1
|
Liu L, Jin YD, Fan YH. Progress in research of corticotropin-releasing hormone receptor 2 in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2024; 32:742-749. [DOI: 10.11569/wcjd.v32.i10.742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Members of the corticotropin-releasing hormone family and their receptors are widely distributed in central and peripheral tissues and are involved in the regulation of the cardiovascular system, metabolism, immune function, and inflammatory response in the body. Corticotropin-releasing hormone receptor 2 (CRHR2), one of specific receptors for corticotropin releasing factor, attenuates stress-induced intestinal hypersensitivity, influences intestinal microbial composition and diversity, has strong anti-inflammatory capacity, and regulates the proliferation, migration, and apoptosis of intestinal epithelial cells, and promotes intestinal mucosal repair. In recent years, studies have shown that the levels of CRHR2 in the colon tissue of patients with inflammatory bowel disease (IBD) are significantly different from those in normal human intestinal tissue, and it has been suggested that CRHR2 may be a potential therapeutic target for IBD. This paper reviews the physiological functions of CRHR2 and its clinical relevance to IBD, with the aim of exploring its specific mechanism of action and potential clinical application in the treatment of IBD, so as to provide a basis for the development of more effective therapeutic means for IBD in the future.
Collapse
Affiliation(s)
- Liu Liu
- Department of Gastroen-terology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Yi-Dan Jin
- Department of Gastroen-terology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Yi-Hong Fan
- Department of Gastroen-terology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
2
|
Guo X, Li Y, Chen X, Sun B, Guo X. Urocortin-1 promotes colorectal cancer cell migration and proliferation and inhibits apoptosis via inhibition of the p53 signaling pathway. J Cancer Res Clin Oncol 2024; 150:163. [PMID: 38546882 PMCID: PMC10978644 DOI: 10.1007/s00432-024-05693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/08/2024] [Indexed: 04/01/2024]
Abstract
PURPOSE To investigate the effect of urocortin-1 (UCN-1) on growth, migration, and apoptosis in colorectal cancer (CRC) in vivo and vitro and the mechanism by which UCN-1 modulates CRC cells in vitro. METHODS The correlation between UCN-1 and CRC was evaluated using The Cancer Genome Atlas (TCGA) database and a tissue microarray. The expression of UCN-1 in CRC cells was assessed using quantitative real-time polymerase chain reaction (RT-qPCR) and western blotting. In vitro, the influence of UCN-1 on the proliferation, apoptosis, and migration of HT-29, HCT-116, and RKO cells was explored using the celigo cell counting assay or cell counting kit-8 (CCK8), flow cytometry, and wound healing or Transwell assays, respectively. In vivo, the effect of UCN-1 on CRC growth and progression was evaluated in nude mice. The downstream pathway underlying UCN-1-mediated regulation of CRC was determined using the phospho-kinase profiler array in RKO cells. Lentiviruses were used to knockdown or upregulate UCN-1 expression in cells. RESULTS Both the TCGA and tissue microarray results showed that UCN-1 was strongly expressed in the tissues of patients with CRC. Furthermore, the tissue microarray results showed that the expression of UCN-1 was higher in male than in female patients, and high expression of UCN-1 was associated with higher risk of lymphatic metastasis and later pathological stage. UCN-1 knockdown caused a reduction in CRC cell proliferation, migration, and colony formation, as well as an increase in apoptosis. In xenograft experiments, tumors generated from RKO cells with UCN-1 knockdown exhibited reduced volumes and weights. A reduction in the expression of Ki-67 in xenograft tumors indicated that UCN-1 knockdown curbed tumor growth. The human phospho-kinase array showed that the p53 signaling pathway participated in UCN-1-mediated CRC development. The suppression in migration and proliferation caused by UCN-1 knockdown was reversed by inhibitors of p53 signal pathway, while the increase in cell apoptosis was suppressed. On the other hand, overexpression of UCN-1 promoted proliferation and migration and inhibited apoptosis in CRC cells. Overexpression of p53 reversed the effect of UCN-1 overexpression on CRC development. CONCLUSION UCN-1 promotes migration and proliferation and inhibits apoptosis via inhibition of the p53 signaling pathway.
Collapse
Affiliation(s)
- Xiaolan Guo
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ya Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangyu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Binghua Sun
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaolan Guo
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Kusumoto J, Ataka K, Iwai H, Oga Y, Yamagata K, Marutani K, Ishikawa T, Asakawa A, Miyawaki S. Malocclusion impairs cognitive behavior via AgRP signaling in adolescent mice. Front Neurosci 2023; 17:1156523. [PMID: 37168929 PMCID: PMC10164942 DOI: 10.3389/fnins.2023.1156523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Occlusal disharmony induced by deteriorating oral health conditions, such as tooth loss and decreased masticatory muscle due to sarcopenia, is one of the causes of cognitive impairment. Chewing is an essential oral function for maintaining cognitive function not only in the elderly but also in young people. Malocclusion is an occlusal disharmony that commonly occurs in children. The connection between a decline in cognitive function and malocclusion in children has been shown with chronic mouth breathing, obstructive sleep apnea syndrome, and thumb/digit sucking habits. However, the mechanism of malocclusion-induced cognitive decline is not fully understood. We recently reported an association between feeding-related neuropeptides and cognitive decline in adolescent mice with activity-based anorexia. The aim of the present study was to assess the effects of malocclusion on cognitive behavior and clarify the connection between cognitive decline and hypothalamic feeding-related neuropeptides in adolescent mice with malocclusion. Methods Four-week-old mice were randomly assigned to the sham-operated solid diet-fed (Sham/solid), sham-operated powder diet-fed (Sham/powder), or malocclusion-operated powder diet-fed (Malocclusion/powder) group. We applied composite resin to the mandibular anterior teeth to simulate malocclusion. We evaluated cognitive behavior using a novel object recognition (NOR) test, measured hypothalamic feeding-related neuropeptide mRNA expression levels, and enumerated c-Fos-positive cells in the hypothalamus 1 month after surgery. We also evaluated the effects of central antibody administration on cognitive behavior impairment in the NOR test. Results The NOR indices were lower and the agouti-related peptide (AgRP) mRNA levels and number of c-Fos-positive cells were higher in the malocclusion/powder group than in the other groups. The c-Fos-positive cells were also AgRP-positive. We observed that the central administration of anti-AgRP antibody significantly increased the NOR indices. Discussion The present study suggests that elevated cerebral AgRP signaling contributes to malocclusion-induced cognitive decline in adolescents, and the suppression of AgRP signaling can be a new therapeutic target against cognitive decline in occlusal disharmony.
Collapse
Affiliation(s)
- Junya Kusumoto
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Koji Ataka
- Laboratory of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- *Correspondence: Koji Ataka,
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yasuhiko Oga
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Keita Yamagata
- Department of Orthodontics, Center of Developmental Dentistry, Kagoshima University Hospital, Kagoshima, Japan
| | - Kanako Marutani
- Department of Orthodontics, Center of Developmental Dentistry, Kagoshima University Hospital, Kagoshima, Japan
| | - Takanori Ishikawa
- Department of Orthodontics, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shouichi Miyawaki
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
4
|
Ness TJ, DeWitte C, Randich A. The Double Insult of Neonatal Cystitis Plus Adult Somatic Inflammation Results in Corticotropin Releasing Factor Type II Receptor-Dependent Bladder Hypersensitivity in Female Rats. THE JOURNAL OF PAIN 2022; 23:2167-2178. [PMID: 36089237 PMCID: PMC9729390 DOI: 10.1016/j.jpain.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023]
Abstract
The spinal mechanisms of visceral hypersensitivity are poorly understood, particularly when there is an interaction with somatic systems. Recently we demonstrated that rats which were pretreated with neonatal bladder inflammation (NBI) and subsequently pretreated as adults with bladder re-inflammation had augmented reflex and neuronal responses to urinary bladder distension via a corticotropin-releasing factor receptor type II (CRFR2) mechanism. Another insult producing similar augmented responses is somatic inflammation induced by Complete Freund's Adjuvant (CFA) in the hindlimb. Using neurochemical measures and both reflex and neuronal responses to urinary bladder distension as endpoints, the present study probed the role of CRFR2-related mechanisms in bladder hyperalgesia secondary to NBI and CFA-induced hindlimb inflammation. ELISA measures of the lumbosacral spinal cord demonstrated increased CRFR2 protein following pretreatment with NBI+CFA. Intrathecal CRFR2 antagonists blocked the augmentation of visceromotor responses to distension following pretreatment with both NBI+CFA. Lumbosacral dorsal horn neuronal responses to bladder distension in rats pretreated with NBI+CFA were attenuated by the spinal topical administration of a CRFR2 antagonist. These findings are the first demonstration of a somatovisceral interaction working via CRFR2 receptors and support the therapeutic value of these agents in the treatment of painful bladder disorders, particularly when triggered by somatic events. (Word Count 199). PERSPECTIVE: Bladder hypersensitivity occurs following neonatal cystitis and an adult insult such as somatic inflammation. This paper demonstrates that CRFR2-related mechanisms are associated with this hypersensitivity. This supports the therapeutic value of these agents in the treatment of painful bladder disorders, particularly when triggered by somatic events.
Collapse
Affiliation(s)
- Timothy J Ness
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama.
| | - Cary DeWitte
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alan Randich
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
5
|
Ness TJ, DeWitte C, Randich A. Neonatal cystitis leads to alterations in spinal corticotropin releasing factor receptor-type 2 content and function in adult rats following bladder re-inflammation. Brain Res 2022; 1788:147927. [PMID: 35477003 PMCID: PMC11062479 DOI: 10.1016/j.brainres.2022.147927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 01/01/2023]
Abstract
Spinal mechanisms associated with visceral hypersensitivity are poorly understood. One model of bladder hypersensitivity with phenotypic features similar to the disorder interstitial cystitis/bladder pain syndrome is the neonatal bladder inflammation (NBI) model. In this model, rat pup bladders are infused with zymosan solutions on post-partum days 14-16 and then rats are retested as adults. Studies of other sites of deep tissue hypersensitivity have suggested a role for corticotropin-releasing factor (CRF) receptors type 1 and 2 (CRFR1 and CRFR2). Using neurochemical measures, pharmacological manipulations and both reflex and neuronal responses to urinary bladder distension as endpoints, the present study probed the role of CRFR2s in bladder hyperalgesia secondary to NBI and acute bladder re-inflammation as an adult (ABI). ELISA measures of the lumbosacral spinal cord demonstrated increased CRFR1s and CRFR2s following pretreatment with both NBI + ABI as well as NBI-related increases in the CRFR2 agonist urocortin 2. Intrathecal CRFR2 antagonists, but not a CRFR1 antagonist, blocked the augmentation of visceromotor responses to distension following pretreatment with both NBI + ABI. Lumbosacral dorsal horn neuronal responses to distension in rats pretreated with NBI + ABI were attenuated by the spinal topical administration of a CRFR2 antagonist. These studies suggest therapeutic value of CRFR2 antagonists in the treatment of painful bladder disorders.
Collapse
Affiliation(s)
- Timothy J Ness
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Cary DeWitte
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alan Randich
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
6
|
Grunddal KV, Trammell SAJ, Bæch-Laursen C, Andersen DB, Xu SFS, Andersen H, Gillum MP, Ghiasi SM, Novak I, Tyrberg B, Li C, Rosenkilde MM, Hartmann B, Holst JJ, Kuhre RE. Opposing roles of the entero-pancreatic hormone urocortin-3 in glucose metabolism in rats. Diabetologia 2022; 65:1018-1031. [PMID: 35325259 PMCID: PMC9076751 DOI: 10.1007/s00125-022-05675-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022]
Abstract
AIM/HYPOTHESIS Urocortin-3 (UCN3) is a glucoregulatory peptide produced in the gut and pancreatic islets. The aim of this study was to clarify the acute effects of UCN3 on glucose regulation following an oral glucose challenge and to investigate the mechanisms involved. METHODS We studied the effect of UCN3 on blood glucose, gastric emptying, glucose absorption and secretion of gut and pancreatic hormones in male rats. To supplement these physiological studies, we mapped the expression of UCN3 and the UCN3-sensitive receptor, type 2 corticotropin-releasing factor receptor (CRHR2), by means of fluorescence in situ hybridisation and by gene expression analysis. RESULTS In rats, s.c. administration of UCN3 strongly inhibited gastric emptying and glucose absorption after oral administration of glucose. Direct inhibition of gastrointestinal motility may be responsible because UCN3's cognate receptor, CRHR2, was detected in gastric submucosal plexus and in interstitial cells of Cajal. Despite inhibited glucose absorption, post-challenge blood glucose levels matched those of rats given vehicle in the low-dose UCN3 group, because UCN3 concomitantly inhibited insulin secretion. Higher UCN3 doses did not further inhibit gastric emptying, but the insulin inhibition progressed resulting in elevated post-challenge glucose and lipolysis. Incretin hormones and somatostatin (SST) secretion from isolated perfused rat small intestine was unaffected by UCN3 infusion; however, UCN3 infusion stimulated secretion of somatostatin from delta cells in the isolated perfused rat pancreas which, unlike alpha cells and beta cells, expressed Crhr2. Conversely, acute antagonism of CRHR2 signalling increased insulin secretion by reducing SST signalling. Consistent with these observations, acute drug-induced inhibition of CRHR2 signalling improved glucose tolerance in rats to a similar degree as administration of glucagon-like peptide-1. UCN3 also powerfully inhibited glucagon secretion from isolated perfused rat pancreas (perfused with 3.5 mmol/l glucose) in a SST-dependent manner, suggesting that UCN3 may be involved in glucose-induced inhibition of glucagon secretion. CONCLUSIONS/INTERPRETATION Our combined data indicate that UCN3 is an important glucoregulatory hormone that acts through regulation of gastrointestinal and pancreatic functions.
Collapse
Affiliation(s)
- Kaare V Grunddal
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samuel A J Trammell
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Bæch-Laursen
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stella F S Xu
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle Andersen
- Global Obesity and Liver Disease Research, Novo Nordisk, Måløv, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Seyed M Ghiasi
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, UK
| | - Ivana Novak
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Björn Tyrberg
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chien Li
- Global Obesity and Liver Disease Research, Novo Nordisk, Seattle, WA, USA
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical, Sciences, University of Copenhagen, Copenhagen, Denmark.
- Global Obesity and Liver Disease Research, Novo Nordisk, Måløv, Denmark.
| |
Collapse
|
7
|
Wang Z, Song J, Azami NLB, Sun M. Identification of a Novel Immune Landscape Signature for Predicting Prognosis and Response of Colon Cancer to Immunotherapy. Front Immunol 2022; 13:802665. [PMID: 35572595 PMCID: PMC9095944 DOI: 10.3389/fimmu.2022.802665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/31/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose To construct an immune-related gene prognostic index (IRGPI) for colon cancer and elucidate the molecular and immune characteristics as well as the benefit of immune checkpoint inhibitor (ICI) therapy in IRGPI-defined groups of colon cancer. Experimental Design Transcriptional and clinical data of colon cancer samples were obtained from The Cancer Genome Atlas (TCGA) (n = 521). Immune-related genes were obtained from ImmPort and InnateDB databases. 21 immune-related hub genes were identified byweighted gene co-expression network analysis (WGCNA). the Cox regression method was used to construct IRGPI and validated with Gene Expression Omnibus (GEO) dataset (n = 584). Finally, the molecular and immune profiles in the groups defined by IRGPI and the benefit of ICI treatment were analyzed. Results 8 genes were identified to construct IRGPI. IRGPI-low group had a better overall survival (OS) than IRGPI-high group. And this was well validated in the GEO cohort. Overall results showed that those with low IRGPI scores were enriched in antitumor metabolism, and collated with high infiltration of resting memory CD4 T cells and less aggressive phenotypes, benefiting more from ICI treatment. Conversely, high IRGPI scores were associated with cell adhesion molecules (CAMs) and chemokine signaling pathways, high infiltration of macrophage M1, suppressed immunity, more aggressive colon cancer phenotypes, as well as reduced therapeutic benefit from ICI treatment. Conclusions IRGPI is a promising biomarker to differentiate the prognostic and molecular profile of colon cancer, as well as the therapeutic benefits of ICI treatment.
Collapse
Affiliation(s)
- Zheng Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingru Song
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nisma Lena Bahaji Azami
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyu Sun
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Li Y, Li Y, Xia Z, Zhang D, Chen X, Wang X, Liao J, Yi W, Chen J. Identification of a novel immune signature for optimizing prognosis and treatment prediction in colorectal cancer. Aging (Albany NY) 2021; 13:25518-25549. [PMID: 34898475 PMCID: PMC8714135 DOI: 10.18632/aging.203771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 04/11/2023]
Abstract
BACKGROUND Globally, colorectal cancer (CRC) is one of the most lethal malignant diseases. However, the currently approved therapeutic options for CRC failed to acquire satisfactory treatment efficacy. Tailoring therapeutic strategies for CRC individuals can provide new insights into personalized prediction approaches and thus maximize clinical benefits. METHODS In this study, a multi-step process was used to construct an immune-related genes (IRGs) based signature leveraging the expression profiles and clinical characteristics of CRC from the Gene Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database. An integrated immunogenomic analysis was performed to determine the association between IRGs with prognostic significance and cancer genotypes in the tumor immune microenvironment (TIME). Moreover, we performed a comprehensive in silico therapeutics screening to identify agents with subclass-specific efficacy. RESULTS The established signature was shown to be a promising biomarker for evaluating clinical outcomes in CRC. The immune risk score as calculated by this classifier was significantly correlated with over-riding malignant phenotypes and immunophenotypes. Further analyses demonstrated that CRCs with low immune risk scores achieved better therapeutic benefits from immunotherapy, while AZD4547, Cytochalasin B and S-crizotinib might have potential therapeutic implications in the immune risk score-high CRCs. CONCLUSIONS Overall, this IRGs-based signature not only afforded a useful tool for determining the prognosis and evaluating the TIME features of CRCs, but also shed new light on tailoring CRCs with precise treatment.
Collapse
Affiliation(s)
- Yan Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yiyi Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zijin Xia
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dun Zhang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaomei Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyu Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jing Liao
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei Yi
- Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun Chen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Engineering and Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Kimura R, Kondo D, Takemi S, Fujishiro M, Tsukahara S, Sakai T, Sakata I. The role of central corticotrophin-releasing factor receptor signalling in plasma glucose maintenance through ghrelin secretion in calorie-restricted mice. J Neuroendocrinol 2021; 33:e12961. [PMID: 33675127 DOI: 10.1111/jne.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/27/2022]
Abstract
Under severe calorie restriction (CR), the ghrelin-growth hormone axis in mice is involved in the maintenance of plasma glucose levels. Ghrelin, a stomach-derived acylated peptide, is up-regulated by the sympathetic nerve in the negative energy status. Central corticotrophin-releasing factor receptor (CRF-R) signalling stimulates the sympathetic tone. The present study aimed to examine the effect of central CRF-R signalling on the maintenance of plasma glucose concentrations in severe calorie-restricted mice with the involvement of ghrelin. Intracerebroventricular injections of urocorin-1 and urocorin-2, which are natural ligands for CRF-R1 and CRF-R2, elevated plasma ghrelin concentrations and ghrelin elevation with an i.c.v. injection of urocorin-1 was cancelled by atenolol (β1 adrenergic receptor antagonist) administration. We then established a mice model of 60% CR and found that the administration of [d-Lys3]-GHRP-6 (a ghrelin receptor antagonist) in mice under 60% CR reduced the plasma glucose concentration more compared to the vehicle mice. Similarly, the atenolol injection in mice under 60% CR significantly reduced the plasma glucose concentration, which was rescued by the co-administration of ghrelin. An i.c.v. injection of the alpha helical CRH, a non-selective corticotrophin-releasing factor receptor antagonist, in mice under 60% CR significantly reduced the plasma glucose concentration, although the co-administration of α-helical CRH with ghrelin maintained plasma glucose levels. These results suggest that central CRF-R signalling is involved in the maintenance of plasma glucose levels in mice under severe CR via the sympathetic-ghrelin pathway.
Collapse
Affiliation(s)
- Risa Kimura
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Daisuke Kondo
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shota Takemi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Miyuki Fujishiro
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Nikkol Group Cosmos Technical Center Co., Ltd, Tokyo, Japan
| | - Shinji Tsukahara
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Division of Strategy Research, Graduate School of Science and Engineering, Area of Life-NanoBio, Saitama University, Saitama, Japan
| | | | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Division of Strategy Research, Graduate School of Science and Engineering, Area of Life-NanoBio, Saitama University, Saitama, Japan
| |
Collapse
|
10
|
Taniguchi H, Taniguchi S, Ogasawara C, Sumiya E, Imai K. Effects of Moxibustion on Stress-Induced Delayed Gastric Emptying via Somatoautonomic Reflex in Rats. Med Acupunct 2020; 32:280-286. [PMID: 33101572 DOI: 10.1089/acu.2020.1434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: Moxibustion (MOX) is used to treat a wide variety of disorders, including those with gastric symptoms. However, the exact mechanisms underlying the beneficial effects of MOX are unknown. The purpose of this study was to investigate if application of indirect MOX (iMOX) to ST 36 reduces restraint stress (RS)-induced alteration in gastric responses of conscious rats, and if a somatoautonomic reflex mediates gastric emptying (GE). Materials and Methods: One group of rats was fed solid food after 24 hours of fasting. Immediately after food ingestion. These rats were subjected to RS. Ninety minutes after feeding, the rats were euthanized, and their gastric contents were removed to calculate GE. iMOX had been performed at ST 36 bilaterally throughout the stress loading. To investigate if vagal-nerve activity was involved in mediating the stress-induced alterations of GE by iMOX, atropine was intraperitoneally administered to other rats just before initiating RS; bilateral truncal vagotomy had been performed on day 14 before GE measurement. Results: RS delayed GE significantly (42.9 ± 5.8%)in stressed rats, compared to nonstressed rats (68.7 ± 1.8%). iMOX at ST 36 reduced stress-induced inhibition of GE significantly (67.1 ± 2.4%). MOX-mediated reduction of GE disappeared upon atropine injection and vagotomy. Conclusions: RS-induced delayed GE may be ameliorated by iMOX at ST 36. Somatoautonomic, reflex-induced vagal-nerve activity helps mediate the stimulatory effects of iMOX on RS-induced delayed GE. As a complementary and alternative medicine, iMOX may also be advantageous for patients with gastric disorders, such as functional dyspepsia.
Collapse
Affiliation(s)
- Hiroshi Taniguchi
- Department of Acupuncture and Moxibustion, Tokyo Ariake University of Medical and Health Sciences, Tokyo, Japan
| | - Sazu Taniguchi
- Department of Acupuncture and Moxibustion, Tokyo Ariake University of Medical and Health Sciences, Tokyo, Japan.,Japan School of Acupuncture, Moxibustion and Physiotherapy, Tokyo, Japan
| | - Chie Ogasawara
- Department of Acupuncture and Moxibustion, Meiji University of Integrative Medicine, Kyoto, Japan
| | - Eiji Sumiya
- Department of Acupuncture and Moxibustion, Meiji University of Integrative Medicine, Kyoto, Japan
| | - Kenji Imai
- Department of Acupuncture and Moxibustion, Faculty of Health Science, Teikyo Heisei University, Tokyo, Japan
| |
Collapse
|
11
|
Chen H, Luo J, Guo J. Development and validation of a five-immune gene prognostic risk model in colon cancer. BMC Cancer 2020; 20:395. [PMID: 32375704 PMCID: PMC7204296 DOI: 10.1186/s12885-020-06799-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Colon cancer is a common and highly malignant cancer. Its morbidity is rapidly increasing, and its prognosis is poor. Currently, immunotherapy is a rapidly developing therapeutic modality of colon cancer. This study aimed to construct a prognostic risk model based on immune genes for the early diagnosis and accurate prognostic prediction of colon cancer. METHODS Transcriptomic data and clinical data were downloaded from The Cancer Genome Atlas database. Immune genes were obtained from the ImmPort database. Differentially expressed (DE) immune genes between 473 colon cancer and 41 adjacent normal tissues were identified. The entire cohort was randomly divided into the training and testing cohort. The training cohort was used to construct the prognostic model. The testing and entire cohorts were used to validate the model. The clinical utility of the model and its correlation with immune cell infiltration were analyzed. RESULTS A total of 333 DE immune genes (176 up-regulated and 157 down-regulated) were detected. We developed and validated a five-immune gene model of colon cancer, including LBP, TFR2, UCN, UTS2, and MC1R. This model was approved to be an independent prognostic variable, which was more accurate than age and the pathological stage for predicting overall survival at five years. Besides, as the risk score increased, the content of CD8+ T cells in colon cancer was decreased. CONCLUSIONS We developed and validated a five-immune gene model of colon cancer, including LBP, TFR2, UCN, UTS2, and MC1R. This model could be used as an instrumental variable in the prognosis prediction of colon cancer.
Collapse
Affiliation(s)
- Haitao Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Jun Luo
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan, 430071 China
| | - Jianchun Guo
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan, 430071 China
| |
Collapse
|
12
|
Bülbül M, Sinen O, Bayramoğlu O, Akkoyunlu G. Enteric apelin enhances the stress-induced stimulation of colonic motor functions. Stress 2020; 23:201-212. [PMID: 31441348 DOI: 10.1080/10253890.2019.1658739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In response to stress, apelin and corticotropin-releasing factor (CRF) are upregulated in the gastrointestinal (GI) tract. This study was designed to investigate the effect of stress on endogenous apelin in colon and its regulatory role on colonic motor functions. Colon transit (CT) was measured in rats exposed to acute restraint stress (ARS). APJ and CRF receptor antagonists F13A and astressin were administered intraperitoneally 30 min before ARS loading. Colonic muscle contractions were evaluated by in-vivo motility recording and in-vitro organ bath studies. Detection of apelin or CRF was performed using immunohistochemistry in proximal and distal colon of non-stressed (NS) and ARS-loaded rats. Immunoreactivity of CRF1 with apelin or APJ receptor was detected with double-labeled immunofluorescence in colonic myenteric neurons. Compared with NS rats, ARS accelerated the CT which was attenuated significantly by F13A or astressin. Following ARS, the expression of CRF was increased remarkably in distal colon, while the stress-induced change was not prominent in proximal colon. Apelin-positive cells were detected in myenteric ganglia of distal colon, while no apelin immunoreactivity observed in myenteric neurons of proximal colon. Both apelin and APJ receptor are colocalized with CRF1 in myenteric neurons of distal colon. In the in-vivo colonic motility experiments, apelin-13 exhibited a rapid stimulatory effect. CRF administration increased the motility which was abolished by F13A. Apelin-induced contractions in muscle strips were no longer observed with preadministration of F13A. These results suggest that enteric apelin contributes to the action of CRF on colonic motor functions under stressed conditions.LAY SUMMARYIt has been suggested in rodents that acute stress increases the expression of apelin in gastrointestinal tissues. We have found that under stressed conditions, enteric apelin contributes to the CRF-induced alterations in colonic motor functions through APJ receptor.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Osman Sinen
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Onur Bayramoğlu
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Gökhan Akkoyunlu
- Department of Histology and Embryology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
13
|
Li H, Page AJ. Activation of CRF2 receptor increases gastric vagal afferent mechanosensitivity. J Neurophysiol 2019; 122:2636-2642. [DOI: 10.1152/jn.00619.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastric vagal afferent (GVA) sensing of food-related mechanical stimuli is a crucial mechanism in the control of feeding behavior and gastric function. Stress is an important factor contributing to eating disorders and gastric diseases. Chronic stress has been shown to increase the mechanosensitivity of GVAs in mice and to reduce food intake and body weight. Whether the mechanosensitivity of GVAs is modulated by stress hormones is not known. This study aimed to determine the effect of stress hormones on GVA mechanosensitivity. The expression of stress hormone receptors in GVA cell bodies was determined in 8-wk-old male C57BL/6 mice using quantitative RT-PCR combined with laser capture microdissection. The mechanosensitivity of GVAs was determined in the absence and presence of stress hormones using an in vitro single-fiber recording preparation. NR3C1 and CRHR2 (mRNA isoforms of glucocorticoid receptor and CRF2 receptor, respectively) were expressed in GVA neurons. The glucocorticoid receptor agonist corticosterone had no effect on the mechanosensitivity of either tension or mucosal GVAs. Activation of CRF2 receptor by its specific analog, urocortin 3, significantly increased the mechanosensitivity of both tension and mucosal GVAs, an effect prevented by the CRF2 receptor antagonist astressin 2B. In conclusion, activation of CRF2 receptor increases the mechanosensitivity of GVAs. This may contribute to the stress- and CRF2 receptor-associated changes in feeding behavior and gastric function, possibly contributing to the hypersensitivity of GVAs in chronic stress conditions. NEW & NOTEWORTHY Gastric vagal afferents (GVAs) relay food-related signals to the central nervous system, where they are processed, eventually leading to modulation of food intake and gastric function. GVA signaling can be modulated by an array of hormones. Stress has been shown to induce GVA hypersensitivity. This study demonstrates that GVA neurons express subtypes of stress hormone receptors, specifically CRF2. Furthermore, activation of CRF2 receptor increases GVA mechanosensitivity, which could have implications for food intake and gastric function.
Collapse
Affiliation(s)
- Hui Li
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Diabetes, Nutrition & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Amanda J. Page
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Diabetes, Nutrition & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
14
|
Zhang X, Liu Y, Qi J, Tian Z, Tang N, Chen D, Li Z. Progress in understanding the roles of Urocortin3 (UCN3) in the control of appetite from studies using animal models. Peptides 2019; 121:170124. [PMID: 31415798 DOI: 10.1016/j.peptides.2019.170124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022]
Abstract
Urocortin3 (UCN3), the newest member of corticotrophin releasing hormone (CRH) family polypeptides, is an anorexic factor discovered in 2001, which has a strong inhibitory effect on animal appetite regulation. UCN3 is widely distributed in various tissues of animals and has many biological functions. Based on the research progress of UCN3 on mammals and non-mammals, this paper summarized the discovery, tissue distribution, appetite regulation and mechanism of UCN3 in animals, in order to provide a reference for feeding regulation and growth in mammals and fish in further research and production.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Yanling Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhengzhi Tian
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Cardiovascular Effects of Urocortin-2: Pathophysiological Mechanisms and Therapeutic Potential. Cardiovasc Drugs Ther 2019; 33:599-613. [DOI: 10.1007/s10557-019-06895-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Yuan J, Hasdemir B, Tan T, Chheda C, Rivier J, Pandol SJ, Bhargava A. Protective effects of urocortin 2 against caerulein-induced acute pancreatitis. PLoS One 2019; 14:e0217065. [PMID: 31100090 PMCID: PMC6524941 DOI: 10.1371/journal.pone.0217065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Because little is known about the role of corticotropin-releasing factor (CRF) agonists in regulating responses in pancreatitis, we evaluated the effects of urocortin 2 (UCN2) and stressin1 in caerulein-induced acute pancreatitis (AP) model in rats. Male rats were pretreated with UCN2 or stressin1 for 30 min followed by induction of AP with supraphysiologic doses of caerulein. Serum amylase and lipase activity, pancreatic tissue necrosis, immune cell infiltrate, nuclear factor (NF)-κB activity, trypsin levels, and intracellular Ca2+ ([Ca2+]i) were ascertained. UCN2, but not stressin1 attenuated the severity of AP in rats. UCN2, but not stressin1, reduced serum amylase and lipase activity, cell necrosis and inflammatory cell infiltration in AP. NF-κB activity in pancreatic nuclear extracts increased in AP and UCN2 treatment reduced caerulein-induced increases in NF-κB activity by 42%. UCN2 treatment prevented caerulein-induced degradation of IκB-α in the cytosolic fraction as well as increased levels of p65 subunit of NF-κB in the cytosolic fraction. Pancreatic UCN2 levels decreased in AP compared with saline. UCN2 evoked [Ca2+]i responses in primary acinar cells and abolished caerulein-evoked [Ca2+]i responses at 0.1nM, and decreased by ~50% at 1.0nM caerulein. UCN2 stimulation resulted in redistribution of a portion of F-actin from the apical to the basolateral pole. UCN2 prevented the massive redistribution of F-actin observed with supraphysiologic doses of caerulein. UCN2, but not stressin1 attenuated severity of an experimental pancreatitis model. The protective effects of UCN2, including anti-inflammatory and anti-necrotic effects involve activation of the CRF2 receptor, [Ca2+]i signaling, and inhibition of NF-κB activity.
Collapse
Affiliation(s)
- Jingzhen Yuan
- Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Burcu Hasdemir
- The Osher Center for Integrative Medicine, University of California, San Francisco, San Francisco, CA, United States of America
- Department of OB/GYN, University of California, San Francisco, San Francisco, CA, United States of America
| | - Tanya Tan
- Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Chintan Chheda
- Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Jean Rivier
- The Salk Institute, The Clayton Foundation Laboratories for Peptide Biology, La Jolla, CA, United States of America
| | - Stephen J. Pandol
- Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Aditi Bhargava
- The Osher Center for Integrative Medicine, University of California, San Francisco, San Francisco, CA, United States of America
- Department of OB/GYN, University of California, San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Suzuki H, Ataka K, Asakawa A, Cheng KC, Ushikai M, Iwai H, Yagi T, Arai T, Yahiro K, Yamamoto K, Yokoyama Y, Kojima M, Yada T, Hirayama T, Nakamura N, Inui A. Helicobacter pylori Vacuolating Cytotoxin A Causes Anorexia and Anxiety via Hypothalamic Urocortin 1 in Mice. Sci Rep 2019; 9:6011. [PMID: 30979915 PMCID: PMC6461611 DOI: 10.1038/s41598-019-42163-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/08/2019] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori (Hp) infection is related to the pathogenesis of chronic gastric disorders and extragastric diseases. Here, we examined the anorexigenic and anxiogenic effects of Hp vacuolating cytotoxin A (VacA) through activation of hypothalamic urocortin1 (Ucn1). VacA was detected in the hypothalamus after peripheral administration and increased Ucn1 mRNA expression and c-Fos-positive cells in the hypothalamus but not in the nucleus tractus solitarius. c-Fos and Ucn1-double positive cells were detected. CRF1 and CRF2 receptor antagonists suppressed VacA-induced anxiety and anorexia, respectively. VacA activated single paraventricular nucleus neurons and A7r5 cells; this activation was inhibited by phospholipase C (PLC) and protein kinase C (PKC) inhibitors. VacA causes anorexia and anxiety through the intracellular PLC-PKC pathway, migrates across the blood-brain barrier, and activates the Ucn1-CRF receptor axis.
Collapse
Affiliation(s)
- Hajime Suzuki
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan. .,Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| | - Koji Ataka
- Department of Pharmacological Sciences of Herbal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Miharu Ushikai
- Department of Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takakazu Yagi
- Department of Orthodontics and Dentofacial Orthopedics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takeshi Arai
- Department of Physiology, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsuhiro Yamamoto
- Quality Control Department, Yoshitomi Plant, Mitsubishi Tanabe Pharma Factory Ltd., Fukuoka, Japan
| | - Yoshito Yokoyama
- Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan
| | - Masayasu Kojima
- Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
| | - Toshihiko Yada
- Department of Physiology, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Toshiya Hirayama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akio Inui
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
18
|
Bülbül M, Sinen O, İzgüt‐Uysal VN, Akkoyunlu G, Öztürk S, Uysal F. Peripheral apelin mediates stress‐induced alterations in gastrointestinal motor functions depending on the nutritional status. Clin Exp Pharmacol Physiol 2018; 46:29-39. [DOI: 10.1111/1440-1681.13032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/03/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology Faculty of Medicine Akdeniz University AntalyaTurkey
| | - Osman Sinen
- Department of Physiology Faculty of Medicine Akdeniz University AntalyaTurkey
| | | | - Gökhan Akkoyunlu
- Department of Histology and Embryology Faculty of Medicine Akdeniz University Antalya Turkey
| | - Saffet Öztürk
- Department of Histology and Embryology Faculty of Medicine Akdeniz University Antalya Turkey
| | - Fatma Uysal
- Department of Histology and Embryology Faculty of Medicine Akdeniz University Antalya Turkey
| |
Collapse
|
19
|
Ye Y, Wang XR, Zheng Y, Yang JW, Yang NN, Shi GX, Liu CZ. Choosing an Animal Model for the Study of Functional Dyspepsia. Can J Gastroenterol Hepatol 2018; 2018:1531958. [PMID: 29623262 PMCID: PMC5830275 DOI: 10.1155/2018/1531958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023] Open
Abstract
Functional dyspepsia (FD) is a common functional gastrointestinal disorder with pain or discomfort in the upper abdomen as the main characteristic. The prevalence of FD worldwide varies between 5% and 11%. This condition adversely affects attendance and productivity in the workplace. Emerging evidence is beginning to unravel the pathophysiologies of FD, and new data on treatment are helping to guide evidence-based practice. In order to better understand the pathophysiologies of FD and explore better treatment options, various kinds of animal models of FD have been developed. However, it is unclear which of these models most closely mimic the human disease. This review provides a comprehensive overview of the currently available animal models of FD in relationship to the clinical features of the disease. The rationales, methods, merits, and disadvantages for modelling specific symptoms of FD are discussed in detail.
Collapse
Affiliation(s)
- Yang Ye
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xue-Rui Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Yang Zheng
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Jing-Wen Yang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Na-Na Yang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Guang-Xia Shi
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Cun-Zhi Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| |
Collapse
|
20
|
Temur M, Yılmaz Ö, Aksun S, Calan M, Özün Özbay P, Kumbasar S, Sever E. The relationship of urocortin-2 with insulin resistance patients having PCOS. Gynecol Endocrinol 2017; 33:124-127. [PMID: 27841039 DOI: 10.1080/09513590.2016.1240772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In this study, we aimed to compare the serum urocortin-2 (UCN2) levels in women with polycystic ovary syndrome (PCOS) and healthy women. Thirty-eight patients with PCOS and 41 healthy women were included in the study whose age and BMI matched. The fasting serum glucose, insulin, free testosterone, hs-CRP and UCN2 levels of the all participants were examined. HOMA-IR formula was used in order to calculate the insulin resistance. Circulating UCN2 levels were significantly elevated in women with PCOS compared with controls (142.93 ± 59.48 versus 98.56 ± 65.01 pg/ml, p = 0.002). FBG, serum insulin, hs-CRP and HOMA-IR levels were found to be increased in women with PCOS. There was a positive correlation between UCN2 and free-testosterone in only PCOS group (r = 0.235, p = 0.027). Multivariate logistic regression analyses revealed that the odds ratio for PCOS was 2.31 for patients in the highest quartile of UCN2 compared with those in the lowest quartile (OR = 2.31, 95% CI = 1.88-2.83, p=0.021). Multiple linear regression analysis revealed that HOMA-IR, hs-CRP and free-testosterone independently predicted UCN2 levels (p < 0.05). UCN2 levels were significantly higher in PCOS cases when compared to control group. UCN2 is thought to be effective on pathophysiology of PCOS by paracrine and autocrine pathways.
Collapse
Affiliation(s)
- Muzaffer Temur
- a Department of Obstetrics and Gynecology , Manisa Merkezefendi Hospital , Manisa , Turkey
- b Department of Obstetrics and Gynecology , Sakarya University Faculty of Medicine , Sakarya , Turkey
| | - Özgür Yılmaz
- c Manisa Merkezefendi State Hospital Department of Obstetrics and Gynecology , Manisa , Turkey
| | - Saliha Aksun
- d Department of Medical Biochemistry İzmir , İzmir Katipcelebi University Medical School , İzmir , Turkey
| | - Mehmet Calan
- e Department of Endocrinology İzmir , İzmir Bozyaka Education and Research Hospital , İzmir , Turkey
| | - Pelin Özün Özbay
- f Aydın Private Ege Liva Hospital Department of Obstetrics and Gynecology Aydın , Aydın , Turkey , and
| | - Serkan Kumbasar
- g Department of Obstetrics and Gynecology , Sakarya University School of Medicine, Sakarya Research and Education Hospital , Sakarya , Turkey
| | - Erman Sever
- g Department of Obstetrics and Gynecology , Sakarya University School of Medicine, Sakarya Research and Education Hospital , Sakarya , Turkey
| |
Collapse
|
21
|
Takeuchi K, Abe N, Kumano A. Influence of Adrenalectomy on Protective Effects of Urocortin I, a Corticotropin-Releasing Factor, Against Indomethacin-Induced Enteropathy in Rats. Curr Neuropharmacol 2017; 14:866-875. [PMID: 27397599 PMCID: PMC5333599 DOI: 10.2174/1570159x14666160701020807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/31/2016] [Accepted: 06/28/2016] [Indexed: 12/30/2022] Open
Abstract
We examined the influence of adrenalectomy on NSAID-induced small intestinal damage in rats and investigated the possible involvement of adrenal glucocorticoids in the protective effects of urocortin I, a corticotropin-releasing factor (CRF) agonist. Male SD rats without fasting were administered indomethacin s.c. and killed 24 h later in order to examine the hemorrhagic lesions that developed in the small intestine. Urocortin I (20 µg/kg) was given i.v. 10 min before the administration of indomethacin. Bilateral adrenalectomy was performed a week before the experiment. Indomethacin (10 mg/kg) caused multiple hemorrhagic lesions in the small intestine, which were accompanied by a decrease in mucus secretion and increases in intestinal motility, enterobacterial invasion, and iNOS expression. Adrenalectomy markedly increased the ulcerogenic and motility responses caused by indomethacin, with further enhancements in bacterial invasion and iNOS expression; severe lesions occurred at 3 mg/kg, a dose that did not induce any damage in sham-operated rats. This worsening effect was also observed by the pretreatment with mifepristone (a glucocorticoid receptor antagonist). Urocortin I prevented indomethacin-induced enteropathy, and this effect was completely abrogated by the pretreatment with astressin 2B, a CRF2 receptor antagonist, but was not significantly affected by either adrenalectomy or the mifepristone pretreatment. These results suggested that adrenalectomy aggravated the intestinal ulcerogenic response to indomethacin, the intestinal hypermotility response may be a key element in the mechanism for this aggravation, and endogenous glucocorticoids played a role in intestinal mucosal defense against indomethacin-induced enteropathy, but did not account for the protective effects of urocortin I, which were mediated by the activation of peripheral CRF2 receptors
Collapse
Affiliation(s)
- Koji Takeuchi
- General Incorporated Association, Kyoto Research Center for Gastrointestinal Diseases, Karasuma-Oike, Kyoto 604-8106, Japan
| | | | | |
Collapse
|
22
|
Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Lipopolysaccharide induces visceral hypersensitivity: role of interleukin-1, interleukin-6, and peripheral corticotropin-releasing factor in rats. J Gastroenterol 2017; 52:72-80. [PMID: 27075754 DOI: 10.1007/s00535-016-1208-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/24/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Lipopolysaccharide (LPS) induces visceral hypersensitivity, and corticotropin-releasing factor (CRF) also modulates visceral sensation. Besides, LPS increases CRF immunoreactivity in rat colon, which raises the possibility of the existence of a link between LPS and the CRF system in modulating visceral sensation. The present study tried to clarify this possibility. METHODS Visceral sensation was assessed by abdominal muscle contractions induced by colonic balloon distention, i.e., visceromotor response, electrophysiologically in conscious rats. The threshold of visceromotor response was measured before and after administration of drugs. RESULTS LPS at a dose of 1 mg/kg subcutaneously (sc) decreased the threshold at 3 h after the administration. Intraperitoneal (ip) administration of anakinra (20 mg/kg), an interleukin-1 (IL-1) receptor antagonist, or interleukin-6 (IL-6) antibody (16.6 µg/kg) blocked this effect. Additionally, IL-1β (10 µg/kg, sc) or IL-6 (10 µg/kg, sc) induced visceral allodynia. Astressin (200 µg/kg, ip), a non-selective CRF receptor antagonist, abolished the effect of LPS, but astressin2-B (200 µg/kg, ip), a CRF receptor type 2 (CRF2) antagonist, did not alter it. Peripheral CRF receptor type 1 (CRF1) stimulation by cortagine (60 µg/kg, ip) exaggerated the effect of LPS, but activation of CRF2 by urocortin 2 (60 µg/kg, ip) abolished it. CONCLUSIONS LPS induced visceral allodynia possibly through stimulating IL-1 and IL-6 release. In addition, this effect was mediated through peripheral CRF signaling. Since the LPS-cytokine system is thought to contribute to altered visceral sensation in the patients with irritable bowel syndrome, these results may further suggest that CRF plays a crucial role in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan.
| | - Saori Miyagishi
- Department of General Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Rintaro Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Toshikatsu Okumura
- Department of General Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| |
Collapse
|
23
|
González-Arancibia C, Escobar-Luna J, Barrera-Bugueño C, Díaz-Zepeda C, González-Toro MP, Olavarría-Ramírez L, Zanelli-Massai F, Gotteland M, Bravo JA, Julio-Pieper M. What goes around comes around: novel pharmacological targets in the gut-brain axis. Therap Adv Gastroenterol 2016; 9:339-53. [PMID: 27134664 PMCID: PMC4830101 DOI: 10.1177/1756283x16630718] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gut and the brain communicate bidirectionally through anatomic and humoral pathways, establishing what is known as the gut-brain axis. Therefore, interventions affecting one system will impact on the other, giving the opportunity to investigate and develop future therapeutic strategies that target both systems. Alterations in the gut-brain axis may arise as a consequence of changes in microbiota composition (dysbiosis), modifications in intestinal barrier function, impairment of enteric nervous system, unbalanced local immune response and exaggerated responses to stress, to mention a few. In this review we analyze and discuss several novel pharmacological targets within the gut-brain axis, with potential applications to improve intestinal and mental health.
Collapse
Affiliation(s)
- Camila González-Arancibia
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jorge Escobar-Luna
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Camila Barrera-Bugueño
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Camilo Díaz-Zepeda
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - María P. González-Toro
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Loreto Olavarría-Ramírez
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Francesca Zanelli-Massai
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Martin Gotteland
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Javier A. Bravo
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | |
Collapse
|
24
|
Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Water avoidance stress induces visceral hyposensitivity through peripheral corticotropin releasing factor receptor type 2 and central dopamine D2 receptor in rats. Neurogastroenterol Motil 2016; 28:522-31. [PMID: 26662216 DOI: 10.1111/nmo.12747] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/11/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Water avoidance stress (WAS) is reported to induce functional changes in visceral sensory function in rodents, but the results which have been demonstrated so far are not consistent, i.e., hypersensitivity or hyposensitivity. We determined the effect of WAS on visceral sensation and evaluated the mechanisms of the action. METHODS Visceral sensation was assessed by abdominal muscle contractions induced by colonic balloon distention, i.e., visceromotor response (VMR), measured electrophysiologically in conscious rats. The electromyogram electrodes were acutely implanted under anesthesia on the day of the experiment. The threshold of VMR was measured before and after WAS for 1 h. To explore the mechanisms of WAS-induced response, drugs were administered 10 min prior to the initiation of WAS. KEY RESULTS WAS significantly increased the threshold of VMR, and this effect was no longer detected at 24 h after. Intraperitoneal injection of astressin2 -B (200 μg/kg), a corticotropin releasing factor (CRF) receptor type 2 antagonist abolished the response by WAS. Subcutaneous (sc) injection of sulpiride (200 mg/kg), a dopamine D2 receptor antagonist blocked the response, while sc domperidone (10 mg/kg), a peripheral dopamine D2 receptor antagonist did not alter it. Naloxone (1 mg/kg, sc), an opioid antagonist did not modify it either. CONCLUSIONS & INFERENCES WAS induced visceral hyposensitivity through peripheral CRF receptor type 2 and central dopamine D2 receptor, but not through opioid pathways. As altered pain inhibitory system was reported to be observed in the patients with irritable bowel syndrome, CRF and dopamine signaling might contribute to the pathophysiology.
Collapse
Affiliation(s)
- T Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan
| | - S Miyagishi
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - R Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan
| | - K Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| | - T Okumura
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
25
|
|
26
|
Larson AA, Nunez MG, Kissel CL, Kovács KJ. Intrathecal urocortin I in the spinal cord as a murine model of stress hormone-induced musculoskeletal and tactile hyperalgesia. Eur J Neurosci 2015; 42:2772-82. [PMID: 26332847 DOI: 10.1111/ejn.13060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 12/30/2022]
Abstract
Stress is antinociceptive in some models of pain, but enhances musculoskeletal nociceptive responses in mice and muscle pain in patients with fibromyalgia syndrome. To test the hypothesis that urocortins are stress hormones that are sufficient to enhance tactile and musculoskeletal hyperalgesia, von Frey fibre sensitivity and grip force after injection of corticotropin-releasing factor (CRF), urocortin I and urocortin II were measured in mice. Urocortin I (a CRF1 and CRF2 receptor ligand) produced hyperalgesia in both assays when injected intrathecally (i.t.) but not intracerebroventricularly, and only at a large dose when injected peripherally, suggesting a spinal action. Morphine inhibited urocortin I-induced changes in nociceptive responses in a dose-related fashion, confirming that changes in behaviour reflect hyperalgesia rather than weakness. No tolerance developed to the effect of urocortin I (i.t.) when injected repeatedly, consistent with a potential to enhance pain chronically. Tactile hyperalgesia was inhibited by NBI-35965, a CRF1 receptor antagonist, but not astressin 2B, a CRF2 receptor antagonist. However, while urocortin I-induced decreases in grip force were not observed when co-administered i.t. with either NBI-35965 or astressin 2B, they were even more sensitive to inhibition by astressin, a non-selective CRF receptor antagonist. Together these data indicate that urocortin I acts at CRF receptors in the mouse spinal cord to elicit a reproducible and persistent tactile (von Frey) and musculoskeletal (grip force) hyperalgesia. Urocortin I-induced hyperalgesia may serve as a screen for drugs that alleviate painful conditions that are exacerbated by stress.
Collapse
Affiliation(s)
- Alice A Larson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue Room 295, St Paul, MN, 55108, USA
| | - Myra G Nunez
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue Room 295, St Paul, MN, 55108, USA
| | - Casey L Kissel
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue Room 295, St Paul, MN, 55108, USA
| | - Katalin J Kovács
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue Room 295, St Paul, MN, 55108, USA
| |
Collapse
|
27
|
Corticotropin-releasing factor receptor type 1 and type 2 interaction in irritable bowel syndrome. J Gastroenterol 2015; 50:819-30. [PMID: 25962711 DOI: 10.1007/s00535-015-1086-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/25/2015] [Indexed: 02/06/2023]
Abstract
Irritable bowel syndrome (IBS) displays chronic abdominal pain or discomfort with altered defecation, and stress-induced altered gut motility and visceral sensation play an important role in the pathophysiology. Corticotropin-releasing factor (CRF) is a main mediator of stress responses and mediates these gastrointestinal functional changes. CRF in brain and periphery acts through two subtype receptors such as CRF receptor type 1 (CRF1) and type 2 (CRF2), and activating CRF1 exclusively stimulates colonic motor function and induces visceral hypersensitivity. Meanwhile, several recent studies have demonstrated that CRF2 has a counter regulatory action against CRF1, which may imply that CRF2 inhibits stress response induced by CRF1 in order to prevent it from going into an overdrive state. Colonic contractility and sensation may be explained by the state of the intensity of CRF1 signaling. CRF2 signaling may play a role in CRF1-triggered enhanced colonic functions through modulation of CRF1 activity. Blocking CRF2 further enhances CRF-induced stimulation of colonic contractility and activating CRF2 inhibits stress-induced visceral sensitization. Therefore, we proposed the hypothesis, i.e., balance theory of CRF1 and CRF2 signaling as follows. Both CRF receptors may be activated simultaneously and the signaling balance of CRF1 and CRF2 may determine the functional changes of gastrointestinal tract induced by stress. CRF signaling balance might be abnormally shifted toward CRF1, leading to enhanced colonic motility and visceral sensitization in IBS. This theory may lead to understanding the pathophysiology and provide the novel therapeutic options targeting altered signaling balance of CRF1 and CRF2 in IBS.
Collapse
|
28
|
Spyroglou A, Riester A, Mueller-Peltzer K, Lu A, Rohde J, Hantel C, Kuehne C, Kulle A, Riepe F, Deussing JM, Beuschlein F. Adrenal and Ovarian Phenotype of a Tissue-Specific Urocortin 2-Overexpressing Mouse Model. Endocrinology 2015; 156:2646-56. [PMID: 25942073 DOI: 10.1210/en.2014-1971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Urocortin 2 (UCN2) is a neuropeptide of the CRH family, involved in homeostatic mechanisms, the stress response, and control of anxiety. To elucidate the effects of UCN2 on steroidogenesis, we developed a mouse model that allows a Cre recombinase-determined conditional overexpression of UCN2 (UCN2-COE). In these mice SF1-Cre-driven overexpression of UCN2 was restricted to the adrenal glands, gonads, and parts of the hypothalamus. UCN2-COE animals of both sexes revealed significantly higher plasma UCN2 levels and significantly higher UCN2 expression levels in the adrenals and ovaries. In contrast, the baseline expression of UCN2 was already high in the testes of control mice with no further increase achievable in UCN2-COE animals. Adrenal steroidogenesis of UCN2-COE animals was investigated under baseline conditions, upon an ACTH stimulation test, and following a restraint stress test. A tendency toward lower expression of steroidogenic enzymes was detectable in UCN2-COE animals of both sexes with slight differences between males and females. A similar reduction in the expression levels of the final steps of ovarian steroidogenesis, accompanied by reduced plasma estradiol levels, was observed in female UCN2-COE animals. Thus, adrenal UCN2 overexpression resulted in down-regulation of adrenal steroidogenesis, suggesting a reduction in the stress response in the mouse (stress coping behavior). Similarly, UCN2 overexpression in the ovaries caused a decrease in steroidogenesis and reduction of follicles that had undergone ovulation. Nevertheless, this finding was not associated with reduced fertility.
Collapse
Affiliation(s)
- Ariadni Spyroglou
- Endocrine Research Unit (A.S., A.R., K.M.-P., C.H., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, D-80336 Munich, Germany; Department Stress Neurobiology and Neurogenetics (A.L., J.R., C.K., J.M.D.), Max Planck Institute of Psychiatry, D-80804 Munich, Germany; and Division of Pediatric Endocrinology and Diabetes (A.K., F.R.), Department of Pediatrics, University Hospital Schleswig-Holstein, Christian Albrechts University Kiel, D-24105 Kiel, Germany
| | - Anna Riester
- Endocrine Research Unit (A.S., A.R., K.M.-P., C.H., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, D-80336 Munich, Germany; Department Stress Neurobiology and Neurogenetics (A.L., J.R., C.K., J.M.D.), Max Planck Institute of Psychiatry, D-80804 Munich, Germany; and Division of Pediatric Endocrinology and Diabetes (A.K., F.R.), Department of Pediatrics, University Hospital Schleswig-Holstein, Christian Albrechts University Kiel, D-24105 Kiel, Germany
| | - Katharina Mueller-Peltzer
- Endocrine Research Unit (A.S., A.R., K.M.-P., C.H., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, D-80336 Munich, Germany; Department Stress Neurobiology and Neurogenetics (A.L., J.R., C.K., J.M.D.), Max Planck Institute of Psychiatry, D-80804 Munich, Germany; and Division of Pediatric Endocrinology and Diabetes (A.K., F.R.), Department of Pediatrics, University Hospital Schleswig-Holstein, Christian Albrechts University Kiel, D-24105 Kiel, Germany
| | - Ailing Lu
- Endocrine Research Unit (A.S., A.R., K.M.-P., C.H., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, D-80336 Munich, Germany; Department Stress Neurobiology and Neurogenetics (A.L., J.R., C.K., J.M.D.), Max Planck Institute of Psychiatry, D-80804 Munich, Germany; and Division of Pediatric Endocrinology and Diabetes (A.K., F.R.), Department of Pediatrics, University Hospital Schleswig-Holstein, Christian Albrechts University Kiel, D-24105 Kiel, Germany
| | - Juliane Rohde
- Endocrine Research Unit (A.S., A.R., K.M.-P., C.H., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, D-80336 Munich, Germany; Department Stress Neurobiology and Neurogenetics (A.L., J.R., C.K., J.M.D.), Max Planck Institute of Psychiatry, D-80804 Munich, Germany; and Division of Pediatric Endocrinology and Diabetes (A.K., F.R.), Department of Pediatrics, University Hospital Schleswig-Holstein, Christian Albrechts University Kiel, D-24105 Kiel, Germany
| | - Constanze Hantel
- Endocrine Research Unit (A.S., A.R., K.M.-P., C.H., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, D-80336 Munich, Germany; Department Stress Neurobiology and Neurogenetics (A.L., J.R., C.K., J.M.D.), Max Planck Institute of Psychiatry, D-80804 Munich, Germany; and Division of Pediatric Endocrinology and Diabetes (A.K., F.R.), Department of Pediatrics, University Hospital Schleswig-Holstein, Christian Albrechts University Kiel, D-24105 Kiel, Germany
| | - Claudia Kuehne
- Endocrine Research Unit (A.S., A.R., K.M.-P., C.H., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, D-80336 Munich, Germany; Department Stress Neurobiology and Neurogenetics (A.L., J.R., C.K., J.M.D.), Max Planck Institute of Psychiatry, D-80804 Munich, Germany; and Division of Pediatric Endocrinology and Diabetes (A.K., F.R.), Department of Pediatrics, University Hospital Schleswig-Holstein, Christian Albrechts University Kiel, D-24105 Kiel, Germany
| | - Alexandra Kulle
- Endocrine Research Unit (A.S., A.R., K.M.-P., C.H., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, D-80336 Munich, Germany; Department Stress Neurobiology and Neurogenetics (A.L., J.R., C.K., J.M.D.), Max Planck Institute of Psychiatry, D-80804 Munich, Germany; and Division of Pediatric Endocrinology and Diabetes (A.K., F.R.), Department of Pediatrics, University Hospital Schleswig-Holstein, Christian Albrechts University Kiel, D-24105 Kiel, Germany
| | - Felix Riepe
- Endocrine Research Unit (A.S., A.R., K.M.-P., C.H., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, D-80336 Munich, Germany; Department Stress Neurobiology and Neurogenetics (A.L., J.R., C.K., J.M.D.), Max Planck Institute of Psychiatry, D-80804 Munich, Germany; and Division of Pediatric Endocrinology and Diabetes (A.K., F.R.), Department of Pediatrics, University Hospital Schleswig-Holstein, Christian Albrechts University Kiel, D-24105 Kiel, Germany
| | - Jan M Deussing
- Endocrine Research Unit (A.S., A.R., K.M.-P., C.H., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, D-80336 Munich, Germany; Department Stress Neurobiology and Neurogenetics (A.L., J.R., C.K., J.M.D.), Max Planck Institute of Psychiatry, D-80804 Munich, Germany; and Division of Pediatric Endocrinology and Diabetes (A.K., F.R.), Department of Pediatrics, University Hospital Schleswig-Holstein, Christian Albrechts University Kiel, D-24105 Kiel, Germany
| | - Felix Beuschlein
- Endocrine Research Unit (A.S., A.R., K.M.-P., C.H., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, D-80336 Munich, Germany; Department Stress Neurobiology and Neurogenetics (A.L., J.R., C.K., J.M.D.), Max Planck Institute of Psychiatry, D-80804 Munich, Germany; and Division of Pediatric Endocrinology and Diabetes (A.K., F.R.), Department of Pediatrics, University Hospital Schleswig-Holstein, Christian Albrechts University Kiel, D-24105 Kiel, Germany
| |
Collapse
|
29
|
You IY, Lee S, Kim KB, Lee HS, Jang JS, Yeon M, Han JH, Yoon SM, Chae HB, Park SM, Youn SJ. The effect of urocortin 1 on motility in isolated, vascularly perfused rat colon. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2015; 65:283-90. [PMID: 25998974 DOI: 10.4166/kjg.2015.65.5.283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND/AIMS Urocortin 1, a corticotropin-releasing factor related peptide, increases colonic motility under stressful conditions. We investigated the effect of urocortin 1 on colonic motility using an experimental model with isolated rat colon in which the blood flow and intestinal nerves were preserved. Furthermore, we assessed whether this effect was mediated by adrenergic or cholinergic nerves. METHODS Colonic motility was measured in the proximal and distal parts of resected rat colon. The colon resected from the peritoneum was stabilized, and then urocortin 1 (13.8, 138, 277, and 1,388 pM) was administered via a blood vessel. Motility index was measured in the last 5 min of the 15 min administration of urocortin 1 and expressed as percentage change from baseline. Subsequently, the change in motility was measured by perfusing urocortin 1 in colons pretreated with phentolamine, propranolol, hexamethonium, atropine, or tetrodotoxin. RESULTS At concentrations of 13.8, 138, 277, and 1,388 pM, urocortin 1 increased the motility of proximal colon (20.4 ± 7.2%,48.4 ± 20.9%, 67.0 ± 25.8%, and 64.2 ± 20.9%, respectively) and the motility of distal colon (3.3 ± 3.3%, 7.8 ± 7.8%, 71.1 ± 28.6%,and 87.4 ± 32.5%, respectively). The motility induced by urocortin 1 was significantly decreased by atropine to 2.4 ± 2.4% in proximal colon and 3.4 ± 3.4% in distal colon (p < 0.05). However, tetrodotoxin, propranolol, phentolamine, and hexamethonium did not inhibit motility. CONCLUSIONS Urocortin 1 increased colonic motility and it is considered that this effect was directly mediated by local muscarinic cholinergic receptors.
Collapse
Affiliation(s)
- Il Young You
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Seungho Lee
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Ki Bae Kim
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Hee Seung Lee
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Jong Soon Jang
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Myeongho Yeon
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Joung-Ho Han
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Soon Man Yoon
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Hee Bok Chae
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Seon Mee Park
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Sei Jin Youn
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| |
Collapse
|
30
|
Chao H, Li H, Grande R, Lira V, Yan Z, Harris TE, Li C. Involvement of mTOR in Type 2 CRF Receptor Inhibition of Insulin Signaling in Muscle Cells. Mol Endocrinol 2015; 29:831-41. [PMID: 25875045 DOI: 10.1210/me.2014-1245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Type 2 corticotropin-releasing factor receptor (CRFR2) is expressed in skeletal muscle and stimulation of the receptor has been shown to inhibit the effect of insulin on glucose uptake in muscle cells. Currently, little is known about the mechanisms underlying this process. In this study, we first showed that both in vivo and in vitro CRFR2 expression in muscle was closely correlated with insulin sensitivity, with elevated receptor levels observed in insulin resistant muscle cells. Stimulation of CRFR2 by urocortin 2 (Ucn 2), a CRFR2-selective ligand, in C2C12 myotubes greatly attenuated insulin-induced glucose uptake. The inhibitory effect of CRFR2 signaling required cAMP production and is involved the mammalian target of rapamycine pathway, as rapamycin reversed the inhibitory effect of CRFR2 stimulation on insulin-induced glucose uptake. Moreover, stimulation of CRFR2 failed to inhibit glucose uptake in muscle cells induced by platelet-derived growth factor, which, similar to insulin, signals through Akt-mediated pathway but is independently of insulin receptor substrate (IRS) proteins to promote glucose uptake. This result argues that CRFR2 signaling modulates insulin's action likely at the levels of IRS. Consistent with this notion, Ucn 2 reduced insulin-induced tyrosine phosphorylation of IRS-1, and treatment with rapamycin reversed the inhibitory effect of Ucn 2 on IRS-1 and Akt phosphorylation. In conclusion, the inhibitory effect of CRFR2 signaling on insulin action is mediated by cAMP in a mammalian target of rapamycine-dependent manner, and IRS-1 is a key nodal point where CRFR2 signaling modulates insulin-stimulated glucose uptake in muscle cells.
Collapse
Affiliation(s)
- Hongxia Chao
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| | - Haochen Li
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| | - Rebecca Grande
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| | - Vitor Lira
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| | - Zhen Yan
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| | - Thurl E Harris
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| | - Chien Li
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| |
Collapse
|
31
|
Akiba Y, Kaunitz JD, Million M. Peripheral corticotropin-releasing factor receptor type 2 activation increases colonic blood flow through nitric oxide pathway in rats. Dig Dis Sci 2015; 60:858-67. [PMID: 25701320 PMCID: PMC4501405 DOI: 10.1007/s10620-015-3579-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/04/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) peptides exert profound effects on the secretomotor function of the gastrointestinal tract. Nevertheless, despite the presence of CRF peptides and receptors in colonic tissue, their influence on colonic blood flow (CBF) is unknown. AIM To determine the effect and mechanism of members of the CRF peptide family on CBF in isoflurane-anesthetized rats. METHODS Proximal CBF was measured with laser-Doppler flowmetry simultaneously with mean arterial blood pressure (MABP) measurement. Rats were injected with intravenous human/rat CRF (CRF1 > CRF2 affinity), mouse urocortin 2 (mUcn2, selective CRF2 agonist), or sauvagine (SVG, CRF2 > CRF1 affinity) at 1-30 µg/kg. The nitric oxide (NO) synthase inhibitor, L-NAME (3 mg/kg, iv), the cyclooxygenase inhibitor, indomethacin (Indo, 5 mg/kg, ip), or selective CRF2 antagonist, astressin2-B (Ast2B, 50 µg/kg, iv) was given before SVG injection (10 µg/kg, iv). RESULTS SVG and mUcn2 dose-dependently increased CBF while decreasing MABP and colonic vascular resistance (CVR). CRF had no effect on CBF, but increased CVR. The hyperemic effect of SVG was inhibited by L-NAME but not by Indo, whereas hypotension was partially reduced by L-NAME. Sensory denervation had no effect on SVG-induced changes. Ast2B inhibited SVG-induced hyperemia and decreased CVR, and partially reduced the hypotension. CONCLUSIONS Peripheral CRF2 activation induces colonic hyperemia through NO synthesis, without involving prostaglandin synthesis or sensory nerve activation, suggesting a direct action on the endothelium and myenteric neurons. Members of the CRF peptide family may protect the colonic mucosa via the activation of the CRF2 receptor.
Collapse
Affiliation(s)
- Yasutada Akiba
- CURE: Digestive Diseases Research Center; Oppenheimer Family Center for Neurobiology of Stress, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA,
| | | | | |
Collapse
|
32
|
Nozu T, Takakusaki K, Okumura T. A balance theory of peripheral corticotropin-releasing factor receptor type 1 and type 2 signaling to induce colonic contractions and visceral hyperalgesia in rats. Endocrinology 2014; 155:4655-64. [PMID: 25279793 DOI: 10.1210/en.2014-1421] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several recent studies suggest that peripheral corticotropin-releasing factor (CRF) receptor type 1 (CRF1) and CRF2 have a counter regulatory action on gastrointestinal functions. We hypothesized that the activity balance of each CRF subtype signaling may determine the changes in colonic motility and visceral sensation. Colonic contractions were assessed by the perfused manometry, and contractions of colonic muscle strips were measured in vitro in rats. Visceromotor response was determined by measuring contractions of abdominal muscle in response to colorectal distensions (CRDs) (60 mm Hg for 10 min twice with a 30-min rest). All drugs were administered through ip route in in vivo studies. CRF increased colonic contractions. Pretreatment with astressin, a nonselective CRF antagonist, blocked the CRF-induced response, but astressin2-B, a selective CRF2 antagonist, enhanced the response by CRF. Cortagine, a selective CRF1 agonist, increased colonic contractions. In in vitro study, CRF increased contractions of muscle strips. Urocortin 2, a selective CRF2 agonist, itself did not alter the contractions but blocked this increased response by CRF. Visceromotor response to the second CRD was significantly higher than that of the first. Astressin blocked this CRD-induced sensitization, but astressin2-B or CRF did not affect it. Meanwhile, astressin2-B together with CRF significantly enhanced the sensitization. Urocortin 2 blocked, but cortagine significantly enhanced, the sensitization. These results indicated that peripheral CRF1 signaling enhanced colonic contractility and induced visceral sensitization, and these responses were modulated by peripheral CRF2 signaling. The activity balance of each subtype signaling may determine the colonic functions in response to stress.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Departments of Regional Medicine and Education (T.N.) and General Medicine (T.O.) and Research Center for Brain Function and Medical Engineering (K.T.), Asahikawa Medical University, Asahikawa 078-8510, Japan
| | | | | |
Collapse
|
33
|
Urocortin 2 blocks the suppression of gastric antral contractions induced by lipopolysaccharide in freely moving conscious rats. ACTA ACUST UNITED AC 2014; 190-191:12-7. [PMID: 24793550 DOI: 10.1016/j.regpep.2014.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/02/2014] [Accepted: 04/22/2014] [Indexed: 12/15/2022]
Abstract
Lipopolysaccharide (LPS) inhibits gastric antral contractions in conscious rats. Since LPS regulates corticotropin-releasing factor type 2 receptor (CRF2) expression in the rat stomach, and activation of peripheral CRF2 alters gastric motility, we tried to determine the role of peripheral CRF2 in the LPS-induced suppression of gastric antral contractions. Intraluminal gastric pressure waves were measured in freely moving conscious non-fasted rats using the perfused manometric method. We assessed the area under the manometric trace as the motor index (MI), and compared this result with those obtained 1h before and after intraperitoneal injection of drugs. LPS (0.2 mg/kg) significantly decreased MI. Indomethacin (10 mg/kg) itself did not alter MI but blocked this inhibitory action by LPS. Astressin 2-B (200 μg/kg), a selective CRF2 antagonist, modified neither the basal MI nor the action by LPS. Meanwhile, urocortin 2 (30 μg/kg), a selective CRF2 agonist, reversed the suppression by LPS without affecting the basal MI. This action by urocortin 2 was blocked by pretreatment with astressin 2-B. In conclusion, LPS inhibited gastric antral contractions possibly through a prostaglandin-dependent pathway. Peripheral CRF2 stimulation reversed this response by LPS.
Collapse
|
34
|
Water-avoidance stress enhances gastric contractions in freely moving conscious rats: role of peripheral CRF receptors. J Gastroenterol 2014; 49:799-805. [PMID: 23645119 DOI: 10.1007/s00535-013-0828-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 04/25/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Stress alters gastrointestinal motility through central and peripheral corticotropin-releasing factor (CRF) pathways. Accumulating evidence has demonstrated that peripheral CRF is deeply involved in the regulation of gastric motility, and enhances gastric contractions through CRF receptor type 1 (CRF1) and delays gastric emptying (GE) through CRF receptor type 2 (CRF2). Since little is known whether water-avoidance stress (WAS) alters gastric motility, the present study tried to clarify this question and the involvement of peripheral CRF receptor subtypes in the mechanisms. METHODS We recorded intraluminal gastric pressure waves using a perfused manometric method. The rats were anesthetized and the manometric catheter was inserted into the stomach 4-6 days before the experiments. We assessed the area under the manometric trace as the motor index (MI), and compared this result with those obtained 1 h before and after initiation of WAS in nonfasted conscious rats. Solid GE for 1 h was also measured. RESULTS WAS significantly increased gastric contractions. Intraperitoneal (ip) administration of astressin (100 μg/kg, 5 min prior to stress), a nonselective CRF antagonist, blocked the response to WAS. On the other hand, pretreatment (5 min prior to stress) with neither astressin2-B (200 μg/kg, ip), a selective CRF2 antagonist, nor urocortin 2 (30 μg/kg, ip), a selective CRF2 agonist, modified the response to WAS. These drugs did not alter the basal MI. WAS did not change GE. CONCLUSIONS WAS may activate peripheral CRF1 but not CRF2 signaling and stimulates gastric contractions without altering GE.
Collapse
|
35
|
Chatzaki E, Anton PA, Million M, Lambropoulou M, Constantinidis T, Kolios G, Taché Y, Grigoriadis DE. Corticotropin-releasing factor receptor subtype 2 in human colonic mucosa: Down-regulation in ulcerative colitis. World J Gastroenterol 2013; 19:1416-1423. [PMID: 23539366 PMCID: PMC3602501 DOI: 10.3748/wjg.v19.i9.1416] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/05/2012] [Accepted: 12/20/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess corticotropin-releasing factor receptor 2 (CRF2) expression in the colon of healthy subjects and patients with ulcerative colitis (UC).
METHODS: We examined CRF2 gene and protein expression in the distal/sigmoid colonic mucosal biopsies from healthy subjects and patients with UC (active or disease in remission), human immunodeficiency virus (HIV) and functional bowel disease (FBD) by reverse transcription-polymerase chain reaction and immunofluorescence.
RESULTS: Gene expression of CRF2 was demonstrated in the normal human colonic biopsies, but not in the human colorectal adenocarcinoma cell line Caco2. Receptor protein localization showed immunoreactive CRF2 receptors in the lamina propria and in the epithelial cells of the distal/sigmoid biopsy samples. Interestingly, CRF2 immunoreactivity was no longer observed in epithelial cells of patients with mild-moderately active UC and disease in remission, while receptor protein expression did not change in the lamina propria. No differences in CRF2 expression profile were observed in distal/sigmoid intestinal biopsies from HIV infection and FBD patients, showing no signs of inflammation.
CONCLUSION: The down-regulation of the CRF2 receptor in the distal/sigmoid biopsies of UC patients is indicative of change in CRF2 signalling associated with the process of inflammation.
Collapse
|
36
|
Wang L, Stengel A, Goebel-Stengel M, Shaikh A, Yuan PQ, Taché Y. Intravenous injection of urocortin 1 induces a CRF2 mediated increase in circulating ghrelin and glucose levels through distinct mechanisms in rats. Peptides 2013; 39. [PMID: 23183626 PMCID: PMC3599411 DOI: 10.1016/j.peptides.2012.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Urocortins (Ucns) injected peripherally decrease food intake and gastric emptying through peripheral CRF(2) receptors in rodents. However, whether Ucns influence circulating levels of the orexigenic and prokinetic hormone, ghrelin has been little investigated. We examined plasma levels of ghrelin and blood glucose after intravenous (iv) injection of Ucn 1, the CRF receptor subtype involved and underlying mechanisms in ad libitum fed rats equipped with a chronic iv cannula. Ucn 1 (10 μg/kg, iv) induced a rapid onset and long lasting increase in ghrelin levels reaching 68% and 219% at 0.5 and 3h post injection respectively and a 5-h hyperglycemic response. The selective CRF(2) agonist, Ucn 2 (3 μg/kg, iv) increased fasting acyl (3h: 49%) and des-acyl ghrelin levels (3h: 30%) compared to vehicle while the preferential CRF(1) agonist, CRF (3 μg/kg, iv) had no effect. Ucn 1's stimulatory actions were blocked by the selective CRF(2) antagonist, astressin(2)-B (100 μg/kg, iv). Hexamethonium (10 mg/kg, sc) prevented Ucn 1-induced rise in total ghrelin levels while not altering the hyperglycemic response. These data indicate that systemic injection of Ucns induces a CRF(2)-mediated increase in circulating ghrelin levels likely via indirect actions on gastric ghrelin cells that involves a nicotinic pathway independently from the hyperglycemic response.
Collapse
Affiliation(s)
- Lixin Wang
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at University of California Los Angeles, Los Angeles, CA 90073, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Yuan PQ, Wu SV, Taché Y. Urocortins and CRF type 2 receptor isoforms expression in the rat stomach are regulated by endotoxin: role in the modulation of delayed gastric emptying. Am J Physiol Gastrointest Liver Physiol 2012; 303:G20-31. [PMID: 22517775 PMCID: PMC3404575 DOI: 10.1152/ajpgi.00547.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Peripheral activation of corticotropin-releasing factor receptor type 2 (CRF(2)) by urocortin 1, 2, or 3 (Ucns) exerts powerful effects on gastric function; however, little is known about their expression and regulation in the stomach. We investigated the expression of Ucns and CRF(2) isoforms by RT-PCR in the gastric corpus (GC) mucosa and submucosa plus muscle (S+M) or laser captured layers in naive rats, their regulations by lipopolysaccharide (LPS, 100 μg/kg ip) over 24 h, and the effect of the CRF(2) antagonist astresssin(2)-B (100 μg/kg sc) on LPS-induced delayed gastric emptying (GE) 2-h postinjection. Transcripts of Ucns and CRF(2b,) the most common wild-type CRF(2) isoform in the periphery, were expressed in all layers, including myenteric neurons. LPS increased Ucn mRNA levels significantly in both mucosa and S+M, reaching a maximal response at 6 h postinjection and returning to basal levels at 24 h except for Ucn 1 in S+M. By contrast, CRF(2b) mRNA level was significantly decreased in the mucosa and M+S with a nadir at 6 h. In addition, CRF(2a), reportedly only found in the brain, and the novel splice variant CRF(2a-3) were also detected in the GC, antrum, and pylorus. LPS reciprocally regulated these variants with a decrease of CRF(2a) and an increase of CRF(2a-3) in the GC 6 h postinjection. Astressin(2)-B exacerbated LPS-delayed GE (42-73%, P < 0.001). These data indicate that Ucn and CRF(2) isoforms are widely distributed throughout the rat stomach and inversely regulated by immune stress. The CRF(2) signaling system may act to counteract the early gastric motor alterations to endotoxemia.
Collapse
Affiliation(s)
- Pu-Qing Yuan
- CURE: Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine and Brain Research Institute/UCLA, 1301 Wilshire Blvd., Los Angeles, CA 90073, USA.
| | | | | |
Collapse
|
38
|
Fekete EM, Zhao Y, Szücs A, Sabino V, Cottone P, Rivier J, Vale WW, Koob GF, Zorrilla EP. Systemic urocortin 2, but not urocortin 1 or stressin 1-A, suppresses feeding via CRF2 receptors without malaise and stress. Br J Pharmacol 2012; 164:1959-75. [PMID: 21627635 DOI: 10.1111/j.1476-5381.2011.01512.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Infusion of corticotropin-releasing factor (CRF)/urocortin (Ucn) family peptides suppresses feeding in mice. We examined whether rats show peripheral CRF/Ucn-induced anorexia and determined its behavioural and pharmacological bases. EXPERIMENTAL APPROACH Male Wistar rats (n= 5-12 per group) were administered (i.p.) CRF receptor agonists with different subtype affinities. Food intake, formation of conditioned taste aversion and corticosterone levels were assessed. In addition, Ucn 1- and Ucn 2-induced anorexia was studied in fasted CRF(2) knockout (n= 11) and wild-type (n= 13) mice. KEY RESULTS Ucn 1, non-selective CRF receptor agonist, reduced food intake most potently (~0.32 nmol·kg(-1) ) and efficaciously (up to 70% reduction) in fasted and fed rats. The peptides' rank-order of anorexic potency was Ucn 1 ≥ Ucn 2 > >stressin(1) -A > Ucn 3, and efficacy, Ucn 1 > stressin(1) -A > Ucn 2 = Ucn 3. Ucn 1 reduced meal frequency and size, facilitated feeding bout termination and slowed eating rate. Stressin(1) -A (CRF(1) agonist) reduced meal size; Ucn 2 (CRF(2) agonist) reduced meal frequency. Stressin(1) -A and Ucn 1, but not Ucn 2, produced a conditioned taste aversion, reduced feeding efficiency and weight regain and elicited diarrhoea. Ucn 1, but not Ucn 2, also increased corticosterone levels. Ucn 1 and Ucn 2 reduced feeding in wild-type, but not CRF(2) knockout, mice. CONCLUSIONS AND IMPLICATIONS CRF(1) agonists, Ucn 1 and stressin(1) -A, reduced feeding and induced interoceptive stress, whereas Ucn 2 potently suppressed feeding via a CRF(2) -dependent mechanism without eliciting malaise. Consistent with their pharmacological differences, peripheral urocortins have diverse effects on appetite.
Collapse
Affiliation(s)
- E M Fekete
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Heo JM, Opapeju FO, Pluske JR, Kim JC, Hampson DJ, Nyachoti CM. Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J Anim Physiol Anim Nutr (Berl) 2012; 97:207-37. [PMID: 22416941 DOI: 10.1111/j.1439-0396.2012.01284.x] [Citation(s) in RCA: 465] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
For the last several decades, antimicrobial compounds have been used to promote piglet growth at weaning through the prevention of subclinical and clinical disease. There are, however, increasing concerns in relation to the development of antibiotic-resistant bacterial strains and the potential of these and associated resistance genes to impact on human health. As a consequence, European Union (EU) banned the use of antibiotics as growth promoters in swine and livestock production on 1 January 2006. Furthermore, minerals such as zinc (Zn) and copper (Cu) are not feasible alternatives/replacements to antibiotics because their excretion is a possible threat to the environment. Consequently, there is a need to develop feeding programs to serve as a means for controlling problems associated with the weaning transition without using antimicrobial compounds. This review, therefore, is focused on some of nutritional strategies that are known to improve structure and function of gastrointestinal tract and (or) promote post-weaning growth with special emphasis on probiotics, prebiotics, organic acids, trace minerals and dietary protein source and level.
Collapse
Affiliation(s)
- J M Heo
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Chen P, Hover CV, Lindberg D, Li C. Central urocortin 3 and type 2 corticotropin-releasing factor receptor in the regulation of energy homeostasis: critical involvement of the ventromedial hypothalamus. Front Endocrinol (Lausanne) 2012; 3:180. [PMID: 23316185 PMCID: PMC3539675 DOI: 10.3389/fendo.2012.00180] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/18/2012] [Indexed: 12/30/2022] Open
Abstract
The vital role of the corticotropin-releasing factor (CRF) peptide family in the brain in coordinating response to stress has been extensively documented. The effects of CRF are mediated by two G-protein-coupled receptors, type 1 and type 2 CRF receptors (CRF(1) and CRF(2)). While the functional role of CRF(1) in hormonal and behavioral adaptation to stress is well-known, the physiological significance of CRF(2) remains to be fully appreciated. Accumulating evidence has indicated that CRF(2) and its selective ligands including urocortin 3 (Ucn 3) are important molecular mediators in regulating energy balance. Ucn 3 is the latest addition of the CRF family of peptides and is highly selective for CRF(2). Recent studies have shown that central Ucn 3 is important in a number of homeostatic functions including suppression of feeding, regulation of blood glucose levels, and thermoregulation, thus reinforcing the functional role of central CRF(2) in metabolic regulation. The brain loci that mediate the central effects of Ucn 3 remain to be fully determined. Anatomical and functional evidence has suggested that the ventromedial hypothalamus (VMH), where CRF(2) is prominently expressed, appears to be instrumental in mediating the effects of Ucn 3 on energy balance, permitting Ucn 3-mediated modulation of feeding and glycemic control. Thus, the Ucn 3-VMH CRF(2) system is an important neural pathway in the regulation of energy homeostasis and potentially plays a critical role in energy adaptation in response to metabolic perturbations and stress to maintain energy balance.
Collapse
Affiliation(s)
- Peilin Chen
- Department of Pharmacology, University of Virginia Health SystemCharlottesville, VA, USA
| | - Christine Van Hover
- Department of Neuroscience, University of Virginia Health SystemCharlottesville, VA, USA
| | - Daniel Lindberg
- Department of Pharmacology, University of Virginia Health SystemCharlottesville, VA, USA
| | - Chien Li
- Department of Pharmacology, University of Virginia Health SystemCharlottesville, VA, USA
- *Correspondence: Chien Li, Department of Pharmacology, University of Virginia Health System, P.O. Box 800735, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA. e-mail:
| |
Collapse
|
41
|
Katiraei P, Bultron G. Need for a comprehensive medical approach to the neuro-immuno-gastroenterology of irritable bowel syndrome. World J Gastroenterol 2011; 17:2791-800. [PMID: 21734786 PMCID: PMC3120938 DOI: 10.3748/wjg.v17.i23.2791] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/08/2011] [Accepted: 03/15/2011] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is defined by the Rome III criteria as symptoms of recurrent abdominal pain or discomfort with the onset of a marked change in bowel habits with no evidence of an inflammatory, anatomic, metabolic, or neoplastic process. As such, many clinicians regard IBS as a central nervous system problem of altered pain perception. Here, we review the recent literature and discuss the evidence that supports an organic based model, which views IBS as a complex, heterogeneous, inter-dependent, and multi-variable inflammatory process along the neuronal-gut axis. We delineate the organic pathophysiology of IBS, demonstrate the role of inflammation in IBS, review the possible differences between adult and pediatric IBS, discuss the merits of a comprehensive treatment model as taught by the Institute of Functional Medicine, and describe the potential for future research for this syndrome.
Collapse
|
42
|
Chang J, Adams MR, Clifton MS, Liao M, Brooks JH, Hasdemir B, Bhargava A. Urocortin 1 modulates immunosignaling in a rat model of colitis via corticotropin-releasing factor receptor 2. Am J Physiol Gastrointest Liver Physiol 2011; 300:G884-94. [PMID: 21330446 PMCID: PMC3094137 DOI: 10.1152/ajpgi.00319.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Urocortins (UCNs) and their receptors are potent immunoregulators in the gastrointestinal (GI) tract, where they can exert both pro- and anti-inflammatory effects. We examined the contribution of Ucn1 and its receptors to the pathogenesis, progression, and resolution of colitis. Trinitrobenzene sulfonic acid was used to induce colitis in rats. Ucn1 mRNA and immunoreactivity (IR) were ubiquitously expressed throughout the GI tract under basal conditions. During colitis, Ucn1 mRNA levels fell below basal levels on day 1 then increased again by day 6, in association with an increase in the number of Ucn1-IR inflammatory cells. Ucn1-IR cells were also numerous in proliferating granulation tissue. In contrast to Ucn1 expression, average phosphorylated ERK1/2 (pERK1/2) expression rose above controls levels on day 1 and was very low on day 6 of colitis. Knockdown of corticotropin-releasing factor 2 (CRF(2)) but not CRF(1) by RNA interference during colitis significantly decreased the macroscopic lateral spread of ulceration compared with uninjected controls or animals with CRF(1) knockdown. After knockdown of CRF(2), but not of CRF(1) during colitis, edema resolution assessed microscopically was slowed, and myeloperoxidase activity remained elevated even at day 6. Ucn1 and TNF-α mRNA peaked earlier, whereas pERK1/2 activation was attenuated after CRF(2) knockdown. Thus we conclude that local CRF(2) and pERK1/2 activation is pivotal for macroscopic spread of colitis and resolution of edema. Elimination of CRF(2), but not CRF(1), results in uncoordinated immune and pERK1/2 signaling responses.
Collapse
Affiliation(s)
- Jen Chang
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Melanie R. Adams
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Matthew S. Clifton
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Min Liao
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Julia H. Brooks
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Burcu Hasdemir
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Aditi Bhargava
- Department of Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
43
|
Lee S, Braden B, Kang SS, Rivier C. Urocortins are present in the rat testis. Neuropeptides 2011; 45:131-7. [PMID: 21256589 PMCID: PMC3043384 DOI: 10.1016/j.npep.2010.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/11/2010] [Accepted: 12/19/2010] [Indexed: 10/18/2022]
Abstract
The synthesis and release of testosterone (T) depends both on circulating luteinizing hormone (LH) and on an array of testicular factors whose role remains incompletely understood. Corticotropin-releasing factor (CRF) had been reported in the rat testes, where it was thought to inhibit T secretion. However, the discovery that the CRF-related peptides urocortins (Ucns), of which there are currently three subtypes (Ucn 1, 2 and 3), cross-react with many reagents previously used to detect CRF, has cast doubt on this concept. Here we show that while CRF was readily measurable in rat hypothalami (which served as controls), signals for this peptide were barely detectable in total RNA extracted from the testes. On the other hand, microarray, RT-PCR and real-time quantitative RT-PCR (qRT-PCR) analyses all indicated strong signals for Ucn 1 in the male gonads, with weaker levels of Ucn 2 and 3 mRNA gene expression. Results obtained for Ucn 1 gene expression were corroborated by immunohistochemical detection, which appeared restricted to Leydig cells. Finally, to investigate possible changes in testicular Ucn 1 levels induced by homeostatic challenges, we measured them in rats exposed to alcohol. We observed that indeed, the intragastric injection of this drug significantly increased testicular Ucn 1, but not Ucn 2, Ucn 3, CRF, CRFR1 or CRFR2 mRNA levels. Collectively, these results provide novel information regarding the presence of CRF-like peptides in the adult male rat testis.
Collapse
Affiliation(s)
- Soon Lee
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Brian Braden
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sang Soo Kang
- Department of Anatomy & Neurobiology, Health Science Institute, School of Medicine, Gyeongsang National University, 92 Chilam-Dong, Jinju, Gyeongnam 660-751, Korea
| | - Catherine Rivier
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
44
|
Sand E, Themner-Persson A, Ekblad E. Corticotropin releasing factor-distribution in rat intestine and role in neuroprotection. ACTA ACUST UNITED AC 2010; 166:68-75. [PMID: 20801165 DOI: 10.1016/j.regpep.2010.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/01/2010] [Accepted: 08/20/2010] [Indexed: 01/07/2023]
Abstract
UNLABELLED Aims of the present study were to describe the distribution of corticotropin releasing factor (CRF) immunoreactivity in rat small and large intestines, to quantify the percentage of CRF-immunoreactive (CRF-IR) enteric neurons, to reveal possible CRF immunoreactivity in cultured myenteric neurons from rat ileum and to examine if additions of CRF, urocortin 1 (Ucn1), CRF antagonist or vasoactive intestinal peptide (VIP) affect neuronal survival in vitro. Co-localization of CRF- and VIP-immunoreactivity was examined, as well as a possible interplay between CRF and VIP in neuroprotection. Further we wanted to elucidate if mast cells affect neuronal survival via CRF signaling. Networks of CRF-containing nerve cell bodies and fibers were detected in rat intestine. CRF-IR neurons contained to a high degree also VIP. A low number of cultured myenteric neurons was CRF-IR. CRF, Ucn1 or CRF-antagonist did not promote neuronal survival of cultured myenteric neurons, while VIP significantly enhanced neuronal survival. Simultaneous presence of CRF attenuated the VIP mediated increase in neuronal survival. Co-culturing neurons and mast cells resulted in a marked reduction in neuronal survival, not executed via CRF signaling pathways. CONCLUSION CRF is present in enteric neurons and counteracts the neuroprotective effect of VIP in vitro.
Collapse
Affiliation(s)
- Elin Sand
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
45
|
Barry SP, Lawrence KM, McCormick J, Soond SM, Hubank M, Eaton S, Sivarajah A, Scarabelli TM, Knight RA, Thiemermann C, Latchman DS, Townsend PA, Stephanou A. New targets of urocortin-mediated cardioprotection. J Mol Endocrinol 2010; 45:69-85. [PMID: 20501665 PMCID: PMC3069736 DOI: 10.1677/jme-09-0148] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The urocortin (UCN) hormones UCN1 and UCN2 have been shown previously to confer significant protection against myocardial ischaemia/reperfusion (I/R) injury; however, the molecular mechanisms underlying their action are poorly understood. To further define the transcriptional effect of UCNs that underpins their cardioprotective activity, a microarray analysis was carried out using an in vivo rat coronary occlusion model of I/R injury. Infusion of UCN1 or UCN2 before the onset of reperfusion resulted in the differential regulation of 66 and 141 genes respectively, the majority of which have not been described previously. Functional analysis demonstrated that UCN-regulated genes are involved in a wide range of biological responses, including cell death (e.g. X-linked inhibitor of apoptosis protein), oxidative stress (e.g. nuclear factor erythroid derived 2-related factor 1/nuclear factor erythroid derived 2-like 1) and metabolism (e.g. Prkaa2/AMPK). In addition, both UCN1 and UCN2 were found to modulate the expression of a host of genes involved in G-protein-coupled receptor (GPCR) signalling including Rac2, Gnb1, Dab2ip (AIP1), Ralgds, Rnd3, Rap1a and PKA, thereby revealing previously unrecognised signalling intermediates downstream of CRH receptors. Moreover, several of these GPCR-related genes have been shown previously to be involved in mitogen-activated protein kinase (MAPK) activation, suggesting a link between CRH receptors and induction of MAPKs. In addition, we have shown that both UCN1 and UCN2 significantly reduce free radical damage following myocardial infarction, and comparison of the UCN gene signatures with that of the anti-oxidant tempol revealed a significant overlap. These data uncover novel gene expression changes induced by UCNs, which will serve as a platform to further understand their mechanism of action in normal physiology and cardioprotection.
Collapse
Affiliation(s)
- Seán P Barry
- Medical Molecular Biology Unit, Institute of Child Health, University College London, London, WC1N 1EH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Urocortin prevents indomethacin-induced small intestinal lesions in rats through activation of CRF2 receptors. Dig Dis Sci 2010; 55:1570-80. [PMID: 19707872 DOI: 10.1007/s10620-009-0930-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 07/16/2009] [Indexed: 12/20/2022]
Abstract
PURPOSE The role of corticotropin-releasing factor (CRF) in the pathogenesis of indomethacin-induced small intestinal lesions was examined in rats. METHODS Animals were given indomethacin (10 mg/kg) subcutaneously and killed 24 h later. Urocortin I [a nonselective CRF receptor (CRFR) agonist], astressin (a nonselective CRFR antagonist), NBI-27914 (a CRFR1 antagonist), or astressin-2B (a CRFR2 antagonist) was given intravenously 10 min before the administration of indomethacin. RESULTS Indomethacin caused hemorrhagic lesions in the small intestine, accompanied by intestinal hypermotility, mucosal invasion of enterobacteria, up-regulation of inducible nitric oxide synthase (iNOS) expression, and an increase of mucosal myeloperoxidase (MPO) activity. Pretreatment of the animals with astressin, a non-selective CRFR antagonist, aggravated the lesions in a dose-dependent manner. Likewise, astressin-2B also exacerbated the intestinal ulcerogenic response induced by indomethacin, while NBI-27914 did not. Urocortin I prevented indomethacin-induced intestinal lesions, together with the suppression of bacterial invasion and an increase in mucosal MPO activity and iNOS expression; these effects were significantly reversed by co-administration of astressin-2B but not NBI-27914. Urocortin I suppressed the hypermotility response to indomethacin, and this effect was also abrogated by astressin-2B but not NBI-27914. CONCLUSIONS These results suggest that urocortin 1 prevents indomethacin-induced small intestinal lesions, and that this action is mediated by the activation of CRFR2 and is functionally associated with the suppression of the intestinal hypermotility response caused by indomethacin. It is assumed that endogenous CRF contributes to the maintenance of the mucosal defensive ability of the small intestine against indomethacin through the activation of CRFR2.
Collapse
|
47
|
Soret R, Chevalier J, De Coppet P, Poupeau G, Derkinderen P, Segain JP, Neunlist M. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 2010; 138:1772-82. [PMID: 20152836 DOI: 10.1053/j.gastro.2010.01.053] [Citation(s) in RCA: 345] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 12/21/2009] [Accepted: 01/28/2010] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Little is known about the environmental and nutritional regulation of the enteric nervous system (ENS), which controls gastrointestinal motility. Short-chain fatty acids (SCFAs) such as butyrate regulate colonic mucosa homeostasis and can modulate neuronal excitability. We investigated their effects on the ENS and colonic motility. METHODS Effects of butyrate on the ENS were studied in colons of rats given a resistant starch diet (RSD) or intracecal perfusion of SCFAs. Effects of butyrate were also studied in primary cultures of ENS. The neurochemical phenotype of the ENS was analyzed with antibodies against Hu, choline acetyltransferase (ChAT), and neuronal nitric oxide synthase (nNOS) and by quantitative polymerase chain reaction. Signaling pathways involved were analyzed by pharmacologic and molecular biology methods. Colonic motility was assessed in vivo and ex vivo. RESULTS In vivo and in vitro, RSD and butyrate significantly increased the proportion of ChAT- but not nNOS-immunoreactive myenteric neurons. Acetate and propionate did not reproduce the effects of butyrate. Enteric neurons expressed monocarboxylate transporter 2 (MCT2). Small interfering RNAs silenced MCT2 and prevented the increase in the proportion of ChAT- immunoreactive neurons induced by butyrate. Butyrate and trichostatin A increased histone H3 acetylation in enteric neurons. Effects of butyrate were prevented by inhibitors of the Src signaling pathway. RSD increased colonic transit, and butyrate increased the cholinergic-mediated colonic circular muscle contractile response ex vivo. CONCLUSION Butyrate or histone deacetylase inhibitors might be used, along with nutritional approaches, to treat various gastrointestinal motility disorders associated with inhibition of colonic transit.
Collapse
Affiliation(s)
- Rodolphe Soret
- Institut National de Sante et de Recherche Medicale (INSERM), U913, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Berezina TP, Ovsyannikov VI. Mechanism for the inhibition of contractile activity of the gastric antrum and pylorus in rabbits during psychogenic stress. Bull Exp Biol Med 2009; 147:296-300. [PMID: 19529847 DOI: 10.1007/s10517-009-0495-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Psychogenic stress in rabbits (fixation to a frame) was accompanied by the inhibition of contractile activity of the gastric antrum and pylorus. These changes persisted during blockade of muscarinic receptors, nicotinic receptors, alpha(2)-adrenoceptors, and beta(1)/beta(2) adrenoceptors. A stress-induced decrease in gastric motor activity was mediated by the nonadrenergic noncholinergic mechanism. It resulted from the influence of a hormonal stress factor on the stomach, which was probably realized through nonadrenergic inhibitory neurons of the enteric nervous system.
Collapse
Affiliation(s)
- T P Berezina
- Laboratory for Physiology of Digestion, Department for Physiology of Visceral Systems, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | | |
Collapse
|
49
|
Stengel A, Taché Y. Neuroendocrine control of the gut during stress: corticotropin-releasing factor signaling pathways in the spotlight. Annu Rev Physiol 2009; 71:219-39. [PMID: 18928406 DOI: 10.1146/annurev.physiol.010908.163221] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stress affects the gastrointestinal tract as part of the visceral response. Various stressors induce similar profiles of gut motor function alterations, including inhibition of gastric emptying, stimulation of colonic propulsive motility, and hypersensitivity to colorectal distension. In recent years, substantial progress has been made in our understanding of the underlying mechanisms of stress's impact on gut function. Activation of corticotropin-releasing factor (CRF) signaling pathways mediates both the inhibition of upper gastrointestinal (GI) and the stimulation of lower GI motor function through interaction with different CRF receptor subtypes. Here, we review how various stressors affect the gut, with special emphasis on the central and peripheral CRF signaling systems.
Collapse
Affiliation(s)
- Andreas Stengel
- Department of Medicine and CURE Digestive Diseases Research Center, Center for Neurobiology of Stress, University of California at Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| | | |
Collapse
|
50
|
Lei Y, Chen J. Inhibitory effects of various types of stress on gastric tone and gastric myoelectrical activity in dogs. Scand J Gastroenterol 2009; 44:557-63. [PMID: 19242858 DOI: 10.1080/00365520902767538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Stress impairs gastrointestinal motility, causing, for example, delayed gastric emptying and altered intestinal transit. However, little is known about the effect of various stress factors on gastric tone and gastric myoelectrical activity (GMA). The aim of this study was to assess the effect of various kinds of stress on gastric tone and GMA in a canine model. MATERIAL AND METHODS Six dogs, implanted with a gastric cannula and one pair of gastric seromuscular electrodes, were studied. Three kinds of stress (visual, thermal, or audio stimulation) were applied in separate sessions. GMA and gastric tone were recorded for 30 min at baseline and 30 min during stress. RESULTS Visual stress (blinding) did not alter gastric tone or GMA; cold stress (ice water) and audio stress (loud noise) significantly inhibited gastric tone: gastric volume was increased from 107.2+/-13.5 ml at baseline to 135.6+/-23.8 ml with cold stress (p=0.041), and from 106.4+/-5.7 ml at baseline to 159.2+/-15.1 ml with audio stress (p=0.007). Although the dominant frequency or power of gastric slow waves was not altered, the percentage of normal gastric slow waves was markedly reduced from 98.3+/-0.8 to 87.5+/-3.7 with cold stress and from 90.2+/-3.3 to 80.6+/-2.9 with audio stress (p<0.05). CONCLUSIONS Cold- and audio stress inhibit gastric tone and impair gastric slow waves, whereas visual stress does not seem to have such effects. These findings will help to increase our understanding of gastrointestinal motor disorders related to stress.
Collapse
Affiliation(s)
- Yong Lei
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, Oklahoma, USA
| | | |
Collapse
|