1
|
Yoon H, Price B, Parks R, Jang HS, Hafeez M, Corcoran J, Ahn SJ, Choi MY. Corticotropin-releasing factor-like diuretic hormone 44 and five corresponding GPCRs in Drosophila suzukii: Structural and functional characterization. JOURNAL OF INSECT PHYSIOLOGY 2025; 161:104740. [PMID: 39647602 DOI: 10.1016/j.jinsphys.2024.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Diuretic hormones (DHs) activate corresponding G protein-coupled receptors (GPCRs), mediating the water and ion homeostasis in arthropods. There are two different DHs known to be expressed in insects, calcitonin (CT)-like DH31 and corticotropin-releasing factor (CRF)-like DH44. In this study, we identified and characterized a DH44 and five GPCR variants, DH44-R1 and DH44-R2a/b/c/d, in Drosophila suzukii (spotted-wing drosophila), causing detrimental damage to fresh and soft-skinned fruits. Among the five DH44 receptors, DH44-R1 was the longest GPCR and most strongly responded to DH44, and the other DH44-R2 splicing variants were relatively shorter and over 90 % similar to each other. Some DH44-Rs including DH44-R1 utilized both cAMP and Ca2+ as second messengers. Interestingly, DH44-R1 was dominantly expressed in the brain, whereas DH44-R2 variants were dominant in the digestive organs, particularly the Malpighian tubules (MTs) by their gene expressions. The results suggest that DH44 may have multiple physiological functions, including the regulation of the sleep-wake cycle and diuretic activity. Injection of DH44 stimulated fluid secretion in adults, and the rate of the excretion increased in a dose-dependent manner. Moreover, when the flies were injected with a mixture of DH31 and DH44, a high mortality rate was observed. Here, we demonstrate the gene structures, expressions, characterization of DH44 and five GPCRs, their second messengers, and the effects of DH peptides on the fly. These investigations offer molecular insights into the physiological roles of the DH system and may assist in the fundamental aspects of developing D. suzukii management in the field.
Collapse
Affiliation(s)
- Hojung Yoon
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR 97330, USA
| | - Briana Price
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA
| | - Ryssa Parks
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA
| | - Hyo Sang Jang
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR 97330, USA
| | - Muhammad Hafeez
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR 97330, USA
| | - Jacob Corcoran
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; The Biological Control of Insects Research Unit, 1503 S Providence, Research Park, Columbia, MO 65203, USA
| | - Seung-Joon Ahn
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Man-Yeon Choi
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA.
| |
Collapse
|
2
|
Cha WH, Kim B, Lee DW. Functional Analysis of Pheromone Biosynthesis Activating Neuropeptide Receptor Isoforms in Maruca vitrata. Cells 2023; 12:1410. [PMID: 37408245 DOI: 10.3390/cells12101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
Insect sex pheromones are volatile chemicals that induce mating behavior between conspecific individuals. In moths, sex pheromone biosynthesis is initiated when pheromone biosynthesis-activating neuropeptide (PBAN) synthesized in the suboesophageal ganglion binds to its receptor on the epithelial cell membrane of the pheromone gland. To investigate the function of PBAN receptor (PBANR), we identified two PBANR isoforms, MviPBANR-B and MviPBANR-C, in the pheromone glands of Maruca vitrata. These two genes belong to G protein-coupled receptors (GPCRs) and have differences in the C-terminus but share a 7-transmembrane region and GPCR family 1 signature. These isoforms were expressed in all developmental stages and adult tissues. MviPBANR-C had the highest expression level in pheromone glands among the examined tissues. Through in vitro heterologous expression in HeLa cell lines, only MviPBANR-C-transfected cells responded to MviPBAN (≥5 µM MviPBAN), inducing Ca2+ influx. Sex pheromone production and mating behavior were investigated using gas chromatography and a bioassay after MviPBANR-C suppression by RNA interference, which resulted in the major sex pheromone component, E10E12-16:Ald, being quantitatively reduced compared to the control, thereby decreasing the mating rate. Our findings indicate that MviPBANR-C is involved in the signal transduction of sex pheromone biosynthesis in M. vitrata and that the C-terminal tail plays an important role in its function.
Collapse
Affiliation(s)
- Wook Hyun Cha
- Department of SmartBio, Kyungsung University, Busan 48434, Republic of Korea
| | - Boyun Kim
- Department of SmartBio, Kyungsung University, Busan 48434, Republic of Korea
| | - Dae-Weon Lee
- Department of SmartBio, Kyungsung University, Busan 48434, Republic of Korea
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan 48434, Republic of Korea
| |
Collapse
|
3
|
Park Y, Vatanparast M. Suppression of PBAN receptor expression reduces fecundity in the fall armyworm, Spodoptera frugiperda. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21897. [PMID: 35368094 DOI: 10.1002/arch.21897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The fall armyworm, Spodoptera frugiperda, native to the tropical and subtropical areas of the American continent is one of the world's most destructive insect pests. In most insects, sex pheromone production is initiated following the activation of a pheromone-biosynthesis-activating neuropeptide (PBAN) receptor, which belongs to G protein-coupled receptor. We explored expression level of S. frugiperda PBAN receptor (Sf-PBANr) gene and validated the physiological function by assessing the fecundity of adult females subjected to its specific RNA interference (RNAi). Sf-PBANr was predicted from a transcriptome of S. frugiperda. Reverse-transcription polymerase chain reaction assay showed its expression in all developmental stages of S. frugiperda. Specific suppression of Sf-PBANr by RNAi in either sex significantly reduced the total number of laid eggs per adult female. Matings between both RNAi-treated males and female resulted in 63.3% reduction in fecundity. In contrast, the RNAi effect was less 47.5%-49.5% at the matings from single-parent RNAi treatment. These results suggest that the Sf-PBANr is associated with female of S. frugiperda.
Collapse
Affiliation(s)
- Youngjin Park
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Mohammad Vatanparast
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| |
Collapse
|
4
|
Isaac RE, Nachman RJ. 2020 Invertebrate Neuropeptide Award Announcement. Peptides 2022; 151:170762. [PMID: 35149156 DOI: 10.1016/j.peptides.2022.170762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- R Elwyn Isaac
- School of Biology, University of Leeds, LS2 9JT Leeds, UK.
| | - Ronald J Nachman
- President, Invertebrate Neuropeptide Conference/Society, Insect Neuropeptide Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, College Station, TX 77845.
| |
Collapse
|
5
|
Xiong C, Wulff JP, Nachman RJ, Pietrantonio PV. Myotropic Activities of Tick Pyrokinin Neuropeptides and Analog in Feeding Tissues of Hard Ticks (Ixodidae). Front Physiol 2022; 12:826399. [PMID: 35242048 PMCID: PMC8887807 DOI: 10.3389/fphys.2021.826399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Neuropeptides regulate many important physiological processes in animals. The G protein-coupled receptors of corresponding small neuropeptide ligands are considered promising targets for controlling arthropod pests. Pyrokinins (PKs) are pleiotropic neuropeptides that, in some insect species, stimulate muscle contraction and modulate pheromone biosynthesis, embryonic diapause, and feeding behavior. However, their function remains unknown in ticks. In this study, we reported the myotropic activity of tick endogenous PKs and a PK agonist analog, PK-PEG8 (MS[PEG8]-YFTPRLa), on feeding tissues of two tick species representing the family Ixodidae lineages, namely, Prostriata (Ixodes scapularis) and Metastriata (Rhipicephalus sanguineus). First, we predicted the sequences of two periviscerokinins (PVK), one with a derived ending RNa and five PKs encoded by the CAPA peptide precursor from R. sanguineus and found the encoded PKs were identical to those of R. microplus identified previously. The pharynx-esophagus of both tick species responded with increased contractions to 10 μM of the endogenous PK as well as to PK-PEG8 but not to the scrambled PK peptide, as expected. A dose-dependent myotropic activity of the PK-PEG8 was found for both tick species, validating the analog activity previously found in the pyrokinin recombinant receptor assay. In agreement with the tissue activity elicited, we quantified the relative transcript abundance of R. sanguineus PK receptor in unfed female ticks and found it was the highest in the feeding tissues extracted from the capitulum and lowest in the reproductive tissue. This is the first report of the activity of pyrokinins in ticks. These findings strongly indicate the potential role of PKs in regulating tick blood feeding and therefore, making the tick PK receptor a potential target for interference.
Collapse
Affiliation(s)
- Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Juan P Wulff
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Ronald J Nachman
- Insect Neuropeptide Lab, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, United States
| | | |
Collapse
|
6
|
Hull JJ, Brent CS, Choi MY, Mikó Z, Fodor J, Fónagy A. Molecular and Functional Characterization of Pyrokinin-Like Peptides in the Western Tarnished Plant Bug Lygus hesperus (Hemiptera: Miridae). INSECTS 2021; 12:insects12100914. [PMID: 34680683 PMCID: PMC8541414 DOI: 10.3390/insects12100914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Neuropeptides regulate most insect biological functions. One such group of peptides, the pyrokinins (PKs), are distinguished by a C-terminal FXPRLamide. While widely distributed in most insects, they are poorly characterized in plant bugs. To address this limitation, we identified the PK transcript in the western tarnished plant bug (Lygus hesperus) and examined its expression. The Lygus PK transcript is predicted to yield three PK-like peptides but only two (LyghePKa and LyghePKb) have the characteristic C-terminal amide. The transcript is expressed throughout development and is most abundant in heads. A custom FXPRLamide antibody revealed immunoreactive cells throughout the Lygus central nervous system consistent with typical neuropeptide expression. To assess potential functional roles of the peptides, a fluorescence-based Ca2+ influx assay using cultured insect cells stably expressing a moth PK receptor was performed. LyghePKa was unable to stimulate receptor activation, whereas LyghePKb triggered a robust response. The in vivo pheromonotropic activity of the two peptides was likewise assessed using three different moth species. Like the cell culture system, only the LyghePKb peptide was active. The study suggests evolutionary divergence of the PK gene in plant bugs and provides critical insights into likely biological functions in the western tarnished plant bug. Abstract The pyrokinin (PK) family of insect neuropeptides, characterized by C termini consisting of either WFGPRLamide (i.e., PK1) or FXPRLamide (i.e., PK2), are encoded on the capa and pk genes. Although implicated in diverse biological functions, characterization of PKs in hemipteran pests has been largely limited to genomic, transcriptomic, and/or peptidomic datasets. The Lygus hesperus (western tarnished plant bug) PK transcript encodes a prepropeptide predicted to yield three PK2 FXPRLamide-like peptides with C-terminal sequences characterized by FQPRSamide (LyghePKa), FAPRLamide (LyghePKb), and a non-amidated YSPRF. The transcript is expressed throughout L. hesperus development with greatest abundance in adult heads. PRXamide-like immunoreactivity, which recognizes both pk- and capa-derived peptides, is localized to cells in the cerebral ganglia, gnathal ganglia/suboesophageal ganglion, thoracic ganglia, and abdominal ganglia. Immunoreactivity in the abdominal ganglia is largely consistent with capa-derived peptide expression, whereas the atypical fourth pair of immunoreactive cells may reflect pk-based expression. In vitro activation of a PK receptor heterologously expressed in cultured insect cells was only observed in response to LyghePKb, while no effects were observed with LyghePKa. Similarly, in vivo pheromonotropic effects were only observed following LyghePKb injections. Comparison of PK2 prepropeptides from multiple hemipterans suggests mirid-specific diversification of the pk gene.
Collapse
Affiliation(s)
- J. Joe Hull
- Pest Management and Biocontrol Research Unit, USDA-ARS, Maricopa, AZ 85138, USA;
- Correspondence:
| | - Colin S. Brent
- Pest Management and Biocontrol Research Unit, USDA-ARS, Maricopa, AZ 85138, USA;
| | - Man-Yeon Choi
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, OR 97331, USA;
| | - Zsanett Mikó
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (Formerly Affiliated with the Hungarian Academy of Sciences), 1051 Budapest, Hungary; (Z.M.); (J.F.); (A.F.)
| | - József Fodor
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (Formerly Affiliated with the Hungarian Academy of Sciences), 1051 Budapest, Hungary; (Z.M.); (J.F.); (A.F.)
| | - Adrien Fónagy
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (Formerly Affiliated with the Hungarian Academy of Sciences), 1051 Budapest, Hungary; (Z.M.); (J.F.); (A.F.)
| |
Collapse
|
7
|
Ahn SJ, Mc Donnell RJ, Corcoran JA, Martin RC, Choi MY. Identification and functional characterization of the first molluscan neuromedin U receptor in the slug, Deroceras reticulatum. Sci Rep 2020; 10:22308. [PMID: 33339848 PMCID: PMC7749107 DOI: 10.1038/s41598-020-79047-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022] Open
Abstract
Neuromedin U (NmU) is a neuropeptide regulating diverse physiological processes. The insect homologs of vertebrate NmU are categorized as PRXamide family peptides due to their conserved C-terminal end. However, NmU homologs have been elusive in Mollusca, the second largest phylum in the animal kingdom. Here we report the first molluscan NmU/PRXamide receptor from the slug, Deroceras reticulatum. Two splicing variants of the receptor gene were functionally expressed and tested for binding with ten endogenous peptides from the slug and some insect PRXamide and vertebrate NmU peptides. Three heptapeptides (QPPLPRYa, QPPVPRYa and AVPRPRIa) triggered significant activation of the receptors, suggesting that they are true ligands for the NmU/PRXamide receptor in the slug. Synthetic peptides with structural modifications at different amino acid positions provided important insights on the core moiety of the active peptides. One receptor variant always exhibited higher binding activity than the other variant. The NmU-encoding genes were highly expressed in the slug brain, while the receptor gene was expressed at lower levels in general with relatively higher expression levels in both the brain and foot. Injection of the bioactive peptides into slugs triggered defensive behavior such as copious mucus secretion and a range of other anomalous behaviors including immobilization, suggesting their role in important physiological functions.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, OR, USA.,Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Rory J Mc Donnell
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| | - Jacob A Corcoran
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, OR, USA.,Biological Control of Insects Research Unit, USDA-ARS, Columbia, MO, USA
| | - Ruth C Martin
- Forage Seed and Cereal Research Unit, USDA-ARS, Corvallis, OR, USA
| | - Man-Yeon Choi
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, OR, USA.
| |
Collapse
|
8
|
Hu P, Wang D, Gao C, Lu P, Tao J, Luo Y. Pheromone biosynthetic pathway and chemoreception proteins in sex pheromone gland of Eogystia hippophaecolus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100702. [PMID: 32544860 DOI: 10.1016/j.cbd.2020.100702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 01/06/2023]
Abstract
The moth Eogystia hippophaecolus (Hua et al.) is a major threat to sea buckthorn plantations in China. Specific and highly efficient artificial sex pheromone traps have been developed and used to control this pest species. However, the biosynthesis of sex pheromones Z7-14: Ac and E3-14:Ac remains poorly understood. We investigated the female pheromone gland transcriptome of E. hippophaecolus and identified two pheromone biosynthesis-activating neuropeptides (PBANs), two pheromone biosynthesis-activating neuropeptide receptors (PBANrs), five acetyl-CoA carboxylases (ACCs), six fatty acid synthases (FASs), 16 Acyl-CoA desaturases (DESs), 26 reductases (REDs), 13 acetyltransferases (ACTs), one fatty acid transport protein (FATP), one acyl-CoA-binding protein (ACBP), and five elongation of very long-chain fatty acid proteins (ELOs) in pheromone biosynthesis pathways. Additionally, we identified 11 odorant-degrading enzymes (ODEs) and 16 odorant-binding proteins (OBPs), 14 chemosensory proteins (CSPs), two sensory neuron membrane proteins (SNMPs), three odorant receptors (ORs), seven ionotropic receptors (IRs), and six gustatory receptors (GRs). 77 unigenes involved in female pheromone biosynthesis, 31 chemoreception proteins and 11 odorant degradation enzymes were identified, which provided insight into the regulation of the pheromone components and pheromone recognition in the sex pheromone gland, and knowledge pertinent to new integrated pest management strategy of interference pheromone biosynthesis and recognition.
Collapse
Affiliation(s)
- Ping Hu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; Guangxi University, Nanning 530004, China
| | - Dongbai Wang
- Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chenglong Gao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Pengfei Lu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China.
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
9
|
Yang Y, Tao J, Zong S. Identification of putative Type-I sex pheromone biosynthesis-related genes expressed in the female pheromone gland of Streltzoviella insularis. PLoS One 2020; 15:e0227666. [PMID: 31945099 PMCID: PMC6964838 DOI: 10.1371/journal.pone.0227666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/24/2019] [Indexed: 11/18/2022] Open
Abstract
Species-specific sex pheromones play key roles in moth sexual communication. Although the general pathway of Type-I sex pheromone biosynthesis is well established, only a handful of genes encoding enzymes involved in this pathway have been characterized. Streltzoviella insularis is a destructive wood-boring pest of many street trees in China, and the female sex pheromone of this species comprises a blend of (Z)-3-tetradecenyl acetate, (E)-3-tetradecenyl acetate, and (Z)-5-dodecenyl acetate. This organism therefore provides an excellent model for research on the diversity of genes and molecular mechanisms involved in pheromone production. Herein, we assembled the pheromone gland transcriptome of S. insularis by next-generation sequencing and identified 74 genes encoding candidate key enzymes involved in the fatty acid biosynthesis, β-oxidation, and functional group modification. In addition, tissue expression patterns further showed that an acetyl-CoA carboxylase and two desaturases were highly expressed in the pheromone glands compared with the other tissues, indicating possible roles in S. insularis sex pheromone biosynthesis. Finally, we proposed putative S. insularis biosynthetic pathways for sex pheromone components and highlighted candidate genes. Our findings lay a solid foundation for understanding the molecular mechanisms underpinning S. insularis sex pheromone biosynthesis, and provide potential targets for disrupting chemical communication that could assist the development of novel pest control methods.
Collapse
Affiliation(s)
- Yuchao Yang
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
10
|
Jiang L, Zhang F, Hou Y, Thakur K, Hu F, Zhang JG, Jiang XF, Liu YQ, Wei ZJ. Isolation and functional characterization of the pheromone biosynthesis activating neuropeptide receptor of Chinese oak silkworm, Antheraea pernyi. Int J Biol Macromol 2018; 117:42-50. [PMID: 29800669 DOI: 10.1016/j.ijbiomac.2018.05.145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
Abstract
Insect pheromone biosynthesis activating neuropeptide (PBAN) controls the synthesis and actuating of sex pheromones of female adult. In the current examination, the full-length cDNA encoding the PBAN receptor was cloned from the pheromone gland (PG) of Antheraea pernyi (AntpePBANR). The AntpePBANR displayed the characteristic seven transmembrane areas of the G protein-coupled receptor (GPCR) and was closely related to the PBANR from Bombyx mori and Manduca sexta in the phylogenetic tree. The AntpePBANR expressed in mammalian cell lines were enacted by AntpePBAN in a concentration-dependent manner. AntpePBANR activation resulted in the calcium mobilization but did not activate the cAMP elevation pathway. Cells expressing AntpePBANR were profoundly responsive to Antpe-γ-SGNP (suboesophageal ganglion neuropeptides) and Antpe-DH (diapause hormone), different individuals from FXPRLamide (X = T, S or V) family in A. pernyi. Deletion of residues in the C-terminal hexapeptide (FSPRLamide) proved that P, R and L played the key parts in initiating the AntpePBANR, the amination to the last C terminal residues which can also likewise impact the activation of AntpePBAN receptor altogether. The mRNA of the AntpePBANR gene demonstrated the most noteworthy transcript levels in pheromone gland followed by fat body.
Collapse
Affiliation(s)
- Li Jiang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Fang Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Yang Hou
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Kiran Thakur
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Fei Hu
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Jian-Guo Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Xing-Fu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Yan-Qun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Zhao-Jun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
11
|
Fodor J, Hull JJ, Köblös G, Jacquin-Joly E, Szlanka T, Fónagy A. Identification and functional characterization of the pheromone biosynthesis activating neuropeptide receptor isoforms from Mamestra brassicae. Gen Comp Endocrinol 2018; 258:60-69. [PMID: 28579335 DOI: 10.1016/j.ygcen.2017.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 11/19/2022]
Abstract
In most moth species, including Mamestra brassicae, pheromone biosynthesis activating neuropeptide (PBAN) regulates pheromone production. Generally, PBAN acts directly on the pheromone gland (PG) cells via its specific G protein-coupled receptor (i.e. PBANR) with Ca2+ as a second messenger. In this study, we identified cDNAs encoding three variants (A, B and C) of the M. brassicae PBANR (Mambr-PBANR). The full-length coding sequences were transiently expressed in cultured Trichoplusia ni cells and Sf9 cells for functional characterization. All three isoforms dose-dependently mobilized extracellular Ca2+ in response to PBAN analogs with Mambr-PBANR-C exhibiting the greatest sensitivity. Fluorescent confocal microscopy imaging studies demonstrated binding of a rhodamine red-labeled ligand (RR10CPBAN) to all three Mambr-PBANR isoforms. RR10CPBAN binding did not trigger ligand-induced internalization in cells expressing PBANR-A, but did in cells expressing the PBANR-B and -C isoforms. Furthermore, activation of the PBANR-B and -C isoforms with the 18 amino acid Mambr-pheromonotropin resulted in co-localization with a Drosophila melanogaster arrestin homolog (Kurtz), whereas stimulation with an unrelated peptide had no effect. PCR-based profiling of the three transcripts revealed a basal level of expression throughout development with a dramatic increase in PG transcripts from the day of adult emergence with PBANR-C being the most abundant.
Collapse
Affiliation(s)
- József Fodor
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Hungary
| | - J Joe Hull
- Agricultural Research Service, United States Department of Agriculture, Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Gabriella Köblös
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Hungary.
| | - Emmanuelle Jacquin-Joly
- INRA iEES-Paris, Institute of Ecology and Environmental Sciences, Route de Saint-Cyr, Cedex 78026 Versailles, France
| | - Tamás Szlanka
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - Adrien Fónagy
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Hungary
| |
Collapse
|
12
|
Jurenka R. Regulation of pheromone biosynthesis in moths. CURRENT OPINION IN INSECT SCIENCE 2017; 24:29-35. [PMID: 29208220 DOI: 10.1016/j.cois.2017.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/14/2017] [Accepted: 09/06/2017] [Indexed: 05/28/2023]
Abstract
Female moths release sex pheromones for attracting males from a distance. Most moths are nocturnal so there is a periodicity to the release of sex pheromone. The temporal release of sex pheromone in most moths is regulated by calling behavior and by the biosynthesis of sex pheromone. In most moths, biosynthesis occurs in the pheromone gland and is controlled by the neuropeptide PBAN (pheromone biosynthesis activating neuropeptide). PBAN is produced in the subesophageal ganglion and released into circulation where it travels to the pheromone gland to activate pheromone biosynthesis. The G-protein coupled receptor that binds PBAN has been identified as well as aspects of signal transduction to activate the biosynthetic pathway. This review will highlight recent advances in the study of regulation of pheromone biosynthesis in moths.
Collapse
Affiliation(s)
- Russell Jurenka
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
13
|
He P, Zhang YF, Hong DY, Wang J, Wang XL, Zuo LH, Tang XF, Xu WM, He M. A reference gene set for sex pheromone biosynthesis and degradation genes from the diamondback moth, Plutella xylostella, based on genome and transcriptome digital gene expression analyses. BMC Genomics 2017; 18:219. [PMID: 28249567 PMCID: PMC5333385 DOI: 10.1186/s12864-017-3592-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/14/2017] [Indexed: 11/25/2022] Open
Abstract
Background Female moths synthesize species-specific sex pheromone components and release them to attract male moths, which depend on precise sex pheromone chemosensory system to locate females. Two types of genes involved in the sex pheromone biosynthesis and degradation pathways play essential roles in this important moth behavior. To understand the function of genes in the sex pheromone pathway, this study investigated the genome-wide and digital gene expression of sex pheromone biosynthesis and degradation genes in various adult tissues in the diamondback moth (DBM), Plutella xylostella, which is a notorious vegetable pest worldwide. Results A massive transcriptome data (at least 39.04 Gb) was generated by sequencing 6 adult tissues including male antennae, female antennae, heads, legs, abdomen and female pheromone glands from DBM by using Illumina 4000 next-generation sequencing and mapping to a published DBM genome. Bioinformatics analysis yielded a total of 89,332 unigenes among which 87 transcripts were putatively related to seven gene families in the sex pheromone biosynthesis pathway. Among these, seven [two desaturases (DES), three fatty acyl-CoA reductases (FAR) one acetyltransferase (ACT) and one alcohol dehydrogenase (AD)] were mainly expressed in the pheromone glands with likely function in the three essential sex pheromone biosynthesis steps: desaturation, reduction, and esterification. We also identified 210 odorant-degradation related genes (including sex pheromone-degradation related genes) from seven major enzyme groups. Among these genes, 100 genes are new identified and two aldehyde oxidases (AOXs), one aldehyde dehydrogenase (ALDH), five carboxyl/cholinesterases (CCEs), five UDP-glycosyltransferases (UGTs), eight cytochrome P450 (CYP) and three glutathione S-transferases (GSTs) displayed more robust expression in the antennae, and thus are proposed to participate in the degradation of sex pheromone components and plant volatiles. Conclusions To date, this is the most comprehensive gene data set of sex pheromone biosynthesis and degradation enzyme related genes in DBM created by genome- and transcriptome-wide identification, characterization and expression profiling. Our findings provide a basis to better understand the function of genes with tissue enriched expression. The results also provide information on the genes involved in sex pheromone biosynthesis and degradation, and may be useful to identify potential gene targets for pest control strategies by disrupting the insect-insect communication using pheromone-based behavioral antagonists. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3592-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China.
| | - Yun-Fei Zhang
- Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China
| | - Duan-Yang Hong
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, Guizhou Medical University, Huaxi university town, Guian new district, 550025, Guizhou, People's Republic of China
| | - Jun Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China
| | - Xing-Liang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ling-Hua Zuo
- Agriculture Economic and Rural Development, RENMIN University of China, Beijing, 100872, People's Republic of China
| | - Xian-Fu Tang
- Guizhou Grass Jelly Biotechnology Company Limited, Chishui, Zhunyi, 564700, People's Republic of China
| | - Wei-Ming Xu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
14
|
Abstract
Moth sexual pheromones are widely studied as a fine-tuned system of intraspecific sexual communication that reinforces interspecific reproductive isolation. However, their evolution poses a dilemma: How can the female pheromone and male preference simultaneously change to create a new pattern of species-specific attraction? Solving this puzzle requires us to identify the genes underlying intraspecific variation in signals and responses and to understand the evolutionary mechanisms responsible for their interspecific divergence. Candidate gene approaches and functional analyses have yielded insights into large families of biosynthetic enzymes and pheromone receptors, although the factors controlling their expression remain largely unexplored. Intra- and interspecific crosses have provided tantalizing evidence of regulatory genes, although, to date, mapping resolution has been insufficient to identify them. Recent advances in high-throughput genome and transcriptome sequencing, together with established techniques, have great potential to help scientists identify the specific genetic changes underlying divergence and resolve the mystery of how moth sexual communication systems evolve.
Collapse
Affiliation(s)
- Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands;
- Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | - Teun Dekker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden;
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| |
Collapse
|
15
|
Zhang Q, Nachman RJ, Denlinger DL. Diapause hormone in the Helicoverpa/Heliothis complex: A review of gene expression, peptide structure and activity, analog and antagonist development, and the receptor. Peptides 2015; 72:196-201. [PMID: 26032331 DOI: 10.1016/j.peptides.2015.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
This review summarizes recent studies focusing on diapause hormone (DH) in the Helicoverpa/Heliothis complex of agricultural pests. Moths in this complex overwinter in pupal diapause, a form of developmental arrest used to circumvent unfavorable seasons. DH was originally reported in the silkmoth Bombyx mori, a species that relies on DH to induce an embryonic diapause. But, in the case of Helicoverpa/Heliothis, levels of dh transcripts and DH peptides are more abundant in nondiapausing pupae than in diapausing individuals, and DH effectively terminates diapause within a specific temperature range. A structure activity relationship study indicated that the active core of DH is the C-terminal hepta-peptide, LWFGPRLa. We designed and synthesized a first generation of DH agonists and identified two agonists (PK-2Abf and PK-Etz) that were nearly 50- and 13-fold more potent than the native hormone. These studies revealed two structural characteristics of DH and its agonists that are essential for interaction with the receptor: a trans-Pro configuration to form a type I β-turn and a hydrophobic moiety involved in ligand binding. Modification of DH at the active core yielded a potent DH antagonist (DH-Jo, acetyl-GLWA[Jo]RLa) as well as an agonist (DH-2Abf-K). Three compounds (Decyl-1963, Dodecyl-1967, Heptyl-1965) were identified as agents capable of penetrating the cuticle of young pupae and thereby preventing the entry into diapause. DH receptor cDNA was cloned and an effective in vitro high throughput screen system was established for future use. This work sets the stage for further development of DH analogs and antagonists that have the potential to disrupt insect diapause as a tool for pest management.
Collapse
Affiliation(s)
- Qirui Zhang
- Department of Entomology, Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA; Department of Evolution, Ecology, and Organismal Biology, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - Ronald J Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA-ARS, 2881 F&B Road, College Station, TX 77845, USA.
| | - David L Denlinger
- Department of Entomology, Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA; Department of Evolution, Ecology, and Organismal Biology, 318 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Antony B, Soffan A, Jakše J, Alfaifi S, Sutanto KD, Aldosari SA, Aldawood AS, Pain A. Genes involved in sex pheromone biosynthesis of Ephestia cautella, an important food storage pest, are determined by transcriptome sequencing. BMC Genomics 2015; 16:532. [PMID: 26187652 PMCID: PMC4506583 DOI: 10.1186/s12864-015-1710-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/22/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Insects use pheromones, chemical signals that underlie all animal behaviors, for communication and for attracting mates. Synthetic pheromones are widely used in pest control strategies because they are environmentally safe. The production of insect pheromones in transgenic plants, which could be more economical and effective in producing isomerically pure compounds, has recently been successfully demonstrated. This research requires information regarding the pheromone biosynthetic pathways and the characterization of pheromone biosynthetic enzymes (PBEs). We used Illumina sequencing to characterize the pheromone gland (PG) transcriptome of the Pyralid moth, Ephestia cautella, a destructive storage pest, to reveal putative candidate genes involved in pheromone biosynthesis, release, transport and degradation. RESULTS We isolated the E. cautella pheromone compound as (Z,E)-9,12-tetradecadienyl acetate, and the major pheromone precursors 16:acyl, 14:acyl, E14-16:acyl, E12-14:acyl and Z9,E12-14:acyl. Based on the abundance of precursors, two possible pheromone biosynthetic pathways are proposed. Both pathways initiate from C16:acyl-CoA, with one involving ∆14 and ∆9 desaturation to generate Z9,E12-14:acyl, and the other involving the chain shortening of C16:acyl-CoA to C14:acyl-CoA, followed by ∆12 and ∆9 desaturation to generate Z9,E12-14:acyl-CoA. Then, a final reduction and acetylation generates Z9,E12-14:OAc. Illumina sequencing yielded 83,792 transcripts, and we obtained a PG transcriptome of ~49.5 Mb. A total of 191 PBE transcripts, which included pheromone biosynthesis activating neuropeptides, fatty acid transport proteins, acetyl-CoA carboxylases, fatty acid synthases, desaturases, β-oxidation enzymes, fatty acyl-CoA reductases (FARs) and fatty acetyltransferases (FATs), were selected from the dataset. A comparison of the E. cautella transcriptome data with three other Lepidoptera PG datasets revealed that 45% of the sequences were shared. Phylogenetic trees were constructed for desaturases, FARs and FATs, and transcripts that clustered with the ∆14, ∆12 and ∆9 desaturases, PG-specific FARs and potential candidate FATs, respectively, were identified. Transcripts encoding putative pheromone degrading enzymes, and candidate pheromone carrier and receptor proteins expressed in the E. cautella PG, were also identified. CONCLUSIONS Our study provides important background information on the enzymes involved in pheromone biosynthesis. This information will be useful for the in vitro production of E. cautella sex pheromones and may provide potential targets for disrupting the pheromone-based communication system of E. cautella to prevent infestations.
Collapse
Affiliation(s)
- Binu Antony
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Alan Soffan
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
- Department of Plant Protection, King Saud University, EERU, Riyadh, Saudi Arabia.
| | - Jernej Jakše
- Agronomy Department, University of Ljubljana, Biotechnical Faculty, SI-1000, Ljubljana, Slovenia.
| | - Sulieman Alfaifi
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Koko D Sutanto
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Saleh A Aldosari
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | | | - Arnab Pain
- BASE Division, KAUST, Thuwal, Jeddah, 23955-6900, Saudi Arabia.
| |
Collapse
|
17
|
Zotti MJ, Smagghe G. RNAi Technology for Insect Management and Protection of Beneficial Insects from Diseases: Lessons, Challenges and Risk Assessments. NEOTROPICAL ENTOMOLOGY 2015; 44:197-213. [PMID: 26013264 DOI: 10.1007/s137440150291-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/14/2015] [Indexed: 05/28/2023]
Abstract
The time has passed for us to wonder whether RNA interference (RNAi) effectively controls pest insects or protects beneficial insects from diseases. The RNAi era in insect science began with studies of gene function and genetics that paved the way for the development of novel and highly specific approaches for the management of pest insects and, more recently, for the treatment and prevention of diseases in beneficial insects. The slight differences in components of RNAi pathways are sufficient to provide a high degree of variation in responsiveness among insects. The current framework to assess the negative effects of genetically modified (GM) plants on human health is adequate for RNAi-based GM plants. Because of the mode of action of RNAi and the lack of genomic data for most exposed non-target organisms, it becomes difficult to determine the environmental risks posed by RNAi-based technologies and the benefits provided for the protection of crops. A better understanding of the mechanisms that determine the variability in the sensitivity of insects would accelerate the worldwide release of commercial RNAi-based approaches.
Collapse
Affiliation(s)
- M J Zotti
- Dept of Crop Protection, Molecular Entomology, Federal Univ of Pelotas, Pelotas, RS, Brasil,
| | | |
Collapse
|
18
|
Jiang H, Wei Z, Nachman RJ, Kaczmarek K, Zabrocki J, Park Y. Functional characterization of five different PRXamide receptors of the red flour beetle Tribolium castaneum with peptidomimetics and identification of agonists and antagonists. Peptides 2015; 68:246-52. [PMID: 25447413 PMCID: PMC4437919 DOI: 10.1016/j.peptides.2014.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 11/30/2022]
Abstract
The neuropeptidergic system in insects is an excellent target for pest control strategies. One promising biorational approach is the use of peptidomimetics modified from endogenous ligands to enhance biostability and bioavailability. In this study, we functionally characterized five different G protein-coupled receptors in a phylogenetic cluster, containing receptors for PRXamide in the red flour beetle Tribolium castaneum, by evaluating a series of 70 different peptides and peptidomimetics. Three pyrokinin receptors (TcPKr-A, -B, and -C), cardioacceleratory peptide receptor (TcCAPAr) and ecdysis triggering hormone receptor (TcETHr) were included in the study. Strong agonistic or antagonistic peptidomimetics were identified, and included beta-proline (β(3)P) modification of the core amino acid residue proline and also a cyclo-peptide. It is common for a ligand to act on multiple receptors. In a number of cases, a ligand acting as an agonist on one receptor was an efficient antagonist on another receptor, suggesting complex outcomes of a peptidomimetic in a biological system. Interestingly, TcPK-A was highly promiscuous with a high number of agonists, while TcPK-C and TcCAPAr had a lower number of agonists, but a higher number of compounds acting as an antagonist. This observation suggests that a target GPCR with more promiscuity will provide better success for peptidomimetic approaches. This study is the first description of peptidomimetics on a CAPA receptor and resulted in the identification of peptidomimetic analogs that demonstrate antagonism of CAPA ligands. The PRXamide receptor assays with peptidomimetics provide useful insights into the biochemical properties of receptors.
Collapse
Affiliation(s)
- Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Department of Entomology, Kansas State University, Manhattan, KS 66506, United States
| | - Zhaojun Wei
- Department of Entomology, Kansas State University, Manhattan, KS 66506, United States
| | - Ronald J Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States
| | - Krzysztof Kaczmarek
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States; Institute of Organic Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Janusz Zabrocki
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States; Institute of Organic Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
19
|
Zotti MJ, Smagghe G. RNAi Technology for Insect Management and Protection of Beneficial Insects from Diseases: Lessons, Challenges and Risk Assessments. NEOTROPICAL ENTOMOLOGY 2015; 44:197-213. [PMID: 26013264 DOI: 10.1007/s13744-015-0291-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/14/2015] [Indexed: 05/03/2023]
Abstract
The time has passed for us to wonder whether RNA interference (RNAi) effectively controls pest insects or protects beneficial insects from diseases. The RNAi era in insect science began with studies of gene function and genetics that paved the way for the development of novel and highly specific approaches for the management of pest insects and, more recently, for the treatment and prevention of diseases in beneficial insects. The slight differences in components of RNAi pathways are sufficient to provide a high degree of variation in responsiveness among insects. The current framework to assess the negative effects of genetically modified (GM) plants on human health is adequate for RNAi-based GM plants. Because of the mode of action of RNAi and the lack of genomic data for most exposed non-target organisms, it becomes difficult to determine the environmental risks posed by RNAi-based technologies and the benefits provided for the protection of crops. A better understanding of the mechanisms that determine the variability in the sensitivity of insects would accelerate the worldwide release of commercial RNAi-based approaches.
Collapse
Affiliation(s)
- M J Zotti
- Dept of Crop Protection, Molecular Entomology, Federal Univ of Pelotas, Pelotas, RS, Brasil,
| | | |
Collapse
|
20
|
Yang Y, Nachman RJ, Pietrantonio PV. Molecular and pharmacological characterization of the Chelicerata pyrokinin receptor from the southern cattle tick, Rhipicephalus (Boophilus) microplus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 60:13-23. [PMID: 25747529 DOI: 10.1016/j.ibmb.2015.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 06/04/2023]
Abstract
We identified the first pyrokinin receptor (Rhimi-PKR) in Chelicerata and analyzed structure-activity relationships of cognate ligand neuropeptides and their analogs. Based on comparative and phylogenetic analyses, this receptor, which we cloned from larvae of the cattle tick Rhipicephalus microplus (Acari: Ixodidae), is the ortholog of the insect pyrokinin (PK)/pheromone biosynthesis activating neuropeptide (PBAN)/diapause hormone (DH) neuropeptide family receptor. Rhimi-PKR functional analyses using calcium bioluminescence were performed with a developed stable recombinant CHO-K1 cell line. Rhimi-PKR was activated by four endogenous PKs from the Lyme disease vector, the tick Ixodes scapularis (EC50s range: 85.4 nM-546 nM), and weakly by another tick PRX-amide peptide, periviscerokinin (PVK) (EC50 = 24.5 μM). PK analogs with substitutions of leucine, isoleucine or valine at the C-terminus for three tick PK peptides, Ixosc-PK1, Ixosc-PK2, and Ixosc-PK3, retained their potency on Rhimi-PKR. Therefore, Rhimi-PKR is less selective and substantially more tolerant than insect PK receptors of C-terminal substitutions of leucine to isoleucine or valine, a key structural feature that serves to distinguish insect PK from PVK/CAP2b receptors. In females, ovary and synganglion had the highest Rhimi-PKR relative transcript abundance followed by the rectal sac, salivary glands, Malpighian tubules, and midgut. This is the first pharmacological analysis of a PK/PBAN/DH-like receptor from the Chelicerata, which will now permit the discovery of the endocrinological roles of this neuropeptide family in vectors of vertebrate pathogens.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Ronald J Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX 77845, USA
| | | |
Collapse
|
21
|
Shalev AH, Altstein M. Pheromonotropic and melanotropic PK/PBAN receptors: differential ligand-receptor interactions. Peptides 2015; 63:81-9. [PMID: 25451335 DOI: 10.1016/j.peptides.2014.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to further characterize the PK/PBAN receptors and their interaction with various PK/PBAN peptides in order to get a better understanding of their ubiquitous and multifunctional nature. Two cloned receptors stably expressed in Spodoptera frugiperda (Sf9) cells were used in this study: a Heliothis peltigera pheromone gland receptor (Hep-PK/PBAN-R) (which stimulates sex pheromone biosynthesis) and Spodoptera littoralis larval receptor (Spl-PK/PBAN-R) (which mediates cuticular melanization in moth larvae) and their ability to respond to several native PK/PBAN peptides: β-subesophageal neuropeptide (β-SGNP), myotropin (MT) and Leucophaea maderae pyrokinin (LPK), as well as linear and cyclic analogs was tested by monitoring their ability to stimulate Ca(2+) release. The receptors exhibited a differential response to β-SGNP, which activated the Hep-PK/PBAN-R but not the Spl-PK/PBAN-R - a response opposite to that previously demonstrated with diapause hormone (DH). MT was somewhat more active on Spl-PK/PBAN-R than on Hep-PK/PBAN-R. LPK elicited similar positive responses in both receptors (like that with PBAN). A differential response toward both receptors was also noticed with the PBAN-derived backbone cyclic (BBC) conformationally constrained peptide BBC-5. The peptides BBC-7 and BBC-8 activated both receptors. The results correlate between two PK/PBAN mediated function (cuticular melanization and sex pheromone biosynthesis) and the peptides that activate them and thus advance our understanding of the mode of action of the PK/PBAN family, and might help in exploring novel high-affinity receptor-specific antagonists that could serve as a basis for development of new families of insect-control agents.
Collapse
Affiliation(s)
| | - Miriam Altstein
- Department of Entomology, The Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|
22
|
Functional phylogenetics reveals contributions of pleiotropic peptide action to ligand-receptor coevolution. Sci Rep 2014; 4:6800. [PMID: 25348027 PMCID: PMC4210869 DOI: 10.1038/srep06800] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/08/2014] [Indexed: 11/11/2022] Open
Abstract
The evolution of peptidergic signaling has been accompanied by a significant degree of ligand-receptor coevolution. Closely related clusters of peptide signaling molecules are observed to activate related groups of receptors, implying that genes encoding these ligands may orchestrate an array of functions, a phenomenon known as pleiotropy. Here we examine whether pleiotropic actions of peptide genes might influence ligand-receptor coevolution. Four test groups of neuropeptides characterized by conserved C-terminal amino acid sequence motifs and their cognate receptors were examined in the red flour beetle (Tribolium castaneum): 1) cardioacceleratory peptide 2b (CAPA); CAPAr, 2) pyrokinin/diapause hormone (PK1/DH); PKr-A, -B, 3) pyrokinin/pheromone biosynthesis activating hormone (PK2/PBAN); PKr-C, and 4) ecdysis triggering hormone (ETH); ETHr-b. Ligand-receptor specificities were established through heterologous expression of receptors in cell-based assays for 9 endogenous ligands. Based on ligand-receptor specificity analysis, we found positive pleiotropism exhibited by ETH on ETHR-b and CAPAr, whereas PK1/DH and CAPA are more highly selective for their respective authentic receptors than would be predicted by phylogenetic analysis. Disparities between evolutionary trees deduced from receptor sequences vs. functional ligand-receptor specificities lead to the conclusion that pleiotropy exhibited by peptide genes influences ligand-receptor coevolution.
Collapse
|
23
|
Kawai T, Katayama Y, Guo L, Liu D, Suzuki T, Hayakawa K, Lee JM, Nagamine T, Hull JJ, Matsumoto S, Nagasawa H, Tanokura M, Nagata K. Identification of functionally important residues of the silkmoth pheromone biosynthesis-activating neuropeptide receptor, an insect ortholog of the vertebrate neuromedin U receptor. J Biol Chem 2014; 289:19150-63. [PMID: 24847080 DOI: 10.1074/jbc.m113.488999] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of sex pheromone components in many lepidopteran insects is regulated by the interaction between pheromone biosynthesis-activating neuropeptide (PBAN) and the PBAN receptor (PBANR), a class A G-protein-coupled receptor. To identify functionally important amino acid residues in the silkmoth PBANR, a series of 27 alanine substitutions was generated using a PBANR chimera C-terminally fused with enhanced GFP. The PBANR mutants were expressed in Sf9 insect cells, and their ability to bind and be activated by a core PBAN fragment (C10PBAN(R2K)) was monitored. Among the 27 mutants, 23 localized to the cell surface of transfected Sf9 cells, whereas the other four remained intracellular. Reduced binding relative to wild type was observed with 17 mutants, and decreased Ca(2+) mobilization responses were observed with 12 mutants. Ala substitution of Glu-95, Glu-120, Asn-124, Val-195, Phe-276, Trp-280, Phe-283, Arg-287, Tyr-307, Thr-311, and Phe-319 affected both binding and Ca(2+) mobilization. The most pronounced effects were observed with the E120A mutation. A molecular model of PBANR indicated that the functionally important PBANR residues map to the 2nd, 3rd, 6th, and 7th transmembrane helices, implying that the same general region of class A G-protein-coupled receptors recognizes both peptidic and nonpeptidic ligands. Docking simulations suggest similar ligand-receptor recognition interactions for PBAN-PBANR and the orthologous vertebrate pair, neuromedin U (NMU) and NMU receptor (NMUR). The simulations highlight the importance of two glutamate residues, Glu-95 and Glu-120, in silkmoth PBANR and Glu-117 and Glu-142 in human NMUR1, in the recognition of the most functionally critical region of the ligands, the C-terminal residue and amide.
Collapse
Affiliation(s)
- Takeshi Kawai
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukie Katayama
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Linjun Guo
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Desheng Liu
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tatsuya Suzuki
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kou Hayakawa
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jae Min Lee
- the Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan, and
| | - Toshihiro Nagamine
- the Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan, and
| | - J Joe Hull
- the United States Department of Agriculture-Arid Land Agricultural Research Center, Maricopa, Arizona 85138
| | - Shogo Matsumoto
- the Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan, and
| | - Hiromichi Nagasawa
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Tanokura
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan,
| | - Koji Nagata
- From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan,
| |
Collapse
|
24
|
Choi MY, Köhler R, Vander Meer RK, Neupert S, Predel R. Identification and expression of capa gene in the fire ant, Solenopsis invicta. PLoS One 2014; 9:e94274. [PMID: 24718032 PMCID: PMC3981796 DOI: 10.1371/journal.pone.0094274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/14/2014] [Indexed: 11/18/2022] Open
Abstract
Recent genome analyses suggested the absence of a number of neuropeptide genes in ants. One of the apparently missing genes was the capa gene. Capa gene expression in insects is typically associated with the neuroendocrine system of abdominal ganglia; mature CAPA peptides are known to regulate diuresis and visceral muscle contraction. The apparent absence of the capa gene raised questions about possible compensation of these functions. In this study, we re-examined this controversial issue and searched for a potentially unrecognized capa gene in the fire ant, Solenopsis invicta. We employed a combination of data mining and a traditional PCR-based strategy using degenerate primers designed from conserved amino acid sequences of insect capa genes. Our findings demonstrate that ants possess and express a capa gene. As shown by MALDI-TOF mass spectrometry, processed products of the S. invicta capa gene include three CAPA periviscerokinins and low amounts of a pyrokinin which does not have the C-terminal WFGPRLa motif typical of CAPA pyrokinins in other insects. The capa gene was found with two alternative transcripts in the CNS. Within the ventral nerve cord, two capa neurons were immunostained in abdominal neuromeres 2–5, respectively, and projected into ventrally located abdominal perisympathetic organs (PSOs), which are the major hormone release sites of abdominal ganglia. The ventral location of these PSOs is a characteristic feature and was also found in another ant, Atta sexdens.
Collapse
Affiliation(s)
- Man-Yeon Choi
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center of Medical, Agricultural and Veterinary Entomology (CMAVE), Gainesville, Florida, United States of America
- * E-mail: (MYC); (RP)
| | - Rene Köhler
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany
| | - Robert K. Vander Meer
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center of Medical, Agricultural and Veterinary Entomology (CMAVE), Gainesville, Florida, United States of America
| | - Susanne Neupert
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany
| | - Reinhard Predel
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany
- * E-mail: (MYC); (RP)
| |
Collapse
|
25
|
Jiang H, Wei Z, Nachman RJ, Park Y. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea. Peptides 2014; 53:243-9. [PMID: 24257143 PMCID: PMC3989431 DOI: 10.1016/j.peptides.2013.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 11/16/2022]
Abstract
The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested its ligand specificities in a heterologous reporter system. HzDHr was expressed in Chinese Hamster Ovary (CHO) cells, which were co-transfected with the aequorin reporter, and was used to measure the ligand activities. A total of 68 chemicals, including natural DH analogs and structurally similar peptide mimetics, were tested for agonistic and antagonistic activities. Several peptide mimetics with a 2-amino-7-bromofluorene-succinoyl (2Abf-Suc) N-terminal modification showed strong agonistic activities; these mimetics included 2Abf-Suc-F[dA]PRLamide, 2Abf-Suc-F[dR]PRLamide, 2Abf-Suc-FKPRLamide and 2Abf-Suc-FGPRLamide. Antagonistic activity was found in the ecdysis triggering hormone in Drosophila melanogaster (FFLKITKNVPRLamide). Interestingly, HzDHr does not discriminate between DH (WFGPRLamide C-terminal motif) and another closely related endogenous peptide, pyrokinin 1 (FXPRXamide; a C-terminal motif that is separate from WFGPRLamide). We provide large-scale in vitro data that serve as a reference for the development of agonists and antagonists to disrupt the DH signaling pathway.
Collapse
Affiliation(s)
- Hongbo Jiang
- Department of Entomology, Kansas State University, Manhattan, KS 66506, United States
| | - Zhaojun Wei
- Department of Entomology, Kansas State University, Manhattan, KS 66506, United States
| | - Ronald J Nachman
- Areawide Pest Management Research, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
26
|
Zhang Q, Piermarini PM, Nachman RJ, Denlinger DL. Molecular identification and expression analysis of a diapause hormone receptor in the corn earworm, Helicoverpa zea. Peptides 2014; 53:250-7. [PMID: 24345336 DOI: 10.1016/j.peptides.2013.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 11/26/2022]
Abstract
Diapause hormone (DH) is an insect neuropeptide that is highly effective in terminating the overwintering pupal diapause in members of the Helicoverpa/Heliothis complex of agricultural pests, thus DH and related compounds have promise as tools for pest management. To augment our development of effective DH analogs and antagonists that could be used as diapause disruptors this study focuses on the cloning and identification of the DH receptor (DHR) in the corn earworm, Helicoverpa zea. The full-length dhr cDNA contains 2153 nucleotides encoding 511 amino acids. Our results suggest there are at least two splicing variants of Hezea-DHR. Hydrophobicity analysis and sequence alignment indicate that Hezea-DHR has 7 transmembrane regions and a highly conserved C-terminal region that is also present in related receptors. Hezea-DHR has 95%, 82% and 79% identity to a partial DHR sequence from Heliothis virescens, a full-length DHR in Orgyia thyellina, and DHR-1 in Bombyx mori, but only 45-49% identity to pheromone biosynthesis activating neuropeptide receptor (PBANR). Expression of dhr mRNA remained low in whole body extracts throughout diapause and in young nondiapausing pupae, but was distinctly elevated as development ensued in pharate adults 7 days after pupation. The highest expression of dhr mRNA we noted was in the ovary. A DHR fusion protein with enhanced-green fluorescent protein was successfully expressed heterologously in X. laevis oocytes, as verified by fluorescent imaging and Western blots, but an electrophysiological assay failed to detect receptor-ligand binding activity, which suggests that an essential cofactor and/or accessory protein is required for functional activity of the DHR.
Collapse
Affiliation(s)
- Qirui Zhang
- Department of Entomology, Ohio State University, Columbus, OH, USA; Department of Evolution, Ecology and Organismal Biology, Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - Peter M Piermarini
- Department of Entomology, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Ronald J Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture-Agriculture Research Service, College Station, TX 77845, USA
| | - David L Denlinger
- Department of Entomology, Ohio State University, Columbus, OH, USA; Department of Evolution, Ecology and Organismal Biology, Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
27
|
Gu SH, Wu KM, Guo YY, Pickett JA, Field LM, Zhou JJ, Zhang YJ. Identification of genes expressed in the sex pheromone gland of the black cutworm Agrotis ipsilon with putative roles in sex pheromone biosynthesis and transport. BMC Genomics 2013; 14:636. [PMID: 24053512 PMCID: PMC3849270 DOI: 10.1186/1471-2164-14-636] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 09/13/2013] [Indexed: 11/26/2022] Open
Abstract
Background One of the challenges in insect chemical ecology is to understand how insect pheromones are synthesised, detected and degraded. Genome wide survey by comparative sequencing and gene specific expression profiling provide rich resources for this challenge. A. ipsilon is a destructive pest of many crops and further characterization of the genes involved in pheromone biosynthesis and transport could offer potential targets for disruption of their chemical communication and for crop protection. Results Here we report 454 next-generation sequencing of the A. ipsilon pheromone gland transcriptome, identification and expression profiling of genes putatively involved in pheromone production, transport and degradation. A total of 23473 unigenes were obtained from the transcriptome analysis, 86% of which were A. ipsilon specific. 42 transcripts encoded enzymes putatively involved in pheromone biosynthesis, of which 15 were specifically, or mainly, expressed in the pheromone glands at 5 to 120-fold higher levels than in the body. Two transcripts encoding for a fatty acid synthase and a desaturase were highly abundant in the transcriptome and expressed more than 40-fold higher in the glands than in the body. The transcripts encoding for 2 acetyl-CoA carboxylases, 1 fatty acid synthase, 2 desaturases, 3 acyl-CoA reductases, 2 alcohol oxidases, 2 aldehyde reductases and 3 acetyltransferases were expressed at a significantly higher level in the pheromone glands than in the body. 17 esterase transcripts were not gland-specific and 7 of these were expressed highly in the antennae. Seven transcripts encoding odorant binding proteins (OBPs) and 8 encoding chemosensory proteins (CSPs) were identified. Two CSP transcripts (AipsCSP2, AipsCSP8) were highly abundant in the pheromone gland transcriptome and this was confirmed by qRT-PCR. One OBP (AipsOBP6) were pheromone gland-enriched and three OBPs (AipsOBP1, AipsOBP2 and AipsOBP4) were antennal-enriched. Based on these studies we proposed possible A. ipsilon biosynthesis pathways for major and minor sex pheromone components. Conclusions Our study identified genes potentially involved in sex pheromone biosynthesis and transport in A. ipsilon. The identified genes are likely to play essential roles in sex pheromone production, transport and degradation and could serve as targets to interfere with pheromone release. The identification of highly expressed CSPs and OBPs in the pheromone gland suggests that they may play a role in the binding, transport and release of sex pheromones during sex pheromone production in A. ipsilon and other Lepidoptera insects.
Collapse
Affiliation(s)
- Shao-Hua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Hariton-Shalev A, Shalev M, Adir N, Belausov E, Altstein M. Structural and functional differences between pheromonotropic and melanotropic PK/PBAN receptors. Biochim Biophys Acta Gen Subj 2013; 1830:5036-48. [PMID: 23850474 DOI: 10.1016/j.bbagen.2013.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/17/2013] [Accepted: 06/29/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND The pyrokinin/pheromone biosynthesis-activating neuropeptide (PK/PBAN) plays a major role in regulating a wide range of physiological processes in insects. The ubiquitous and multifunctional nature of the PK/PBAN peptide family raises many questions regarding the mechanisms by which these neuropeptides elicit their effects and the nature of the receptors that mediate their functions. METHODS A sex pheromone gland receptor of the PK/PBAN family from Heliothis peltigera female moth and a Spodoptera littoralis larval receptor were cloned and stably expressed, and their structural models, electrostatic potentials and cellular functional properties were evaluated. RESULTS Homology modeling indicated highly conserved amino-acid residues in appropriate structural positions as experimentally shown for class A G-protein coupled receptors. Structural differences could be proposed and electrostatic potentials of the two receptor models revealed net charge differences. Calcium mobilization assays demonstrated that both receptors were fully functional and could initiate extracellular calcium influx to start PK/PBAN signal transduction. Evaluation of the signaling response of both receptors to PBAN and diapause hormone (DH) revealed a highly sensitive, though differential response. Both receptors responded to PBAN whereas only Spl-PK/PBAN-R exhibited a high response toward DH. CONCLUSIONS The structural, electrostatic and cellular functional differences indicate that different PK/PBAN in vivo functions may be mediated by different PK/PBAN receptors and elicited by different peptide(s). GENERAL SIGNIFICANCE The results advance our understanding of the mode of action of the PK/PBAN family, and might help in exploring novel high-affinity receptor-specific antagonists that can serve as a basis for the development of new families of insect-control agents.
Collapse
|
29
|
Nusawardani T, Kroemer JA, Choi MY, Jurenka RA. Identification and characterization of the pyrokinin/pheromone biosynthesis activating neuropeptide family of G protein-coupled receptors from Ostrinia nubilalis. INSECT MOLECULAR BIOLOGY 2013; 22:331-340. [PMID: 23551811 DOI: 10.1111/imb.12025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Insects have two closely related G protein-coupled receptors belonging to the pyrokinin/pheromone biosynthesis activating neuropeptide (pyrokinin/PBAN) family, one with the ligand PBAN or pyrokinin-2 and another with diapause hormone or pyrokinin-1 as a ligand. A related receptor is activated by products of the capa gene, periviscerokinins. Here we characterized the PBAN receptor and the diapause hormone receptor from the European corn borer, Ostrinia nubilalis. We also identified a partial sequence for the periviscerokinin receptor. Quantitative PCR of mRNA for all three receptors indicated differential expression in various life stages and tissues. All three splice variants of the PBAN receptor were identified with all variants found in pheromone gland tissue. Immunohistochemistry of V5 tags of expressed receptors indicated that all three variants and the diapause hormone receptor were expressed at similar levels in Spodoptera frugiperda 9 (Sf9) cells. However, the A- and B-variants were not active in our functional assay, which confirms studies from other moths. Functional expression of the C-variant indicated that it is has a 44 nM half effective concentration for activation by PBAN. The diapause hormone receptor was activated by diapause hormone with a 150 nM half effective concentration.
Collapse
Affiliation(s)
- T Nusawardani
- Department of Entomology, Iowa State University, Ames, IA, USA
| | | | | | | |
Collapse
|
30
|
Choi MY, Vander Meer RK. Ant trail pheromone biosynthesis is triggered by a neuropeptide hormone. PLoS One 2012; 7:e50400. [PMID: 23226278 PMCID: PMC3511524 DOI: 10.1371/journal.pone.0050400] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/19/2012] [Indexed: 01/09/2023] Open
Abstract
Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN) was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200) have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour's gland (DG) of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia) or PBAN receptor gene (in DG) expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN's role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta.
Collapse
Affiliation(s)
- Man-Yeon Choi
- USDA-ARS, Center of Medical, Agricultural and Veterinary Entomology, Florida, United States of America
| | - Robert K. Vander Meer
- USDA-ARS, Center of Medical, Agricultural and Veterinary Entomology, Florida, United States of America
| |
Collapse
|
31
|
Kawai T, Lee JM, Nagata K, Matsumoto S, Tanokura M, Nagasawa H. The Arginine Residue within the C-Terminal Active Core of Bombyx mori Pheromone Biosynthesis-Activating Neuropeptide is Essential for Receptor Binding and Activation. Front Endocrinol (Lausanne) 2012; 3:42. [PMID: 22654866 PMCID: PMC3356082 DOI: 10.3389/fendo.2012.00042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/05/2012] [Indexed: 11/13/2022] Open
Abstract
In most lepidopteran insects, the biosynthesis of sex pheromones is regulated by pheromone biosynthesis-activating neuropeptide (PBAN). Bombyx mori PBAN (BomPBAN) consists of 33 amino acid residues and contains a C-terminus FSPRLamide motif as the active core. Among neuropeptides containing the FXPRLamide motif, the arginine (Arg, R) residue at the second position from the C-terminus is highly conserved across several neuropeptides, which can be designated as RXamide peptides. The purpose of this study was to clarify the role of the Arg residue in the BomPBAN active core. We synthesized 10-residue peptides corresponding to the C-terminal part of BomPBAN with a series of replacements at the second position from the C-terminus, termed the C2 position, and measured their efficacy in stimulating Ca(2+) influx in insect cells expressing a fluorescent PBAN receptor chimera (PBANR-EGFP) using the fluorescent Ca(2+) indicator, Fura Red-AM. The PBAN analogs with the C2 position replaced with alanine (Ala, A), aspartic acid (Asp, D), serine (Ser, S), or l-2-aminooctanoic acid (Aoc) decreased PBAN-like activity. R(C2)A (SKTRYFSPALamide) and R(C2)D (SKTRYFSPDLamide) had the lowest activity and could not inhibit the activity of PBAN C10 (SKTRYFSPRLamide). We also prepared Rhodamine Red-labeled peptides of the PBAN analogs and examined their ability to bind PBANR. In contrast to Rhodamine Red-PBAN C10 at 100 nM, none of the synthetic analogs exhibited PBANR binding at the same concentration. Taken together, our results demonstrate that the C2 Arg residue in BomPBAN is essential for PBANR binding and activation.
Collapse
Affiliation(s)
- Takeshi Kawai
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Jae Min Lee
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Saitama, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Shogo Matsumoto
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Saitama, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| |
Collapse
|
32
|
Nachman RJ, Hamshou M, Kaczmarek K, Zabrocki J, Smagghe G. Biostable and PEG polymer-conjugated insect pyrokinin analogs demonstrate antifeedant activity and induce high mortality in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae). Peptides 2012; 34:266-73. [PMID: 22108713 DOI: 10.1016/j.peptides.2011.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/07/2011] [Accepted: 11/07/2011] [Indexed: 10/15/2022]
Abstract
The pyrokinins (PK) are multifunctional neuropeptides found in a variety of arthropod species, including the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae). A series of biostable pyrokinin analogs based on the shared C-terminal pentapeptide core region were fed in solutions of artificial diet to the pea aphid over a period of three days and evaluated for antifeedant and aphicidal activity. The analogs contained either modified Pro residues Oic or Hyp and or a d-amino acid in key positions to enhance resistance to tissue-bound peptidases and retain activity in a number of PK bioassays. A series of PK analogs conjugated with two lengths of polyethyleneglycol (PEG) polymers were also evaluated in the aphid feeding assay. Three of the biostable PK analogs demonstrated potent antifeedant activity, with a marked reduction in honeydew formation and very high mortality after 1 day. In contrast, a number of unmodified, natural pyrokinins and several other analogs containing some of the same structural components that promote biostability were inactive. Two of the most active analogs, Oic analog PK-Oic-1 (FT[Oic]RL-NH(2)) and PEGylated analog PK-dF-PEG(8) [(P(8))-YF[dF]PRL-NH(2)], featured aphicidal activity calculated at LC(50)'s of 0.042nmol/μl [0.029μg/μl] (LT(50) of 1.0 day) and 0.126nmol/μl (LT(50) of 1.3 days), respectively, matching the potency of some commercially available aphicides. Notably, a PEGylated analog of a PK antagonist can block over 55% of the aphicidal effects of the potent PK agonist PK-Oic-1, suggesting that the aphicidal effects are mediated by a PK receptor. The mechanism of this activity has yet to be established, though the aphicidal activity of the biostable analogs may result from disruption of digestive processes by interfering with gut motility patterns, a process shown to be regulated by the PKs in other insects. The active PK analogs represent potential leads in the development of selective, environmentally friendly aphid pest control agents.
Collapse
Affiliation(s)
- Ronald J Nachman
- Areawide Pest Management Research, Southern Plains Agricultural Research Center, USDA, College Station, TX 77845, USA.
| | | | | | | | | |
Collapse
|
33
|
Lee JM, Hull JJ, Kawai T, Tsuneizumi K, Kurihara M, Tanokura M, Nagata K, Nagasawa H, Matsumoto S. Establishment of Sf9 Transformants Constitutively Expressing PBAN Receptor Variants: Application to Functional Evaluation. Front Endocrinol (Lausanne) 2012; 3:56. [PMID: 22654874 PMCID: PMC3356112 DOI: 10.3389/fendo.2012.00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/01/2012] [Indexed: 12/15/2022] Open
Abstract
To facilitate further evaluation of pheromone biosynthesis activating neuropeptide receptor (PBANR) functionality and regulation, we generated cultured insect cell lines constitutively expressing green fluorescent protein chimeras of the recently identified Bombyx mori PBANR (BommoPBANR) and Pseudaletia separata PBANR (PsesePBANR) variants. Fluorescent chimeras included the BommoPBANR-A, -B, and -C variants and the PsesePBANR-B and -C variants. Cell lines expressing non-chimeric BommoPBANR-B and -C variants were also generated. Functional evaluation of these transformed cell lines using confocal laser microscopy revealed that a Rhodamine Red-labeled PBAN derivative (RR-C10PBAN(R2K)) specifically co-localized with all of the respective PBANR variants at the plasma membrane. Near complete internalization of the fluorescent RR-C10PBAN(R2K) ligand 30 min after binding was observed in all cell lines except those expressing the BommoPBANR-A variant, in which the ligand/receptor complex remained at the plasma membrane. Fluorescent Ca(2+) imaging further showed that the BommoPBANR-A cell line exhibited drastically different Ca(2+) mobilization kinetics at a number of RR-C10PBAN(R2K) concentrations including 10 μM. These observations demonstrate a clear functional difference between the BommoPBANR-A variant and the BommoPBANR-B and -C variants in terms of receptor regulation and activation of downstream effector molecules. We also found that, contrary to previous reports, ligand-induced internalization of BommoPBANR-B and BommoPBANR-C in cell lines stably expressing these variants occurred in the absence of extracellular Ca(2+).
Collapse
Affiliation(s)
- Jae Min Lee
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
| | - J. Joe Hull
- USDA-ARS Arid Land Agricultural Research CenterMaricopa, AZ, USA
- *Correspondence: J. Joe Hull, USDA-ARS Arid Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138, USA. e-mail: ; Shogo Matsumoto, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. e-mail:
| | - Takeshi Kawai
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Kazuhide Tsuneizumi
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
| | - Masaaki Kurihara
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Shogo Matsumoto
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
- *Correspondence: J. Joe Hull, USDA-ARS Arid Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138, USA. e-mail: ; Shogo Matsumoto, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. e-mail:
| |
Collapse
|
34
|
Lee JM, Hull JJ, Kawai T, Goto C, Kurihara M, Tanokura M, Nagata K, Nagasawa H, Matsumoto S. Re-Evaluation of the PBAN Receptor Molecule: Characterization of PBANR Variants Expressed in the Pheromone Glands of Moths. Front Endocrinol (Lausanne) 2012; 3:6. [PMID: 22654850 PMCID: PMC3356081 DOI: 10.3389/fendo.2012.00006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/09/2012] [Indexed: 01/14/2023] Open
Abstract
Sex pheromone production in most moths is initiated following pheromone biosynthesis activating neuropeptide receptor (PBANR) activation. PBANR was initially cloned from pheromone glands (PGs) of Helicoverpa zea and Bombyx mori. The B. mori PBANR is characterized by a relatively long C-terminus that is essential for ligand-induced internalization, whereas the H. zea PBANR has a shorter C-terminus that lacks features present in the B. mori PBANR critical for internalization. Multiple PBANRs have been reported to be concurrently expressed in the larval CNS of Heliothis virescens. In the current study, we sought to examine the prevalence of multiple PBANRs in the PGs of three moths and to ascertain their potential functional relevance. Multiple PBANR variants (As, A, B, and C) were cloned from the PGs of all species examined with PBANR-C the most highly expressed. Alternative splicing of the C-terminal coding sequence of the PBAN gene gives rise to the variants, which are distinguishable only by the length and composition of their respective C-terminal tails. Transient expression of fluorescent PBANR chimeras in insect cells revealed that PBANR-B and PBANR-C localized exclusively to the cell surface while PBANR-As and PBANR-A exhibited varying degrees of cytosolic localization. Similarly, only the PBANR-B and PBANR-C variants underwent ligand-induced internalization. Taken together, our results suggest that PBANR-C is the principal receptor molecule involved in PBAN signaling regardless of moth species. The high GC content of the C-terminal coding sequence in the B and C variants, which makes amplification using conventional polymerases difficult, likely accounts for previous "preferential" amplification of PBANR-A like receptors from other species.
Collapse
Affiliation(s)
- Jae Min Lee
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
| | - J. Joe Hull
- Agricultural Research Service, United States Department of Agriculture, Arid Land Agricultural Research CenterMaricopa, AZ, USA
- *Correspondence: J. Joe Hull, Agricultural Research Service, United States Department of Agriculture, Arid Land Agricultural Research Center, 21881 N Cardon Lane, Maricopa, AZ 85138, USA. e-mail: ; Shogo Matsumoto, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. e-mail:
| | - Takeshi Kawai
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Chie Goto
- Agricultural Research Center, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Masaaki Kurihara
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Shogo Matsumoto
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
- *Correspondence: J. Joe Hull, Agricultural Research Service, United States Department of Agriculture, Arid Land Agricultural Research Center, 21881 N Cardon Lane, Maricopa, AZ 85138, USA. e-mail: ; Shogo Matsumoto, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. e-mail:
| |
Collapse
|
35
|
Choi MY, Vander Meer RK. Molecular Structure and Diversity of PBAN/pyrokinin Family Peptides in Ants. Front Endocrinol (Lausanne) 2012; 3:32. [PMID: 22654860 PMCID: PMC3356087 DOI: 10.3389/fendo.2012.00032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/09/2012] [Indexed: 11/13/2022] Open
Abstract
Neuropeptides are the largest group of insect hormones. They are produced in the central and peripheral nervous systems and affect insect development, reproduction, feeding, and behavior. A variety of neuropeptide families have been identified in insects. One of these families is the PBAN/pyrokinin family defined by a common FXPRLamide or similar amino acid fragment at the C-terminal end. These peptides, found in all insects studied thus far, have been conserved throughout evolution. The most well studied physiological function is regulation of moth sex pheromone biosynthesis through the pheromone biosynthesis activating neuropeptide (PBAN), although several developmental functions have also been reported. Over the past years we have extended knowledge of the PBAN/pyrokinin family of peptides to ants, focusing mainly on the fire ant, Solenopsis invicta. The fire ant is one of the most studied social insects and over the last 60 years a great deal has been learned about many aspects of this ant, including the behaviors and chemistry of pheromone communication. However, virtually nothing is known about the regulation of these pheromone systems. Recently, we demonstrated the presence of PBAN/pyrokinin immunoreactive neurons in the fire ant, and identified and characterized PBAN and additional neuropeptides. We have mapped the fire ant PBAN gene structure and determined the tissue expression level in the central nervous system of the ant. We review here our research to date on the molecular structure and diversity of ant PBAN/pyrokinin peptides in preparation for determining the function of the neuropeptides in ants and other social insects.
Collapse
Affiliation(s)
- Man-Yeon Choi
- United States Department of Agriculture, Agriculture Research Service, Center for Medical, Agricultural, and Veterinary EntomologyGainesville, FL, USA
- *Correspondence: Man-Yeon Choi and Robert K. Vander Meer, United States Department of Agriculture, Agriculture Research Service, Center for Medical Agricultural and Veterinary Entomology, 1600 SW 23rd Dr. Gainesville, FL 32608, USA. e-mail: ;
| | - Robert K. Vander Meer
- United States Department of Agriculture, Agriculture Research Service, Center for Medical, Agricultural, and Veterinary EntomologyGainesville, FL, USA
- *Correspondence: Man-Yeon Choi and Robert K. Vander Meer, United States Department of Agriculture, Agriculture Research Service, Center for Medical Agricultural and Veterinary Entomology, 1600 SW 23rd Dr. Gainesville, FL 32608, USA. e-mail: ;
| |
Collapse
|
36
|
Hull JJ, Lee JM, Matsumoto S. Identification of specific sites in the third intracellular loop and carboxyl terminus of the Bombyx mori pheromone biosynthesis activating neuropeptide receptor crucial for ligand-induced internalization. INSECT MOLECULAR BIOLOGY 2011; 20:801-811. [PMID: 21955122 DOI: 10.1111/j.1365-2583.2011.01110.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sex pheromone production in most moths is mediated by the pheromone biosynthesis activating neuropeptide receptor (PBANR). Using fluorescent Bombyx mori PBANR (BmPBANR) chimeras to study PBANR regulation, we previously showed that BmPBANR undergoes rapid ligand-induced internalization, that the endocytotic motif resides between residues 358-367 of the BmPBANR C terminus, and that the internalization pathway is clathrin-dependent. Here, we sought to expand our understanding of the molecular mechanisms underlying BmPBANR function and regulation by transiently expressing a series of fluorescent BmPBANR chimeric constructs in cultured Spodoptera frugiperda (Sf9) cells and assaying for internalization of a fluorescently labelled ligand. Pharmacological inhibition of phospholipase C significantly reduced internalization, suggesting that BmPBANR regulation proceeds via a conventional G-protein-dependent pathway. This was further supported by impaired internalization following site-directed mutagenesis of R263 and R264, two basic residues at the transmembrane 6 intracellular junction that are thought to stabilize G-protein coupling via electrostatic interactions. Ala substitution of S333 and S366, two consensus protein kinase C sites in the C terminus, likewise impaired internalization, as did RNA interference-mediated knockdown of Sf9 protein kinase C. N-terminal truncations of BmPBANR indicate that the first 27 residues are not necessary for cell surface trafficking or receptor functionality.
Collapse
Affiliation(s)
- J J Hull
- Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan.
| | | | | |
Collapse
|
37
|
Jurenka R, Rafaeli A. Regulatory Role of PBAN in Sex Pheromone Biosynthesis of Heliothine Moths. Front Endocrinol (Lausanne) 2011; 2:46. [PMID: 22654810 PMCID: PMC3356091 DOI: 10.3389/fendo.2011.00046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/15/2011] [Indexed: 11/21/2022] Open
Abstract
Both males and females of heliothine moths utilize sex-pheromones during the mating process. Females produce and release a sex pheromone for the long-range attraction of males for mating. Production of sex pheromone in females is controlled by the peptide hormone (pheromone biosynthesis activating neuropeptide, PBAN). This review will highlight what is known about the role PBAN plays in controlling pheromone production in female moths. Male moths produce compounds associated with a hairpencil structure associated with the aedaegus that are used as short-range aphrodisiacs during the mating process. We will discuss the role that PBAN plays in regulating male production of hairpencil pheromones.
Collapse
Affiliation(s)
- Russell Jurenka
- Department of Entomology, Iowa State UniversityAmes, IA, USA
| | - Ada Rafaeli
- Department of Food Quality and Safety, Volcani Center, Agricultural Research OrganizationBet Dagan, Israel
| |
Collapse
|
38
|
Fónagy A, Moto K, Ohnishi A, Kurihara M, Kis J, Matsumoto S. Studies of sex pheromone production under neuroendocrine control by analytical and morphological means in the oriental armyworm, Pseudaletia separata, Walker (Lepidoptera: Noctuidae). Gen Comp Endocrinol 2011; 172:62-76. [PMID: 21354157 DOI: 10.1016/j.ygcen.2011.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 02/04/2011] [Accepted: 02/20/2011] [Indexed: 11/25/2022]
Abstract
Most female moths produce species-specific sex pheromone blends in the modified epidermal pheromone gland (PG) cells generally located between the 8 and 9th abdominal segments. The biosynthesis is often regulated by pheromone biosynthesis activating neuropeptide (PBAN) either in or prior to de novo fatty acid synthesis or at the formation of oxygenated functional group. In Pseudaletia separata, information about life span, calling, PG morphology, daily fluctuation of pheromone production and its hormonal regulation is limited. We measured pheromone titer daily (16:8; L:D) at 2h intervals in scotophase. Blend ratio stabilized during the 2nd day (till 4-5th) at 6th hour of scotophase, with the ratio of 27.5:12.8:44.4:15.3 for Z-11-16OH:16OH:Z-11-16Ac:16Ac, respectively. Females showed calling behavior from this time. We found with light and fluorescence microscopy that PG consisted of intersegmental membrane (A part), and dorso-lateral region of 9th abdominal segment (B part), encountering for ∼ 35% of total production revealed by gas chromatography. Ratios did not reveal difference. We did not find precursor (triacylglycerols) accumulation in form of lipid droplets, implying that PBAN stimulates de novo biosynthesis of 16:acyl precursors. In vivoHez-PBAN injections (1-3 × 5 pmol, 2h intervals) into 3 days old 16-18 h decapitated females stimulated pheromone production, both in A and B parts. Blend analyses including ratios suggest stimulation of the initial phase of synthesis, but desaturation of fatty acyl intermediates do not follow proportionally. More saturated fatty acid is converted from the available pool to the final OH and Ac, compared to females kept intact in scotophase. In vitro studies (PGs incubated 4-6h in the presence of 0.25 or 0.5 μM Hez-PBAN, especially with surplus 2mM malonyl-CoA) revealed higher saturated component ratio than the unsaturated, compared to natural blend or in vivo injections.
Collapse
Affiliation(s)
- Adrien Fónagy
- Ecotoxicology and Environmental Analysis Department, Plant Protection Institute of Hungarian Academy of Sciences, Budapest, Herman Ottó u. 15, H-1022, Hungary.
| | | | | | | | | | | |
Collapse
|
39
|
Ohnishi A, Hull JJ, Kaji M, Hashimoto K, Lee JM, Tsuneizumi K, Suzuki T, Dohmae N, Matsumoto S. Hormone signaling linked to silkmoth sex pheromone biosynthesis involves Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of the insect PAT family protein Bombyx mori lipid storage droplet protein-1 (BmLsd1). J Biol Chem 2011; 286:24101-12. [PMID: 21572162 DOI: 10.1074/jbc.m111.250555] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Species-specific sex pheromones released by female moths to attract conspecific male moths are synthesized de novo in the pheromone gland (PG) via the fatty acid biosynthetic pathway. This pathway is regulated by a neurohormone termed pheromone biosynthesis activating neuropeptide (PBAN), a 33-amino acid peptide that originates in the subesophageal ganglion. In the silkmoth, Bombyx mori, cytoplasmic lipid droplets, which store the sex pheromone (bombykol) precursor fatty acid, accumulate in PG cells. PBAN stimulates lipolysis of the stored lipid droplet triacylglycerols (TAGs) and releases the precursor for final modification. PBAN exerts its physiological function via the PG cell-surface PBAN receptor, a G protein-coupled receptor that belongs to the neuromedin U receptor family. The PBAN receptor-mediated signal is transmitted via a canonical store-operated channel activation pathway utilizing Gq-mediated phospholipase C activation (Hull, J. J., Kajigaya, R., Imai, K., and Matsumoto, S. (2007) Biosci. Biotechnol. Biochem. 71, 1993-2001; Hull, J. J., Lee, J. M., Kajigaya, R., and Matsumoto, S. (2009) J. Biol. Chem. 284, 31200-31213; Hull, J. J., Lee, J. M., and Matsumoto, S. (2010) Insect Mol. Biol. 19, 553-566). Little, however, is known about the molecular components regulating TAG lipolysis in PG cells. In the current study we found that PBAN signaling involves phosphorylation of an insect PAT family protein named B. mori lipid storage droplet protein-1 (BmLsd1) and that BmLsd1 plays an essential role in the TAG lipolysis associated with bombykol production. Unlike mammalian PAT family perilipins, however, BmLsd1 activation is dependent on phosphorylation by B. mori Ca(2+)/calmodulin-dependent protein kinase II rather than protein kinase A.
Collapse
Affiliation(s)
- Atsushi Ohnishi
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lee DW, Shrestha S, Kim AY, Park SJ, Yang CY, Kim Y, Koh YH. RNA interference of pheromone biosynthesis-activating neuropeptide receptor suppresses mating behavior by inhibiting sex pheromone production in Plutella xylostella (L.). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:236-243. [PMID: 21220012 DOI: 10.1016/j.ibmb.2011.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/06/2010] [Accepted: 01/03/2011] [Indexed: 05/30/2023]
Abstract
Sex pheromone production is regulated by pheromone biosynthesis-activating neuropeptide (PBAN) in many lepidopteran species. We cloned a PBAN receptor (Plx-PBANr) gene from the female pheromone gland of the diamondback moth, Plutella xylostella (L.). Plx-PBANr encodes 338 amino acids and has conserved structural motifs implicating in promoting G protein coupling and tyrosine-based sorting signaling along with seven transmembrane domains, indicating a typical G protein-coupled receptor. The expression of Plx-PBANr was found only in the pheromone gland of female adults among examined tissues and developmental stages. Heterologous expression in human uterus cervical cancer cells revealed that Plx-PBANr induced significant calcium elevation when challenged with Plx-PBAN. Female P. xylostella injected with double-stranded RNA specific to Plx-PBANr showed suppression of the receptor gene expression and exhibited significant reduction in pheromone biosynthesis, which resulted in loss of male attractiveness. Taken together, the identified PBAN receptor is functional in PBAN signaling via calcium secondary messenger, which leads to activation of pheromone biosynthesis and male attraction.
Collapse
Affiliation(s)
- Dae-Weon Lee
- Ilsong Institute of Life Science, Hallym University, Anyang 431-060, Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Gene recruitment played a critical role in metazoan evolution. Yet, there is no consensus on whether it is an accidental event or a result of an inherent "gene recruiting" mechanism. The prevailing opinion among biologists is that gene recruitment results from random changes in genes or their regulatory regions, but the supporting evidence is poor and controversial. Herein, I present a mechanism in which gene recruitment is a neurally determined event, an adaptive response to changes in environmental conditions. In support of the hypothesis, I present evidence on the manipulative expression of genes in the central nervous system, as well as neurally determined examples of gene recruitment in transgenerational developmental plasticity and in evolution of metazoans.
Collapse
|
42
|
Choi MY, Jurenka RA. Site-directed mutagenesis and PBAN activation of the Helicoverpa zea PBAN-receptor. FEBS Lett 2010; 584:1212-6. [PMID: 20159019 DOI: 10.1016/j.febslet.2010.02.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/10/2010] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
Pheromone biosynthesis-activating neuropeptide (PBAN) and pyrokinins belong to a family of insect peptide hormones that have a common FXPRLamide C-terminal ending. The G-protein-coupled receptors (GPCRs) for this peptide family were first identified from a moth and Drosophila with sequence similarity to neuromedin U receptors from vertebrates. We have characterized the PBAN-receptor (PBAN-R or PR) active binding domains using chimeric GPCRs and proposed that extracellular loop 3 is critical for ligand selection. Here, we characterized the 3rd extracellular domain of PBAN-R through site-directed point mutations. Results are discussed in context of the structural features required for receptor activation using receptor activation experiments and in silico computational modeling. This research will help in characterizing these receptors towards a goal of finding agonists and/or antagonists for PBAN/pyrokinin receptors.
Collapse
Affiliation(s)
- Man-Yeon Choi
- Department of Entomology, Iowa State University, Ames, IA 5001-3222, USA.
| | | |
Collapse
|
43
|
Bober R, Azrielli A, Rafaeli A. Developmental regulation of the pheromone biosynthesis activating neuropeptide-receptor (PBAN-R): re-evaluating the role of juvenile hormone. INSECT MOLECULAR BIOLOGY 2010; 19:77-86. [PMID: 20002222 DOI: 10.1111/j.1365-2583.2009.00937.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Sex pheromone production in Helicoverpa armigera is regulated by pheromone-biosynthesis-activating neuropeptide (PBAN), which binds to a G-protein coupled receptor at the pheromone gland. We demonstrate the temporal differential expression levels of the PBAN receptor (PBAN-R) gene, reaching peak levels at a critical period of 5 h post-eclosion. Previous studies implied a possible regulatory role for juvenile hormone (JH). We herein demonstrate that PBAN-R expression levels increase normally when females are decapitated or head-ligated, removing the source of JH, before peak transcript levels are reached. Similarly, sex pheromone production can be induced by PBAN in such decapitated females. These results indicate that up-regulation, at this critical time, is not dependent on JH originating from the head. Conversely, JH injected in vivo at this critical period significantly inhibits PBAN-R transcript levels.
Collapse
Affiliation(s)
- R Bober
- Department of Entomology, The Hebrew University, Rehovot, Israel
| | | | | |
Collapse
|
44
|
Vogel H, Heidel AJ, Heckel DG, Groot AT. Transcriptome analysis of the sex pheromone gland of the noctuid moth Heliothis virescens. BMC Genomics 2010; 11:29. [PMID: 20074338 PMCID: PMC2820457 DOI: 10.1186/1471-2164-11-29] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 01/14/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The chemical components of sex pheromones have been determined for more than a thousand moth species, but so far only a handful of genes encoding enzymes responsible for the biosynthesis of these compounds have been identified. For understanding the evolution of moth sexual communication, it is essential to know which genes are involved in the production of specific pheromone components and what controls the variation in their relative frequencies in the pheromone blend. We used a transcriptomic approach to characterize the pheromone gland of the Noctuid moth Heliothis virescens, an important agricultural pest, in order to obtain substantial general sequence information and to identify a range of candidate genes involved in the pheromone biosynthetic pathway. RESULTS To facilitate identifying sets of genes involved in a broad range of processes and to capture rare transcripts, we developed our majority of ESTs from a normalized cDNA library of Heliothis virescens pheromone glands (PG). Combining these with a non-normalized library yielded a total of 17,233 ESTs, which assembled into 2,082 contigs and 6,228 singletons. Using BLAST searches of the NR and Swissprot databases we were able to identify a large number of putative unique gene elements (unigenes), which we compared to those derived from previous transcriptomic surveys of the larval stage of Heliothis virescens. The distribution of unigenes among GO Biological Process functional groups shows an overall similarity between PG and larval transcriptomes, but with distinct enrichment of specific pathways in the PG. In addition, we identified a large number of candidate genes in the pheromone biosynthetic pathways. CONCLUSION These data constitute one of the first large-scale EST-projects for Noctuidae, a much-needed resource for exploring these pest species. Our analysis shows a surprisingly complex transcriptome and we identified a large number of potential pheromone biosynthetic pathway and immune-related genes that can be applied to population and systematic studies of Heliothis virescens and other Noctuidae.
Collapse
Affiliation(s)
- Heiko Vogel
- Max Planck Institute for Chemical Ecology, Department of Entomology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Andrew J Heidel
- Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - David G Heckel
- Max Planck Institute for Chemical Ecology, Department of Entomology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Astrid T Groot
- Max Planck Institute for Chemical Ecology, Department of Entomology, Hans Knoell Strasse 8, 07745 Jena, Germany
| |
Collapse
|
45
|
Unraveling the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade that regulates sex pheromone production in moths. VITAMINS AND HORMONES 2010; 83:425-45. [PMID: 20831957 DOI: 10.1016/s0083-6729(10)83018-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Studies over the past three decades have demonstrated that female moths usually produce sex pheromones as multicomponent blends in which the ratios of the individual components are precisely controlled, making it possible to generate species-specific pheromone blends. Most moth pheromone components are de novo synthesized from acetyl-CoA in the pheromone gland (PG) through modifications of fatty acid biosynthetic pathways. Pheromone biosynthesis activating neuropeptide (PBAN), a neurohormone produced by a cephalic organ (subesophageal ganglion) stimulates sex pheromone biosynthesis in the PG via an influx of extracellular Ca(2+). In recent years, we have expanded our knowledge of the precise mechanisms underlying silkmoth (Bombyx mori) sex pheromone production by characterizing a number of key molecules. In this review, we want to highlight our efforts in elucidating these mechanisms in B. mori and to understand how they relate more broadly to lepidopteran sex pheromone production in general.
Collapse
|
46
|
Förster F, Liang C, Shkumatov A, Beisser D, Engelmann JC, Schnölzer M, Frohme M, Müller T, Schill RO, Dandekar T. Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades. BMC Genomics 2009; 10:469. [PMID: 19821996 PMCID: PMC2768748 DOI: 10.1186/1471-2164-10-469] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 10/12/2009] [Indexed: 01/28/2023] Open
Abstract
Background Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. Results To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Conclusion Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences.
Collapse
Affiliation(s)
- Frank Förster
- Dept of Bioinformatics, Biocenter University of Würzburg, 97074 Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ben Yosef T, Bronshtein A, Ben Aziz O, Davidovitch M, Tirosh I, Altstein M. PBAN receptor: employment of anti-receptor antibodies for its characterization and for development of a microplate binding assay. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:825-833. [PMID: 19482031 DOI: 10.1016/j.jinsphys.2009.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/11/2009] [Accepted: 05/11/2009] [Indexed: 05/27/2023]
Abstract
This study describes generation of an anti-PBAN receptor (PBAN-R) antiserum and its employment for the characterization of the PK/PBAN-R(s). The antiserum recognized, in a specific and dose-dependent manner, the presence of PBAN-R in pheromone gland membrane preparations of three female moths: Heliothis peltigera, Helicoverpa armigera and Spodoptera littoralis. It also reacted specifically with the S. littoralis larval receptor in vivo, most likely by competing with the ligand on the binding site and consequently inhibiting cuticular melanization. Despite its ability to react with the receptor of H. peltigera in dot blot experiments, the antiserum did not react with the receptor in vivo and failed to inhibit sex pheromone biosynthesis. The antiserum was also used to develop two microplate binding assays. The Ab described in this study is the first raised against an insect neuropeptide (Np) receptor to be used in vivo, and its employment for characterization of the PK/PBAN-R(s) may thus provide important information on the mode of action of this Np family. The present study adds important information on the difference between the receptors in the two moth species, hints at the possible existence of receptor subtypes, and provides a platform for the development of a high-throughput assay (HTA) for screening of PK/PBAN agonists and antagonists.
Collapse
Affiliation(s)
- Tal Ben Yosef
- Department of Entomology, The Volcani Center, Hamabacim St. 6, Bet Dagan 50250, Israel
| | | | | | | | | | | |
Collapse
|
48
|
Nachman RJ, Wang XJ, Etzkorn FA, Aziz OB, Davidovitch M, Kaczmarek K, Zabrocki J, Strey A, Pryor N, Altstein M. Evaluation of a PK/PBAN analog with an (E)-alkene, trans-Pro isostere identifies the Pro orientation for activity in four diverse PK/PBAN bioassays. Peptides 2009; 30:1254-9. [PMID: 19416747 DOI: 10.1016/j.peptides.2009.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/23/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
Abstract
The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a multifunctional role in an array of important physiological processes in a variety of insects. An active core analog containing an (E)-alkene, trans-Pro isosteric component was evaluated in four disparate PK/PBAN bioassays in four different insect species. These bioassays include pheromone biosynthesis in the moth Heliothis peltigera, melanization in the larval Spodoptera littoralis, pupariation acceleration in the larval fly Neobellieria bullata, and hindgut contraction in the cockroach Leucophaea maderae. The conformationally constrained analog demonstrated activity equivalent to parent PK/PBAN peptides of equal length in all four PK/PBAN bioassays, and matched and/or approached the activity of peptides of natural length in three of them. In the melanization bioassay, the constrained analog exceeded the efficacy (maximal response) of the natural PBAN1-33 by a factor of 2 (at 1nmol). The results provide strong evidence for the orientation of Pro and the core conformation adopted by PK/PBAN neuropeptides during interaction with receptors associated with a range of disparate PK/PBAN bioassays. The work further identifies a scaffold with which to design mimetic PK/PBAN analogs as potential leads in the development of environmentally favorable pest management agents capable of disrupting PK/PBAN-regulated systems.
Collapse
Affiliation(s)
- Ronald J Nachman
- Areawide Pest Management Research, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Scherkenbeck J, Zdobinsky T. Insect neuropeptides: Structures, chemical modifications and potential for insect control. Bioorg Med Chem 2009; 17:4071-84. [DOI: 10.1016/j.bmc.2008.12.061] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/13/2008] [Accepted: 12/15/2008] [Indexed: 12/31/2022]
|
50
|
Nachman RJ, Kim YJ, Wang XJ, Etzkorn FA, Kaczmarek K, Zabrocki J, Adams ME. Potent activity of a PK/PBAN analog with an (E)-alkene, trans-Pro mimic identifies the Pro orientation and core conformation during interaction with HevPBANR-C receptor. Bioorg Med Chem 2009; 17:4216-20. [PMID: 19356938 DOI: 10.1016/j.bmc.2009.03.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/04/2009] [Accepted: 03/07/2009] [Indexed: 10/21/2022]
Abstract
The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a multifunctional role in an array of important physiological processes in insects, including regulation of sex pheromone biosynthesis in moths. A cyclic PK/PBAN analog (cyclo[NTSFTPRL]) retains significant activity on the pheromonotropic HevPBANR receptor from the tobacco budworm Heliothis virescens expressed in CHO-K1 cells. Previous studies indicate that this rigid, cyclic analog adopts a type I beta-turn with a transPro over residues TPRL within the core PK/PBAN region. An analog containing an (E)-alkene, trans-Pro mimetic motif was synthesized, and upon evaluation on the HevPBANR receptor found to have an EC(50) value that is not statistically different from a parent C-terminal PK/PBAN hexapeptide sequence. The results, in aggregate, provide strong evidence for the orientation of Pro and the core conformation of PK/PBAN neuropeptides during interaction with the expressed PBAN receptor. The work further identifies a novel scaffold with which to design mimetic PBAN analogs as potential leads in the development of environmentally favorable pest management agents capable of disrupting PK/PBAN-regulated pheromone signaling systems.
Collapse
Affiliation(s)
- Ronald J Nachman
- Areawide Pest Management Research, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, USA.
| | | | | | | | | | | | | |
Collapse
|