1
|
Hao L, Zhou J, Yang H, He C, Shu W, Song H, Liu Q. Anti-virulence potential of iclaprim, a novel folic acid synthesis inhibitor, against Staphylococcus aureus. Appl Microbiol Biotechnol 2024; 108:432. [PMID: 39102054 DOI: 10.1007/s00253-024-13268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Infections caused by Staphylococcus aureus pose a significant global public problem. Therefore, new antibiotics and therapeutic strategies are needed to combat this pathogen. This investigation delves into the effects of iclaprim, a newly discovered inhibitor of folic acid synthesis, on S. aureus virulence. The phenotypic and genotypic effects of iclaprim were thoroughly examined in relation to virulence factors, biofilm formation, and dispersal, as well as partial virulence-encoding genes associated with exoproteins, adherence, and regulation in S. aureus MW2, N315, and ATCC 25923. Then, the in vivo effectiveness of iclaprim on S. aureus pathogenicity was explored by a Galleria mellonella larvae infection model. The use of iclaprim at sub-inhibitory concentrations (sub-MICs) resulted in a reduction of α-hemolysin (Hla) production and a differential effect on the activity of coagulase in S. aureus strains. The results of biofilm formation and eradication assay showed that iclaprim was highly effective in depolymerizing the mature biofilm of S. aureus strains at concentrations of 1 MIC or greater, however, inhibited the biofilm-forming ability of only strains N315 and ATCC 25923 at sub-MICs. Interestingly, treatment of strains with sub-MICs of iclaprim resulted in significant stimulation or suppression of most virulence-encoding genes expression. Iclaprim did not affect the production of δ-hemolysin or staphylococcal protein A (SpA), nor did it impact the total activity of proteases, nucleases, and lipases. In vivo testing showed that sub-MICs of iclaprim significantly improves infected larvae survival. The present study offered valuable insights towards a better understating of the influence of iclaprim on different strains of S. aureus. The findings suggest that iclaprim may have potential as an anti-virulence and antibiofilm agent, thus potentially mitigating the pathogenicity of S. aureus and improving clinical outcomes associated with infections caused by this pathogen. KEY POINTS: • Iclaprim effectively inhibits α-hemolysin production and biofilm formation in a strain-dependent manner and was an excellent depolymerizing agent of mature biofilm • Iclaprim affected the mRNA expression of virulence-encoding genes associated with exoproteins, adherence, and regulation • In vivo study in G. mellonella larvae challenged with S. aureus exhibited that iclaprim improves larvae survival.
Collapse
Affiliation(s)
- Lingyun Hao
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingwen Zhou
- Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Rd., Shanghai, 200071, China
| | - Han Yang
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chunyan He
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen Shu
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haoyue Song
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qingzhong Liu
- Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Rd., Shanghai, 200071, China.
| |
Collapse
|
2
|
Sosa-Fajardo A, Díaz-Muñoz C, Van der Veken D, Pradal I, Verce M, Weckx S, Leroy F. Genomic exploration of the fermented meat isolate Staphylococcus shinii IMDO-S216 with a focus on competitiveness-enhancing secondary metabolites. BMC Genomics 2024; 25:575. [PMID: 38849728 PMCID: PMC11161930 DOI: 10.1186/s12864-024-10490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Staphylococcus shinii appears as an umbrella species encompassing several strains of Staphylococcus pseudoxylosus and Staphylococcus xylosus. Given its phylogenetic closeness to S. xylosus, S. shinii can be found in similar ecological niches, including the microbiota of fermented meats where the species may contribute to colour and flavour development. In addition to these conventional functionalities, a biopreservation potential based on the production of antagonistic compounds may be available. Such potential, however, remains largely unexplored in contrast to the large body of research that is available on the biopreservative properties of lactic acid bacteria. The present study outlines the exploration of the genetic basis of competitiveness and antimicrobial activity of a fermented meat isolate, S. shinii IMDO-S216. To this end, its genome was sequenced, de novo assembled, and annotated. RESULTS The genome contained a single circular chromosome and eight plasmid replicons. Focus of the genomic exploration was on secondary metabolite biosynthetic gene clusters coding for ribosomally synthesized and posttranslationally modified peptides. One complete cluster was coding for a bacteriocin, namely lactococcin 972; the genes coding for the pre-bacteriocin, the ATP-binding cassette transporter, and the immunity protein were also identified. Five other complete clusters were identified, possibly functioning as competitiveness factors. These clusters were found to be involved in various responses such as membrane fluidity, iron intake from the medium, a quorum sensing system, and decreased sensitivity to antimicrobial peptides and competing microorganisms. The presence of these clusters was equally studied among a selection of multiple Staphylococcus species to assess their prevalence in closely-related organisms. CONCLUSIONS Such factors possibly translate in an improved adaptation and competitiveness of S. shinii IMDO-S216 which are, in turn, likely to improve its fitness in a fermented meat matrix.
Collapse
Affiliation(s)
- Ana Sosa-Fajardo
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Van der Veken
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inés Pradal
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
3
|
Ramos B, Cunha MV. The mobilome of Staphylococcus aureus from wild ungulates reveals epidemiological links at the animal-human interface. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124241. [PMID: 38825220 DOI: 10.1016/j.envpol.2024.124241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/28/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
Staphylococcus aureus thrives at animal-human-environment interfaces. A large-scale work from our group indicated that antimicrobial resistance (AMR) in commensal S. aureus strains from wild ungulates is associated with agricultural land cover and livestock farming, raising the hypothesis that AMR genes in wildlife strains may originate from different hosts, namely via exchange of mobile genetic elements (MGE). In this work, we generate the largest available dataset of S. aureus draft genomes from wild ungulates in Portugal and explore their mobilome, which can determine important traits such as AMR, virulence, and host specificity, to understand MGE exchange. Core genome multi-locus sequence typing based on 98 newly generated draft genomes and 101 publicly available genomes from Portugal demonstrated that the genomic relatedness of S. aureus from wild ungulates assigned to livestock-associated sequence types (ST) is greater compared to wild ungulate isolates assigned to human-associated STs. Screening of host specificity determinants disclosed the unexpected presence in wildlife of the immune evasion cluster encoded in φSa3 prophage, described as a human-specific virulence determinant. Additionally, two plasmids, pAVX and pETB, previously associated with avian species and humans, respectively, and the Tn553 transposon were detected. Both pETB and Tn553 encode penicillin resistance through blaZ. Pangenome analysis of wild ungulate isolates shows a core genome fraction of 2133 genes, with isolates assigned to ST72 and ST3224 being distinguished from the remaining by MGEs, although there is no reported role of these in adaptation to wildlife. AMR related gene clusters found in the shell genome are directly linked to resistance against penicillin, macrolides, fosfomycin, and aminoglycosides, and they represent mobile ARGs. Altogether, our findings support epidemiological interactions of human and non-human hosts at interfaces, with MGE exchange, including AMR determinants, associated with putative indirect movements of S. aureus among human and wildlife hosts that might be bridged by livestock.
Collapse
Affiliation(s)
- Beatriz Ramos
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal; Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal; Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| |
Collapse
|
4
|
Yarrington KD, Shendruk TN, Limoli DH. The type IV pilus chemoreceptor PilJ controls chemotaxis of one bacterial species towards another. PLoS Biol 2024; 22:e3002488. [PMID: 38349934 PMCID: PMC10896506 DOI: 10.1371/journal.pbio.3002488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/26/2024] [Accepted: 01/05/2024] [Indexed: 02/15/2024] Open
Abstract
Bacteria live in social communities, where the ability to sense and respond to interspecies and environmental signals is critical for survival. We previously showed the pathogen Pseudomonas aeruginosa detects secreted peptides from bacterial competitors and navigates through interspecies signal gradients using pilus-based motility. Yet, it was unknown whether P. aeruginosa utilizes a designated chemosensory system for this behavior. Here, we performed a systematic genetic analysis of a putative pilus chemosensory system, followed by high-speed live-imaging and single-cell tracking, to reveal behaviors of mutants that retain motility but are blind to interspecies signals. The enzymes predicted to methylate (PilK) and demethylate (ChpB) the putative pilus chemoreceptor, PilJ, are necessary for cells to control the direction of migration. While these findings implicate PilJ as a bona fide chemoreceptor, such function had yet to be experimentally defined, as full-length PilJ is essential for motility. Thus, we constructed systematic genetic modifications of PilJ and found that without the predicted ligand binding domains or predicted methylation sites, cells lose the ability to detect competitor gradients, despite retaining pilus-mediated motility. Chemotaxis trajectory analysis revealed that increased probability and size of P. aeruginosa pilus-mediated steps towards S. aureus peptides, versus steps away, determines motility bias in wild type cells. However, PilJ mutants blind to interspecies signals take less frequent steps towards S. aureus or steps of equal size towards and away. Collectively, this work uncovers the chemosensory nature of PilJ, provides insight into how cell movements are biased during pilus-based chemotaxis, and identifies chemotactic interactions necessary for bacterial survival in polymicrobial communities, revealing putative pathways where therapeutic intervention might disrupt bacterial communication.
Collapse
Affiliation(s)
- Kaitlin D. Yarrington
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Tyler N. Shendruk
- School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom
| | - Dominique H. Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
5
|
Xu X, Zhou T, Fang X, Hu L, Zhu J, Zheng F. Biological characteristics and pathogenicity of a Staphylococcus aureus strain with an incomplete hemolytic phenotype isolated from bovine milk. Microbiol Immunol 2024; 68:6-14. [PMID: 37985160 DOI: 10.1111/1348-0421.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
Staphylococcus aureus is a common pathogen capable of infecting both humans and animals and causing various severe diseases. Here, we aimed to determine the biological features and pathogenicity of S. aureus strain Sa9, of the incomplete hemolysis phenotype, isolated from bovine milk. Sa9 was classified as ST97 by multilocus sequence typing, and it showed increased β-hemolysin expression and lower Hla and Hld expression levels compared with that in the S. aureus USA300 strain LAC. RT-PCR and ELISA results showed that the expression levels of inflammatory cytokines were higher in Sa9-induced mouse primary peritoneal macrophages compared with those induced by the LAC strain. However, the Sa9 strain also mediated anti-inflammatory effects by upregulating IL-10 and IFN-β in macrophages, which were not apparently induced by S. aureus culture supernatants. Phagocytosis and whole-blood survival assays were also performed to assess the in vitro survival of bacteria, and the virulence was evaluated in mice. Although the Sa9 strain showed lower ability of intracellular survival in macrophages than LAC, similar multiplication in human whole blood and pathogenicity toward mice were observed. Taken together, we report that the distinctive immune response induced by the S. aureus strain with an incomplete hemolysis phenotype occurs in cattle, and its potential pathogenicity and risk of transmission to humans require attention.
Collapse
Affiliation(s)
- Xiuhua Xu
- Department of Microbiology, Huadong Medical Institute of Biotechniques, Nanjing, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tingting Zhou
- Department of Microbiology, Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Xueyao Fang
- Key Laboratory of Medicine in Jiangxi Province, Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Longhua Hu
- Key Laboratory of Medicine in Jiangxi Province, Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jin Zhu
- Department of Microbiology, Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Feng Zheng
- Department of Microbiology, Huadong Medical Institute of Biotechniques, Nanjing, China
| |
Collapse
|
6
|
Schnoor SB, Neubauer P, Gimpel M. Recent insights into the world of dual-function bacterial sRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1824. [PMID: 38039556 DOI: 10.1002/wrna.1824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/03/2023]
Abstract
Dual-function sRNAs refer to a small subgroup of small regulatory RNAs that merges base-pairing properties of antisense RNAs with peptide-encoding properties of mRNA. Both functions can be part of either same or in another metabolic pathway. Here, we want to update the knowledge of to the already known dual-function sRNAs and review the six new sRNAs found since 2017 regarding their structure, functional mechanisms, evolutionary conservation, and role in the regulation of distinct biological/physiological processes. The increasing identification of dual-function sRNAs through bioinformatics approaches, RNomics and RNA-sequencing and the associated increase in regulatory understanding will likely continue to increase at the same rate in the future. This may improve our understanding of the physiology, virulence and resistance of bacteria, as well as enable their use in technical applications. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
| | - Peter Neubauer
- Department of Bioprocess Engineering, Technische Universitat Berlin, Berlin, Germany
| | - Matthias Gimpel
- Department of Bioprocess Engineering, Technische Universitat Berlin, Berlin, Germany
| |
Collapse
|
7
|
Chen J, Lv Y, Shang W, Yang Y, Wang Y, Hu Z, Huang X, Zhang R, Yuan J, Huang J, Rao X. Loaded delta-hemolysin shapes the properties of Staphylococcus aureus membrane vesicles. Front Microbiol 2023; 14:1254367. [PMID: 37869662 PMCID: PMC10588482 DOI: 10.3389/fmicb.2023.1254367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023] Open
Abstract
Background Membrane vesicles (MVs) are nanoscale vesicular structures produced by bacteria during their growth in vitro and in vivo. Some bacterial components can be loaded in bacterial MVs, but the roles of the loaded MV molecules are unclear. Methods MVs of Staphylococcus aureus RN4220 and its derivatives were prepared. Dynamic light scattering analysis was used to evaluate the size distribution, and 4D-label-free liquid chromatography-tandem mass spectrometry analysis was performed to detect protein composition in the MVs. The site-mutation S. aureus RN4220-Δhld and agrA deletion mutant RN4220-ΔagrA were generated via allelic replacement strategies. A hemolysis assay was performed with rabbit red blood cells. CCK-8 and lactate dehydrogenase release assays were used to determine the cytotoxicity of S. aureus MVs against RAW264.7 macrophages. The serum levels of inflammatory factors such as IL-6, IL-1β, and TNFα in mice treated with S. aureus MVs were detected with an enzyme-linked immunosorbent assay kit. Results Delta-hemolysin (Hld) was identified as a major loaded factor in S. aureus MVs. Further study showed that Hld could promote the production of staphylococcal MVs with smaller sizes. Loaded Hld affected the diversity of loaded proteins in MVs of S. aureus RN4220. Hld resulted in decreased protein diversity in MVs of S. aureus. Site-mutation (RN4220-Δhld) and agrA deletion (RN4220-ΔagrA) mutants produced MVs (ΔhldMVs and ΔagrAMVs) with a greater number of bacterial proteins than those derived from wild-type RN4220 (wtMVs). Moreover, Hld contributed to the hemolytic activity of wtMVs. Hld-loaded wtMVs were cytotoxic to macrophage RAW264.7 cells and could stimulate the production of inflammatory factor IL-6 in vivo. Conclusion This study presented that Hld was a major loaded factor in S. aureus MVs, and the loaded Hld played vital roles in the MV-property modification.
Collapse
Affiliation(s)
- Juan Chen
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yuhuan Lv
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, China
- Department of Clinical Laboratory, The 971st Hospital of Chinese People's Liberation Army Navy, Qingdao, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Yuting Wang
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Xiaonan Huang
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jizhen Yuan
- Department of Clinical Laboratory, The 971st Hospital of Chinese People's Liberation Army Navy, Qingdao, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, China
| |
Collapse
|
8
|
Patel H, Rawat S. A genetic regulatory see-saw of biofilm and virulence in MRSA pathogenesis. Front Microbiol 2023; 14:1204428. [PMID: 37434702 PMCID: PMC10332168 DOI: 10.3389/fmicb.2023.1204428] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Staphylococcus aureus is one of the most common opportunistic human pathogens causing several infectious diseases. Ever since the emergence of the first methicillin-resistant Staphylococcus aureus (MRSA) strain decades back, the organism has been a major cause of hospital-acquired infections (HA-MRSA). The spread of this pathogen across the community led to the emergence of a more virulent subtype of the strain, i.e., Community acquired Methicillin resistant Staphylococcus aureus (CA-MRSA). Hence, WHO has declared Staphylococcus aureus as a high-priority pathogen. MRSA pathogenesis is remarkable because of the ability of this "superbug" to form robust biofilm both in vivo and in vitro by the formation of polysaccharide intercellular adhesin (PIA), extracellular DNA (eDNA), wall teichoic acids (WTAs), and capsule (CP), which are major components that impart stability to a biofilm. On the other hand, secretion of a diverse array of virulence factors such as hemolysins, leukotoxins, enterotoxins, and Protein A regulated by agr and sae two-component systems (TCS) aids in combating host immune response. The up- and downregulation of adhesion genes involved in biofilm formation and genes responsible for synthesizing virulence factors during different stages of infection act as a genetic regulatory see-saw in the pathogenesis of MRSA. This review provides insight into the evolution and pathogenesis of MRSA infections with a focus on genetic regulation of biofilm formation and virulence factors secretion.
Collapse
Affiliation(s)
| | - Seema Rawat
- Microbiology Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
9
|
Ashaiba A, Arun AB, Prasad KS, Tellis RC. Leptospiral sphingomyelinase Sph2 as a potential biomarker for diagnosis of leptospirosis. J Microbiol Methods 2022; 203:106621. [PMID: 36375539 DOI: 10.1016/j.mimet.2022.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Leptospirosis is an underestimated infectious tropical disease caused by the spirochetes belonging to the genus Leptospira. Leptospirosis is grossly underdiagnosed due to its myriad symptoms, varying from mild febrile illness to severe haemorrhage. Laboratory tests for leptospirosis is an extremely important and potent way for disease diagnosis, as the clinical manifestations are very similar to other febrile diseases. Currently available diagnostic techniques are time-consuming, require expertise and sophisticated instruments, and cannot identify the disease at an early phase of infection. Early diagnosis of leptospirosis is the need of the hour while considering the severe complications after the infection and the rate of mortality after misdiagnosis. Secretion of Leptospira-specific sphingomyelinases in leptospirosis patient's urine within a few days of the onset of infection is quite common and is a virulence factor present only in pathogenic Leptospira species. Herein, the structural and functional importance of leptospiral sphingomyelinase Sph2 in leptospirosis pathogenesis, as well as the potential of screening urinary Sph2 for diagnosis and the scope for developing a rapid and easily affordable point-of-care test for urinary leptospiral sphingomyelinase Sph2 as an alternative to current diagnostic methods are discussed.
Collapse
Affiliation(s)
- A Ashaiba
- Department of Microbiology, Yenepoya Medical College, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India; Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| | - A B Arun
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| | - K Sudhakara Prasad
- Nano Materials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India; Centre for Nutrition Studies, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India.
| | - Rouchelle C Tellis
- Department of Microbiology, Yenepoya Medical College, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India.
| |
Collapse
|
10
|
Genotypes of Staphylococcus aureus Clinical Isolates Are Associated with Phenol-Soluble Modulin (PSM) Production. Toxins (Basel) 2022; 14:toxins14080556. [PMID: 36006218 PMCID: PMC9412541 DOI: 10.3390/toxins14080556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 12/01/2022] Open
Abstract
Phenol-soluble modulins (PSMs) are important S. aureus virulence factors that cause cytolysis, mast cell degranulation, and stimulate inflammatory responses. In this study, PSM production by S. aureus clinical isolates was measured by liquid chromatography/mass spectrometry (LC-MS) and correlated with staphylococcal protein A (spa) type and staphylococcal cassette chromosome mec (SCCmec) type. Of 106 S. aureus clinical isolates, 50 (47.2%) corresponded to methicillin-susceptible S. aureus (MSSA) and 56 (52.8%) to methicillin-resistant S. aureus (MRSA). LC-MS analysis revealed no significant difference in average PSMα3, PSMα4, PSMβ2, and δ-toxin production between MSSA and MRSA isolates, but PSMα1, PSMα2, and PSMβ1 production were higher in MSSA than MRSA. This study demonstrated that average PSMα1–α4, PSMβ1–β2, and δ-toxin production by SCCmec type II strains was significantly lower than the IV, IVA, and V strains. Most of the SCCmec type II strains (n = 17/25; 68.0%) did not produce δ-toxin, suggesting a dysfunctional Agr system. The spa type t111 (except one strain) and t2460 (except one strain producing PSM α1–α4) did not produce PSMα1–α4 and δ-toxin, while average PSM production was higher among the t126 and t1784 strains. This study showed that the genotype of S. aureus, specifically the spa and SCCmec types, is important in characterizing the production of PSMs.
Collapse
|
11
|
Discovery of Unannotated Small Open Reading Frames in Streptococcus pneumoniae D39 Involved in Quorum Sensing and Virulence Using Ribosome Profiling. mBio 2022; 13:e0124722. [PMID: 35852327 PMCID: PMC9426450 DOI: 10.1128/mbio.01247-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae, an opportunistic human pathogen, is the leading cause of community-acquired pneumonia and an agent of otitis media, septicemia, and meningitis. Although genomic and transcriptomic studies of S. pneumoniae have provided detailed perspectives on gene content and expression programs, they have lacked information pertaining to the translational landscape, particularly at a resolution that identifies commonly overlooked small open reading frames (sORFs), whose importance is increasingly realized in metabolism, regulation, and virulence. To identify protein-coding sORFs in S. pneumoniae, antibiotic-enhanced ribosome profiling was conducted. Using translation inhibitors, 114 novel sORFs were detected, and the expression of a subset of them was experimentally validated. Two loci associated with virulence and quorum sensing were examined in deeper detail. One such sORF, rio3, overlaps with the noncoding RNA srf-02 that was previously implicated in pathogenesis. Targeted mutagenesis parsing rio3 from srf-02 revealed that rio3 is responsible for the fitness defect seen in a murine nasopharyngeal colonization model. Additionally, two novel sORFs located adjacent to the quorum sensing receptor rgg1518 were found to impact regulatory activity. Our findings emphasize the importance of sORFs present in the genomes of pathogenic bacteria and underscore the utility of ribosome profiling for identifying the bacterial translatome.
Collapse
|
12
|
Luteolin Inhibits the Biofilm Formation and Cytotoxicity of Methicillin-Resistant Staphylococcus aureus via Decreasing Bacterial Toxin Synthesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4476339. [PMID: 35586693 PMCID: PMC9110164 DOI: 10.1155/2022/4476339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022]
Abstract
Owing to the fact that luteolin has antibacterial activity against Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA), its specific mechanism in MRSA is worthy of investigation, which is the focus of this study. Initially, the collected S. aureus strains were treated with luteolin. Then, the minimum inhibitory concentration (MIC) of luteolin against the S. aureus strains was measured by the broth microdilution. The growth curves, biofilm formation, and cytotoxicity of treated S. aureus were detected using a microplate reader. The live and dead bacteria were evaluated using confocal laser scanning microscopy, the bacterial morphology was observed using scanning electron microscopy, and the S. aureus colony-forming unit (CFU) numbers were assessed. The levels of alpha hemolysin (α-hemolysin), delta hemolysin (δ-hemolysin), and hlaA were detected via western blot and RT-PCR. The mortality of mouse model with S. aureus systemic infection was analyzed, and the levels of IL-6, IL-8, IL-10, and TNF-α were quantitated using ELISA. Concretely, the MIC of luteolin against MRSA N315 was 64 μg/mL. Luteolin at 16 μg/mL did not affect the growth of MRSA N315, but inhibited the biofilm formation and CFU, and promoted the morphological changes and death of MRSA N315. Luteolin decreased the cytotoxicity and the levels of α-hemolysin, δ-hemolysin, and hlaA in MRSA N315, elevated MRSA-reduced mice survival rate, and differentially modulated the inflammatory cytokine levels in MRSA-infected mice. Collectively, luteolin inhibits biofilm formation and cytotoxicity of MRSA via blocking the bacterial toxin synthesis.
Collapse
|
13
|
Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: current understanding and future perspectives. BMC Vet Res 2022; 18:115. [PMID: 35331225 PMCID: PMC8944054 DOI: 10.1186/s12917-022-03197-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022] Open
Abstract
Staphylococcus aureus is a leading cause of bovine mastitis worldwide. Despite some improved understanding of disease pathogenesis, progress towards new methods for the control of intramammary infections (IMI) has been limited, particularly in the field of vaccination. Although herd management programs have helped to reduce the number of clinical cases, S. aureus mastitis remains a major disease burden. This review summarizes the past 16 years of research on bovine S. aureus population genetics, and molecular pathogenesis that have been conducted worldwide. We describe the diversity of S. aureus associated with bovine mastitis and the geographical distribution of S. aureus clones in different continents. We also describe studies investigating the evolution of bovine S. aureus and the importance of host-adaptation in its emergence as a mastitis pathogen. The available information on the prevalence of virulence determinants and their functional relevance during the pathogenesis of bovine mastitis are also discussed. Although traits such as biofilm formation and innate immune evasion are critical for the persistence of bacteria, the current understanding of the key host-pathogen interactions that determine the outcome of S. aureus IMI is very limited. We suggest that greater investment in research into the genetic and molecular basis of bovine S. aureus pathogenesis is essential for the identification of novel therapeutic and vaccine targets.
Collapse
|
14
|
Zhou X, Zheng Y, Lv Q, Kong D, Ji B, Han X, Zhou D, Sun Z, Zhu L, Liu P, Jiang H, Jiang Y. Staphylococcus aureus N-terminus formylated δ-toxin tends to form amyloid fibrils, while the deformylated δ-toxin tends to form functional oligomer complexes. Virulence 2021; 12:1418-1437. [PMID: 34028320 PMCID: PMC8158037 DOI: 10.1080/21505594.2021.1928395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022] Open
Abstract
The community-associated Methicillin-resistant Staphylococcus aureus strain (CA-MRSA) is highly virulent and has become a major focus of public health professionals. Phenol-soluble modulins (PSM) are key factors in its increased virulence. δ-Toxin belongs to PSM family and has copious secretion in many S. aureus strains. In addition, δ-toxin exists in the S. aureus culture supernatant as both N-terminus formylated δ-toxin (fδ-toxin) and deformylated δ-toxin (dfδ-toxin) groups. Although δ-toxin has been studied for more than 70 years, its functions remain unclear. We isolated and purified PSMs from the supernatant of S. aureus MW2, and found fibrils and oligomers aggregates by Size Exclusion Chromatography. After analyzing PSM aggregates and using peptide simulations, we found that the difference in the monomer structure of fδ-toxin and dfδ-toxin might ultimately lead to differences in the aggregation ability: fδ-toxin and dfδ-toxin tend to form fibrils and oligomers respectively. Of note, we found that fδ-toxin fibrils enhanced the stability of biofilms, while dfδ-toxin oligomers promoted their dispersal. Additionally, oligomeric dfδ-toxin combined with PSMα to form a complex with enhanced functionality. Due to the different aggregation capabilities and functions of fδ-toxin and dfδ-toxin, we speculate that they may be involved in the regulation of physiological activities of S. aureus. Moreover, the dfδ-toxin oligomer not only provides a new form of complex in the study of PSMα, but also has significance as a reference in oligomer research pertaining to some human amyloid diseases.
Collapse
Affiliation(s)
- Xinyu Zhou
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Bin Ji
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xuelian Han
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Zeyu Sun
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Li Zhu
- Beijing Institute of Biotechnology, Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
15
|
Ahmad-Mansour N, Loubet P, Pouget C, Dunyach-Remy C, Sotto A, Lavigne JP, Molle V. Staphylococcus aureus Toxins: An Update on Their Pathogenic Properties and Potential Treatments. Toxins (Basel) 2021; 13:677. [PMID: 34678970 PMCID: PMC8540901 DOI: 10.3390/toxins13100677] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/12/2023] Open
Abstract
Staphylococcus aureus is a clinically important pathogen that causes a wide range of human infections, from minor skin infections to severe tissue infection and sepsis. S. aureus has a high level of antibiotic resistance and is a common cause of infections in hospitals and the community. The rising prevalence of community-acquired methicillin-resistant S. aureus (CA-MRSA), combined with the important severity of S. aureus infections in general, has resulted in the frequent use of anti-staphylococcal antibiotics, leading to increasing resistance rates. Antibiotic-resistant S. aureus continues to be a major health concern, necessitating the development of novel therapeutic strategies. S. aureus uses a wide range of virulence factors, such as toxins, to develop an infection in the host. Recently, anti-virulence treatments that directly or indirectly neutralize S. aureus toxins have showed promise. In this review, we provide an update on toxin pathogenic characteristics, as well as anti-toxin therapeutical strategies.
Collapse
Affiliation(s)
- Nour Ahmad-Mansour
- Laboratory of Pathogen Host Interactions, CNRS UMR5235, Université de Montpellier, 34000 Montpellier, France;
| | - Paul Loubet
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Department of Infectious and Tropical Diseases, Université de Montpellier, 30908 Nîmes, France; (P.L.); (A.S.)
| | - Cassandra Pouget
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, 30908 Nîmes, France;
| | - Catherine Dunyach-Remy
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Department of Microbiology and Hospital Hygiene, Université de Montpellier, 30908 Nîmes, France; (C.D.-R.); (J.-P.L.)
| | - Albert Sotto
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Department of Infectious and Tropical Diseases, Université de Montpellier, 30908 Nîmes, France; (P.L.); (A.S.)
| | - Jean-Philippe Lavigne
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Department of Microbiology and Hospital Hygiene, Université de Montpellier, 30908 Nîmes, France; (C.D.-R.); (J.-P.L.)
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, CNRS UMR5235, Université de Montpellier, 34000 Montpellier, France;
| |
Collapse
|
16
|
Guerra-Almeida D, Tschoeke DA, da-Fonseca RN. Understanding small ORF diversity through a comprehensive transcription feature classification. DNA Res 2021; 28:6317669. [PMID: 34240112 PMCID: PMC8435553 DOI: 10.1093/dnares/dsab007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Small open reading frames (small ORFs/sORFs/smORFs) are potentially coding sequences smaller than 100 codons that have historically been considered junk DNA by gene prediction software and in annotation screening; however, the advent of next-generation sequencing has contributed to the deeper investigation of junk DNA regions and their transcription products, resulting in the emergence of smORFs as a new focus of interest in systems biology. Several smORF peptides were recently reported in noncanonical mRNAs as new players in numerous biological contexts; however, their relevance is still overlooked in coding potential analysis. Hence, this review proposes a smORF classification based on transcriptional features, discussing the most promising approaches to investigate smORFs based on their different characteristics. First, smORFs were divided into nonexpressed (intergenic) and expressed (genic) smORFs. Second, genic smORFs were classified as smORFs located in noncoding RNAs (ncRNAs) or canonical mRNAs. Finally, smORFs in ncRNAs were further subdivided into sequences located in small or long RNAs, whereas smORFs located in canonical mRNAs were subdivided into several specific classes depending on their localization along the gene. We hope that this review provides new insights into large-scale annotations and reinforces the role of smORFs as essential components of a hidden coding DNA world.
Collapse
Affiliation(s)
- Diego Guerra-Almeida
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo Antonio Tschoeke
- Alberto Luiz Coimbra Institute of Graduate Studies and Engineering Research (COPPE), Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Nunes- da-Fonseca
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Fuchs S, Kucklick M, Lehmann E, Beckmann A, Wilkens M, Kolte B, Mustafayeva A, Ludwig T, Diwo M, Wissing J, Jänsch L, Ahrens CH, Ignatova Z, Engelmann S. Towards the characterization of the hidden world of small proteins in Staphylococcus aureus, a proteogenomics approach. PLoS Genet 2021; 17:e1009585. [PMID: 34061833 PMCID: PMC8195425 DOI: 10.1371/journal.pgen.1009585] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/11/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023] Open
Abstract
Small proteins play essential roles in bacterial physiology and virulence, however, automated algorithms for genome annotation are often not yet able to accurately predict the corresponding genes. The accuracy and reliability of genome annotations, particularly for small open reading frames (sORFs), can be significantly improved by integrating protein evidence from experimental approaches. Here we present a highly optimized and flexible bioinformatics workflow for bacterial proteogenomics covering all steps from (i) generation of protein databases, (ii) database searches and (iii) peptide-to-genome mapping to (iv) visualization of results. We used the workflow to identify high quality peptide spectrum matches (PSMs) for small proteins (≤ 100 aa, SP100) in Staphylococcus aureus Newman. Protein extracts from S. aureus were subjected to different experimental workflows for protein digestion and prefractionation and measured with highly sensitive mass spectrometers. In total, 175 proteins with up to 100 aa (SP100) were identified. Out of these 24 (ranging from 9 to 99 aa) were novel and not contained in the used genome annotation.144 SP100 are highly conserved and were found in at least 50% of the publicly available S. aureus genomes, while 127 are additionally conserved in other staphylococci. Almost half of the identified SP100 were basic, suggesting a role in binding to more acidic molecules such as nucleic acids or phospholipids.
Collapse
Affiliation(s)
- Stephan Fuchs
- Robert Koch Institute, Methodenentwicklung und Forschungsinfrastruktur (MF), Berlin, Germany
| | - Martin Kucklick
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Erik Lehmann
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Alexander Beckmann
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Maya Wilkens
- Robert Koch Institute, Methodenentwicklung und Forschungsinfrastruktur (MF), Berlin, Germany
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Baban Kolte
- University of Hamburg, Institute of Biochemistry and Molecular Biology, Hamburg, Germany
| | - Ayten Mustafayeva
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Tobias Ludwig
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Maurice Diwo
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Josef Wissing
- Helmholtz Center for Infection Research GmbH, Cellular Proteomics, Braunschweig, Germany
| | - Lothar Jänsch
- Helmholtz Center for Infection Research GmbH, Cellular Proteomics, Braunschweig, Germany
| | - Christian H Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Zoya Ignatova
- University of Hamburg, Institute of Biochemistry and Molecular Biology, Hamburg, Germany
| | - Susanne Engelmann
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| |
Collapse
|
18
|
Wächter H, Yörük E, Becker K, Görlich D, Kahl BC. Correlations of Host and Bacterial Characteristics with Clinical Parameters and Survival in Staphylococcus aureus Bacteremia. J Clin Med 2021; 10:1371. [PMID: 33800644 PMCID: PMC8037130 DOI: 10.3390/jcm10071371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 01/14/2023] Open
Abstract
Staphylococcus aureus bacteremia (SAB) is a frequent, severe condition that occurs in patients of all age groups and affects clinical departments of all medical fields. It is associated with a high mortality rate of 20-30%. In this study, we analyzed patient mortality associated with SAB at our tertiary care university hospital, assessed the clinical management in terms of administered antimicrobial therapy, and determined which factors have an impact on the clinical course and outcome of patients with this disease. We collected clinical data and blood culture isolates of 178 patients diagnosed with SAB between May 2013 and July 2015. For this study, bacteria were cultured and analyzed concerning their phenotype, hemolysis activity, biofilm formation, nuclease activity, prevalence of toxin genes, spa and agr type. Overall mortality was 24.2% and 30-day mortality was 14.6%. Inadequate initial therapy was administered to 26.2% of patients and was associated with decreased survival (p = 0.041). Other factors associated with poor survival were patient age (p = 0.003), agr type 4 (p ≤ 0.001) and pathological leukocyte counts (p = 0.029 if elevated and p = 0.003 if lowered). The type of infection focus, spa clonal complex and enterotoxin genes seg and sei had an impact on severity of inflammation. Our results indicate that mortality and burden of disease posed by SAB are high at our university hospital.
Collapse
Affiliation(s)
- Hannah Wächter
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (H.W.); (E.Y.); (K.B.)
| | - Erdal Yörük
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (H.W.); (E.Y.); (K.B.)
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (H.W.); (E.Y.); (K.B.)
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University Hospital Münster, 48149 Münster, Germany;
| | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (H.W.); (E.Y.); (K.B.)
| |
Collapse
|
19
|
Aoyama JJ, Raina M, Storz G. Synthetic dual-function RNA reveals features necessary for target regulation. J Bacteriol 2021; 204:JB0034521. [PMID: 34460309 PMCID: PMC8765420 DOI: 10.1128/jb.00345-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Small base pairing RNAs (sRNAs) and small proteins comprise two classes of regulators that allow bacterial cells to adapt to a wide variety of growth conditions. A limited number of transcripts encoding both of these activities, regulation of mRNA expression by base pairing and synthesis of a small regulatory protein, have been identified. Given that few have been characterized, little is known about the interplay between the two regulatory functions. To investigate the competition between the two activities, we constructed synthetic dual-function RNAs, hereafter referred to as MgtSR or MgtRS, comprised of the Escherichia coli sRNA MgrR and the open reading frame encoding the small protein MgtS. MgrR is a 98 nt base pairing sRNA that negatively regulates eptB encoding phosphoethanolamine transferase. MgtS is a 31 aa small inner membrane protein that is required for the accumulation of MgtA, a magnesium (Mg2+) importer. Expression of the separate genes encoding MgrR and MgtS is normally induced in response to low Mg2+ by the PhoQP two-component system. By generating various versions of this synthetic dual-function RNA, we probed how the organization of components and the distance between the coding and base pairing sequences contribute to the proper function of both activities of a dual-function RNA. By understanding the features of natural and synthetic dual-function RNAs, future synthetic molecules can be designed to maximize their regulatory impact. IMPORTANCE Dual-function RNAs in bacteria encode a small protein and also base pair with mRNAs to act as small, regulatory RNAs. Given that only a limited number of dual-function RNAs have been characterized, further study of these regulators is needed to increase understanding of their features. This study demonstrates that a functional synthetic dual-regulator can be constructed from separate components and used to study the functional organization of dual-function RNAs, with the goal of exploiting these regulators.
Collapse
Affiliation(s)
- Jordan J. Aoyama
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
- Biological Sciences Graduate Program, University of Maryland, College Park, Maryland, USA
| | - Medha Raina
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Tomaro-Duchesneau C, LeValley SL, Roeth D, Sun L, Horrigan FT, Kalkum M, Hyser JM, Britton RA. Discovery of a bacterial peptide as a modulator of GLP-1 and metabolic disease. Sci Rep 2020; 10:4922. [PMID: 32188864 PMCID: PMC7080827 DOI: 10.1038/s41598-020-61112-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Early work in rodents highlighted the gut microbiota’s importance in metabolic disease, including Type II Diabetes Mellitus (T2DM) and obesity. Glucagon-like peptide-1 (GLP-1), an incretin secreted by L-cells lining the gastrointestinal epithelium, has important functions: promoting insulin secretion, insulin sensitivity, and β-cell mass, while inhibiting gastric emptying and appetite. We set out to identify microbial strains with GLP-1 stimulatory activity as potential metabolic disease therapeutics. Over 1500 human-derived strains were isolated from healthy individuals and screened for GLP-1 modulation by incubating bacterial cell-free supernatants with NCI H716 L-cells. Approximately 45 strains capable of increasing GLP-1 were discovered. All GLP-1 positive strains were identified as Staphylococcus epidermidis by 16S rRNA sequencing. Mass spectrometry analysis identified a 3 kDa peptide, Hld (delta-toxin), present in GLP-1 positive supernatants but absent in GLP-1 neutral supernatants. Studies in NCI-H716 cells and human jejunal enteroids engineered to make more enteroendocrine cells demonstrated that Hld alone is sufficient to enhance GLP-1 secretion. When administered in high-fat-fed mice, Hld-producing S. epidermidis significantly reduced markers associated with obesity and T2DM. Further characterization of Hld suggests GLP-1 stimulatory action of Hld occurs via calcium signaling. The presented results identify a novel host-microbe interaction which may ultimately lead to the development of a microbial peptide-based therapeutic for metabolic disease.
Collapse
Affiliation(s)
- Catherine Tomaro-Duchesneau
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Stephanie L LeValley
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniel Roeth
- Department of Molecular Imaging and Therapy, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Liang Sun
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Frank T Horrigan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.
| |
Collapse
|
21
|
Yu H, Sakamoto K, Akishiba M, Tamemoto N, Hirose H, Nakase I, Imanishi M, Madani F, Gräslund A, Futaki S. Conversion of cationic amphiphilic lytic peptides to cell‐penetration peptides. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hao‐Hsin Yu
- Institute for Chemical Research Kyoto University Uji Kyoto Japan
| | | | - Misao Akishiba
- Institute for Chemical Research Kyoto University Uji Kyoto Japan
| | - Naoki Tamemoto
- Institute for Chemical Research Kyoto University Uji Kyoto Japan
| | - Hisaaki Hirose
- Institute for Chemical Research Kyoto University Uji Kyoto Japan
| | - Ikuhiko Nakase
- Graduate School of Science Osaka Prefecture University Sakai Osaka Japan
| | - Miki Imanishi
- Institute for Chemical Research Kyoto University Uji Kyoto Japan
| | - Fatemeh Madani
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories Stockholm University Stockholm Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories Stockholm University Stockholm Sweden
| | - Shiroh Futaki
- Institute for Chemical Research Kyoto University Uji Kyoto Japan
| |
Collapse
|
22
|
Moldovan A, Fraunholz MJ. In or out: Phagosomal escape of Staphylococcus aureus. Cell Microbiol 2019; 21:e12997. [PMID: 30576050 DOI: 10.1111/cmi.12997] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/29/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022]
Abstract
Staphylococcus aureus is internalised by host cells in vivo, and recent research results suggest that the bacteria use this intracellularity to persist in the host and form a reservoir for recurrent infections. However, in different cells types, the pathogen resorts to alternative strategies to survive phagocytosis and the antimicrobial mechanisms of host cells. In non-professional phagocytes, S. aureus either escapes the endosome followed by cytoplasmic replication or replicates within autophagosomes. Professional phagocytes possess a limited capacity to kill S. aureus and hence the bacteria, well equipped with immune evasive mechanisms, replicate within the cells, eventually lyse out of the cells and thus persist in a continuous cycle of phagocytosis, host cell death, and bacterial release.
Collapse
Affiliation(s)
- Adriana Moldovan
- Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
23
|
Che R, Ding S, Zhang Q, Yang W, Yan J, Lin X. Haemolysin Sph2 of Leptospira interrogans induces cell apoptosis via intracellular reactive oxygen species elevation and mitochondrial membrane injury. Cell Microbiol 2018; 21:e12959. [PMID: 30278102 DOI: 10.1111/cmi.12959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Leptospira interrogans causes widespread leptospirosis in humans and animals, with major symptoms of jaundice and haemorrhage. Sph2, a member of the sphingomyelinase haemolysins, is an important virulence factor for leptospire. In this study, the function and mechanism of Sph2 in the pathogenesis of leptospirosis were investigated to further understand the pathogenesis of leptospire. Real-time PCR analysis of expression levels during cell invasion showed that sph2 gene expression was transiently induced in human umbilical vein endothelial cells (HUVECs), human embryo liver cells (L02), and human epithelial lung cells (L132), with expression levels reaching a peak after 45 min of infection. Further functional analysis of recombinant Sph2 (rSph2) by LDH assays and confocal microscopy showed that rSph2 can be internalised by cells both by causing cell membrane damage and by a damage-independent clathrin-mediated endocytosis pathway. Subsequently, rSph2 is able to translocate to mitochondria, which led to an increase in the levels of reactive oxygen species (ROS) and a decrease of the mitochondrial membrane potential (ΔΨm ). Further flowcytometry analyses after rSph2 exposure showed that 28.7%, 31%, and 27.3% of the HUVEC, L02, and L132 cells, respectively, became apoptotic. Because apoptosis could be decreased with the ROS inhibitor N-acetyl cysteine, these experiments suggested that rSph2 triggers apoptosis through mitochondrial membrane damage and ROS elevation. The ability of leptospiral haemolysin rSph2 to cause apoptosis likely contributes to the pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Rongbo Che
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shibiao Ding
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Clinical Laboratory, Hospital of integrated traditional Chinese and Western, Hangzhou, China
| | - Qinchao Zhang
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiqun Yang
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Basic Medical Microbiology Division, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xu'ai Lin
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Basic Medical Microbiology Division, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Zhang J, Poh CL. Regulating exopolysaccharide gene wcaF allows control of Escherichia coli biofilm formation. Sci Rep 2018; 8:13127. [PMID: 30177768 PMCID: PMC6120894 DOI: 10.1038/s41598-018-31161-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022] Open
Abstract
While biofilms are known to cause problems in many areas of human health and the industry, biofilms are important in a number of engineering applications including wastewater management, bioremediation, and bioproduction of valuable chemicals. However, excessive biofilm growth remains a key challenge in the use of biofilms in these applications. As certain amount of biofilm growth is required for efficient use of biofilms, the ability to control and maintain biofilms at desired thickness is vital. To this end, we developed synthetic gene circuits to control E. coli MG1655 biofilm formation by using CRISPRi/dCas9 to regulate a gene (wcaF) involved in the synthesis of colanic acid (CA), a key polysaccharide in E. coli biofilm extracellular polymeric substance (EPS). We showed that the biofilm formation was inhibited when wcaF was repressed and the biofilms could be maintained at a different thickness over a period of time. We also demonstrated that it is also possible to control the biofilm thickness spatially by inhibiting wcaF gene using a genetic light switch. The results demonstrate that the approach has great potential as a new means to control and maintain biofilm thickness in biofilm related applications.
Collapse
Affiliation(s)
- Jingyun Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117583, 4 Engineering Drive 3, Singapore, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 117456, 28 Medical Drive, Singapore, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117583, 4 Engineering Drive 3, Singapore, Singapore.
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 117456, 28 Medical Drive, Singapore, Singapore.
| |
Collapse
|
25
|
Raina M, King A, Bianco C, Vanderpool CK. Dual-Function RNAs. Microbiol Spectr 2018; 6:10.1128/microbiolspec.RWR-0032-2018. [PMID: 30191807 PMCID: PMC6130917 DOI: 10.1128/microbiolspec.rwr-0032-2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Indexed: 12/30/2022] Open
Abstract
Bacteria are known to use RNA, either as mRNAs encoding proteins or as noncoding small RNAs (sRNAs), to regulate numerous biological processes. However, a few sRNAs have two functions: they act as base-pairing RNAs and encode a small protein with additional regulatory functions. Thus, these so called "dual-function" sRNAs can serve as both a riboregulator and an mRNA. In some cases, these two functions can act independently within the same pathway, while in other cases, the base-pairing function and protein function act in different pathways. Here, we discuss the five known dual-function sRNAs-SgrS from enteric species, RNAIII and Psm-mec from Staphylococcus aureus, Pel RNA from Streptococcus pyogenes, and SR1 from Bacillus subtilis-and review their mechanisms of action and roles in regulating diverse biological processes. We also discuss the prospect of finding additional dual-function sRNAs and future challenges in studying the overlap and competition between the functions.
Collapse
Affiliation(s)
- Medha Raina
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892
| | - Alisa King
- Department of Microbiology, University of Illinois, Urbana, IL 61801
| | - Colleen Bianco
- Department of Microbiology, University of Illinois, Urbana, IL 61801
| | | |
Collapse
|
26
|
Influence of subinhibitory concentrations of NH125 on biofilm formation & virulence factors of Staphylococcus aureus. Future Med Chem 2018; 10:1319-1331. [PMID: 29846088 DOI: 10.4155/fmc-2017-0286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM l-benzyl-3-cetyl-2-methylimidazolium iodide (NH125) can inhibit Staphylococcus aureus growth. We investigated the effects of sub-MIC concentrations of NH125 on S. aureus biofilm and virulence. Methodology & results: Three strains of S. aureus were tested. Sub-lethal concentrations of NH125 repressed biofilm formation. At partial sub-MICs, NH125 downregulated the expression of most virulence, while strain-dependent effects were found in the production of α-hemolysin, δ-hemolysin, coagulase and nuclease. In Galleria mellonella model, methicillin-resistant S. aureus pre-exposed to NH125 demonstrated significantly lower killing (p = 0.032 for 1/16 and 1/8 MICs; 0.008 for 1/4 MIC; and 0.001 for 1/2 MIC). CONCLUSION Sub-MIC concentrations of NH125 inhibited biofilm formation and virulence of S. aureus. These findings provide further support for evaluating the clinical efficacy of NH125 in staphylococcal infection.
Collapse
|
27
|
Melo MCDA, Rodrigues CG, Pol-Fachin L. Staphylococcus aureus δ-toxin in aqueous solution: Behavior in monomeric and multimeric states. Biophys Chem 2017; 227:21-28. [DOI: 10.1016/j.bpc.2017.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 01/01/2023]
|
28
|
Abstract
Bacterial pathogens must endure or adapt to different environments and stresses during transmission and infection. Posttranscriptional gene expression control by regulatory RNAs, such as small RNAs and riboswitches, is now considered central to adaptation in many bacteria, including pathogens. The study of RNA-based regulation (riboregulation) in pathogenic species has provided novel insight into how these bacteria regulate virulence gene expression. It has also uncovered diverse mechanisms by which bacterial small RNAs, in general, globally control gene expression. Riboregulators as well as their targets may also prove to be alternative targets or provide new strategies for antimicrobials. In this article, we present an overview of the general mechanisms that bacteria use to regulate with RNA, focusing on examples from pathogens. In addition, we also briefly review how deep sequencing approaches have aided in opening new perspectives in small RNA identification and the study of their functions. Finally, we discuss examples of riboregulators in two model pathogens that control virulence factor expression or survival-associated phenotypes, such as stress tolerance, biofilm formation, or cell-cell communication, to illustrate how riboregulation factors into regulatory networks in bacterial pathogens.
Collapse
|
29
|
Zhang H, Zheng Y, Gao H, Xu P, Wang M, Li A, Miao M, Xie X, Deng Y, Zhou H, Du H. Identification and Characterization of Staphylococcus aureus Strains with an Incomplete Hemolytic Phenotype. Front Cell Infect Microbiol 2016; 6:146. [PMID: 27917374 PMCID: PMC5114236 DOI: 10.3389/fcimb.2016.00146] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/25/2016] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus aureus is a common pathogen causing both hospital and community-acquired infections. Hemolysin is one of the important virulence factors for S. aureus and causes the typical β-hemolytic phenotype which is called complete hemolytic phenotype as well. Recently, S. aureus with an incomplete hemolytic phenotype (SIHP) was isolated from clinical samples. To study the microbiologic characteristics of SIHP, the special hemolytic phenotype of SIHP was verified on the sheep blood agar plates supplied by different manufacturers. Expression of hemolysin genes hla, hlb, hlgC, and hld of SIHP was detected by qRT-PCR and it was showed that expression of hlb in SIHP was obviously increased compared to the control S. aureus strains with complete hemolytic phenotype (SCHP), while the expression of hla, hlgC, and hld in SIHP was significantly decreased. In addition, the α-hemolysin encoded by gene hla was decreased obviously in SIHP compared to SCHP by western blot. All 60 SIHP strains were identified to be the methicillin resistant S. aureus (MRSA), and moreover these SIHP strains all contains mecA gene. The virulence gene tst were all present in SIHP, and the intracellular survival ability of SIHP was much greater than that of the gene tst negative S. aureus. We also found that IL-2, IL-6, and IL-17A secreted in the supernatant of SIHP infected macrophages increased significantly compared to tst negative control strains infected ones. MLST analysis showed that all of SIHP strains were classified into ST5 clone. To our knowledge, this study firstly showed that SIHP strains are a kind of methicillin resistant strains which express β-hemolysin highly and possess a potential high virulence, and it was suggested that SIHP should be paid more attention in hospital.
Collapse
Affiliation(s)
- Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Yi Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Huasheng Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Ping Xu
- Department of Clinical Laboratory, The Fifth People's Hospital of Suzhou Suzhou, China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Aiqing Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Minhui Miao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Xiaofang Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Yimai Deng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Huiqin Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| |
Collapse
|
30
|
Gimpel M, Brantl S. Dual-function small regulatory RNAs in bacteria. Mol Microbiol 2016; 103:387-397. [PMID: 27750368 DOI: 10.1111/mmi.13558] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022]
Abstract
Dual-function sRNAs are a subgroup of small regulatory RNAs that act on the one hand as base-pairing sRNAs to inhibit or activate target gene expression and on the other hand as peptide-encoding mRNAs that function either in the same or in another metabolic pathway. Here, we review and compare the five currently known and intensively characterized dual-function sRNAs with regard to their two functions, their biological role, their evolutionary conservation and their requirements for RNA chaperones. Furthermore, we summarize the data available on five potential dual-function sRNAs, whose base-pairing function is well established whereas the role of their encoded peptides has not yet been elucidated. In addition, we provide three examples for RNAs with more than one function that do not fall into the above-mentioned category. With the application of RNAseq, peptidomics and transcriptomics it can be expected that the number of dual-function sRNAs will considerably increase within the next years, thus enhancing our knowledge on the regulatory potential of these RNAs.
Collapse
Affiliation(s)
- Matthias Gimpel
- Biologisch-Pharmazeutische Fakultät, Lehrstuhl für Genetik, Friedrich-Schiller-Universität Jena, AG Bakteriengenetik, Philosophenweg 12, Jena, D-07743, Germany
| | - Sabine Brantl
- Biologisch-Pharmazeutische Fakultät, Lehrstuhl für Genetik, Friedrich-Schiller-Universität Jena, AG Bakteriengenetik, Philosophenweg 12, Jena, D-07743, Germany
| |
Collapse
|
31
|
King MJ, Bennett AL, Almeida PF, Lee HS. Coarse-grained simulations of hemolytic peptide δ-lysin interacting with a POPC bilayer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3182-3194. [PMID: 27720634 DOI: 10.1016/j.bbamem.2016.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/17/2016] [Accepted: 10/04/2016] [Indexed: 01/08/2023]
Abstract
δ-lysin, secreted by a Gram-positive bacterium Staphylococcus aureus, is a 26-residue membrane active peptide that shares many common features with antimicrobial peptides (AMPs). However, it possesses a few unique features that differentiate itself from typical AMPs. In particular, δ-lysin has zero net charge, even though it has many charged residues, and it preferentially lyses eukaryotic cells over bacterial cells. Here, we present the results of coarse-grained molecular dynamics simulations of δ-lysin interacting with a zwitterionic membrane over a wide range of peptide concentrations. When the peptides concentration is low, spontaneous dimerization of peptides is observed on the membrane surface, but deep insertion of peptides or pore formation was not observed. However, the calculated free energy of peptide insertion suggests that a small fraction of peptides is likely to be present inside the membrane at the peptide concentrations typically seen in dye efflux experiments. When the simulations with multiple peptides are carried out with a single pre-inserted transmembrane peptide, spontaneous pore formation occurs with a peptide-to-lipid ratio (P/L) as low as P/L=1:42. Inter-peptide salt bridges among the transmembrane peptides seem to play a role in creating compact pores with very low level of hydration. More importantly, the transmembrane peptides making up the pore are constantly pushed to the opposite side of the membrane when the mass imbalance between the two sides of membrane is significant. Thus, the pore is very dynamic, allowing multiple peptides to translocate across the membrane simultaneously.
Collapse
Affiliation(s)
- Mariah J King
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28403, United States
| | - Ashley L Bennett
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28403, United States
| | - Paulo F Almeida
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28403, United States
| | - Hee-Seung Lee
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28403, United States.
| |
Collapse
|
32
|
Specific Anti-Leukemic Activity of the Peptide Warnericin RK and Analogues and Visualization of Their Effect on Cancer Cells by Chemical Raman Imaging. PLoS One 2016; 11:e0162007. [PMID: 27598770 PMCID: PMC5012605 DOI: 10.1371/journal.pone.0162007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/16/2016] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial peptides can be used as therapeutic agents against cancer cells. Warnericin RK and derivatives (WarnG20D and WarnF14V) were tested on various, solid tumor or leukemia, cancer cells. These peptides appeared to be cytotoxic on all the cell types tested, cancerous as well healthy, but very interestingly displayed no deleterious effect on healthy mononuclear cells. The mode of action of the peptide was proposed to be membranolytic, using chemical Raman imaging. Addition of peptide induced a large disorganization of the membrane leading to the loss of the content of inner compartments of Jurkat cell, whereas no effect was observed on the healthy mononuclear cells. The less hemolytic peptides WarnG20D and WarnF14V could be good candidates for the leukemia treatment.
Collapse
|
33
|
Towle KM, Lohans CT, Miskolzie M, Acedo JZ, van Belkum MJ, Vederas JC. Solution Structures of Phenol-Soluble Modulins α1, α3, and β2, Virulence Factors from Staphylococcus aureus. Biochemistry 2016; 55:4798-806. [DOI: 10.1021/acs.biochem.6b00615] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaitlyn M. Towle
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | - Mark Miskolzie
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Jeella Z. Acedo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Marco J. van Belkum
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - John C. Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
34
|
Clonality, virulence and the occurrence of genes encoding antibiotic resistance among Staphylococcus warneri isolates from bloodstream infections. J Med Microbiol 2016; 65:828-836. [DOI: 10.1099/jmm.0.000287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
35
|
Nam JW, Choi SW, You BH. Incredible RNA: Dual Functions of Coding and Noncoding. Mol Cells 2016; 39:367-74. [PMID: 27137091 PMCID: PMC4870183 DOI: 10.14348/molcells.2016.0039] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/20/2016] [Accepted: 03/29/2016] [Indexed: 11/27/2022] Open
Abstract
Since the RNA world hypothesis was proposed, a large number of regulatory noncoding RNAs (ncRNAs) have been identified in many species, ranging from microorganisms to mammals. During the characterization of these newly discovered RNAs, RNAs having both coding and noncoding functions were discovered, and these were considered bifunctional RNAs. The recent use of computational and high-throughput experimental approaches has revealed increasing evidence of various sources of bifunctional RNAs, such as protein-coding mRNAs with a noncoding isoform and long ncRNAs bearing a small open reading frame. Therefore, the genomic diversity of Janus-faced RNA molecules that have dual characteristics of coding and noncoding indicates that the functional roles of RNAs have to be revisited in cells on a genome-wide scale. Such studies would allow us to further understand the complex gene-regulatory network in cells. In this review, we discuss three major genomic sources of bifunctional RNAs and present a handful of examples of bifunctional RNA along with their functional roles.
Collapse
Affiliation(s)
- Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763,
Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763,
Korea
| | - Seo-Won Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763,
Korea
| | - Bo-Hyun You
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763,
Korea
| |
Collapse
|
36
|
Berjeaud JM, Chevalier S, Schlusselhuber M, Portier E, Loiseau C, Aucher W, Lesouhaitier O, Verdon J. Legionella pneumophila: The Paradox of a Highly Sensitive Opportunistic Waterborne Pathogen Able to Persist in the Environment. Front Microbiol 2016; 7:486. [PMID: 27092135 PMCID: PMC4824771 DOI: 10.3389/fmicb.2016.00486] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/23/2016] [Indexed: 01/28/2023] Open
Abstract
Legionella pneumophila, the major causative agent of Legionnaires’ disease, is found in freshwater environments in close association with free-living amoebae and multispecies biofilms, leading to persistence, spread, biocide resistance, and elevated virulence of the bacterium. Indeed, legionellosis outbreaks are mainly due to the ability of this bacterium to colonize and persist in water facilities, despite harsh physical and chemical treatments. However, these treatments are not totally efficient and, after a lag period, L. pneumophila may be able to quickly re-colonize these systems. Several natural compounds (biosurfactants, antimicrobial peptides…) with anti-Legionella properties have recently been described in the literature, highlighting their specific activities against this pathogen. In this review, we first consider this hallmark of Legionella to resist killing, in regard to its biofilm or host-associated life style. Then, we focus more accurately on natural anti-Legionella molecules described so far, which could provide new eco-friendly and alternative ways to struggle against this important pathogen in plumbing.
Collapse
Affiliation(s)
- Jean-Marc Berjeaud
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Université de Rouen Evreux, France
| | - Margot Schlusselhuber
- Laboratoire Aliments Bioprocédés Toxicologie Environnements, EA 4651, Université de Caen Caen, France
| | - Emilie Portier
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Clémence Loiseau
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Willy Aucher
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Université de Rouen Evreux, France
| | - Julien Verdon
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| |
Collapse
|
37
|
Jeon H, Oh MH, Jun SH, Kim SI, Choi CW, Kwon HI, Na SH, Kim YJ, Nicholas A, Selasi GN, Lee JC. Variation among Staphylococcus aureus membrane vesicle proteomes affects cytotoxicity of host cells. Microb Pathog 2016; 93:185-93. [DOI: 10.1016/j.micpath.2016.02.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/21/2022]
|
38
|
Kong C, Neoh HM, Nathan S. Targeting Staphylococcus aureus Toxins: A Potential form of Anti-Virulence Therapy. Toxins (Basel) 2016; 8:toxins8030072. [PMID: 26999200 PMCID: PMC4810217 DOI: 10.3390/toxins8030072] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/03/2016] [Accepted: 03/10/2016] [Indexed: 01/01/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen and the leading cause of a wide range of severe clinical infections. The range of diseases reflects the diversity of virulence factors produced by this pathogen. To establish an infection in the host, S. aureus expresses an inclusive set of virulence factors such as toxins, enzymes, adhesins, and other surface proteins that allow the pathogen to survive under extreme conditions and are essential for the bacteria’s ability to spread through tissues. Expression and secretion of this array of toxins and enzymes are tightly controlled by a number of regulatory systems. S. aureus is also notorious for its ability to resist the arsenal of currently available antibiotics and dissemination of various multidrug-resistant S. aureus clones limits therapeutic options for a S. aureus infection. Recently, the development of anti-virulence therapeutics that neutralize S. aureus toxins or block the pathways that regulate toxin production has shown potential in thwarting the bacteria’s acquisition of antibiotic resistance. In this review, we provide insights into the regulation of S. aureus toxin production and potential anti-virulence strategies that target S. aureus toxins.
Collapse
Affiliation(s)
- Cin Kong
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia.
| | - Hui-min Neoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
39
|
de Souza CSM, Fortaleza CMCB, Witzel CL, Silveira M, Bonesso MF, Marques SA, Cunha MDLRDSD. Toxigenic profile of methicillin-sensitive and resistant Staphylococcus aureus isolated from special groups. Ann Clin Microbiol Antimicrob 2016; 15:9. [PMID: 26880287 PMCID: PMC4754922 DOI: 10.1186/s12941-016-0125-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/03/2016] [Indexed: 11/10/2022] Open
Abstract
Background Staphylococcus aureus is characterized by its pathogenicity and high prevalence, causing disease in both healthy and immunocompromised individuals due to its easy dissemination. This fact is aggravated by the widespread dissemination of S. aureus carrying toxigenic genes.
The objective of this study was to determine the toxigenic profile of methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) in patients with purulent skin and/or soft tissue infections seen at the Dermatology Department of the University Hospital of the Botucatu Medical School, asymptomatic adults older than 60 years living in nursing homes, and prison inmates of the Avaré Detention Center. Methods PCR was used for the detection of the mecA gene, enterotoxin genes (sea, seb, and sec), exfoliative toxins A and B (eta and etb), toxic shock syndrome toxin 1 (tst), panton–valentine leukocidin (lukS-PV and lukF-PV), and alpha- and delta-hemolysins or cytotoxins (hla and hld). Results The results showed a significant prevalence of toxigenic genes among S. aureus isolates from asymptomatic individuals, with the observation of a higher prevalence of cytotoxin genes. However, the panton–valentine leukocidin gene was only detected in MSSA isolated from patients with skin infections and the tst gene was exclusively found in MSSA isolated from prison inmates. Conclusions The present study demonstrated a significant prevalence of toxigenic genes in MSSA and MRSA strains isolated from asymptomatic S. aureus carriers. There was a higher prevalence of cytotoxin genes.
Collapse
Affiliation(s)
- Camila Sena Martins de Souza
- Department of Microbiology and Immunology, Botucatu Biosciences Institute, UNESP-Univ Estadual Paulista, Botucatu, SP, Brazil. .,Department of Tropical Diseases, Botucatu School of Medicine, University Hospital, UNESP-Univ Estadual Paulista, Botucatu, SP, Brazil.
| | | | - Claudia Lima Witzel
- Department of Microbiology and Immunology, Botucatu Biosciences Institute, UNESP-Univ Estadual Paulista, Botucatu, SP, Brazil. .,Department of Tropical Diseases, Botucatu School of Medicine, University Hospital, UNESP-Univ Estadual Paulista, Botucatu, SP, Brazil.
| | - Mônica Silveira
- Department of Tropical Diseases, Botucatu School of Medicine, University Hospital, UNESP-Univ Estadual Paulista, Botucatu, SP, Brazil.
| | - Mariana Fávero Bonesso
- Department of Microbiology and Immunology, Botucatu Biosciences Institute, UNESP-Univ Estadual Paulista, Botucatu, SP, Brazil. .,Department of Tropical Diseases, Botucatu School of Medicine, University Hospital, UNESP-Univ Estadual Paulista, Botucatu, SP, Brazil.
| | - Silvio Alencar Marques
- Department of Dermatology and Radiology, Botucatu School of Medicine, University Hospital, UNESP-Univ Estadual Paulista, Botucatu, SP, Brazil.
| | - Maria de Lourdes Ribeiro de Souza da Cunha
- Department of Microbiology and Immunology, Botucatu Biosciences Institute, UNESP-Univ Estadual Paulista, Botucatu, SP, Brazil. .,Department of Tropical Diseases, Botucatu School of Medicine, University Hospital, UNESP-Univ Estadual Paulista, Botucatu, SP, Brazil.
| |
Collapse
|
40
|
Cheung GYC, Yeh AJ, Kretschmer D, Duong AC, Tuffuor K, Fu CL, Joo HS, Diep BA, Li M, Nakamura Y, Nunez G, Peschel A, Otto M. Functional characteristics of the Staphylococcus aureus δ-toxin allelic variant G10S. Sci Rep 2015; 5:18023. [PMID: 26658455 PMCID: PMC4674873 DOI: 10.1038/srep18023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/10/2015] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus δ-toxin is a member of the phenol-soluble modulin (PSM) peptide family. PSMs have multiple functions in staphylococcal pathogenesis; for example, they lyse red and white blood cells and trigger inflammatory responses. Compared to other PSMs, δ-toxin is usually more strongly expressed but has only moderate cytolytic capacities. The amino acid sequences of S. aureus PSMs are well conserved with two exceptions, one of which is the δ-toxin allelic variant G10S. This variant is a characteristic of the subspecies S. argenteus and S. aureus sequence types ST1 and ST59, the latter representing the most frequent cause of community-associated infections in Asia. δ-toxin G10S and strains expressing that variant from plasmids or the genome had significantly reduced cytolytic and pro-inflammatory capacities, including in a strain background with pronounced production of other PSMs. However, in murine infection models, isogenic strains expressing the two δ-toxin variants did not cause measurable differences in disease severity. Our findings indicate that the widespread G10S allelic variation of the δ-toxin locus has a significant impact on key pathogenesis mechanisms, but more potent members of the PSM peptide family may overshadow that impact in vivo.
Collapse
Affiliation(s)
- Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Anthony J Yeh
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Dorothee Kretschmer
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Anthony C Duong
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Kwame Tuffuor
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Chih-Lung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Binh A Diep
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, United States of America
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yuumi Nakamura
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba 2608670, Japan
| | - Gabriel Nunez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Andreas Peschel
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD 20892, United States of America
| |
Collapse
|
41
|
Abstract
For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as 'cncRNAs', have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions.
Collapse
Affiliation(s)
- Pooja Kumari
- Division of Biomedical Cell Biology, Warwick Medical School, The University of Warwick, Gibbet Hill Road, Coventry CV47AJ, United Kingdom
| | - Karuna Sampath
- Division of Biomedical Cell Biology, Warwick Medical School, The University of Warwick, Gibbet Hill Road, Coventry CV47AJ, United Kingdom.
| |
Collapse
|
42
|
Caporarello N, Salmeri M, Scalia M, Motta C, Parrino C, Frittitta L, Olivieri M, Toscano MA, Anfuso CD, Lupo G. Role of cytosolic and calcium independent phospholipases A(2) in insulin secretion impairment of INS-1E cells infected by S. aureus. FEBS Lett 2015; 589:3969-76. [PMID: 26632509 DOI: 10.1016/j.febslet.2015.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
Abstract
Cytosolic PLA2 (cPLA2) and Ca(2+)-independent PLA2 (iPLA2) play a significant role in insulin β-cells secretion. Bacterial infections may be responsible of the onset of diabetes. The mechanism by which Staphylococcus aureus infection of INS-1 cells alters glucose-induced insulin secretion has been examined. After acute infection, insulin secretion and PLA2 activities significantly increased. Moreover, increased expressions of phospho-cPLA2, phospho-PKCα and phospho-ERK 1/2 were observed. Chronic infection causes a decrease in insulin release and a significant increase of iPLA2 and COX-2 protein expression. Moreover, insulin secretion in infected cells could be restored using specific siRNAs against iPLA2 isoform and specific COX-2 inhibitor.
Collapse
Affiliation(s)
- N Caporarello
- Dept. of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Italy
| | - M Salmeri
- Dept. of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Italy
| | - M Scalia
- Dept. of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Italy
| | - C Motta
- Dept. of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Italy
| | - C Parrino
- Dept. of Clinical and Experimental Medicine, School of Medicine, University of Catania, Italy
| | - L Frittitta
- Dept. of Clinical and Experimental Medicine, School of Medicine, University of Catania, Italy
| | - M Olivieri
- Dept. of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Italy
| | - M A Toscano
- Dept. of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Italy
| | - C D Anfuso
- Dept. of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Italy
| | - G Lupo
- Dept. of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Italy.
| |
Collapse
|
43
|
Thet NT, Jenkins ATA. An electrochemical sensor concept for the detection of bacterial virulence factors from Staphylococcus aureus and Pseudomonas aeruginosa. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
44
|
Yoshikai H, Kizaki H, Saito Y, Omae Y, Sekimizu K, Kaito C. Multidrug-Resistance Transporter AbcA Secretes Staphylococcus aureus Cytolytic Toxins. J Infect Dis 2015; 213:295-304. [PMID: 26160745 DOI: 10.1093/infdis/jiv376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/03/2015] [Indexed: 12/21/2022] Open
Abstract
Phenol-soluble modulins (PSMs) are Staphylococcus aureus cytolytic toxins that lyse erythrocytes and neutrophils and have important functions in the S. aureus infectious process. The molecular mechanisms of PSM secretion, however, are not well understood. Here we report that knockout of the multidrug-resistance ABC transporter AbcA, which contributes to S. aureus resistance against antibiotics and chemicals, diminished the secreted amount of PSM, leading to the accumulation of PSM in the intracellular fraction. The amount of PSM in the culture supernatants of the abcA knockout mutants was restored by introduction of the wild-type abcA gene, whereas it was not completely restored by introduction of mutant abcA genes encoding AbcA mutant proteins carrying amino acid substitutions in the adenosine triphosphate binding motifs. The abcA knockout mutant exhibited attenuated virulence in a mouse systemic infection model. These findings suggest that the multidrug resistance transporter AbcA secretes PSMs and contributes to S. aureus virulence.
Collapse
Affiliation(s)
- Hirono Yoshikai
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Hayato Kizaki
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Yuki Saito
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Yosuke Omae
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kazuhisa Sekimizu
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Chikara Kaito
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| |
Collapse
|
45
|
Manipulation of Autophagy in Phagocytes Facilitates Staphylococcus aureus Bloodstream Infection. Infect Immun 2015; 83:3445-57. [PMID: 26099586 PMCID: PMC4534639 DOI: 10.1128/iai.00358-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/06/2015] [Indexed: 01/16/2023] Open
Abstract
The capacity for intracellular survival within phagocytes is likely a critical factor facilitating the dissemination of Staphylococcus aureus in the host. To date, the majority of work on S. aureus-phagocyte interactions has focused on neutrophils and, to a lesser extent, macrophages, yet we understand little about the role played by dendritic cells (DCs) in the direct killing of this bacterium. Using bone marrow-derived DCs (BMDCs), we demonstrate for the first time that DCs can effectively kill S. aureus but that certain strains of S. aureus have the capacity to evade DC (and macrophage) killing by manipulation of autophagic pathways. Strains with high levels of Agr activity were capable of causing autophagosome accumulation, were not killed by BMDCs, and subsequently escaped from the phagocyte, exerting significant cytotoxic effects. Conversely, strains that exhibited low levels of Agr activity failed to accumulate autophagosomes and were killed by BMDCs. Inhibition of the autophagic pathway by treatment with 3-methyladenine restored the bactericidal effects of BMDCs. Using an in vivo model of systemic infection, we demonstrated that the ability of S. aureus strains to evade phagocytic cell killing and to survive temporarily within phagocytes correlated with persistence in the periphery and that this effect is critically Agr dependent. Taken together, our data suggest that strains of S. aureus exhibiting high levels of Agr activity are capable of blocking autophagic flux, leading to the accumulation of autophagosomes. Within these autophagosomes, the bacteria are protected from phagocytic killing, thus providing an intracellular survival niche within professional phagocytes, which ultimately facilitates dissemination.
Collapse
|
46
|
Effect of amino acid substitution in the staphylococcal peptides warnericin RK and PSMα on their anti-Legionella and hemolytic activities. Mol Cell Biochem 2015; 405:159-67. [PMID: 25869678 DOI: 10.1007/s11010-015-2407-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/09/2015] [Indexed: 10/23/2022]
|
47
|
Laabei M, Jamieson WD, Yang Y, van den Elsen J, Jenkins ATA. Investigating the lytic activity and structural properties of Staphylococcus aureus phenol soluble modulin (PSM) peptide toxins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3153-61. [PMID: 25194683 DOI: 10.1016/j.bbamem.2014.08.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/18/2014] [Accepted: 08/25/2014] [Indexed: 11/25/2022]
Abstract
The ubiquitous bacterial pathogen, Staphylococcus aureus, expresses a large arsenal of virulence factors essential for pathogenesis. The phenol-soluble modulins (PSMs) are a family of cytolytic peptide toxins which have multiple roles in staphylococcal virulence. To gain an insight into which specific factors are important in PSM-mediated cell membrane disruption, the lytic activity of individual PSM peptides against phospholipid vesicles and T cells was investigated. Vesicles were most susceptible to lysis by the PSMα subclass of peptides (α1-3 in particular), when containing between 10 and 30mol% cholesterol, which for these vesicles is the mixed solid ordered (so)-liquid ordered (lo) phase. Our results show that the PSMβ class of peptides has little effect on vesicles at concentrations comparable to that of the PSMα class and exhibited no cytotoxicity. Furthermore, within the PSMα class, differences emerged with PSMα4 showing decreased vesicle and cytotoxic activity in comparison to its counterparts, in contrast to previous studies. In order to understand this, peptides were studied using helical wheel projections and circular dichroism measurements. The degree of amphipathicity, alpha-helicity and properties such as charge and hydrophobicity were calculated, allowing a structure-function relationship to be inferred. The degree of alpha-helicity of the peptides was the single most important property of the seven peptides studied in predicting their lytic activity. These results help to redefine this class of peptide toxins and also highlight certain membrane parameters required for efficient lysis.
Collapse
Affiliation(s)
- Maisem Laabei
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; Department of Biology and Biochemistry, Claverton Down, Bath BA2 7AY, UK
| | - W David Jamieson
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Yi Yang
- Department of Biology and Biochemistry, Claverton Down, Bath BA2 7AY, UK
| | - Jean van den Elsen
- Department of Biology and Biochemistry, Claverton Down, Bath BA2 7AY, UK
| | - A Toby A Jenkins
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
48
|
Thet NT, Jamieson WD, Laabei M, Mercer-Chalmers JD, Jenkins ATA. Photopolymerization of Polydiacetylene in Hybrid Liposomes: Effect of Polymerization on Stability and Response to Pathogenic Bacterial Toxins. J Phys Chem B 2014; 118:5418-27. [DOI: 10.1021/jp502586b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Naing Tun Thet
- Department of Chemistry and ‡Department of
Biology and Biochemistry, University of Bath, BA2 7AY, Bath, United Kingdom
| | - William David Jamieson
- Department of Chemistry and ‡Department of
Biology and Biochemistry, University of Bath, BA2 7AY, Bath, United Kingdom
| | - Maisem Laabei
- Department of Chemistry and ‡Department of
Biology and Biochemistry, University of Bath, BA2 7AY, Bath, United Kingdom
| | - June D. Mercer-Chalmers
- Department of Chemistry and ‡Department of
Biology and Biochemistry, University of Bath, BA2 7AY, Bath, United Kingdom
| | - A. Toby A. Jenkins
- Department of Chemistry and ‡Department of
Biology and Biochemistry, University of Bath, BA2 7AY, Bath, United Kingdom
| |
Collapse
|
49
|
Ebrahimi A, Ghasemi M, Ghasemi B. Some Virulence Factors of Staphylococci Isolated From Wound and Skin Infections in Shahrekord, IR Iran. Jundishapur J Microbiol 2014; 7:e9225. [PMID: 25147697 PMCID: PMC4138617 DOI: 10.5812/jjm.9225] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/17/2013] [Accepted: 03/01/2013] [Indexed: 01/22/2023] Open
Abstract
Background: Staphylococci release a large number of enzymes. Some of these, such as coagulase, beta- lactamase, hemolysins and biofilms are considered indices of pathogenicity. Objectives: The aim of the current study was based on the isolation and identification of Staphylococcus aureus and coagulase negative Staphylococci (CNS) strains from various skin lesions and examining their biofilms, beta- lactamase, hemolysins production and antibiotic resistance pattern. Materials and Methods: Sixty one infected wounds and 39 skin infections samples were collected and examined. After the culture and identification, examination for production of hemolysins, beta- lactamase, biofilm and susceptibility toward 9 antimicrobials was performed. Results: Out of 75 isolated Staphylococci, sixty (80%) were biofilm producers. Two overall prevalence of 28.5% and 100% of ß-lactamase production were recorded for isolated S. aureus and CNS, respectively. Twenty out of 49 (40.8%), the same number of α- and β- hemolytic S. aureus, were isolated while six (12.24%) were ∂ -hemolysin producers. Twenty two of Twenty six (84.6%) isolates of CNS, were hemolysin producers that all were ∂ type. The S. aureus isolates from wound infections, show a high sensitivity pattern to all examined antibiotics, this sensitivity pattern for isolates from skin dermatitis is relatively low, though. Conclusions: High percentage of hemolysins, biofilm and beta lactamase production by isolated Staphylococci, suggests an important role of these virulence factors in the pathogenesis of isolated Staphylococci from dermatitis lesions. The S. aureus isolates from wound infections, show a high sensitivity pattern to all examined antibiotics. Only ciprofloxacin was found to be active against all isolates from dedermatitis lesions.
Collapse
Affiliation(s)
- Azizollah Ebrahimi
- Institute of Zoonotic Diseases, School of Veterinary Science, Shahrekord University, Shahrekord, IR Iran
- Corresponding author: Azizollah Ebrahimi, Institute of Zoonotic Diseases, College of Veterinary Science, P.O. BOX: 115, Postal Code, 88186/34141, Shahrekord University, Shahrekord, IR Iran. Tel: +98-3814424427, Fax: +98-3814424427, E-mail:
| | - Maryam Ghasemi
- School of Veterinary Science, Shahrekord University, Shahrekord, IR Iran
| | | |
Collapse
|
50
|
Laabei M, Jamieson WD, Massey RC, Jenkins ATA. Staphylococcus aureus interaction with phospholipid vesicles--a new method to accurately determine accessory gene regulator (agr) activity. PLoS One 2014; 9:e87270. [PMID: 24498061 PMCID: PMC3907525 DOI: 10.1371/journal.pone.0087270] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 12/27/2013] [Indexed: 11/19/2022] Open
Abstract
The staphylococcal accessory gene regulatory (agr) operon is a well-characterised global regulatory element that is important in the control of virulence gene expression for Staphylococcus aureus, a major human pathogen. Hence, accurate and sensitive measurement of Agr activity is central in understanding the virulence potential of Staphylococcus aureus, especially in the context of Agr dysfunction, which has been linked with persistent bacteraemia and reduced susceptibility to glycopeptide antibiotics. Agr function is typically measured using a synergistic haemolysis CAMP assay, which is believe to report on the level of expression of one of the translated products of the agr locus, delta toxin. In this study we develop a vesicle lysis test (VLT) that is specific to small amphipathic peptides, most notably delta and Phenol Soluble Modulin (PSM) toxins. To determine the accuracy of this VLT method in assaying Agr activity, we compared it to the CAMP assay using 89 clinical Staphylococcus aureus isolates. Of the 89 isolates, 16 were designated as having dysfunctional Agr systems by the CAMP assay, whereas only three were designated as such by VLT. Molecular analysis demonstrated that of these 16 isolates, the 13 designated as having a functional Agr system by VLT transcribed rnaIII and secreted delta toxin, demonstrating they have a functional Agr system despite the results of the CAMP assay. The agr locus of all 16 isolates was sequenced, and only the 3 designated as having a dysfunctional Agr system contained mutations, explaining their Agr dysfunction. Given the potentially important link between Agr dysfunction and clinical outcome, we have developed an assay that determines this more accurately than the conventional CAMP assay.
Collapse
Affiliation(s)
- Maisem Laabei
- Department of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - W. David Jamieson
- Department of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Ruth C. Massey
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - A. Tobias A. Jenkins
- Department of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom
| |
Collapse
|