1
|
Cytotoxic activity of non-specific lipid transfer protein (nsLTP1) from Ajwain (Trachyspermum ammi) seeds. BMC Complement Med Ther 2022; 22:135. [PMID: 35578215 PMCID: PMC9112568 DOI: 10.1186/s12906-022-03616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Background Trachyspermum ammi, commonly known as Ajwain, is a member of the Apiaceae family. It is a therapeutic herbal spice with diverse pharmacological properties, used in traditional medicine for various ailments. However, all previous studies were conducted using small molecule extracts, leaving the protein’s bioactivity undiscovered. Aim The current study aimed to demonstrate the cytotoxic activity of Ajwain non-specific lipid transfer protein (nsLTP1) in normal breast (MCF10A), breast cancer (MCF-7), and pancreatic cancer (AsPC-1) cell lines. Also, to evaluate its structural stability in human serum as well as at high temperature conditions. Methods The cytotoxic activity of Ajwain nsLTP1 was evaluated in MCF-7 and AsPC-1 cell lines using MTT assay. Annexin V-FITC and PI staining were used to detect the early apoptotic and late apoptotic cells. The role of nsLTP1 in inducing apoptosis was further studied by quantifying Bcl-2, Bax, Caspase-3, Survivin, EGFR, and VEGF genes expression using RT-PCR. CD spectroscopy analyzed the nsLTP1 conformational changes after thermal treatment for structure stability determination. The RP-HPLC was used to analyze the nsLTP1 degradation rate in human serum at different time intervals incubated at 37 °C. Results Ajwain nsLTP1 showed a potent cytotoxic effect in MCF-7 and AsPC-1. The IC50 value obtained in MCF-7 was 8.21 μM, while for AsPC-1 4.17 μM. The effect of nsLTP1 on stimulating apoptosis revealed that the proportions of apoptotic cells in both cell lines were relatively increased depending on the concentration. The apoptotic cells percentage at 20 μM was in MCF-7 71% (***P < 0.001) and AsPC-1 88% (***P < 0.001). These results indicate that nsLTP1 might efficaciously induce apoptosis in multiple types of cancerous cells. Genes expression in MCF-7 and AsPC-1 showed significant upregulation in Bax and Caspase-3 and downregulation in Bcl-2, Survivin, EGFR, and VEGF protein. The CD analysis of nsLTP1 showed a significant thermostable property. In serum, nsLTP1 showed a slow degradation rate, indicating high stability with a half-life of ~ 8.4 h. Conclusion Our results revealed the potential anticancer activity of Ajwain nsLTP1 and its mechanism in inducing apoptosis. It further exhibited thermostable properties at high temperatures and in human serum, which suggested this protein as a promising anticancer agent. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03616-y.
Collapse
|
2
|
Cordoba-Tovar L, Ríos-Geovo V, Largacha-Viveros M, Salas-Moreno M, Marrugo-Negrete JL, Ramos PA, Chaverra LM, Jonathan M. Cultural belief and medicinal plants in treating COVID 19 patients of Western Colombia. ACTA ECOLOGICA SINICA 2021. [PMCID: PMC8557979 DOI: 10.1016/j.chnaes.2021.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The main background of this study is that corona virus (COVID-19) has caused a global chaos where there was a complete lockdown of the whole planet as well as the collapse of the health system in many developed, developing and under-developed countries. This situation has caused a public health system and till date no decisive treatment is being confirmed so far. The present study from western Colombia focuses on the importance of traditional, cultural and generations history with reference to the use of importance and significance of medicinal plants, especially to find out a strategy to fight the new virus. The study was designed based on three major novel ethno-environmental strategies based on infusion, hot drinks, fresh baths and jelly types were identified. Based on the generated results, the calculated highest used species in the present pandemia indicates Zingiber officinale Roscoe (1.0), Eucalyptus globulus Labiil. (0.86), Citrus x limon (L.) Osbeck (0.80), Gliricidia sepium (Jacq.) Walp (0.56) and Matricaria recutita L. (0.52) were the species with the highest use. No significant difference was observed between men and women for the level of knowledge on these traditional medicinal plants. Moreover, many of the scientific information demonstrate their effectiveness in treating the respiratory infections caused due to the corona virus. The results infer the importance of traditional medicine, knowledge which needs more attention and research to counter attack the outbreak especially in medically weak health systems.
Collapse
|
3
|
Amador VC, dos Santos-Silva CA, Vilela LMB, Oliveira-Lima M, de Santana Rêgo M, Roldan-Filho RS, de Oliveira-Silva RL, Lemos AB, de Oliveira WD, Ferreira-Neto JRC, Crovella S, Benko-Iseppon AM. Lipid Transfer Proteins (LTPs)-Structure, Diversity and Roles beyond Antimicrobial Activity. Antibiotics (Basel) 2021; 10:1281. [PMID: 34827219 PMCID: PMC8615156 DOI: 10.3390/antibiotics10111281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 01/21/2023] Open
Abstract
Lipid transfer proteins (LTPs) are among the most promising plant-exclusive antimicrobial peptides (AMPs). They figure among the most challenging AMPs from the point of view of their structural diversity, functions and biotechnological applications. This review presents a current picture of the LTP research, addressing not only their structural, evolutionary and further predicted functional aspects. Traditionally, LTPs have been identified by their direct isolation by biochemical techniques, whereas omics data and bioinformatics deserve special attention for their potential to bring new insights. In this context, new possible functions have been identified revealing that LTPs are actually multipurpose, with many additional predicted roles. Despite some challenges due to the toxicity and allergenicity of LTPs, a systematic review and search in patent databases, indicate promising perspectives for the biotechnological use of LTPs in human health and also plant defense.
Collapse
Affiliation(s)
- Vinícius Costa Amador
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Carlos André dos Santos-Silva
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, 34100 Trieste, Italy;
| | - Lívia Maria Batista Vilela
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Marx Oliveira-Lima
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Mireli de Santana Rêgo
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Ricardo Salas Roldan-Filho
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Roberta Lane de Oliveira-Silva
- General Microbiology Laboratory, Agricultural Science Campus, Universidade Federal do Vale do São Francisco, Petrolina 56300-990, Brazil;
| | - Ayug Bezerra Lemos
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Wilson Dias de Oliveira
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - José Ribamar Costa Ferreira-Neto
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Sérgio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha 1883, Qatar;
| | - Ana Maria Benko-Iseppon
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| |
Collapse
|
4
|
Luo X, Wu W, Feng L, Treves H, Ren M. Short Peptides Make a Big Difference: The Role of Botany-Derived AMPs in Disease Control and Protection of Human Health. Int J Mol Sci 2021; 22:11363. [PMID: 34768793 PMCID: PMC8583512 DOI: 10.3390/ijms222111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Botany-derived antimicrobial peptides (BAMPs), a class of small, cysteine-rich peptides produced in plants, are an important component of the plant immune system. Both in vivo and in vitro experiments have demonstrated their powerful antimicrobial activity. Besides in plants, BAMPs have cross-kingdom applications in human health, with toxic and/or inhibitory effects against a variety of tumor cells and viruses. With their diverse molecular structures, broad-spectrum antimicrobial activity, multiple mechanisms of action, and low cytotoxicity, BAMPs provide ideal backbones for drug design, and are potential candidates for plant protection and disease treatment. Lots of original research has elucidated the properties and antimicrobial mechanisms of BAMPs, and characterized their surface receptors and in vivo targets in pathogens. In this paper, we review and introduce five kinds of representative BAMPs belonging to the pathogenesis-related protein family, dissect their antifungal, antiviral, and anticancer mechanisms, and forecast their prospects in agriculture and global human health. Through the deeper understanding of BAMPs, we provide novel insights for their applications in broad-spectrum and durable plant disease prevention and control, and an outlook on the use of BAMPs in anticancer and antiviral drug design.
Collapse
Affiliation(s)
- Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
| | - Wenxian Wu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
| | - Haim Treves
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel;
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
5
|
Mammari N, Krier Y, Albert Q, Devocelle M, Varbanov M. Plant-Derived Antimicrobial Peptides as Potential Antiviral Agents in Systemic Viral Infections. Pharmaceuticals (Basel) 2021; 14:ph14080774. [PMID: 34451871 PMCID: PMC8400714 DOI: 10.3390/ph14080774] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Numerous studies have led to a better understanding of the mechanisms of action of viruses in systemic infections for the development of prevention strategies and very promising antiviral therapies. Viruses still remain one of the main causes of human diseases, mainly because the development of new vaccines is usually challenging and drug resistance has become an increasing concern in recent decades. Therefore, the development of potential antiviral agents remains crucial and is an unmet clinical need. One abundant source of potential therapeutic molecules are plants: they biosynthesize a myriad of compounds, including peptides which can have antimicrobial activity. Our objective is to summarize the literature on peptides with antiviral properties derived from plants and to identify key features of these peptides and their application in systemic viral infections. This literature review highlights studies including clinical trials which demonstrated that plant cyclotides have the ability to inhibit the growth of viruses causing human diseases, defensin-like peptides possess anti-HIV-1 activity, and lipid transfer proteins and some lectins exhibit a varied antimicrobial profile. To conclude, plant peptides remain interesting to explore in the context of emerging and re-emerging infectious diseases.
Collapse
Affiliation(s)
- Nour Mammari
- L2CM, Université de Lorraine, CNRS, F-54000 Nancy, France;
| | - Ysaline Krier
- Faculté de Pharmacie, 7 Avenue de la Foret de Haye, 54505 Vandoeuvre-Les-Nancy, France;
| | - Quentin Albert
- Fungal Biodiversity and Biotechnology, INRAE/Aix-Marseille University, UMR1163, 13009 Marseille, France;
- CIRM-CF, INRAE/Aix Marseille University, UMR1163, 13009 Marseille, France
| | - Marc Devocelle
- SSPC (SFI Research Centre for Pharmaceuticals), V94T9PX Limerick, Ireland;
- Department of Chemistry, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, 123, St. Stephen’s Green, D02 YN77 Dublin 2, Ireland
| | - Mihayl Varbanov
- L2CM, Université de Lorraine, CNRS, F-54000 Nancy, France;
- Correspondence:
| | | |
Collapse
|
6
|
Devi AB, Sarala R. Substantial effect of phytochemical constituents against the pandemic disease influenza-a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:120. [PMID: 34150912 PMCID: PMC8196934 DOI: 10.1186/s43094-021-00269-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Background Influenza is an acute respiratory tract infection caused by the influenza virus. Vaccination and antiviral drugs are the two methods opted to control the disease. Besides their efficiency, they also cause adverse side effects. Hence, scientists turned their attention to powerful herbal medicines. This review put focus on various proven, scientifically validated anti-influenza compounds produced by the plants suggested for the production of newer drugs for the better treatment of influenza and its related antiviral diseases too. Main body In this review, fifty medicinal herb phytochemical constituents and their anti-influenza activities have been documented. Specifically, this review brings out the accurate and substantiates mechanisms of action of these constituents. This study categorizes the phytochemical constituents into primary and secondary metabolites which provide a source for synthesizing and developing new drugs. Conclusion This article provides a summary of the actions of the herbal constituents. Since the mechanisms of action of the components are elucidated, the pandemic situation arising due to influenza and similar antiviral diseases can be handled promisingly with greater efficiency. However, clinical trials are in great demand. The formulation of usage may be a single drug compound or multi-herbal combination. These, in turn, open up a new arena for the pharmaceutical industries to develop innovative drugs.
Collapse
Affiliation(s)
- A Brindha Devi
- Department of Botany, Periyar EVR College (Autonomous), (Affiliated to Bharathidasan University, Trichy-24), Trichy-620 023, Tamil Nadu, India
| | - R Sarala
- Department of Botany, Periyar EVR College (Autonomous), (Affiliated to Bharathidasan University, Trichy-24), Trichy-620 023, Tamil Nadu, India
| |
Collapse
|
7
|
Maximiano MR, Franco OL. Biotechnological applications of versatile plant lipid transfer proteins (LTPs). Peptides 2021; 140:170531. [PMID: 33746031 DOI: 10.1016/j.peptides.2021.170531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 02/08/2023]
Abstract
Plant AMPs are usually cysteine-rich, and can be classified in several classes, including lipid transfer proteins (LTPs). LTPs are small plant cationic peptides, and can be classified in two subclasses, LTP1 (9-10 kDa) and LTP2 (7 kDa). They have been identified and isolated from various plant species and can be involved in a number of processes, including responses against several phytopathogens. LTP1 presents 4 parallel α- helices and a 310-helix fragment. These structures form a tunnel with large and small entrances. LTP2 presents 3 parallel α- helices, which form a cavity with triangular structure. Both LTP subclasses present a hydrophobic cavity, which makes interaction with different lipids and general hydrophobic molecules possible. Several studies report a broad spectrum of activity of plant LTPs, including antibacterial, antifungal, antiviral, antitumoral, and insecticidal activity. Thus, these molecules can be employed in human and animal health as an alternative to the conventional treatment of disease, well as providing the source of novel drugs. However, employing peptides in human health can present challenges, such as the toxicity of peptides, the difference between the results found in in vitro assays and in pre-clinical or clinical tests and their low efficiency against Gram-negative bacteria. In this context, plant LTPs can be an interesting alternative means by which to bypass such challenges. This review addresses the versatility of plant LTPs, their broad spectrum of activities and their potential applications in human and animal health and in agricultural production, and examines challenges in their biotechnological application.
Collapse
Affiliation(s)
- Mariana Rocha Maximiano
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
8
|
Ben Hsouna A, Ben Saad R, Dhifi W, Mnif W, Brini F. Novel non-specific lipid-transfer protein (TdLTP4) isolated from durum wheat: Antimicrobial activities and anti-inflammatory properties in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Microb Pathog 2021; 154:104869. [PMID: 33774106 DOI: 10.1016/j.micpath.2021.104869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/19/2021] [Accepted: 03/15/2021] [Indexed: 01/02/2023]
Abstract
Lipid transfer proteins (LTP) are members of the family of pathogenesis-related proteins (PR-14) that play a key role in plant defense mechanisms. In this study, a novel gene TdLTP4 encoding an antifungal protein from wheat (cv. Om Rabiaa) was cloned, overexpressed in Escherichia coli BL-21 (DE3) and enriched using ammonium sulfate fractionation. The TdLTP4 fusion protein was then tested against a panel of pathogens, food-borne and spoilage bacteria and fungi in order to evaluate the antimicrobial properties. TdLTP4 was applied to 0.5 μg/mL LPS-induced RAW 264.7 macrophages in vitro at different concentrations (5, 10, 20, 50 and 100 μg/mL). Levels of nitric oxide (NO), pro-inflammatory cytokines interleukin (IL)-1β (IL-1 β), interleukin (IL)-6 (IL-6), tumor necrosis factor (TNF-α) and anti-inflammatory cytokine IL-10 in the supernatant fraction were measured using enzyme-linked immunosorbent assay (ELISA). Expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were detected via Western blot. The inhibition zones and minimal inhibitory concentration (MIC) values of bacterial strains were in the range of 14-26 mm and 62.5-250 μg/mL, respectively. Moreover, a remarkable activity against several fungal strains was revealed. TdLTP4 (5-100 μg/mL) decreased the production of NO (IC50 = 4.32 μg/mL), IL-6 (IC50 = 11.52 μg/mL), IL-1β (IC50 = 7.87 μg/mL) and TNF-α (IC50 = 8.66 μg/mL) by lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. TdLTP4 could modulate the macrophages inflammatory mode by causing reduction in iNOS and COX-2. According to these findings, TdLTP4 fusion protein could be used as natural anti-inflammatory and antimicrobial agent in food preservation and human health.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Tunisia; Department of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, 2112, Gafsa, Tunisia.
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Tunisia
| | - Wissal Dhifi
- LR17-ES03 Physiopathology, Food and Biomolecules, Higher Institute of Biotechnology of Sidi Thabet, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, P.O. BOX 199, Bisha, 61922, Saudi Arabia; University of Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Tunisia
| |
Collapse
|
9
|
Megeressa M, Siraj B, Zarina S, Ahmed A. Structural characterization and in vitro lipid binding studies of non-specific lipid transfer protein 1 (nsLTP1) from fennel (Foeniculum vulgare) seeds. Sci Rep 2020; 10:21243. [PMID: 33277525 PMCID: PMC7718255 DOI: 10.1038/s41598-020-77278-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/06/2020] [Indexed: 11/09/2022] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are cationic proteins involved in intracellular lipid shuttling in growth and reproduction, as well as in defense against pathogenic microbes. Even though the primary and spatial structures of some nsLTPs from different plants indicate their similar features, they exhibit distinct lipid-binding specificities signifying their various biological roles that dictate further structural study. The present study determined the complete amino acid sequence, in silico 3D structure modeling, and the antiproliferative activity of nsLTP1 from fennel (Foeniculum vulgare) seeds. Fennel is a member of the family Umbelliferae (Apiaceae) native to southern Europe and the Mediterranean region. It is used as a spice medicine and fresh vegetable. Fennel nsLTP1 was purified using the combination of gel filtration and reverse-phase high-performance liquid chromatography (RP-HPLC). Its homogeneity was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. The purified nsLTP1 was treated with 4-vinyl pyridine, and the modified protein was then digested with trypsin. The complete amino acid sequence of nsLTP1 established by intact protein sequence up to 28 residues, overlapping tryptic peptides, and cyanogen bromide (CNBr) peptides. Hence, it is confirmed that fennel nsLTP1 is a 9433 Da single polypeptide chain consisting of 91 amino acids with eight conserved cysteines. Moreover, the 3D structure is predicted to have four α-helices interlinked by three loops and a long C-terminal tail. The lipid-binding property of fennel nsLTP1 is examined in vitro using fluorescent 2-p-toluidinonaphthalene-6-sulfonate (TNS) and validated using a molecular docking study with AutoDock Vina. Both of the binding studies confirmed the order of binding efficiency among the four studied fatty acids linoleic acid > linolenic acid > Stearic acid > Palmitic acid. A preliminary screening of fennel nsLTP1 suppressed the growth of MCF-7 human breast cancer cells in a dose-dependent manner with an IC50 value of 6.98 µM after 48 h treatment.
Collapse
Affiliation(s)
- Mekdes Megeressa
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Bushra Siraj
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Shamshad Zarina
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Aftab Ahmed
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA.
| |
Collapse
|
10
|
Zitterl-Eglseer K, Marschik T. Antiviral Medicinal Plants of Veterinary Importance: A Literature Review. PLANTA MEDICA 2020; 86:1058-1072. [PMID: 32777833 DOI: 10.1055/a-1224-6115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Viruses have a high mutation rate, and, thus, there is a continual emergence of new antiviral-resistant strains. Therefore, it becomes imperative to explore and develop new antiviral compounds continually. The search for pharmacological substances of plant origin that are effective against animal viruses, which have a high mortality rate or cause large economic losses, has garnered interest in the last few decades. This systematic review compiles 130 plant species that exhibit antiviral activity on 37 different virus species causing serious diseases in animals. The kind of extract, fraction, or compound exhibiting the antiviral activity and the design of the trial were particularly considered for review. The literature revealed details regarding plant species exhibiting antiviral activities against pathogenic animal virus species of the following families-Herpesviridae, Orthomyxoviridae, Paramyxoviridae, Parvoviridae, Poxviridae, Nimaviridae, Coronaviridae, Reoviridae, and Rhabdoviridae-that cause infections, among others, in poultry, cattle, pigs, horses, shrimps, and fish. Overall, 30 plant species exhibited activity against various influenza viruses, most of them causing avian influenza. Furthermore, 30 plant species were noted to be active against Newcastle disease virus. In addition, regarding the pathogens most frequently investigated, this review provides a compilation of 20 plant species active against bovine herpesvirus, 16 against fowlpox virus, 12 against white spot syndrome virus in marine shrimps, and 10 against suide herpesvirus. Nevertheless, some plant extracts, particularly their compounds, are promising candidates for the development of new antiviral remedies, which are urgently required.
Collapse
Affiliation(s)
- Karin Zitterl-Eglseer
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Tatiana Marschik
- Unit of Veterinary Public Health and Epidemiology, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
11
|
Finkina EI, Melnikova DN, Bogdanov IV, Ovchinnikova TV. Peptides of the Innate Immune System of Plants. Part II. Biosynthesis, Biological Functions, and Possible Practical Applications. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019020043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Cuevas-Zuviría B, Garrido-Arandia M, Díaz-Perales A, Pacios LF. Energy Landscapes of Ligand Motion Inside the Tunnel-Like Cavity of Lipid Transfer Proteins: The Case of the Pru p 3 Allergen. Int J Mol Sci 2019; 20:ijms20061432. [PMID: 30901853 PMCID: PMC6471300 DOI: 10.3390/ijms20061432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023] Open
Abstract
Allergies are a widespread problem in western countries, affecting a large part of the population, with levels of prevalence increasingly rising due to reasons still not understood. Evidence accumulated in recent years points to an essential role played by ligands of allergen proteins in the sensitization phase of allergies. In this regard, we recently identified the natural ligand of Pru p 3, a lipid transfer protein, a major allergen from peach fruit and a model of food allergy. The ligand of Pru p 3 has been shown to play a key role in the sensitization to peach and to other plant food sources that provoke cross-reactivity in a large proportion of patients allergic to peach. However, the question of which is the binding pose of this ligand in its carrier protein, and how it can be transferred to receptors of the immune system where it develops its function as a coadjuvant was not elucidated. In this work, different molecular dynamics simulations have been considered as starting points to study the properties of the ligand–protein system in solution. Besides, an energy landscape based on collective variables that describe the process of ligand motion within the cavity of Pru p 3 was obtained by using well-tempered metadynamics. The simulations revealed the differences between distinct binding modes, and also revealed important aspects of the motion of the ligand throughout its carrier protein, relevant to its binding–unbinding process. Our findings are potentially interesting for studying protein–ligand systems beyond the specific case of the allergen protein dealt with here.
Collapse
Affiliation(s)
- Bruno Cuevas-Zuviría
- Universidad Politécnica de Madrid (UPM), Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Campus Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain.
| | - María Garrido-Arandia
- Universidad Politécnica de Madrid (UPM), Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Campus Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain.
| | - Araceli Díaz-Perales
- Universidad Politécnica de Madrid (UPM), Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Campus Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, ETSIAAB, UPM, Ciudad Universitaria, 28040 Madrid, Spain.
| | - Luis F Pacios
- Universidad Politécnica de Madrid (UPM), Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Campus Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, ETSIAAB, UPM, Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
13
|
Finkina EI, Melnikova DN, Bogdanov IV, Ovchinnikova TV. Peptides of the Innate Immune System of Plants. Part I. Structure, Biological Activity, and Mechanisms of Action. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019010060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Fernández-Oliva A, Ortega-González P, Risco C. Targeting host lipid flows: Exploring new antiviral and antibiotic strategies. Cell Microbiol 2019; 21:e12996. [PMID: 30585688 PMCID: PMC7162424 DOI: 10.1111/cmi.12996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022]
Abstract
Bacteria and viruses pose serious challenges for humans because they evolve continuously. Despite ongoing efforts, antiviral drugs to treat many of the most troubling viruses have not been approved yet. The recent launch of new antimicrobials is generating hope as more and more pathogens around the world become resistant to available drugs. But extra effort is still needed. One of the current strategies for antiviral and antibiotic drug development is the search for host cellular pathways used by many different pathogens. For example, many viruses and bacteria alter lipid synthesis and transport to build their own organelles inside infected cells. The characterization of these interactions will be fundamental to identify new targets for antiviral and antibiotic drug development. This review discusses how viruses and bacteria subvert cell machineries for lipid synthesis and transport and summarises the most promising compounds that interfere with these pathways.
Collapse
Affiliation(s)
| | | | - Cristina Risco
- Cell Structure Lab, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| |
Collapse
|
15
|
Bogdanov IV, Shenkarev ZO, Finkina EI, Melnikova DN, Rumynskiy EI, Arseniev AS, Ovchinnikova TV. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties. BMC PLANT BIOLOGY 2016; 16:107. [PMID: 27137920 PMCID: PMC4852415 DOI: 10.1186/s12870-016-0792-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/21/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Plant lipid transfer proteins (LTPs) assemble a family of small (7-9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and important allergenic specie of the legume family. This work is aimed at isolation of a novel LTP from pea seeds and characterization of its structural, functional, and allergenic properties. RESULTS Three novel lipid transfer proteins, designated as Ps-LTP1-3, were found in the garden pea Pisum sativum, their cDNA sequences were determined, and mRNA expression levels of all the three proteins were measured at different pea organs. Ps-LTP1 was isolated for the first time from the pea seeds, and its complete amino acid sequence was determined. The protein exhibits antifungal activity and is a membrane-active compound that causes a leakage from artificial liposomes. The protein binds various lipids including bioactive jasmonic acid. Spatial structure of the recombinant uniformly (13)C,(15)N-labelled Ps-LTP1 was solved by heteronuclear NMR spectroscopy. In solution the unliganded protein represents the mixture of two conformers (relative populations ~ 85:15) which are interconnected by exchange process with characteristic time ~ 100 ms. Hydrophobic residues of major conformer form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ~1000 Å(3)). The minor conformer probably corresponds to the protein with the partially collapsed internal cavity. CONCLUSIONS For the first time conformational heterogeneity in solution was shown for an unliganded plant lipid transfer protein. Heat denaturation profile and simulated gastrointestinal digestion assay showed that Ps-LTP1 displayed a high thermal and digestive proteolytic resistance proper for food allergens. The reported structural and immunological findings seem to describe Ps-LTP1 as potential cross-reactive allergen in LTP-sensitized patients, mostly Pru p 3(+) ones. Similarly to allergenic LTPs the potential IgE-binding epitope of Ps-LTP1 is located near the proposed entrance into internal cavity and could be involved in lipid-binding.
Collapse
Affiliation(s)
- Ivan V Bogdanov
- M.M.Shemyakin and Yu.A.Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia
| | - Zakhar O Shenkarev
- M.M.Shemyakin and Yu.A.Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia
| | - Ekaterina I Finkina
- M.M.Shemyakin and Yu.A.Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia
| | - Daria N Melnikova
- M.M.Shemyakin and Yu.A.Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia
| | - Eugene I Rumynskiy
- M.M.Shemyakin and Yu.A.Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia
| | - Alexander S Arseniev
- M.M.Shemyakin and Yu.A.Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia
| | - Tatiana V Ovchinnikova
- M.M.Shemyakin and Yu.A.Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia.
| |
Collapse
|
16
|
Fernández de Castro I, Tenorio R, Risco C. Virus assembly factories in a lipid world. Curr Opin Virol 2016; 18:20-6. [PMID: 26985879 DOI: 10.1016/j.coviro.2016.02.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/11/2016] [Accepted: 02/19/2016] [Indexed: 12/15/2022]
Abstract
Many viruses build specialized structures known as viral factories, a protected environment in which viral genome replication and morphogenesis take place. Recent findings show that viruses manipulate lipid flows to assemble these replication platforms. Viruses are thus able to create new membranes by interfering with lipid metabolism, targeting and transport; they make use of specific lipid transfer proteins (LTP) at membrane contact sites, and frequently recruit endoplasmic reticulum (ER), ER export sites, and mitochondria. Some factories, such as those built by plant and certain animal viruses, are motile membranous structures involved in intracellular or intercellular transport of the replicated viral genome. The identification of lipids and LTP subverted by viruses might lead to better understand and fight viral infections.
Collapse
Affiliation(s)
- Isabel Fernández de Castro
- Cell Structure Laboratory, Centro Nacional de Biotecnología, CNB-CSIC, UAM, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Raquel Tenorio
- Cell Structure Laboratory, Centro Nacional de Biotecnología, CNB-CSIC, UAM, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, Centro Nacional de Biotecnología, CNB-CSIC, UAM, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
17
|
de Souza Cândido E, e Silva Cardoso MH, Sousa DA, Viana JC, de Oliveira-Júnior NG, Miranda V, Franco OL. The use of versatile plant antimicrobial peptides in agribusiness and human health. Peptides 2014; 55:65-78. [PMID: 24548568 DOI: 10.1016/j.peptides.2014.02.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/11/2022]
Abstract
Plant immune responses involve a wide diversity of physiological reactions that are induced by the recognition of pathogens, such as hypersensitive responses, cell wall modifications, and the synthesis of antimicrobial molecules including antimicrobial peptides (AMPs). These proteinaceous molecules have been widely studied, presenting peculiar characteristics such as conserved domains and a conserved disulfide bond pattern. Currently, many AMP classes with diverse modes of action are known, having been isolated from a large number of organisms. Plant AMPs comprise an interesting source of studies nowadays, and among these there are reports of different classes, including defensins, albumins, cyclotides, snakins and several others. These peptides have been widely used in works that pursue human disease control, including nosocomial infections, as well as for agricultural purposes. In this context, this review will focus on the relevance of the structural-function relations of AMPs derived from plants and their proper use in applications for human health and agribusiness.
Collapse
Affiliation(s)
- Elizabete de Souza Cândido
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Marlon Henrique e Silva Cardoso
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Daniel Amaro Sousa
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
| | - Juliane Cançado Viana
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
| | - Nelson Gomes de Oliveira-Júnior
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Biologia Animal, Universidade de Brasília, Brasília, DF, Brazil
| | - Vívian Miranda
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
18
|
Shi Z, Wang ZJ, Xu HL, Tian Y, Li X, Bao JK, Sun SR, Yue BS. Modeling, docking and dynamics simulations of a non-specific lipid transfer protein from Peganum harmala L. Comput Biol Chem 2013; 47:56-65. [PMID: 23891721 DOI: 10.1016/j.compbiolchem.2013.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 12/18/2022]
Abstract
Non-specific lipid transfer proteins (ns-LTPs), ubiquitously found in various types of plants, have been well-known to transfer amphiphilic lipids and promote the lipid exchange between mitochondria and microbody. In this study, an in silico analysis was proposed to study ns-LTP in Peganum harmala L., which may belong to ns-LTP1 family, aiming at constructing its three-dimensional structure. Moreover, we adopted MEGA to analyze ns-LTPs and other species phylogenetically, which brought out an initial sequence alignment of ns-LTPs. In addition, we used molecular docking and molecular dynamics simulations to further investigate the affinities and stabilities of ns-LTP with several ligands complexes. Taken together, our results about ns-LTPs and their ligand-binding activities can provide a better understanding of the lipid-protein interactions, indicating some future applications of ns-LTP-mediated transport.
Collapse
Affiliation(s)
- Zheng Shi
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, School of Life Sciences, Sichuan University, Chengdu 610064, China; School of Life Sciences, Guizhou Normal University, Guiyang 550001, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Fan Y, Du K, Gao Y, Kong Y, Chu C, Sokolov V, Wang Y. Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413040042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Ma X, Liu D, Tang H, Wang Y, Wu T, Li Y, Yang J, Yang J, Sun S, Zhang F. Purification and characterization of a novel antifungal protein with antiproliferation and anti-HIV-1 reverse transcriptase activities from Peganum harmala seeds. Acta Biochim Biophys Sin (Shanghai) 2013; 45:87-94. [PMID: 23165744 DOI: 10.1093/abbs/gms094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A novel antifungal protein, designated as PHP, was isolated from the seeds of Peganum harmala, by cationic exchange chromatography on Resource S column and gel filtration on Sephadex 75 10/300 GL column. PHP was found to form a homodimer of about 16 kDa. Isoelectric focusing polyacrylamide gel electrophoresis analysis showed that the isoelectric point of PHP was ∼8.4. The N-terminal 20-amino acid sequence of PHP, ITCPQVTQSLAPCVPYLISG, resembles the non-specific lipid transfer proteins in certain plants. PHP exhibited lipid-binding activity. Furthermore, PHP exerted antifungal activity against Alternaria alternate, Penicillium degitatum, Rhizopus stuolonifer, and Magnaporthe grisea, and its antifungal activity was stable in the temperature range 4-60°C, and in the pH range 4-10. It inhibited the mycelial growth in A. alternate, P. degitatum, R. stuolonifer, and M. grisea with 50% inhibitory concentration (IC(50)) of 1.5, 37.5, 8.44, and 12.19 μM, respectively. PHP was also able to inhibit the proliferation of esophagus carcinoma (Eca-109), cervical carcinoma (HeLa), gastric carcinoma (MGC-7), and melanoma (B16) cells with IC(50) of 0.7, 2.74, 3.13, and 1.47 μM, respectively. Moreover, PHP significantly inhibited HIV-1 reverse transcriptase (RT) with an IC(50) of 1.26 μM. It did not have hemagglutinating and antibacterial activities. In conclusion, a novel antifungal protein with antiproliferation and anti-HIV-1 RT activities was obtained from P. harmala seeds.
Collapse
Affiliation(s)
- Xiaojin Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
|
23
|
Sagar S, Gehring C, Minneman KP. Methods to Isolate and Identify New Plant Signaling Peptides. SIGNALING AND COMMUNICATION IN PLANTS 2012. [DOI: 10.1007/978-3-642-27603-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
McDowell ET, Kapteyn J, Schmidt A, Li C, Kang JH, Descour A, Shi F, Larson M, Schilmiller A, An L, Jones AD, Pichersky E, Soderlund CA, Gang DR. Comparative functional genomic analysis of Solanum glandular trichome types. PLANT PHYSIOLOGY 2011; 155:524-39. [PMID: 21098679 PMCID: PMC3075747 DOI: 10.1104/pp.110.167114] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/18/2010] [Indexed: 05/19/2023]
Abstract
Glandular trichomes play important roles in protecting plants from biotic attack by producing defensive compounds. We investigated the metabolic profiles and transcriptomes to characterize the differences between different glandular trichome types in several domesticated and wild Solanum species: Solanum lycopersicum (glandular trichome types 1, 6, and 7), Solanum habrochaites (types 1, 4, and 6), Solanum pennellii (types 4 and 6), Solanum arcanum (type 6), and Solanum pimpinellifolium (type 6). Substantial chemical differences in and between Solanum species and glandular trichome types are likely determined by the regulation of metabolism at several levels. Comparison of S. habrochaites type 1 and 4 glandular trichomes revealed few differences in chemical content or transcript abundance, leading to the conclusion that these two glandular trichome types are the same and differ perhaps only in stalk length. The observation that all of the other species examined here contain either type 1 or 4 trichomes (not both) supports the conclusion that these two trichome types are the same. Most differences in metabolites between type 1 and 4 glands on the one hand and type 6 glands on the other hand are quantitative but not qualitative. Several glandular trichome types express genes associated with photosynthesis and carbon fixation, indicating that some carbon destined for specialized metabolism is likely fixed within the trichome secretory cells. Finally, Solanum type 7 glandular trichomes do not appear to be involved in the biosynthesis and storage of specialized metabolites and thus likely serve another unknown function, perhaps as the site of the synthesis of protease inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - David R. Gang
- Bio5 Institute (E.T.M., J.K., A.D., C.A.S., D.R.G.) and Department of Agricultural and Biosystems Engineering (L.A.), University of Arizona, Tucson, Arizona 85721; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109–1048 (A.S., E.P.); Department of Chemistry (C.L., F.S., A.D.J.), Department of Energy-Plant Research Laboratory (J.-H.K.), and Department of Biochemistry and Molecular Biology (M.L., A.S., A.D.J.), Michigan State University, East Lansing, Michigan 48824–1319; Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164–6340 (D.R.G.)
| |
Collapse
|
25
|
Arora R, Chawla R, Marwah R, Arora P, Sharma RK, Kaushik V, Goel R, Kaur A, Silambarasan M, Tripathi RP, Bhardwaj JR. Potential of Complementary and Alternative Medicine in Preventive Management of Novel H1N1 Flu (Swine Flu) Pandemic: Thwarting Potential Disasters in the Bud. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2010; 2011:586506. [PMID: 20976081 PMCID: PMC2957173 DOI: 10.1155/2011/586506] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 04/22/2010] [Accepted: 08/20/2010] [Indexed: 11/18/2022]
Abstract
The emergence of novel H1N1 has posed a situation that warrants urgent global attention. Though antiviral drugs are available in mainstream medicine for treating symptoms of swine flu, currently there is no preventive medicine available. Even when available, they would be in short supply and ineffective in a pandemic situation, for treating the masses worldwide. Besides the development of drug resistance, emergence of mutant strains of the virus, emergence of a more virulent strain, prohibitive costs of available drugs, time lag between vaccine developments, and mass casualties would pose difficult problems. In view of this, complementary and alternative medicine (CAM) offers a plethora of interesting preventive possibilities in patients. Herbs exhibit a diverse array of biological activities and can be effectively harnessed for managing pandemic flu. Potentially active herbs can serve as effective anti influenza agents. The role of CAM for managing novel H1N1 flu and the mode of action of these botanicals is presented here in an evidence-based approach that can be followed to establish their potential use in the management of influenza pandemics. The complementary and alternative medicine approach deliberated in the paper should also be useful in treating the patients with serious influenza in non pandemic situations.
Collapse
Affiliation(s)
- Rajesh Arora
- Division of Chemical Biological, Radiological and Nuclear (CBRN) Defence, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
- Department of Chemistry and Biochemistry, Faculty of Medicine, Trakia University, Armeiska Street 1, 6000 Stara Zagora, Bulgaria
| | - R. Chawla
- Division of Chemical Biological, Radiological and Nuclear (CBRN) Defence, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Rohit Marwah
- Division of Chemical Biological, Radiological and Nuclear (CBRN) Defence, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - P. Arora
- Centre for Disaster Management Studies, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi 110006, India
| | - R. K. Sharma
- Division of Chemical Biological, Radiological and Nuclear (CBRN) Defence, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - Vinod Kaushik
- Division of Chemical Biological, Radiological and Nuclear (CBRN) Defence, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - R. Goel
- Division of Chemical Biological, Radiological and Nuclear (CBRN) Defence, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - A. Kaur
- Centre for Disaster Management Studies, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi 110006, India
| | - M. Silambarasan
- Division of Chemical Biological, Radiological and Nuclear (CBRN) Defence, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - R. P. Tripathi
- Division of Chemical Biological, Radiological and Nuclear (CBRN) Defence, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Road, Delhi 110054, India
| | - J. R. Bhardwaj
- Division of Disaster Management, National Disaster Management Authority (NDMA), A1 Safdarjung Enclave, New Delhi 110001, India
| |
Collapse
|
26
|
Zaman U, Abbasi A. Isolation, purification and characterization of a nonspecific lipid transfer protein from Cuminum cyminum. PHYTOCHEMISTRY 2009; 70:979-987. [PMID: 19473681 DOI: 10.1016/j.phytochem.2009.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 05/27/2023]
Abstract
Cuminum cyminum, an aromatic plant from the family Umbelliferae, is used as a flavoring and seasoning agent in foods. This communication reports the characterization of a nonspecific lipid transfer protein nsLTP1 from its seeds. Plant nsLTPs are small basic proteins involved in transport of lipids between membranes. These proteins are known to participate in plant defense; however, the exact mechanism of their antimicrobial action against fungi or bacteria is still unclear. The cumin nsLTP1 has been purified using a combination of chromatographic procedures and further characterized using mass spectrometry, circular dichroism spectroscopy and Edman degradation. Amino acid sequence has been used to predict homology model of cumin nsLTP1 in complex with myristic acid, and lyso-myristoyl phosphatidyl choline (LMPC). Cumin nsLTP1 is a monomeric protein with a molecular weight of 9.7 kDa as estimated by SDS-PAGE and ESIMS. The protein shows an isoelectric point of 7.8 on 6% PAGE. The primary structure consists of 92 amino acids with eight conserved cysteine residues. The global fold of cumin nsLTP1 includes four alpha-helices stabilized by four disulfide bonds and a C-terminal tail. The role of internal hydrophobic cavity of the protein in lipid transfer is discussed.
Collapse
Affiliation(s)
- Uzma Zaman
- International Center for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | | |
Collapse
|