharomyces cerevisiae resulted in more laccase activity in the cotransformant than in a parental lac3-expresssing yeast strain. These findings suggest that CpHSP24 is, in fact, a molecular chaperone for the LAC3, which is critical component of fungal pathogenesis.
Collapse
Affiliation(s)
- Jeesun Chun
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yo-Han Ko
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dae-Hyuk Kim
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
11
|
So KK, Chun J, Luong NN, Seo HW, Kim DH. Expression of an immunocomplex consisting of Fc fragment fused with a consensus dengue envelope domain III in Saccharomyces cerevisiae. Biotechnol Lett 2021; 43:1895-1904. [PMID: 34245387 PMCID: PMC8272446 DOI: 10.1007/s10529-021-03161-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/28/2021] [Indexed: 11/25/2022]
Abstract
Objectives To explore Saccharomyces cerevisiae as an expression platform for dengue oral immune complex vaccine development. Results Molecular engineering was applied to create a fusion gene construct (scEDIII-PIGS) consisting of a yeast codon optimized sequence encoding for a synthetic consensus dengue envelope domain III (scEDIII) followed by a modified IgG Fc domain (PIGS). Northern blot showed transcription of the target gene, with a temporal expression pattern similar to those from previous work. Western blot showed assembly of various immune complexes from monomer to hexamer. Partial purification of scEDIII-PIGS was also attempted to demonstrate the feasibility of yeast system for immune complex vaccine development. Approximately 1 mg of scEDIII-PIGS can be produced from 1 l culture. Conclusion This work demonstrated for the first time that various immunocomplex structures of our target protein could be efficiently produced in S. cerevisiae for future application in developing oral and injectable vaccines against various pathogens. Supplementary Information The online version contains supplementary material available at 10.1007/s10529-021-03161-7.
Collapse
Affiliation(s)
- Kum-Kang So
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Jeonbuk National University, Jeollabuk-do, Jeonju, 54896, Republic of Korea
| | - Jeesun Chun
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Jeonbuk National University, Jeollabuk-do, Jeonju, 54896, Republic of Korea
| | - Nguyen Ngoc Luong
- Department of Biology, College of Sciences, Hue University, Hue, Vietnam
| | - Hee-Won Seo
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Jeonbuk National University, Jeollabuk-do, Jeonju, 54896, Republic of Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Jeonbuk National University, Jeollabuk-do, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
12
|
Contribution of yeast models to virus research. Appl Microbiol Biotechnol 2021; 105:4855-4878. [PMID: 34086116 PMCID: PMC8175935 DOI: 10.1007/s00253-021-11331-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Abstract Time and again, yeast has proven to be a vital model system to understand various crucial basic biology questions. Studies related to viruses are no exception to this. This simple eukaryotic organism is an invaluable model for studying fundamental cellular processes altered in the host cell due to viral infection or expression of viral proteins. Mechanisms of infection of several RNA and relatively few DNA viruses have been studied in yeast to date. Yeast is used for studying several aspects related to the replication of a virus, such as localization of viral proteins, interaction with host proteins, cellular effects on the host, etc. The development of novel techniques based on high-throughput analysis of libraries, availability of toolboxes for genetic manipulation, and a compact genome makes yeast a good choice for such studies. In this review, we provide an overview of the studies that have used yeast as a model system and have advanced our understanding of several important viruses. Key points • Yeast, a simple eukaryote, is an important model organism for studies related to viruses. • Several aspects of both DNA and RNA viruses of plants and animals are investigated using the yeast model. • Apart from the insights obtained on virus biology, yeast is also extensively used for antiviral development.
Collapse
|
13
|
Yu H, Yu J, Li L, Zhang Y, Xin S, Ni X, Sun Y, Song K. Recent Progress of the Practical Applications of the Platinum Nanoparticle-Based Electrochemistry Biosensors. Front Chem 2021; 9:677876. [PMID: 34012952 PMCID: PMC8128108 DOI: 10.3389/fchem.2021.677876] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
The detection of biomolecules using various biosensors with excellent sensitivity, selectivity, stability, and reproducibility, is of great significance in the analytical and biomedical fields toward achieving their practical applications. Noble metal nanoparticles are favorable candidates due to their unique optical, surface electrical effect, and catalytic properties. Among these noble metal nanoparticles, platinum nanoparticles (Pt NPs) have been widely employed for the detection of bioactive substances such as glucose, glutamic acid, and hormones. However, there is still a long way to go before the potential challenges in the practical applications of biomolecules are fully overcome. Bearing this in mind, combined with our research experience, we summarized the recent progress of the Pt NP-based biosensors and highlighted the current problems that exist in their practical applications. The current review would provide fundamental guidance for future applications using the Pt NP-based biosensors in food, agricultural, and medical fields.
Collapse
Affiliation(s)
- Han Yu
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Jingbo Yu
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Linlin Li
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Yujia Zhang
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Shuquan Xin
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Xiuzhen Ni
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Kai Song
- School of Life Sciences, Changchun Normal University, Changchun, China
| |
Collapse
|
14
|
Toh YH, Huang YW, Chang YC, Chen YT, Hsu YT, Lin GH. Reactivity of human antisera to codon optimized SARS-CoV2 viral proteins expressed in Escherichia coli. Tzu Chi Med J 2021; 33:146-153. [PMID: 33912411 PMCID: PMC8059472 DOI: 10.4103/tcmj.tcmj_189_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 11/04/2022] Open
Abstract
Objective The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV2 virus continues to pose a serious threat to public health worldwide. The development of rapid diagnostic kits can assist the Tzu Chi Foundation in supporting global volunteers working to provide relief during the current pandemic. Materials and Methods In this study, nucleotide sequences derived from publicly available viral genome data for several domains of the SARS-CoV2 spike and nucleocapsid (N) proteins were chemically synthesized, with codon optimization for Escherichia coli protein expression. No actual viral particles were involved in these experiments. The synthesized sequences were cloned into an E. coli expression system based on pQE80L, and expressed viral proteins were subsequently purified using Ni-affinity chromatography. Western blotting was conducted using human antiviral sera to assess the response of codon-modified viral proteins to COVID-19 patient sera. Results N protein was expressed in amounts large enough to support large-scale production. The N-terminal domain, receptor-binding domain (RBD), Region 3, and the S2 domain were expressed in small but sufficient amounts for experiments. Immunoblotting results showed that anti-N IgG and anti-N IgM antibodies were detected in most patient sera, but only 60% of samples reacted with the recombinant RBD and S2 domain expressed by E. coli. Conclusion The results indicated that codon-optimized SARS-CoV2 viral proteins can be expressed in E. coli and purified for rapid antibody detection kit preparation, with the codon-optimized N protein, RBD, and S2 protein demonstrating the most potential.
Collapse
Affiliation(s)
- Yee-Huan Toh
- Department of Life Sciences, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yu-Weng Huang
- Department of Molecular Biology and Human Genetics, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yo-Chen Chang
- Department of Laboratory Medicine and Biotechnology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yi-Ting Chen
- Department of Molecular Biology and Human Genetics, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ya-Ting Hsu
- Master Program in Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Guang-Huey Lin
- Master Program in Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,International College, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
15
|
Kumar R, Kumar P. Yeast-based vaccines: New perspective in vaccine development and application. FEMS Yeast Res 2019; 19:5298404. [PMID: 30668686 DOI: 10.1093/femsyr/foz007] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
In presently licensed vaccines, killed or attenuated organisms act as a source of immunogens except for peptide-based vaccines. These conventional vaccines required a mass culture of associated or related organisms and long incubation periods. Special requirements during storage and transportation further adds to the cost of vaccine preparations. Availability of complete genome sequence, well-established genetic, inherent natural adjuvant and non-pathogenic nature of yeast species viz. Saccharomyces cerevisiae, Pichia pastoris makes them an ideal model system for the development of vaccines both for public health and for on-farm consumption. In this review, we compile the work in this emerging field during last two decades with major emphases on S. cerevisiae and P. pastoris which are routinely used worldwide for expression of heterologous proteins with therapeutic value against infectious diseases along with possible use in cancer therapy. We also pointed towards the developments in use of whole recombinant yeast, yeast surface display and virus-like particles as a novel strategy in the fight against infectious diseases and cancer along with other aspects including suitability of yeast in vaccines preparations, yeast cell wall component as an immune stimulator or modulator and present status of yeast-based vaccines in clinical trials.
Collapse
Affiliation(s)
- Ravinder Kumar
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Piyush Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India
| |
Collapse
|
16
|
Bal J, Jung HY, Nguyen LN, Park J, Jang YS, Kim DH. Evaluation of cell-surface displayed synthetic consensus dengue EDIII cells as a potent oral vaccine candidate. Microb Cell Fact 2018; 17:146. [PMID: 30217208 PMCID: PMC6138890 DOI: 10.1186/s12934-018-0994-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/10/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Dengue is a rapidly spreading mosquito borne tropical viral disease affecting hundreds of millions of people across the globe annually. The dengue virus (DENV) includes four genetically distinct serotypes that cause serious life-threatening infections, including dengue hemorrhagic fever/dengue shock syndrome. Dengue vaccine development is complicated by the possibility of vaccine-enhanced severe dengue disease due to antibody-dependent enhancement by pre-existing cross-reactivity, as well as homotypic antibodies. Thus, the development of an efficacious dengue vaccine conferring simultaneous and durable immunity to each of the four DENV serotypes has not yet been developed despite years of research. For mass immunization in deeply affected resource-limited countries, oral vaccination is considered more beneficial than conventional approaches. Therefore, in a continuing effort towards designing economical and potent vaccine candidates, the current study applied yeast surface display technology to develop an oral dengue vaccine candidate using whole recombinant yeast cells displaying the recombinant fusion protein of M cell targeting ligand Co1 fused to the synthetic consensus dengue envelope domain III (scEDIII). Female Balb/c mice were orally fed with recombinant yeast cells and immunogenicity in terms of systemic and mucosal immune responses was monitored. RESULTS Immunofluorescence microscopy with dengue specific antibody and fluorescein isothiocyanate-conjugated anti-mouse IgG antibody clearly showed that recombinant protein Co1-scEDIII-AGA was localized on the cell surface of the respective clones in comparison with scEDIII-Co1 and Mock cells with no fluorescence. Oral dosage applications of surface displayed Co1-scEDIII-AGA stimulated a systemic humoral immune response in the form of dengue-specific serum IgG, as well as a mucosal immune response in the form of secretory immunoglobulin A (sIgA). Antigen-specific B cell responses in isolated lymphoid cells from the spleen and Peyer's patches further supported an elevated mucosal immune response. In addition, surface displayed Co1-scEDIII-AGA feeding elicited strong immune responses in comparison with scEDIII-Co1 and Mock following intraperitoneal booster with purified scEDIII antigen. CONCLUSIONS Surface displayed preparations of Co1-scEDIII-AGA induced strong immunogenicity compared with non-displayed scEDIII-Co1. Prior studies have supported the neutralization potential of scEDIII constructs against all four serotypes. Thus, the oral administration of genetically engineered yeast whole cells displaying biologically active Co1-scEDIII fusion protein without any further processing shows prospective as a potent oral vaccine candidate against dengue viral infection.
Collapse
Affiliation(s)
- Jyotiranjan Bal
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896 Republic of Korea
| | - Hee-Young Jung
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896 Republic of Korea
| | - Luong Ngoc Nguyen
- Department of Biology, College of Sciences, Hue University, Hue, Vietnam
| | - Jisang Park
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896 Republic of Korea
| | - Yong-Suk Jang
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896 Republic of Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Department of Molecular Biology, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896 Republic of Korea
| |
Collapse
|
17
|
Tripathi NK, Shrivastava A. Recent Developments in Recombinant Protein-Based Dengue Vaccines. Front Immunol 2018; 9:1919. [PMID: 30190720 PMCID: PMC6115509 DOI: 10.3389/fimmu.2018.01919] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022] Open
Abstract
Recombinant proteins are gaining enormous importance these days due to their wide application as biopharmaceutical products and proven safety record. Various recombinant proteins of therapeutic and prophylactic importance have been successfully produced in microbial and higher expression host systems. Since there is no specific antiviral therapy available against dengue, the prevention by vaccination is the mainstay in reducing the disease burden. Therefore, efficacious vaccines are needed to control the spread of dengue worldwide. Dengue is an emerging viral disease caused by any of dengue virus 1-4 serotypes that affects the human population around the globe. Dengue virus is a single stranded RNA virus encoding three structural proteins (capsid protein, pre-membrane protein, and envelope protein) and seven non-structural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5). As the only licensed dengue vaccine (Dengvaxia) is unable to confer balanced protection against all the serotypes, therefore various approaches for development of dengue vaccines including tetravalent live attenuated, inactivated, plasmid DNA, virus-vectored, virus-like particles, and recombinant subunit vaccines are being explored. These candidates are at different stages of vaccine development and have their own merits and demerits. The promising subunit vaccines are mainly based on envelope or its domain and non-structural proteins of dengue virus. These proteins have been produced in different hosts and are being investigated for development of a successful dengue vaccine. Novel immunogens have been designed employing various strategies like protein engineering and fusion of antigen with various immunostimulatory motif to work as self-adjuvant. Moreover, recombinant proteins can be formulated with novel adjuvants to enhance the immunogenicity and thus conferring better protection to the vaccinees. With the advent of newer and safer host systems, these recombinant proteins can be produced in a cost effective manner at large scale for vaccine studies. In this review, we summarize recent developments in recombinant protein based dengue vaccines that could lead to a good number of efficacious vaccine candidates for future human use and ultimately alternative dengue vaccine candidates.
Collapse
Affiliation(s)
- Nagesh K. Tripathi
- Bioprocess Scale Up Facility, Defence Research and Development Establishment, Gwalior, India
| | - Ambuj Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
18
|
Dengue viruses and promising envelope protein domain III-based vaccines. Appl Microbiol Biotechnol 2018; 102:2977-2996. [PMID: 29470620 DOI: 10.1007/s00253-018-8822-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/13/2022]
Abstract
Dengue viruses are emerging mosquito-borne pathogens belonging to Flaviviridae family which are transmitted to humans via the bites of infected mosquitoes Aedes aegypti and Aedes albopictus. Because of the wide distribution of these mosquito vectors, more than 2.5 billion people are approximately at risk of dengue infection. Dengue viruses cause dengue fever and severe life-threatening illnesses as well as dengue hemorrhagic fever and dengue shock syndrome. All four serotypes of dengue virus can cause dengue diseases, but the manifestations are nearly different depending on type of the virus in consequent infections. Infection by any serotype creates life-long immunity against the corresponding serotype and temporary immunity to the others. This transient immunity declines after a while (6 months to 2 years) and is not protective against other serotypes, even may enhance the severity of a secondary heterotypic infection with a different serotype through a phenomenon known as antibody-depended enhancement (ADE). Although, it can be one of the possible explanations for more severe dengue diseases in individuals infected with a different serotype after primary infection. The envelope protein (E protein) of dengue virus is responsible for a wide range of biological activities, including binding to host cell receptors and fusion to and entry into host cells. The E protein, and especially its domain III (EDIII), stimulates host immunity responses by inducing protective and neutralizing antibodies. Therefore, the dengue E protein is an important antigen for vaccine development and diagnostic purposes. Here, we have provided a comprehensive review of dengue disease, vaccine design challenges, and various approaches in dengue vaccine development with emphasizing on newly developed envelope domain III-based dengue vaccine candidates.
Collapse
|
19
|
Bal J, Luong NN, Park J, Song KD, Jang YS, Kim DH. Comparative immunogenicity of preparations of yeast-derived dengue oral vaccine candidate. Microb Cell Fact 2018; 17:24. [PMID: 29452594 PMCID: PMC5815244 DOI: 10.1186/s12934-018-0876-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/09/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Dengue is listed as a neglected tropical disease by the Center for Disease Control and Preservation, as there are insufficient integrated surveillance strategies, no effective treatment, and limited licensed vaccines. Consisting of four genetically distinct serotypes, dengue virus (DENV) causes serious life-threatening infections due to its complexity. Antibody-dependent enhancement by pre-existing cross-reactive as well as homotypic antibodies further worsens the clinical symptoms of dengue. Thus, a vaccine conferring simultaneous and durable immunity to each of the four DENV serotypes is essential to restrict its escalation. In deeply affected resource-limited countries, oral vaccination using food-grade organisms is considered to be a beneficial approach in terms of costs, patient comfort, and simple logistics for mass immunization. The current study used a mouse model to explore the immunogenicity of an oral dengue vaccine candidate prepared using whole recombinant yeast cells (WC) and cell-free extracts (CFE) from cells expressing recombinant Escherichia coli heat-labile toxin protein B-subunit (LTB) fused to the consensus dengue envelope domain III (scEDIII). Mice were treated orally with recombinant WC and CFE vaccines in 2-week intervals for 4 weeks and changes in systemic and mucosal immune responses were monitored. RESULTS Both WC and CFE dosage applications of LTB-scEDIII stimulated a systemic humoral immune response in the form of dengue-specific serum IgG as well as mucosal immune response in the form of secretory sIgA. Antigen-specific B cell responses in isolated lymphoid cells from the spleen and Peyer's patches further indicated an elevated mucosal immune response. Cellular immune response estimated through lymphocyte proliferation assay indicated higher levels in CFE than WC dosage. Furthermore, sera obtained after both oral administrations successfully neutralized DENV-1, whereas CFE formulation only neutralized DENV-2 serotype, two representative serotypes which cause severe dengue infection. Sera from mice that were fed CFE preparations demonstrated markedly higher neutralizing titers compared to those from WC-fed mice. However, WC feeding elicited strong immune responses, which were similar to the levels induced by CFE feeding after intraperitoneal booster with purified scEDIII antigen. CONCLUSIONS CFE preparations of LTB-scEDIII produced strong immunogenicity with low processing requirements, signifying that this fusion protein shows promise as a potent oral vaccine candidate against dengue viral infection.
Collapse
Affiliation(s)
- Jyotiranjan Bal
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Nguyen Ngoc Luong
- Department of Biology, College of Sciences, Hue University, Hue, Vietnam
| | - Jisang Park
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, The Animal Molecular Genetics and Breeding Center, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Yong-Suk Jang
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Dae-Hyuk Kim
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
20
|
Singhal C, Pundir C, Narang J. A genosensor for detection of consensus DNA sequence of Dengue virus using ZnO/Pt-Pd nanocomposites. Biosens Bioelectron 2017; 97:75-82. [DOI: 10.1016/j.bios.2017.05.047] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 11/25/2022]
|
21
|
Pang EL, Loh HS. Current perspectives on dengue episode in Malaysia. ASIAN PAC J TROP MED 2016; 9:395-401. [PMID: 27086160 DOI: 10.1016/j.apjtm.2016.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/20/2016] [Indexed: 11/29/2022] Open
Abstract
Prevalence of dengue transmission has been alarmed by an estimate of 390 million infections per annum. Urban encroachment, ecological disruption and poor sanitation are all contributory factors of increased epidemiology. Complication however arises from the fact that dengue virus inherently exists as four different serotypes. Secondary infection is often manifested in the more severe form, such that antibody-dependent enhancement (ADE) could aggravate ailment by allowing pre-existing antibodies to form complexes with infecting viruses as means of intrusion. Consequently, increased viraemic titter and suppression of antiviral response are observed. Deep concerns are thus expressed in regards to escalating trend of hospitalisation and mortality rates. In Malaysia, situation is exacerbated by improper clinical management and pending vector control operations. As a preparedness strategy against the potential deadly dengue pandemic, the call for development of a durable and cost-effective dengue vaccine against all infecting serotypes is intensified. Even though several vaccine candidates are currently being evaluated in clinical trials, uncertainties in regards to serotypes interference, incomplete protection and dose adequacy have been raised. Instead of sole reliance on outsourcing, production of local vaccine should be considered in coherent to government's efforts to combat against dengue.
Collapse
Affiliation(s)
- Ee Leen Pang
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; Biotechnology Research Centre, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
22
|
Bill RM. Recombinant protein subunit vaccine synthesis in microbes: a role for yeast? J Pharm Pharmacol 2014; 67:319-28. [DOI: 10.1111/jphp.12353] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/18/2014] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Recombinant protein subunit vaccines are formulated using protein antigens that have been synthesized in heterologous host cells. Several host cells are available for this purpose, ranging from Escherichia coli to mammalian cell lines. This article highlights the benefits of using yeast as the recombinant host.
Key findings
The yeast species, Saccharomyces cerevisiae and Pichia pastoris, have been used to optimize the functional yields of potential antigens for the development of subunit vaccines against a wide range of diseases caused by bacteria and viruses. Saccharomyces cerevisiae has also been used in the manufacture of 11 approved vaccines against hepatitis B virus and one against human papillomavirus; in both cases, the recombinant protein forms highly immunogenic virus-like particles.
Summary
Advances in our understanding of how a yeast cell responds to the metabolic load of producing recombinant proteins will allow us to identify host strains that have improved yield properties and enable the synthesis of more challenging antigens that cannot be produced in other systems. Yeasts therefore have the potential to become important host organisms for the production of recombinant antigens that can be used in the manufacture of subunit vaccines or in new vaccine development.
Collapse
Affiliation(s)
- Roslyn M Bill
- School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
23
|
Nguyen NL, So KK, Kim JM, Kim SH, Jang YS, Yang MS, Kim DH. Expression and characterization of an M cell-specific ligand-fused dengue virus tetravalent epitope using Saccharomyces cerevisiae. J Biosci Bioeng 2014; 119:19-27. [PMID: 25027708 DOI: 10.1016/j.jbiosc.2014.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/19/2014] [Accepted: 06/11/2014] [Indexed: 11/29/2022]
Abstract
A fusion construct (Tet-EDIII-Co1) consisting of an M cell-specific peptide ligand (Co1) at the C-terminus of a recombinant tetravalent gene encoding the amino acid sequences of dengue envelope domain III (Tet-EDIII) from four serotypes was expressed and tested for binding activity to the mucosal immune inductive site M cells for the development of an oral vaccine. The yeast episomal expression vector, pYEGPD-TER, which was designed to direct gene expression using the glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter, a functional signal peptide of the amylase 1A protein from rice, and the GAL7 terminator, was used to clone the Tet-EDIII-Co1 gene and resultant plasmids were then used to transform Saccharomyces cerevisiae. PCR and back-transformation into Escherichia coli confirmed the presence of the Tet-EDIII-Co1 gene-containing plasmid in transformants. Northern blot analysis of transformed S. cerevisiae identified the presence of the Tet-EDIII-Co1-specific transcript. Western blot analysis indicated that the produced Tet-EDIII-Co1 protein with the expected molecular weight was successfully secreted into the culture medium. Quantitative Western blot analysis and ELISA revealed that the recombinant Tet-EDIII-Co1 protein comprised approximately 0.1-0.2% of cell-free extracts (CFEs). In addition, 0.1-0.2 mg of Tet-EDIII-Co1 protein per liter of culture filtrate was detected on day 1, and this quantity peaked on day 3 after cultivation. In vivo binding assays showed that the Tet-EDIII-Co1 protein was delivered specifically to M cells in Peyer's patches (PPs) while the Tet-EDIII protein lacking the Co1 ligand did not, which demonstrated the efficient targeting of this antigenic protein through the mucosal-specific ligand.
Collapse
Affiliation(s)
- Ngoc-Luong Nguyen
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Kum-Kang So
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Jung-Mi Kim
- Department of Bio-Environmental Chemistry, Wonkwang University, Iksan, Chonbuk 570-749, Republic of Korea
| | - Sae-Hae Kim
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Yong-Suk Jang
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Moon-Sik Yang
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Dae-Hyuk Kim
- Research Center of Bioactive Materials, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea.
| |
Collapse
|
24
|
Induction of neutralizing antibodies against four serotypes of dengue viruses by MixBiEDIII, a tetravalent dengue vaccine. PLoS One 2014; 9:e86573. [PMID: 24466156 PMCID: PMC3897746 DOI: 10.1371/journal.pone.0086573] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 12/12/2013] [Indexed: 01/14/2023] Open
Abstract
The worldwide expansion of four serotypes of dengue virus (DENV) poses great risk to global public health. Several vaccine candidates are under development. However, none is yet available for humans. In the present study, a novel strategy to produce tetravalent DENV vaccine based on envelope protein domain III (EDIII) was proposed. Tandem EDIIIs of two serotypes (type 1-2 and type 3-4) of DENV connected by a Gly-Ser linker ((Gly4Ser)3) were expressed in E. coli, respectively. Then, the two bivalent recombinant EDIIIs were equally mixed to form the tetravalent vaccine candidate MixBiEDIII, and used to immunize BALB/c mice. The results showed that specific IgG and neutralizing antibodies against all four serotypes of DENV were successfully induced in the MixBiEDIII employing Freund adjuvant immunized mice. Furthermore, in the suckling mouse model, sera from mice immunized with MixBiEDIII provided significant protection against four serotypes of DENV challenge. Our data demonstrated that MixBiEDIII, as a novel form of subunit vaccine candidates, might have the potential to be further developed as a tetravalent dengue vaccine in the near future.
Collapse
|