1
|
Zhang Q, Xu P, Yan N, Ren Y, Liang X, Guo X. Adsorption of neonicotinoid insecticides by mulch film-derived microplastics and their combined toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177238. [PMID: 39490386 DOI: 10.1016/j.scitotenv.2024.177238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Mulch films allow for efficient crop production, yet their low recovery after use causes severe microplastics (MPs) pollution in agricultural soils. MPs in agricultural environments undergo complex ageing processes, which can alter their interactions with coexisting neonicotinoids and result in unpredictable ecological risks. Here, polyethylene (PE) and polybutylene adipate terephthalate (PBAT), typical mulch films, were chosen for the preparation of PE-MPs and PBAT-MPs. The adsorption of two common neonicotinoids, imidacloprid and dinotefuran, by the two MPs and their joint toxicity were examined. We found that the specific surface area of PBAT-MPs (7.59 m2 g-1) is greater than that of PE-MPs (2.83 m2 g-1), which results in a greater adsorption capacity for neonicotinoids. Additionally, ageing increased the adsorption capacity of MPs for neonicotinoids by 37.50-40.68 % for PBAT-MPs and 44.23-72.34 % for PE-MPs. This enhancement is attributed to the introduction of additional oxygen-containing functional groups on the MPs' surfaces, which can form hydrogen bonds with the amino groups in imidacloprid and dinotefuran. Furthermore, compared to single MPs and neonicotinoids, stronger inhibition in the growth of Escherichia coli and the germination of lettuce seeds was observed when they coexisted. This study highlights the importance of assessing the interactions between MPs and neonicotinoids and their joint toxicity, thereby improving our understanding of the potential risks of MPs towards the agricultural ecosystems.
Collapse
Affiliation(s)
- Quanxin Zhang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Pingfan Xu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China.
| | - Nana Yan
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Yujing Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Kabus J, Hartmann V, Cocchiararo B, Dombrowski A, Enns D, Karaouzas I, Lipkowski K, Pelikan L, Shumka S, Soose L, Baker NJ, Jourdan J. Cryptic species complex shows population-dependent, rather than lineage-dependent tolerance to a neonicotinoid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124888. [PMID: 39260548 DOI: 10.1016/j.envpol.2024.124888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Cryptic species are rarely considered in ecotoxicology, resulting in misleading outcomes when using a single morphospecies that encompasses multiple cryptic species. This oversight contributes to the lack of reproducibility in ecotoxicological experiments and promotes unreliable extrapolations. The important question of ecological differentiation and the sensitivity of cryptic species is rarely tackled, leaving a substantial knowledge gap regarding the vulnerability of individual cryptic species within species complexes. In times of agricultural intensification and the frequent use of pesticides, there is an urgent need for a better understanding of the vulnerability of species complexes and possible differences in adaptive processes. We used the cryptic species complex of the aquatic amphipod Gammarus roeselii, which comprises at least 13 genetic mtDNA lineages and spans from small-scale endemic lineages in Greece to a large-scale widely distributed lineage in central Europe. We exposed eleven populations belonging to four lineages to the neonicotinoid thiacloprid in an acute toxicity assay. We recorded various environmental variables in each habitat to assess the potential pre-exposure of the populations to contaminants. Our results showed that the populations differed up to 4-fold in their tolerances. The lineage identity had a rather minor influence, suggesting that the cryptic species complex G. roeselii does not differ significantly in tolerance to the neonicotinoid thiacloprid. However, the observed population differentiation implies that recent pre-exposure to thiacloprid (or similar substances) or general habitat contamination has triggered adaptive processes. Though, the extent to which these mechanisms are equally triggered in all lineages needs to be addressed in the future. Our study provides two key findings: Firstly, it shows that observed phylogenetic differences within the G. roeselii species complex did not reveal differences in thiacloprid tolerance. Second, it confirms that differentiation occurs at the population level, highlighting that susceptibility to toxicants is population-dependent. The population-specific differences were within the range of accepted intraspecific variability from a regulatory standpoint. From an evolutionary-ecological perspective, it remains intriguing to observe how persistent stresses will continue to influence tolerance and whether different populations are on distinct pathways of adaptation. Given that the potential selection process has only lasted a relatively short number of generations, it is crucial to monitor these populations in the future, as even brief exposure periods significantly impact evolutionary responses.
Collapse
Affiliation(s)
- Jana Kabus
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany.
| | - Vanessa Hartmann
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany
| | - Berardino Cocchiararo
- Senckenberg Research Institute, Conservation Genetics Section, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Andrea Dombrowski
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany
| | - Daniel Enns
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany
| | - Ioannis Karaouzas
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 46.7km Athens-Sounio Av., 19013, Anavyssos, Greece
| | - Konrad Lipkowski
- Goethe University Frankfurt, Department of Wildlife-/Zoo-Animal-Biology and Systematics, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany
| | - Lars Pelikan
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany; University of Turku, Department of Biology, Vesilinnantie 5, FI-20014, Turku, Finland
| | - Spase Shumka
- Faculty of Biotechnology and Food, Agricultural University of Tirana, Tirana, Albania
| | - Laura Soose
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany
| | - Nathan J Baker
- Nature Research Centre, Akademijos Str. 2, Vilnius, LT-08412, Lithuania
| | - Jonas Jourdan
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Torres JN, Hubbard CB, Murillo AC. Examining imidacloprid behaviorally resistant house flies (Musca domestica L.) (Diptera: Muscidae) for neonicotinoid cross-resistance. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1443-1447. [PMID: 39182229 DOI: 10.1093/jme/tjae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
The house fly (Musca domestica L.) is a ubiquitous fly species commonly associated with confined animal and urban waste storage facilities. It is known for its pestiferous nature and ability to mechanically vector numerous disease-causing pathogens. Effective control of adult house fly populations has traditionally relied upon insecticidal food baits; however, due to the overuse of insecticides, resistance has proven to yield many insecticidal baits and chemical classes less effective. Imidacloprid, the most widely used neonicotinoid, has been formulated and commonly used in house fly baits for over 2 decades. However, widespread evidence of physiological and behavioral resistance to imidacloprid has been documented. While previous studies have investigated the mechanisms of behavioral resistance to imidacloprid in the house fly, it remains unclear whether behavioral resistance is specific to imidacloprid or if behavioral cross-resistance exists to other compounds within the neonicotinoid class of insecticides. The current study used no-choice and choice-feeding bioassays to examine a lab-selected imidacloprid behaviorally resistant house fly colony for cross-resistance to other insecticides in the neonicotinoid chemical class. All flies exhibited high mortality (97-100%) in no-choice assays, even when exposed to imidacloprid, indicating physiological susceptibility to all tested neonicotinoids. House flies exhibited high mortality (98-100%) in choice assays when exposed to all neonicotinoid insecticides tested besides imidacloprid. These results confirm that imidacloprid behavioral resistance is specific to the compound imidacloprid and that alternative neonicotinoids remain viable options for control. Our study showed no evidence of behavioral cross-resistance to other compounds in the neonicotinoid class.
Collapse
Affiliation(s)
| | - Caleb B Hubbard
- Department of Entomology, University of California, Riverside, CA, USA
| | - Amy C Murillo
- Department of Entomology, University of California, Riverside, CA, USA
| |
Collapse
|
4
|
Sun S, Chen Q, Gao J, Qu M, Chen Z, Wang K, Wang H. Sublethal effects of nitenpyram on the development of silkworm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175262. [PMID: 39098428 DOI: 10.1016/j.scitotenv.2024.175262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The utilization of nitenpyram for aphid and whitefly control may induce environmental contamination and negative repercussions on non-target organisms. Formerly, we found that nitenpyram would pollute the peripheral and sub-peripheral areas of the adjacent mulberry orchard. Under acute toxicity conditions, nitenpyram induced oxidative damage in silkworms, affected biological metabolism, synthesis, immunity, and signal transduction. Considering the impact of nitenpyram mist drift on mulberry leaves, we investigated the effects of low concentrations of nitenpyram on silkworms. The results showed that silkworms exposed to 0.17 mg/L, 0.35 mg/L and 0.70 mg/L of nitenpyram (1/40 LC50, 1/20 LC50 and 1/10 LC50) showed obvious poisoning symptoms. The cocoon weight and cocoon shell weight decreased gradually with increases in the concentration, and these decreases prolonged the growth and development time of silkworms and induced the detoxification enzymes carboxylesterase (CarE) and glutathione-S-transferase (GST) to cope with the stress damage caused by nitenpyram. Exposure to low concentrations of nitenpyram downregulates genes involved in the drug metabolism-other enzymes and peroxisome pathway in silkworms. Additionally, through injection of miRNA mimics and inhibitors, we discovered that detoxifying enzyme pathway genes are influenced by bmo-miR-3382-3P, bmo-miR-3213-5P and bmo-miR-133, regulating the immune response of silkworms. This study provides an overall view of the toxicity and detoxification metabolism of nitenpyram in silkworm, and provides a reference for environmental assessment.
Collapse
Affiliation(s)
- Shoumin Sun
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qiqi Chen
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jingwei Gao
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Minghui Qu
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China; Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, China
| | - Zhenzhen Chen
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Kaiyun Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hongyan Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
5
|
Yang Y, Zhang Q, Xiao Y, Xiao Y, Gao H, Zhang S, Covaci A, Xia X. Urban sewage discharge of neonicotinoids and their transformation products threatens aquatic organisms. WATER RESEARCH 2024; 268:122740. [PMID: 39522479 DOI: 10.1016/j.watres.2024.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Neonicotinoid insecticides (NEOs) are frequently used for urban landscape management and vector control, and undergo various transformation processes when release into urban environments. The discharges of NEOs and their transformation products (TPs) from urban sewer networks may pose serious threats to freshwater ecosystem integrity. However, TPs of NEOs present in municipal wastewater treatment plants (MWWTPs) and their associated risks to aquatic organisms are largely unknown. Here, we investigate NEOs and their TPs in 28 MWWTPs of six Chinese cities. Eleven NEOs and 33 TPs were identified, and 17 TPs were firstly detected in environmental medium. Considerable concentrations of NEOs and their TPs (17.0-1543 ng/L) were measured in the effluents, and two NEOs exceeded the ecological quality reference values in 32.1 % (for clothianidin) and 78.6 % (for imidacloprid) of the effluents. Simultaneously, 12 TPs had a higher regulatory priority than the corresponding NEOs in at least one aquatic organism using a toxicological priority index. Furthermore, 79.5 % of NEOs and their TPs exhibited high persistence and mobility, and thus these compounds could readily spread over long distances in aquatic environment. This study highlights that the input of NEOs and their TPs from treated wastewater into aquatic ecosystem should be regulated to mitigate the ecological risks.
Collapse
Affiliation(s)
- Yingying Yang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qing Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Yilin Xiao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Xiao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hui Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shangwei Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
6
|
Mottet C, Caddoux L, Fontaine S, Plantamp C, Bass C, Barrès B. Myzus persicae resistance to neonicotinoids-unravelling the contribution of different mechanisms to phenotype. PEST MANAGEMENT SCIENCE 2024; 80:5852-5863. [PMID: 39041680 DOI: 10.1002/ps.8316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Deciphering the mechanisms underlying insecticide resistance is key to devising appropriate strategies against this economically important trait. Myzus persicae, the green peach-potato aphid, is a major pest that has evolved resistance to many insecticide classes, including neonicotinoids. M. persicae resistance to neonicotinoids has previously been shown to result from two main mechanisms: metabolic resistance resulting from P450 overexpression and a targetsite mutation, R81T. However, their respective contribution to resistant phenotypes remains unclear. RESULTS By combining extensive insecticide bioassays with and without addition of the synergist PBO, and gene copy number and expression quantification of two key P450 enzymes (CYP6CY3 and CYP6CY4) in a 23 clone collection, we, (i) confirmed that metabolic resistance is correlated with P450 expression level, up to a threshold, (ii) demonstrated that the R81T mutation, in the homozygous state and in combination with P450 overexpression, leads to high levels of resistance to neonicotinoids, and, (iii) showed that there is a synergistic interaction between the P450 and R81T mechanisms, and that this interaction has the strongest impact on the strength of resistance phenotypes. However, even though the R81T mutation has a great effect on the resistance phenotype, different R81T genotypes can exhibit variation in the level of resistance, explained only partially by P450 overexpression. CONCLUSION To comprehend resistance phenotypes, it is important to take into account every mechanism at play, as well as the way these mechanisms interact. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Claire Mottet
- Université de Lyon, Anses, INRAE, USC CASPER, Lyon, France
| | | | | | | | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Benoît Barrès
- Université de Lyon, Anses, INRAE, USC CASPER, Lyon, France
| |
Collapse
|
7
|
Beringue A, Queffelec J, Le Lann C, Sulmon C. Sublethal pesticide exposure in non-target terrestrial ecosystems: From known effects on individuals to potential consequences on trophic interactions and network functioning. ENVIRONMENTAL RESEARCH 2024; 260:119620. [PMID: 39032619 DOI: 10.1016/j.envres.2024.119620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Over the last decades, the intensification of agriculture has resulted in an increasing use of pesticides, which has led to widespread contamination of non-target ecosystems in agricultural landscapes. Plants and arthropods inhabiting these systems are therefore chronically exposed to, at least, low levels of pesticides through direct pesticide drift, but also through the contamination of their nutrient sources (e.g. soil water or host/prey tissues). Pesticides (herbicides, acaricides/insecticides and fungicides) are chemical substances used to control pests, such as weeds, phytophagous arthropods and pathogenic microorganisms. These molecules are designed to disturb specific physiological mechanisms and induce mortality in targeted organisms. However, under sublethal exposure, pesticides also affect biological processes including metabolism, development, reproduction or inter-specific interactions even in organisms that do not possess the molecular target of the pesticide. Despite the broad current knowledge on sublethal effects of pesticides on organisms, their adverse effects on trophic interactions are less investigated, especially within terrestrial trophic networks. In this review, we provide an overview of the effects, both target and non-target, of sublethal exposures to pesticides on traits involved in trophic interactions between plants, phytophagous insects and their natural enemies. We also discuss how these effects may impact ecosystem functioning by analyzing studies investigating the responses of Plant-Phytophage-Natural enemy trophic networks to pesticides. Finally, we highlight the current challenges and research prospects in the understanding of the effects of pesticides on trophic interactions and networks in non-target terrestrial ecosystems.
Collapse
Affiliation(s)
- Axel Beringue
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, évolution)], UMR, 6553, Rennes, France
| | | | - Cécile Le Lann
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, évolution)], UMR, 6553, Rennes, France
| | - Cécile Sulmon
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, évolution)], UMR, 6553, Rennes, France.
| |
Collapse
|
8
|
Yan XT, Cai YY, Zhang QQ, Guo Z, Ying GG. Neonicotinoid insecticides in a large-scale agricultural basin system-Use, emission, transportation, and their contributions to the ecological risks in the Pearl River Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174392. [PMID: 38955277 DOI: 10.1016/j.scitotenv.2024.174392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Neonicotinoid pollution has increased rapidly and globally in recent years, posing significant risks to agricultural areas. Quantifying use and emission, transport and fate of these contaminants, and risks is critical for proper management of neonicotinoids in river basin. This study elucidates use and emissions of neonicotinoid pesticides in a typical large-scale agriculture basin of China, the Pearl River Basin, as well as the resulting agricultural non-point source pollution and related ecological risks using market surveys, data analysis, and the Soil and Water Assessment Tool. Neonicotinoid use in the basin was estimated at 1361 t in 2019, of which 83.1 % was used in agriculture. After application, approximately 99.1 t neonicotinoids were transported to the Pearl River, accounting for 7.2 % of the total applied. Estimated aquatic concentrations of neonicotinoids showed three seasonal peaks. Several distinct groups of neonicotinoid chemicals can be observed in the Pearl River, as estimated by the model. An estimated 3.9 % of the neonicotinoids used were transported to the South China Sea. Based on the present risk assessment result, several neonicotinoids posed risks to aquatic organism. Therefore, the use of alternative products and/or reduced use is deemed necessary. This study provides novel insights into the fate and ecological risks of neonicotinoid insecticides in large-scale watersheds, and underscores the need for greater efficiency of use and extensive environmental monitoring.
Collapse
Affiliation(s)
- Xiao-Ting Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Ya-Ya Cai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Zhao Guo
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
9
|
Ouattara TY, Fournier M, Gonzalez N, Rojo S, Lucas E. Reproductive parameters of a new biocontrol agent, Eupeodes americanus (Diptera: Syrphidae) and comparison with the commercialized Aphidoletes aphidimyza (Diptera: Cecidomyiidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1760-1768. [PMID: 39183459 PMCID: PMC11473044 DOI: 10.1093/jee/toae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/01/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
The American hoverfly Eupeodes americanus (Wiedemann) (Diptera: Syrphidae) is an aphidophagous predator during its larval stage and is currently being evaluated for inclusion in biocontrol programs as a new biocontrol agent. However, little is known about its reproductive aptitudes. The objective of the present study was to determine the reproductive parameters of E. americanus and to compare them with those of a commercialized and widely used biological control agent for aphids, the aphid midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae). The preoviposition period, oviposition period, adult longevity, lifetime and daily fecundity, egg hatching rate, and fertility were determined for E. americanus females and compared to those of A. aphidimyza. Trials were conducted under laboratory conditions in rearing cages on the broad bean plant Vicia faba L. (Fabaceae), infested with pea aphids Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae). The results revealed that the preoviposition period, oviposition period, and adult longevity were significantly longer in E. americanus than in A. aphidimyza. The daily fecundity and egg-hatching rate were similar in both species. However, lifetime fecundity and fertility were considerably higher in E. americanus than in A. aphidimyza. This study demonstrates that the reproductive capacity of E. americanus is clearly superior to that of A. aphidimyza and therefore supports its inclusion in the aphid pest management program as a new biocontrol agent.
Collapse
Affiliation(s)
- Téné Yacine Ouattara
- Laboratoire de Lutte Biologique, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), H3C 3P8 Montréal, Québec, Canada
| | - Marc Fournier
- Laboratoire de Lutte Biologique, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), H3C 3P8 Montréal, Québec, Canada
| | - Noémie Gonzalez
- Laboratoire de Lutte Biologique, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), H3C 3P8 Montréal, Québec, Canada
| | - Santos Rojo
- Departamento de Ciencias Ambientales & Recursos Naturales, Universidad de Alicante, E-03080 Alicante, Spain
| | - Eric Lucas
- Laboratoire de Lutte Biologique, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), H3C 3P8 Montréal, Québec, Canada
| |
Collapse
|
10
|
Machado EP, Souza EV, Dias GS, Sacilotto MG, Omoto C. Is insecticide resistance a factor contributing to the increasing problems with Dalbulus maidis (Hemiptera: Cicadellidae) in Brazil? PEST MANAGEMENT SCIENCE 2024; 80:5120-5130. [PMID: 38868923 DOI: 10.1002/ps.8237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND The corn leafhopper, Dalbulus maidis, is an important pest in Brazil. While chemical control has traditionally been the cornerstone for managing this pest, field control failures have been reported for some insecticides. To understand if these failures are due to resistance, we evaluated the susceptibility of 11 field-collected populations of D. maidis to major insecticides during the 2021-2022 crop seasons in Brazil using concentration-mortality bioassays. Additionally, we employed diagnostic concentration bioassays and foliar sprays at label-recommended rates in 8-10 populations collected during the 2022-2023 crop seasons. RESULTS High susceptibility to methomyl, carbosulfan and acephate was observed on concentration-mortality bioassays across all populations tested with resistance ratio (RR) based on LC50 <10-fold, except for one population from Bahia State that exhibited reduced susceptibility to methomyl (RR = 17.5). On the other hand, all populations exhibited reduced susceptibility to bifenthrin, acetamiprid, and imidacloprid, with RR ranging from 90 to 2000-fold. This reduced susceptibility to neonicotinoid and pyrethroid insecticides was further confirmed at diagnostic concentrations based on LC99 of the susceptible strain, with survival rates >20% and in foliar sprays with mortality rates <80%. Most populations exposed to acephate and carbosulfan exhibited low survival rates at diagnostic concentrations (<5%) and high mortality rates in foliar sprays (>80%). CONCLUSIONS The reduced susceptibility to pyrethroid and neonicotinoid insecticides likely explain the field failures in controlling D. maidis populations in Brazil. This study represents the first large-scale susceptibility monitoring of D. maidis to insecticides, and the results will contribute to decision-making regarding the management of this pest. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eduardo Perkovski Machado
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Emily Vieira Souza
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Gabriel Silva Dias
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Matheus Gerage Sacilotto
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Celso Omoto
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
11
|
Paoli M, Giurfa M. Pesticides and pollinator brain: How do neonicotinoids affect the central nervous system of bees? Eur J Neurosci 2024; 60:5927-5948. [PMID: 39258341 DOI: 10.1111/ejn.16536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Neonicotinoids represent over a quarter of the global pesticide market. Research on their environmental impact has revealed their adverse effect on the cognitive functions of pollinators, in particular of bees. Cognitive impairments, mostly revealed by behavioural studies, are the phenotypic expression of an alteration in the underlying neural circuits, a matter deserving greater attention. Here, we reviewed studies on the impact of field-relevant doses of neonicotinoids on the neurophysiology and neurodevelopment of bees. In particular, we focus on their olfactory system as much knowledge has been gained on the different brain areas that participate in odour processing. Recent studies have revealed the detrimental effects of neonicotinoids at multiple levels of the olfactory system, including modulation of odorant-induced activity in olfactory sensory neurons, diminished neural responses in the antennal lobe (the first olfactory processing centre) and abnormal development of the neural connectivity within the mushroom bodies (central neuropils involved in multisensory integration, learning and memory storage, among others). Given the importance of olfactory perception for multiple aspects of bee biology, the reported disruption of the olfactory circuit, which can occur even upon exposure to sublethal doses of neonicotinoids, has severe consequences at both individual and colony levels. Moreover, the effects reported for a multimodal structure such as the mushroom bodies indicate that neonicotinoids' impact translates to other sensory domains. Assessing the impact of field-relevant doses of pesticides on bee neurophysiology is crucial for understanding how neonicotinoids influence their behaviour in ecological contexts and for defining effective and sustainable agricultural practices.
Collapse
Affiliation(s)
- Marco Paoli
- Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, Paris, France
| | - Martin Giurfa
- Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
12
|
Keodara A, Jeker L, Straub L, Grossar D, Müller J, Christen V. Novel fungicide and neonicotinoid insecticide impair flight behavior in pollen foraging honey bees, Apis mellifera. Sci Rep 2024; 14:22865. [PMID: 39354118 PMCID: PMC11445536 DOI: 10.1038/s41598-024-73235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024] Open
Abstract
Bees are often exposed to pesticides affecting physiological functions and molecular mechanisms. Studies showed a potential link between altered expression of energy metabolism related transcripts and increased homing flight time of foragers exposed to pesticides. In this study, we investigated the effects of thiamethoxam and pyraclostrobin on longevity, flight behavior, and expression of transcripts involved in endocrine regulation (hbg-3, buffy, vitellogenin) and energy metabolism (cox5a, cox5b, cox17) using radio frequency identification (RFID) technology and quantitative polymerase chain reaction. Parallel, a laboratory study was conducted investigating whether pesticide exposure alone without the influence of flight activity caused similar expression patterns as in the RFID experiment. No significant effect on survival, homing flight duration, or return rate of exposed bees was detected. The overall time foragers spent outside the hive was significantly reduced post-exposure. Irrespective of the treatment group, a correlation was observed between cox5a, cox5b, cox17 and hbg-3 expression and prolonged homing flight duration. Our results suggest that flight behavior can impact gene expression and exposure to pesticides adversely affects the expression of genes that are important for maintaining optimal flight capacity. Our laboratory-based experiment showed significantly altered expression levels of cox5a, cox6c, and cox17. However, further work is needed to identify transcriptional profiles responsible for prolonged homing flight duration.
Collapse
Affiliation(s)
- Anna Keodara
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Lukas Jeker
- Agroscope, Swiss Bee Research Center, Schwarzenburgstrasse 161, Bern, Switzerland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology, North Bangkok, Rayong Campus, Rayong, Thailand
- Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Daniela Grossar
- Agroscope, Swiss Bee Research Center, Schwarzenburgstrasse 161, Bern, Switzerland
| | - Jan Müller
- Federal Office of Information Technology, Systems and Telecommunication, Bern, Switzerland
| | - Verena Christen
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.
| |
Collapse
|
13
|
Wang L, Guo S, Wen B, Deng Z, Ding Q, Li X. Characterization of ATP-binding cassette transporters associated with emamectin benzoate tolerance: from the model insect Drosophila melanogaster to the agricultural pest Spodoptera frugiperda. PEST MANAGEMENT SCIENCE 2024. [PMID: 39324440 DOI: 10.1002/ps.8437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Multiple families of detoxification genes, including the increasingly recognized family of ATP-binding cassette (ABC) transporters, work together to influence the toxicity of synthetic insecticides and thus their resistance. Effective management of insecticide resistance requires identification of all toxicity-affecting members from each family of toxicity-related genes. RESULTS Here, we used emamectin benzoate (EB), ABC transporters and Spodoptera frugiperda as a working case to test whether the strategy of 'from the model insect Drosophila melanogaster to agricultural pests' can identify all or most ABC transporter members related to EB tolerance in S. frugiperda. After confirming the involvement of ABC transporters in the toxicity of EB against fruit fly with the ABC inhibitor verapamil, four ABC transporter genes (DmCG3327, DmCG11147, DmCG4822, and DmCG7627) were found to be involved in EB tolerance using RNA interference-based family-wide functional screening. A combination of phylogenic analysis and a reciprocal TBLASTN search identified five S. frugiperda ABC transporter members as homologs (SfABCC4, SfABCG1, and SfABCG23) or one-way best hits (SfABCG4 and SfABCG20) of the four fly ABC genes. Real-time quantitative polymerase chain reaction (qPCR) analysis found that all five S. frugiperda ABC transporter genes were inducible by EB, and expressed in all the developmental stages and larval tissues, but with significant quantitative differences among stages and tissues. A cytotoxicity assay of ABC-overexpressing Sf9 cell lines showed that all the five S. frugiperda ABC transporter genes made Sf9 cells tolerant to EB. CONCLUSIONS This study not only identifies nine ABC transporter genes related to EB tolerance from D. melanogaster (four genes) and S. frugiperda (five genes), but also demonstrates the utility and effectiveness of the 'model to pests' strategy to identify most toxicity-affecting members from a given family of toxicity-related genes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lixiang Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shaoyi Guo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Bin Wen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongyuan Deng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Qian Ding
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
14
|
Sun J, Wu J, Zhang X, Wei Q, Kang W, Wang F, Liu F, Zhao M, Xu S, Han B. Enantioselective toxicity of the neonicotinoid dinotefuran on honeybee (Apis mellifera) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:174014. [PMID: 38880156 DOI: 10.1016/j.scitotenv.2024.174014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The threat of neonicotinoids to insect pollinators, particularly honeybees (Apis mellifera), is a global concern, but the risk of chiral neonicotinoids to insect larvae remains poorly understood. In the current study, we evaluated the acute and chronic toxicity of dinotefuran enantiomers to honeybee larvae in vitro and explored the mechanism of toxicity. The results showed that the acute median lethal dose (LD50) of S-dinotefuran to honeybee larvae was 30.0 μg/larva after oral exposure for 72 h, which was more toxic than rac-dinotefuran (92.7 μg/larva) and R-dinotefuran (183.6 μg/larva). Although the acute toxicity of the three forms of dinotefuran to larvae was lower than that to adults, chronic exposure significantly reduced larval survival, larval weight, and weight of newly emerged adults. Analysis of gene expression and hormone titer indicated that dinotefuran affects larval growth and development by interfering with nutrient digestion and absorption and the molting system. Analysis of hemolymph metabolome further revealed that disturbances in the neuroactive ligand-receptor interaction pathway and energy metabolism are the key mechanisms of dinotefuran toxicity to bee larvae. In addition, melatonin and vitellogenin are used by larvae to cope with dinotefuran-induced oxidative stress. Our results contribute to a comprehensive understanding of dinotefuran damage to bees and provide new insights into the mechanism of enantioselective toxicity of insecticides to insect larvae.
Collapse
Affiliation(s)
- Jiajing Sun
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Modern Agricultural College, Yibin Vocational and Technical College, Yibin 644100, China
| | - Jiangli Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xufeng Zhang
- Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Qiaohong Wei
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weipeng Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Wang
- Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi Agricultural University, Taiyuan 030031, China
| | - Fengying Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meijiao Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shufa Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
15
|
Ke Y, Zheng W, Tian D, Ke S, Fu S, Zhang Z, Xie Y, Zhu J, Ren B, Zhang C, Yi X, Huang M. Occurrence and fate of five representative neonicotinoid insecticides across different wastewater treatment plants and the impact on receiving water bodies. ENVIRONMENTAL RESEARCH 2024; 263:120025. [PMID: 39293756 DOI: 10.1016/j.envres.2024.120025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Neonicotinoids (NEOs), despite their widespread use as insecticides, exhibit a notable knowledge deficit in regards to their presence in wastewater treatment plants (WWTPs) and their surrounding environments. This study delves into the presence and disposition of 5 NEOs: Thiamethoxam (THM), Clothianidin (CLO), Imidacloprid (IMD), Acetamiprid (ACE), and Thiacloprid (THA) across 3 domestic WWTPs and their receiving waters. Notably, THM, CLO, and ACE were consistently detected in all water and sludge samples, with THM emerging as the most abundant compound in both influent and effluent. Among the 3 WWTPs, WWTP 2, employing a fine bubble oxidation process, achieved the highest removal efficiency, surpassing 68%, in contrast to WWTP 1 (CAST) at 37% and WWTP 3 (A/A/O) at 7%. Biodegradation played a pivotal role in NEO removal, accounting for 36.7% and 68.2% of the total removal in WWTP 1 and WWTP 2, respectively. Surprisingly, in WWTP 3, biotransformation process inadvertently increased ACE and CLO concentrations by approximately 4.1% and 4.5%, respectively. The total NEO concentration in the receiving surface waters ranged from 72.7 to 155.5 ng/L, while sediment concentrations were significantly lower, spanning between 0.10 and 1.53 ng/g. WWTPs serve as both a removal and concentration point for NEOs, thereby significantly influencing their transportation. Additionally, the concentration of most NEOs in the receiving waters progressively increased from upstream to downstream, highlighting the substantial impact of WWTP discharges on natural water environments. This research offers valuable insights into NEO pollution surrounding WWTPs in the Pearl River Delta, ultimately aiding in pollution control and environmental protection decisions.
Collapse
Affiliation(s)
- Yuhan Ke
- School of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, PR China
| | - Wanbing Zheng
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China
| | - Di Tian
- School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Siyu Ke
- SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China
| | - Shuna Fu
- Agilent Technologies (China) Co. Ltd., Guangzhou, 510005, PR China
| | - Zhe Zhang
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Yue Xie
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China
| | - Junyu Zhu
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China
| | - Bangxing Ren
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Chao Zhang
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China
| | - Xiaohui Yi
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China
| | - Mingzhi Huang
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center & Nan'an SCNU Institute of Green and Low-carbon Research, South China Normal University, Quanzhou, 362300, PR China.
| |
Collapse
|
16
|
Cheng Y, Wang H, Wu Y, Ding Y, Peng C, Qi C, Xu A, Liu Y. Light-powered biodegradation of Imidacloprid by Scenedesmus sp. TXH202001: Assessing complete removal, metabolic pathways, and toxicity verification. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135345. [PMID: 39084013 DOI: 10.1016/j.jhazmat.2024.135345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Imidacloprid (IMI) is used extensively as an insecticide and poses a significant risk to both the ecological environment and human health. Biological methods are currently gaining recognition among the different strategies tested for wastewater treatment. This study focused on evaluating a recently discovered green alga, Scenedesmus sp. TXH202001, isolated from a municipal wastewater treatment plant (WWTP), exhibited notable capacity for IMI removal. After an 18-day evaluation, medium IMI concentrations (50 and 100 mg/L) facilitated the growth of microalgae whereas low (5 and 20 mg/L) and high (150 mg/L) concentrations had no discernible impact. No statistically significant disparities were detected in Fv/Fm, Malonaldehyde or Superoxide dismutase across all concentrations, suggesting Scenedesmus sp. TXH202001 exhibited notable resilience and adaptability to IMI conditions. Most notably, Scenedesmus sp. TXH202001 successfully eliminated > 99 % of IMI within 18 days subjected to IMI concentrations as high as 150 mg/L, which was contingent on the environmental factor of illumination. Molecular docking was used to identify the chemical reaction sites between IMI and typical degrading enzyme CYP450. Furthermore, the study revealed that the primary path for IMI removal was biodegradation and verified that the toxicity of the degraded product was lower than parent IMI in Caenorhabditis elegans. The efficacy of Scenedesmus sp. TXH202001 in wastewater was exceptional, thereby validating its practical utility.
Collapse
Affiliation(s)
- Yongtao Cheng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Hongyu Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430072, China
| | - Yuanyuan Wu
- University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yuting Ding
- University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Chuanyue Peng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Cuicui Qi
- Anhui Provincial Academy of Eco-Environmental Science Research, Hefei 230061, China
| | - An Xu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| | - Ying Liu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China.
| |
Collapse
|
17
|
Li Y, Lu J, Song X, Wang Y, Li Q, Pang Y, Gou M. Conjoint transcriptomics and metabolomics analyses provide insights into the toxicity of acetamiprid to Lethenteron reissneri larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116828. [PMID: 39094458 DOI: 10.1016/j.ecoenv.2024.116828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
The neonicotinoid pesticide acetamiprid has been widely used in agricultural pest control and was frequently detected in the water environment. There have been some studies of the toxic effects of acetamiprid on fish, but studies on aquatic lower vertebrates are still very limited. As a primitive jawless vertebrate, Lethenteron reissneri has a special position in evolution and is now listed as a national second level protected animal in China. The present study aimed to investigate the toxic effect of acetamiprid on the liver of L. reissneri larvae. A conjoint analysis of the transcriptomics and metabolomics was performed to determine the responses of L. reissneri larvae liver to acetamiprid at different concentrations (L for low concentration 25 mg/L and H for high concentration 100 mg/L). Even low concentrations of acetamiprid can cause significant liver damage to L. reissneri larvae in a short period. In omics analyses, 2141 differentially expressed genes (DEGs) and 183 differentially abundant metabolites (DAMs) were identified in the H/Control group, and 229 DEGs and 144 DAMs were identified in the L/C group. Correlation analyses revealed acetamiprid affected the metabolic pathways of L. reissneri larvae liver such as the glycerophospholipid metabolism and arachidonic acid metabolism. This study not only enriches the basis for understanding the toxic effect of acetamiprid exposure to L. reissneri larvae liver and provides more information on the breeding and conservation of L. reissneri, but also further causes attention on toxicity risk from acetamiprid to aquatic lower vertebrate species.
Collapse
Affiliation(s)
- Yitong Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Jiali Lu
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Xiaoping Song
- Respiratory Medicine, Affiliated Zhong Shan Hospital of Dalian University, Dalian 116001, China
| | - Yaocen Wang
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Respiratory Medicine, Affiliated Zhong Shan Hospital of Dalian University, Dalian 116001, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
18
|
Zhang H, Zhang Z, Zhang Y, Zhang X, Liu Z. CYP4CE1 Metabolized Nitenpyram through Two Types of Oxidation Reaction, Hydroxylation, and N-Demethylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20122-20129. [PMID: 39222380 DOI: 10.1021/acs.jafc.4c06273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nitenpyram, taking the place of imidacloprid, is a widely used neonicotinoid insecticide to control Nilaparvata lugens in Asia. Two P450s, CYP4CE1 and CYP6ER1, are key factors in the metabolic resistance against nitenpyram and imidacloprid. In this study, we found that CYP4CE1 expression was strongly associated with nitenpyram resistance in 8 field-collected populations, whereas CYP6ER1 expression correlated with imidacloprid resistance. Hence, we focused on nitenpyram metabolism by CYP4CE1, due to that imidacloprid metabolism by CYP6ER1 has intensively investigated. Mass spectrometry analysis revealed that recombinant CYP4CE1 metabolized nitenpyram into three products, N-desmethyl nitenpyram, hydroxy-nitenpyram, and N-desmethyl hydroxy-nitenpyram, with a preference for hydroxylation. In contrast, CYP6ER1 metabolized nitenpyram into a single product, N-desmethyl nitenpyram. These results provide new insights into the specific catalytic mechanisms of P450 enzymes in neonicotinoid metabolism and underscore the importance of different catalytic reactions in neonicotinoid insecticide resistance.
Collapse
Affiliation(s)
- Huihui Zhang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zhen Zhang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yixi Zhang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xinyu Zhang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| |
Collapse
|
19
|
Xu MZ, Li YT, Cao CQ. Physiological and gene expression responses of Protohermes xanthodes (Megaloptera: Corydalidae) larvae to imidacloprid. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:46. [PMID: 39249498 DOI: 10.1007/s00114-024-01932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Megaloptera larvae are important bioindicator species and potential resource insects. To further cultivate their economic role, their living environment must be examined in more detail. In this study, we analyzed the physiological and biochemical effects of a sublethal dose of imidacloprid, a widely used neonicotinoid insecticide, on the larvae of Protohermes xanthodes. After treatment with imidacloprid, P. xanthodes larvae exhibited clear symptoms of poisoning, including the head curling up toward the ventral surface. Additionally, the activity of acetylcholinesterase was significantly inhibited following exposure. The activities of glutathione S-transferases initially continuously increased but showed a slight decrease after 8 days. Catalase activity initially increased and then decreased following imidacloprid treatment; superoxide dismutase activity fluctuated over time, and peroxidase activity continuously increased. The expression levels of HSP70s genes were evaluated using qRT-PCR. These results indicate that P. xanthodes larvae exhibit a toxic response to imidacloprid exposure, manifested as oxidative stress, as observed through behavioral and physiological indicators.
Collapse
Affiliation(s)
- Mao-Zhou Xu
- College of Fisher and Life Science, Dalian Ocean University, Dalian, China
| | - Yu-Tong Li
- College of Fisher and Life Science, Dalian Ocean University, Dalian, China
| | - Cheng-Quan Cao
- College of Fisher and Life Science, Dalian Ocean University, Dalian, China.
| |
Collapse
|
20
|
Cao Y, Zhao W, Zhang J, Figueiredo DM, Zhao M, Ren S, Mu H, Li Y, Lu H, Shi H, Li X, Li J, Zhao F, Han J, Wang K. Effects of neonicotinoid residues on non-target soil animals: A case study of meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135022. [PMID: 38941834 DOI: 10.1016/j.jhazmat.2024.135022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
Neonicotinoids (NEOs) are currently the fastest-growing and most widely used insecticide class worldwide. Increasing evidence suggests that long-term NEO residues in the environment have toxic effects on non-target soil animals. However, few studies have conducted surveys on the effects of NEOs on soil animals, and only few have focused on global systematic reviews or meta-analysis to quantify the effects of NEOs on soil animals. Here, we present a meta-analysis of 2940 observations from 113 field and laboratory studies that investigated the effects of NEOs (at concentrations of 0.001-78,600.000 mg/kg) on different soil animals across five indicators (i.e., survival, growth, behavior, reproduction, and biochemical biomarkers). Furthermore, we quantify the effects of NEOs on different species of soil animals. Results show that NEOs inhibit the survival, growth rate, behavior, and reproduction of soil animals, and alter biochemical biomarkers. Both the survival rate and longevity of individuals decreased by 100 % with NEO residues. The mean values of juvenile survival, cocoon number, and egg hatchability were reduced by 97 %, 100 %, and 84 %, respectively. Both individual and cocoon weights were reduced by 82 %, while the growth rate decreased by 88 % with NEO residues. Our meta-analysis confirms that NEOs pose significant negative impacts on soil animals.
Collapse
Affiliation(s)
- Yuxuan Cao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China; Innovation Center of Pesticide Research, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wenting Zhao
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Jinrui Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China
| | - Daniel M Figueiredo
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, the Netherlands
| | - Mingyu Zhao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China
| | - Siyang Ren
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China; School of Natural Sciences, Bangor University, Bangor LL57 2DG, UK
| | - Hongyu Mu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China; Soil Physics and Land Management Group, Wageningen University & Research, 6700, AA, Wageningen, the Netherlands
| | - Yiyi Li
- Innovation Center of Pesticide Research, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Huan Lu
- Innovation Center of Pesticide Research, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Haoyuan Shi
- Xinzhou Center for Disease Control and Prevention, Xinzhou 034099, China
| | - Xin Li
- Xinzhou Center for Disease Control and Prevention, Xinzhou 034099, China
| | - Jindong Li
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taigu 030801, China
| | - Fanrong Zhao
- Innovation Center of Pesticide Research, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jiajun Han
- Innovation Center of Pesticide Research, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Kai Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Li X, Yu S, Huang K, Zhu W, Ye G, Qi J, Shu Y, Chen X, Wang Z, Maimaiti S, Jin H, Lu S. Neonicotinoid residues in fruits and vegetables in Shenzhen: Assessing human exposure and health risks. CHEMOSPHERE 2024; 364:143267. [PMID: 39236915 DOI: 10.1016/j.chemosphere.2024.143267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
The extensive use of neonicotinoids (NEOs) in agricultural production has led to their pervasive presence in various environmental matrices, including human samples. Given the central role of fruits and vegetables in daily human diets, it is crucial to evaluate the levels of NEOs residues and their potential health risks. In this study, 3104 vegetable samples and 1567 fruit samples from the Shenzhen city were analyzed. Using the relative potency factor (RPF) method, the residue levels of six representative neonicotinoids, including imidacloprid (IMI), acetamiprid (ACE), thiamethoxam (THM), dinotefuran (DIN), clothianidin (CLO), thiacloprid (THI), were systematically evaluated. The estimated daily intake (EDI), hazard quotient (HQ), and hazard index (HI) for both children and adults were calculated to gauge the prevalence and potential health risks of NEOs in fruits and vegetables. Acetamiprid (ACE) was the most frequently detected NEO in vegetables (69.4%) and fruits (73.9%), making it the predominant contributor to total residues. Further analyses indicated notably higher levels of imidacloprid-equivalent total neonicotinoids (IMIRPF) in root and tuber vegetables (3025 μg/kg) and other fruits (243 μg/kg). A significant strong positive correlation (r = 0.748, P < 0.05) was observed between thiamethoxam (THM) and clothianidin (CLO), possibly due to their shared metabolic pathways. Although the mean HI values for adults and children from daily fruit (adults: 0.02, children: 0.01) and vegetable (adults: 0.02, children: 0.03) intake were generally below safety thresholds, some maximum HI values exceeded these limits, indicating that the potential health risks associated with NEOs exposure should not be overlooked.
Collapse
Affiliation(s)
- Xinjie Li
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Sisi Yu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Ke Huang
- Food Inspection and Quarantine Center, Shenzhen Customs, China
| | - Wenchao Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China; Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, 518107, China
| | - Gang Ye
- Food Inspection and Quarantine Center, Shenzhen Customs, China
| | - Jialiang Qi
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Yanbo Shu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xirui Chen
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Zenghan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Saiheidaiguli Maimaiti
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Hongwei Jin
- Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, 518107, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
22
|
Song X, Wang H, Gao Y, Xu K, Sun Z, Zhao C, Yao G, Xu H. Design, synthesis, and evaluation of novel isoxazoline derivatives containing 2-phenyloxazoline moieties as potential insecticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106109. [PMID: 39277414 DOI: 10.1016/j.pestbp.2024.106109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Isoxazoline insecticides have shown broad-spectrum insecticidal activity against a variety of insect pests. However, the high toxicity of isoxazoline compounds towards honeybees restricts their application in crop protection. To mitigate this issue, a series of isoxazoline derivatives containing 2-phenyloxazoline were designed and synthesized. Bioassays revealed that several compounds exhibited promising insecticidal activities against Plutella xylostella, with G28 showing particularly excellent insecticidal activity, reflected by an LC50 value of 0.675 mg/L, which is comparable to that of fluxametamide (LC50 = 0.593 mg/L). Furthermore, G28 also exhibited effective insecticidal activity against Solenopsis invicta. Importantly, bee toxicity experiments indicated that G28 had significantly lower acute oral toxicity (LD50 = 2.866 μg/adult) compared to fluxametamide (LD50 = 1.083 μg/adult) and fluralaner (LD50 = 0.022 μg/adult), positioning it as a promising candidate with reduced toxicity to bees. Theoretical simulation further elucidated the reasons for the selective differences in the ability of isoxazoline to achieve higher insecticidal activity while maintaining lower bee toxicity. This research suggests that isoxazoline compounds containing 2-phenyloxazoline group hold potential as new insecticide candidates and offers insights into the development of novel isoxazoline insecticides with both high efficacy and environmental safety.
Collapse
Affiliation(s)
- Xiangmin Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Haojing Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Yongchao Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Kaijie Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Zheng Sun
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; Guangdong Institute of Tobacco Science, Shaoguan, Guangdong 512000, People's Republic of China
| | - Chen Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China.
| | - Guangkai Yao
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China.
| | - Hanhong Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China.
| |
Collapse
|
23
|
Costa S, Magalhães S, Santos I, Zélé F, Rodrigues L. A Sex-Specific Trade-Off Between Pesticide Resistance and Tolerance to Heat-Induced Sterility in Tetranychus urticae. Evol Appl 2024; 17:e70014. [PMID: 39328186 PMCID: PMC11424881 DOI: 10.1111/eva.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/11/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024] Open
Abstract
Current pest management relies extensively on pesticide application worldwide, despite the frequent rise of pesticide resistance in crop pests. This is particularly worrisome because resistance is often not costly enough to be lost in populations after pesticide application, resulting in increased dependency on pesticide application. As climate warming increases, effort should be put into understanding how heat tolerance will affect the persistence of pesticide resistance in populations. To address this, we measured heat tolerance in two populations of the spider mite crop pest Tetranychus urticae that differ in the presence or absence of a target-site mutation conferring resistance to etoxazole pesticide. We found that developmental time and fertility, but not survival, were negatively affected by increasing temperatures in the susceptible population. Furthermore, we found no difference between resistant and susceptible populations in all life-history traits when both sexes developed at control temperature, nor when females developed at high temperature. Resistant heat-stressed males, in contrast, showed lower fertility than susceptible ones, indicating a sex-specific trade-off between heat tolerance and pesticide resistance. This suggests that global warming could lead to reduced pesticide resistance in natural populations. However, resistant females, being as affected by high temperature as susceptible individuals, may buffer the toll in resistant male fertility, and the shorter developmental time at high temperatures may accelerate adaptation to temperature, the pesticide or the cost thereof. Ultimately, the complex dynamic between these two factors will determine whether resistant populations can persist under climate warming.
Collapse
Affiliation(s)
- Sofia G. Costa
- Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute (cE3c), Faculty of SciencesUniversity of LisbonLisbonPortugal
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute (cE3c), Faculty of SciencesUniversity of LisbonLisbonPortugal
| | - Inês Santos
- Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute (cE3c), Faculty of SciencesUniversity of LisbonLisbonPortugal
| | - Flore Zélé
- Institute of Evolution Sciences (ISEM), CNRS, IRD, EPHEUniversity of MontpellierMontpellierFrance
| | - Leonor R. Rodrigues
- Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute (cE3c), Faculty of SciencesUniversity of LisbonLisbonPortugal
| |
Collapse
|
24
|
Cominelli F, Chiesa O, Panini M, Massimino Cocuzza GE, Mazzoni E. Survey of target site mutations linked with insecticide resistance in Italian populations of Aphis gossypii. PEST MANAGEMENT SCIENCE 2024; 80:4361-4370. [PMID: 38661723 DOI: 10.1002/ps.8142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Aphis gossypii is a worldwide agricultural pest that causes high levels of economic losses by feeding and transmitting virus diseases. It is usually controlled by chemical insecticides, but this could lead to the selection of resistant populations. Several single nucleotide polymorphisms (SNPs) have been identified associated with insecticide resistance. Monitoring activities to detect the presence of such mutations in field populations can have an important role in insect pest management but, currently, no information on Italian strains is available. RESULTS The presence of target site mutations conferring resistance to different insecticides was analysed in Italian field collected populations of A. gossypii with an allele specific approach (QSGG, Qualitative Sybr-Green Genotyping). Primers were designed to detect mutations in genes coding acetylcholinesterase (S431F), nicotinic acetylcholine receptor (R81T) and voltage-gated sodium channel (M918L and L1014F). S431F was widespread but with high variability across populations. R81T was detected for the first time in Italy but only in two populations. The L1014F mutation (kdr) was not found, while in the samples showing the M918L two different nucleotidic substitutions were detected. Mutant allele frequencies were, respectively, 0.70 (S431), 0.31 (M918) and 0.02 (R81). Further analysis on the voltage-gated sodium channel gene showed the presence of eight haplotypes and one non-synonymous mutation in the gene coding region. CONCLUSION Multiple target-site mutations were detected within Italian populations. The combinations of genotypes observed in certain locations could affect negatively the control of this pest. Preliminary insights on the genetic structure in the Italian populations of A. gossypii were acquired. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Filippo Cominelli
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Olga Chiesa
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Michela Panini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Emanuele Mazzoni
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
25
|
Takebayashi M, Mori S, Ito R, Takayama K, Ojima H, Takeuchi M, Takahashi H, Yamamoto N, Egawa R, Kimura Y, Ihara M, Sasaki K, Sattelle DB, Matsuda K. Impact of a worker bee thoracic ganglion RIC-3 variant on the actions of acetylcholine and neonicotinoids on nicotinic receptors in Apis mellifera. PEST MANAGEMENT SCIENCE 2024. [PMID: 39167025 DOI: 10.1002/ps.8371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
A transmembrane thioredoxin (TMX3) enables the functional expression of insect nicotinic acetylcholine receptors (nAChRs) in Xenopus laevis oocytes, while co-factors RIC-3 and UNC-50 regulate the receptor expression level. RIC-3 (resistant to inhibitors of cholinesterase 3) has been shown to diversify by its differential mRNA splicing patterns. How such diversity influences neonicotinoid sensitivity of nAChRs of beneficial insect species remains poorly understood. We have identified a RIC-3 variant expressed most abundantly in the thoracic ganglia of honeybee (Apis mellifera) workers and investigated its effects on the functional expression and pharmacology of Amα1/Amα8/Amβ1 and Amα1/Amα2/Amα8/Amβ1 nAChRs expressed in X. laevis oocytes. The AmRIC-3 enhanced the response amplitude to the acetylcholine (ACh) of these A. mellifera nAChRs when its cRNA was injected into oocytes at low concentrations but suppressed the ACh response amplitude at high concentrations. Co-expression of the AmRIC-3 had a minimal impact on the affinity of ACh, but changed the efficacy of imidacloprid and clothianidin, suggesting that the presence and the level of RIC-3 expression can affect the nAChR responses to ACh and neonicotinoids, depending on nAChR subunit composition in honeybees. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mayuka Takebayashi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Sumito Mori
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Ryo Ito
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Koichi Takayama
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Hisanori Ojima
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Miyu Takeuchi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Hiyori Takahashi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Niina Yamamoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Runa Egawa
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yuki Kimura
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Ken Sasaki
- Graduate School of Agriculture, Tamagawa University, Tokyo, Japan
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| |
Collapse
|
26
|
Cui S, Lv J, Hough R, Fu Q, An L, Zhang Z, Ke Y, Liu Z, Li YF. Recent advances and prospects of neonicotinoid insecticides removal from aquatic environments using biochar: Adsorption and degradation mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173509. [PMID: 38815835 DOI: 10.1016/j.scitotenv.2024.173509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
In recent years, neonicotinoid insecticides (NNIs), representing a new era of pest control, have increasingly replaced traditional classes such as organophosphorus compounds, carbamates, and pyrethroids due to their precise targeting and broad-spectrum efficacy. However, the high water solubility of NNIs has led to their pervasion in aquatic ecosystems, raising concerns about potential risks to non-target organisms and human health. Therefore, there is an urgent need for research on remediating NNI contamination in aquatic environments. This study demonstrates that biochar, characterized by its extensive surface area, intricate pore structure, and high degree of aromaticity holds significant promise for removing NNIs from water. The highest reported adsorption capacity of biochar for NNIs stands at 738.0 mg·g-1 with degradation efficiencies reaching up to 100.0 %. This review unveils that the interaction mechanisms between biochar and NNIs primarily involve π-π interactions, electrostatic interactions, pore filling, and hydrogen bonding. Additionally, biochar facilitates various degradation pathways including Fenton reactions, photocatalytic, persulfate oxidations, and biodegradation predominantly through radical (such as SO4-, OH, and O2-) as well as non-radical (such as 1O2 and electrons transfer) processes. This study emphasizes the dynamics of interaction between biochar surfaces and NNIs during adsorption and degradation aiming to elucidate mechanistic pathways involved as well as assess the overall efficacy of biochar in NNI removal. By comparing the identification of degradation products and degradation pathways, the necessity of advanced oxidation process is confirmed. This review highlights the significance of harnessing biochar's potential for mitigating NNI pollution through future application-oriented research and development endeavors, while simultaneously ensuring environmental integrity and promoting sustainable practices.
Collapse
Affiliation(s)
- Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Jialin Lv
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - LiHui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zulin Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yuxin Ke
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhikun Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
27
|
Cheng Q, Zheng S, Wang R, Zeng C, Li K, Lu C. Characterization of near-field temporal and spatial variations of pesticide residues using honeybee specimens as bio-sensing matrices. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121598. [PMID: 38944961 DOI: 10.1016/j.jenvman.2024.121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/02/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
This study was prompted by recent reports of the ubiquity of neonicotinoids (neonics) in environment and the likelihood of exposures and health hazards to non-target organisms. We aimed to quantify neonics levels in time- and location-match pollen and nectar samples foraged by honeybees (Apis mellifera) and characterized the temporal and spatial variations using a relative potency factor method to determine the total neonic levels, expressed as the imidacloprid-adjusted total neonics, IMIRPF (ng/g). Six pairs of pollen and nectar samples, a total of twelve samples, were collected from each of the thirty-two experimental hives during the active foraging months of March, April, and June and analyzed for eight neonics. We found 59% and 64% of pollen and nectar contained at least one neonic, respectively. Among those neonic-detected pollen and nectar samples, 45% and 77% of them contained more than one neonic, respectively. Imidacloprid and acetamiprid in pollen and clothianidin and thiamethoxam in nectar accounted for 60% and 83% detection, respectively. The highest 3-month average of IMIRPF in pollen (6.56 ng/g) and nectar (11.19 ng/g) were detected in a location with the predominant production of citrus fruit. The temporal and spatial variations of IMIRPF levels demonstrated the robustness of using paired pollen and nectar data as the bio-sensing matrices to facilitate the assessment of near-field exposure to total neonics and the delineation of risks.
Collapse
Affiliation(s)
- Qing Cheng
- College of Resources and Environment, Southwest University, Chongqing, People's Republic of China, 400799
| | - Shuting Zheng
- College of Resources and Environment, Southwest University, Chongqing, People's Republic of China, 400799
| | - Ruisheng Wang
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China, 402460
| | - Chao Zeng
- College of Resources and Environment, Southwest University, Chongqing, People's Republic of China, 400799
| | - Kaiye Li
- College of Resources and Environment, Southwest University, Chongqing, People's Republic of China, 400799
| | - Chensheng Lu
- College of Resources and Environment, Southwest University, Chongqing, People's Republic of China, 400799; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
28
|
Liao L, Sun T, Gao Z, Lin J, Gao M, Li A, Gao T, Gao Z. Neonicotinoids as emerging contaminants in China's environment: a review of current data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51098-51113. [PMID: 39110283 DOI: 10.1007/s11356-024-34571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2024] [Indexed: 09/06/2024]
Abstract
Neonicotinoids (NEOs), the most widely used class of insecticides, are pervasive in the environment, eliciting concerns due to their hydrophilicity, persistence, and potential ecological risks. As the leading pesticide consumer, China shows significant regional disparities in NEO contamination. This review explores NEO distribution, sources, and toxic risks across China. The primary NEO pollutants identified in environmental samples include imidacloprid, thiamethoxam, and acetamiprid. In the north, corn cultivation represents the principal source of NEOs during wet seasons, while rice dominates in the south year-round. The high concentration levels of NEOs have been detected in the aquatic environment in the southern regions (130.25 ng/L), the urban river Sects. (157.66 ng/L), and the downstream sections of the Yangtze River (58.9 ng/L), indicating that climate conditions and urban pollution emissions are important drivers of water pollution. Neonicotinoids were detected at higher levels in agricultural soils compared to other soil types, with southern agricultural areas showing higher concentrations (average 27.21 ng/g) than northern regions (average 12.77 ng/g). Atmospheric NEO levels were lower, with the highest concentration at 1560 pg/m3. The levels of total neonicotinoid pesticides in aquatic environments across China predominantly exceed the chronic toxicity ecological threshold of 35 ng/L, particularly in the regions of Beijing and the Qilu Lake Basin, where they likely exceed the acute toxicity ecological threshold of 200 ng/L. In the future, efforts should focus on neonicotinoid distribution in agriculturally developed regions of Southwest China, while also emphasizing their usage in urban greening and household settings.
Collapse
Affiliation(s)
- Lingzhi Liao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, PR China
| | - Ting Sun
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Zhenhui Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jianing Lin
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China.
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Meng Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ao Li
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Teng Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ziqin Gao
- Fuxin Experimental Middle School, Fuxin, 123099, PR China
| |
Collapse
|
29
|
Yuan H, Wu M, Deng J, Zhou M, Wickham JD, Zhang L. Swift regulation of nicotinic acetylcholine receptors (nAChRs) and glutathione S-transferase (GST) enables the rapid detoxification of thiacloprid in pine sawyer beetles. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105996. [PMID: 39084770 DOI: 10.1016/j.pestbp.2024.105996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024]
Abstract
Thiacloprid, a neonicotinoid insecticide, has become one of the major control agents for the pine sawyer beetle, Monochamus alternatus Hope, however, the mechanism of detoxification is unknown. We demonstrate that glutathione S-transferases (GSTs) and nicotinic acetylcholine receptors (nAChRs) are involved in the rapid detoxification of thiacloprid in M. alternatus larvae. The activity of detoxification enzyme GSTs was significantly higher, while the activity of acetylcholinesterase (AChE) was inhibited under thiacloprid exposure. The inhibition of AChE activity led to lethal over-stimulation of the cholinergic synapse, which was then released by the rapid downregulation of nAChRs. Meanwhile, GSTs were overexpressed to detoxify thiacloprid accordingly. A total of 3 nAChR and 12 GST genes were identified from M. alternatus, among which ManAChRα2 and MaGSTs1 were predicted to confer thiacloprid tolerance. RNA interference (RNAi) was subsequently conducted to confirm the function of ManAChRα2 and MaGSTs1 genes in thiacloprid detoxification. The successful knock-down of the ManAChRα2 gene led to lower mortality of M. alternatus under LC30 thiacloprid treatment, and the suppression of the MaGSTs1 gene increased the mortality rate of M. alternatus. However, the mortality rate has no significant difference with controls when thiacloprid was fed together with both dsMaGSTs1 and dsManAChRα2. Molecular docking modeled the molecular basis for interaction between MaGSTs1/ManAChR and thiacloprid. This study highlights the important roles that ManAChRα2 and MaGSTs1 genes play in thiacloprid detoxification through transcriptional regulation and enzymatic metabolization, and proposes a new avenue for integrated pest management that combines pesticides and RNAi technology as an efficient strategy for M. alternatus control.
Collapse
Affiliation(s)
- Hang Yuan
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Wu
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Jundan Deng
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Min Zhou
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Jacob D Wickham
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 119071, Russia
| | - Longwa Zhang
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
30
|
Edwards H, Mustfa W, Tehreem S, Salamatullah AM, Bourhia M, Ghafoor A. Pharmacotherapeutic potential of malvidin to cure imidacloprid induced hepatotoxicity via regulating PI3K/AKT, Nrf-2/Keap-1 and NF-κB pathway. Food Chem Toxicol 2024; 190:114816. [PMID: 38880465 DOI: 10.1016/j.fct.2024.114816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Imidacloprid (IMI) is one of the top-notch insecticides that adversely affects the body organs including the liver. Malvidin (MAL) is a natural flavonoid which exhibits a wide range of pharmacological properties. This research was designed to evaluate the protective ability of MAL to counteract IMI instigated liver toxicity in rats. Thirty-two rats were divided into four groups including control, IMI (5mg/kg), IMI (5mg/kg) + MAL (10mg/kg) and MAL (10mg/kg) alone treated group. The recommended dosages were administrated through oral gavage for 4 weeks. It was revealed that IMI intoxication disrupted the PI3K/AKT and Nrf-2/Keap-1 pathway. Furthermore, the activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), heme-oxygenase-1 (OH-1) and glutathione reductase (GSR) were reduced while upregulating reactive oxygen species (ROS) and malondialdehyde (MDA) levels after IMI treatment. Moreover, IMI poisoning increased the levels of ALT (Alanine aminotransferase), AST (Aspartate transaminase), and ALP (Alkaline phosphatase) while reducing the levels of total proteins and albumin in hepatic tissues of rats. Besides, IMI administration escalated the expressions of Bcl-2-associated protein x (Bax) and cysteine-aspartic acid protease-3 (Caspase-3) while downregulating the expressions of B-cell lymphoma 2 (Bcl-2). Similarly, IMI intoxication, increased the levels of Interleukin-6 (IL-6), Nuclear factor kappa-B (NF-κB), Interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and the activity of cyclooxygenase-2 (COX-2). Furthermore, IMI disrupted the normal architecture of hepatic tissues. However, MAL treatment remarkably protected the liver tissues via regulating abovementioned disruptions.
Collapse
Affiliation(s)
- Henry Edwards
- Department of Biology, The University of Melbourne, Australia.
| | - Warda Mustfa
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Shahaba Tehreem
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, 70000, Morocco
| | - Ayesha Ghafoor
- Department of Zoology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
31
|
Ahmed AA, Bazyad A, Alotaibi F, Alotaibi KD, Codling G, Alharbi HA. Imidacloprid Uptake and Accumulation in Lettuce Plant ( Lactuca sativa L. var. longipolia) and Its Effects on Abundance of Microbial Communities in Cultivated and Non-Cultivated Arid Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2017. [PMID: 39124135 PMCID: PMC11313857 DOI: 10.3390/plants13152017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Systemic plant protection products, such as neonicotinoids (NIs), are capable of being translocated throughout a plant. Although NIs are less toxic to mammals, fish, and birds, their impact on microbial and non-target insects is of concern. This study investigates the uptake, translocation, and accumulation of the NI, imidacloprid (IMI), in romaine lettuce (Lactuca sativa L. var. longipolia). Exposing 15-day-old seedlings to "10 mg/L" of IMI, the effects on microbial communities in both cultivated (CS) and non-cultivated soil (NCS) were studied along with IMI translocation within plant tissues. The concentrations of IMI in soil varied temporally and between soil types after initial application, with a decrease from 2.0 and 7.7 mg/kg on the first day of sampling to 0.5 and 2.6 mg/kg on the final sampling day (day 35) for CS and NCS, respectively. The half-life of IMI soil was 10.7 and 72.5 days in CS and NCS, respectively, indicating that IMI degraded more quickly in CS, possibly due to smaller grain size, aeration, microbial degradation, and water flow. The accumulated concentrations of IMI in lettuce tissues ranged from 12.4 ± 0.2 and 18.7± 0.9 mg/kg in CS and NCS, respectively. The highest concentration of IMI was found in the shoots, followed by the roots, whereas the soil showed the lowest IMI residuals at the end of the trial. Soil bacteria and fungi were altered by the application of IMI, with a lower abundance index within the bacterial community, indicating a negative impact on the distribution of bacteria in the soil.
Collapse
Affiliation(s)
- Ahmed A. Ahmed
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.B.)
| | - Abdulgader Bazyad
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.B.)
| | - Fahad Alotaibi
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (F.A.); (K.D.A.)
| | - Khaled D. Alotaibi
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (F.A.); (K.D.A.)
| | - Garry Codling
- Centre for Resilience in Environment, Water and Waste (CREWW), University of Exeter, N. Park Road Exeter, Devon EX4 4QE, UK;
| | - Hattan A. Alharbi
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.B.)
| |
Collapse
|
32
|
Addy-Orduna LM, Ortiz-Santaliestra ME, Mougeot F, Bolívar-Muñoz P, Camarero PR, Mateo R. Behavioral Responses of Imidacloprid-Dosed Farmland Birds to a Simulated Predation Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39034620 DOI: 10.1021/acs.est.4c01893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Sublethal exposure to imidacloprid and other neonicotinoid insecticides may affect the neurological functions of birds. As such, behavior may be compromised. Here, we tested experimentally the effects of 1 and 6 mg/kg bw of imidacloprid on the antipredator behavioral responses of the red-legged partridge (Alectoris rufa) to simulated predator threats. Sixty-six partridges were challenged in groups or individually to intra- and interspecific alarm calls, to a raptor silhouette (aerial predation risk), and to a fox model (terrestrial predation risk). Antipredator behaviors were recorded as active (escape, active vigilance) and passive (passive vigilance, crouching, and freezing) responses. Latency in response to the stimuli, percentage of individuals who responded, response duration, speed of active responses, and vocalizations were measured. In experiments with partridges in the group, crouching against simulated predation risk lasted less time in birds treated with 6 mg a.i./kg bw than in control birds. In the experiments with individual partridges, passive vigilance against the intraspecific alarm lasted longer in birds treated with 6 mg a.i./kg bw than in control birds. The observed hyperreactivity to the predatory threat after a sublethal imidacloprid exposure can have consequences on survival under field conditions, where predation is a main driver of population dynamics.
Collapse
Affiliation(s)
- Laura M Addy-Orduna
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Paraná, Ruta 11 km 12.5, 3100 Paraná, Entre Ríos, Argentina
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Paula Bolívar-Muñoz
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
- Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| |
Collapse
|
33
|
Shen X, Jin J, Zhang G, Yan B, Yu X, Wu H, Yang M, Zhang F. The chromosome-level genome assembly of Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae). Sci Data 2024; 11:785. [PMID: 39019956 PMCID: PMC11255235 DOI: 10.1038/s41597-024-03614-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
Aphidoletes aphidimyza is widely recognized as an effective predator of aphids in agricultural systems. However, there is limited understanding of its predation mechanisms. In this study, we generated a high-quality chromosome level of the A. aphidimyza genome by combining PacBio, Illumina, and Hi-C data. The genome has a size of 192.08 Mb, with a scaffold N50 size of 46.85 Mb, and 99.08% (190.35 Mb) of the assembly is located on four chromosomes. The BUSCO analysis of our assembly indicates a completeness of 97.8% (n = 1,367), including 1,307 (95.6%) single-copy BUSCOs and 30 (2.2%) duplicated BUSCOs. Additionally, we annotated a total of 13,073 protein-coding genes, 18.43% (35.40 Mb) repetitive elements, and 376 non-coding RNAs. Our study is the first time to report the chromosome-scale genome for the species of A. aphidimyza. It provides a valuable genomic resource for the molecular study of A. aphidimyza.
Collapse
Affiliation(s)
- Xiuxian Shen
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, 550025, China
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianfeng Jin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guoqiang Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bin Yan
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Xiaofei Yu
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China
| | - Huizi Wu
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, 564200, China
| | - Maofa Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, 550025, China.
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China.
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
34
|
Wen J, Liu Q, Geng S, Shi X, Wang J, Yao X, Hu L. Impact of imidacloprid exposure on gestational hyperglycemia: A multi-omics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116561. [PMID: 38850706 DOI: 10.1016/j.ecoenv.2024.116561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Imidacloprid (IMI), a commonly utilized neonicotinoid insecticide, has been identified to adversely impact glucose homeostasis. Pregnant women are believed to be more sensitive to toxins than non-pregnant women, and the impact of IMI exposure on gestational hyperglycemia remain unclear. To explore the impact, pregnant mice fed a high-fat diet were exposed to different doses (0.06, 0.6, 6 mg/kg bw/day) of IMI by gavage. Glucose homeostasis-related parameters were measured. The glucose homeostasis influenced by IMI treatment was explored through integrating gut microbiota, metabolomic and transcriptomic analysis. Results showed that IMI-H (6 mg/kg bw/day) exposure notably restricted gestational weight gain and perturbed glucose homeostasis characterized by reduced glucose tolerance and insulin sensitivity, alongside elevated levels of fasting blood glucose and insulin. Multi-omics analysis revealed that IMI-H exposure induced significant changes in the richness and composition of the gut microbiome. The metabolite profiles of serum samples and cecal contents, and transcriptome of liver and ileum were all affected by IMI-H treatment. The altered gut microbiota, metabolites and genes exhibited significant correlations with glucose homeostasis-related parameters. These differential metabolites and genes were implicated in various metabolic pathways including bile secretion, glucagon signaling pathway, lipid metabolism, fatty acid metabolism. Significant correlations were observed between the altered gut microbiota and caecum metabolome as well as liver transcriptome. For example, the abundance of Oscillibacter was strongly correlated with gut microflora-related metabolites (Icosenoic acid, Lysosulfatide, and fluticasone) and liver differential genes (Grin3b, Lifr, and Spta1). Together, IMI exposure resulted in significant changes in microbial composition, along with alterations in certain metabolites and genes associated with metabolic process, which may promote gestational hyperglycemia.
Collapse
Affiliation(s)
- Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210000, China.
| | - Qiao Liu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210000, China
| | - Shijie Geng
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210000, China
| | - Xiaojing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Junya Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210000, China
| | - Xiaodie Yao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210000, China
| | - Lingmin Hu
- Department of Reproduction, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China.
| |
Collapse
|
35
|
Liu Z, Zhang F, Gao S, Zhang L, Fu Q, Cui S. Neonicotinoid insecticides in paddy fields: Dissipation dynamics, migration, and dietary risk. CHEMOSPHERE 2024; 359:142371. [PMID: 38768784 DOI: 10.1016/j.chemosphere.2024.142371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/20/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Neonicotinoid insecticides (NNIs) have caused widespread contamination of multiple environmental media and posed a serious threat to ecosystem health by accidently injuring non-target species. This study collected samples of water, soil, and rice plant tissues in a water-soil-plant system of paddy fields after spaying imidacloprid (IMI), thiamethoxam (THM), and clothianidin (CLO) to analyze their distribution characteristics and migration procedures and to assess related dietary risks of rice consumption. In the paddy water, the concentrations of NNIs showed a dynamic change of increasing and then decreasing during about a month period, and the initial deposition of NNIs showed a trend of CLO (3.08 μg/L) > THM (2.74 μg/L) > IMI (0.97 μg/L). In paddy soil, the concentrations of the three NNIs ranged from 0.57 to 68.3 ng/g, with the highest residual concentration at 2 h after application, and the concentration trend was opposite to that in paddy water. The initial deposition amounts of IMI, THM, and CLO in the root system were 5.19, 3.02, and 5.24 μg/g, respectively, showing a gradual decrease over time. In the plant, the initial deposition amounts were 19.3, 9.36, and 52.6 μg/g for IMI, THM, and CLO, respectively, exhibiting concentration trends similar to those in the roots. Except for IMI in soil, the dissipation of the NNIs conformed to the first-order kinetic equation in paddy water, soil, and plant. The results of bioconcentration factors (BCFs) and translocation factor (TF) indicated that NNIs can be bi-directionally transported in plants through leaf absorption and root uptake. The risk of NNIs intake through rice consumption was low for all age groups, with a slightly higher risk of exposure in males than in females.
Collapse
Affiliation(s)
- Zhikun Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; School of Advanced Agricultural Sciences, Weifang University, Weifang, Shandong, 261061, China
| | - Fuxiang Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Shang Gao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
36
|
Scheibli L, Wiedenmann M, Wolf H, Stemme T, Pfeffer SE. Flupyradifurone negatively affects survival, physical condition and mobility in the two-spotted lady beetle (Adalia bipunctata). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172617. [PMID: 38653409 DOI: 10.1016/j.scitotenv.2024.172617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Lady beetles play a crucial role in natural ecosystems and agricultural settings. Unfortunately, these insects and more specifically the two-spotted lady beetle (Adalia bipunctata) are currently facing a severe decline in populations due to various stressors, with pesticide exposure being a significant threat. Flupyradifurone is a relatively newly introduced insecticide and as existing research is mainly elucidating its effects on bees there remains a limited understanding of its effects on non-hymenopteran insects, including lady beetles. In this study we investigated the impact of acute orally applied flupyradifurone doses on survival and sublethal parameters such as physical condition and mobility on A. bipunctata. Our findings revealed a significant increase in mortality among individuals subjected to flupyradifurone doses of 19 ng/individual (corresponding to >1.5-2.0 ng active substance (a.s.)/mg body weight (bw). The calculated LD50 of flupyradifurone at 48 h was 2.11 ng a.s./mg bw corresponding to an amount of 26.38 ng/individual. Sublethal consequences were observable immediately after pesticide application. Even at doses as low as 2 ng/individual (corresponding to >0.0-0.5 ng a.s./mg bw), flupyradifurone induced trembling and temporary immobility in treated animals. Furthermore, pesticide intoxication led to hypoactivity, with less distance covered and a decline in straightness of locomotion. In conclusion, our study underscores the harmful effects of flupyradifurone on the two-spotted lady beetle at doses notably lower than those affecting bees. These findings stress the importance of additional research to attain a more holistic understanding of pesticide impacts not only on a broader range of non-target arthropods species, but also on various exposure routes as well as lethal and sublethal effects.
Collapse
Affiliation(s)
- Leonie Scheibli
- Ulm University, Institute of Neurobiology, 89081 Ulm, Germany.
| | | | - Harald Wolf
- Ulm University, Institute of Neurobiology, 89081 Ulm, Germany
| | - Torben Stemme
- Ulm University, Institute of Neurobiology, 89081 Ulm, Germany
| | | |
Collapse
|
37
|
Cui S, Lv J, Hough R, Fu Q, Zhang Z, Dong X, Fan X, Li YF. Imidacloprid removal by modified graphitic biochar with Fe/Zn bimetallic oxides. ENVIRONMENTAL RESEARCH 2024; 258:119444. [PMID: 38914251 DOI: 10.1016/j.envres.2024.119444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
Coping with the critical challenge of imidacloprid (IMI) contamination in sewage treatment and farmland drainage purification, this study presents a pioneering development of an advanced modified graphitic white melon seed shells biochar (Fe/Zn@WBC). The Fe/Zn@WBC demonstrates a substantial enhancement in adsorption efficiency for IMI, achieving a remarkable removal rate of 87.69% within 30 min and a significantly higher initial adsorption rate parameter h = 4.176 mg g-1·min-1. This significant improvement outperforms WBC (12.22%, h = 0.115 mg g-1·min-1) and highlights the influence of optimized adsorption conditions at 900 °C and the graphitization degree resulting from Fe/Zn bimetallic oxide modification. Characterization analysis and batch sorption experiments including kinetics, isotherms, thermodynamics and pH factors illustrate that chemical adsorption is the main type of adsorption mechanism responsible for this superior ability to remove IMI through pore filling, hydrogen bonding, hydrophobic interaction, electrostatics interaction, π-π interactions as well as complexation processes. Furthermore, we demonstrate exceptional stability of Fe/Zn@WBC across a broad pH range (pH = 3-11), co-existing ions presence along with humic acid under various real water conditions while maintaining high removal efficiency. This study presents an advanced biochar adsorbent, Fe/Zn@WBC, with efficient adsorption capacity and easy preparation. Through three regeneration cycles via pyrolysis method, it demonstrates excellent pyrolysis regeneration capabilities with an average removal efficiency of 92.02%. The magnetic properties enable rapid separation facilitated by magnetic analysis. By elucidating the efficacy and mechanistic foundations of Fe/Zn@WBC, this research significantly contributes to the field of environmental remediation by providing a scalable solution for IMI removal and enhancing scientific understanding of bimetallic oxides-hydrophilic organic pollutant interactions.
Collapse
Affiliation(s)
- Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Jialin Lv
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Zulin Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Xiaolong Dong
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xiaohu Fan
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
38
|
Kline O, Joshi NK. Microbial Symbiont-Based Detoxification of Different Phytotoxins and Synthetic Toxic Chemicals in Insect Pests and Pollinators. J Xenobiot 2024; 14:753-771. [PMID: 38921652 PMCID: PMC11204611 DOI: 10.3390/jox14020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Insects are the most diverse form of life, and as such, they interact closely with humans, impacting our health, economy, and agriculture. Beneficial insect species contribute to pollination, biological control of pests, decomposition, and nutrient cycling. Pest species can cause damage to agricultural crops and vector diseases to humans and livestock. Insects are often exposed to toxic xenobiotics in the environment, both naturally occurring toxins like plant secondary metabolites and synthetic chemicals like herbicides, fungicides, and insecticides. Because of this, insects have evolved several mechanisms of resistance to toxic xenobiotics, including sequestration, behavioral avoidance, and enzymatic degradation, and in many cases had developed symbiotic relationships with microbes that can aid in this detoxification. As research progresses, the important roles of these microbes in insect health and function have become more apparent. Bacterial symbionts that degrade plant phytotoxins allow host insects to feed on otherwise chemically defended plants. They can also confer pesticide resistance to their hosts, especially in frequently treated agricultural fields. It is important to study these interactions between insects and the toxic chemicals they are exposed to in order to further the understanding of pest insect resistance and to mitigate the negative effect of pesticides on nontarget insect species like Hymenopteran pollinators.
Collapse
Affiliation(s)
| | - Neelendra K. Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
39
|
Zhang F, Zhang YC, Yu ZT, Zeng B, Sun H, Xie YQ, Zhu KY, Gao CF. The G932C mutation of chitin synthase 1 gene (CHS1) mediates buprofezin resistance as confirmed by CRISPR/Cas9-mediated knock-in approach in the brown planthopper, Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105953. [PMID: 38879307 DOI: 10.1016/j.pestbp.2024.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024]
Abstract
The brown planthopper (Nilaparvata lugens) is a major destructive rice pest in Asia. High levels of insecticide resistance have been frequently reported, and the G932C mutation in the chitin synthase 1 (CHS1) gene has been found to mediate buprofezin resistance. However, there has been no direct evidence to confirm the functional significance of the single G932C substitution mutation leading to buprofezin resistance in N. lugens. Here, we successfully constructed a knock-in homozygous strain (Nl-G932C) of N. lugens using CRISPR/Cas9 coupled with homology-directed repair (HDR). Compared with the background strain susceptible to buprofezin (Nl-SS), the knock-in strain (Nl-G932C) showed a 94.9-fold resistance to buprofezin. Furthermore, resistant strains (Nl-932C) isolated from the field exhibited a 2078.8-fold resistance to buprofezin, indicating that there are other mechanisms contributing to buprofezin resistance in the field. Inheritance analysis showed that the resistance trait is incomplete dominance. In addition, the Nl-G932C strain had a relative fitness of 0.33 with a substantially decreased survival rate, emergence rate, and fecundity. This study provided in vivo functional evidence for the causality of G932C substitution mutation of CHS1 with buprofezin resistance and valuable information for facilitating the development of resistance management strategies in N. lugens. This is the first example of using CRISPR/Cas9 gene-editing technology in a hemipteran insect to directly confirm the role of a candidate target site mutation in insecticide resistance.
Collapse
Affiliation(s)
- Fan Zhang
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China
| | - Yan-Chao Zhang
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China
| | - Zhi-Tao Yu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China
| | - Bing Zeng
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China
| | - Hao Sun
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China
| | - Yu-Qiu Xie
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide-Invention and Application, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
40
|
Qi DY, Shao YZ, Yang R, Liu CL, Feng GH, Pan WY, Feng MG, Tong SM. Emulsifiable oil-formulated Beauveria bassiana competes with imidacloprid for seasonal control of cereal aphids in Zhejiang, China. PEST MANAGEMENT SCIENCE 2024; 80:2929-2936. [PMID: 38285453 DOI: 10.1002/ps.8001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Alternatives to neonicotinoids against cereal aphids are needed to mitigate aphid resistance and non-target effects. The emulsifiable oil formulations of two Beauveria bassiana strains, namely Bb registered as a mycoinsecticide and TBb overexpressing an endogenous virulence factor, were tested for seasonal control of cereal aphids at the elongating (April 7) to milk ripening (May 12) stages of winter wheat crop in Yuhang, Zhejiang. Each of three field trials consisted of blank control and the treatments (three randomized 100-m2 plots per capita) of each fungal strain sprayed biweekly at rates of 1.0 × 1013 and 1.5 × 1013 conidia ha-1 and 10% imidacloprid WP sprayed biweekly at a label rate. RESULTS Tiller infestation percentage and aphid density in the 5-week field trials after the first spray were reduced to 18.7-22.4% and 9.1-12.4 aphids per tiller in the fungal treatments, and 12.8-25.3% and 2.8-20.9 aphids per tiller in the chemical treatment, contrasting with 49.2-60.3% and 37.1-108.5 aphids per tiller in the control. Percent control efficacies (±SD) computed with weekly aphid densities over the period averaged 84.0 ± 1.6 and 85.3 ± 1.8 versus 78.0 ± 4.0 and 79.9 ± 3.2 in the high-rate versus low-rate treatments of Bb and TBb, respectively, and 84.5 ± 7.8 in the chemical treatment. Imidacloprid showed faster kill action but more variable efficacy than the fungal treatments throughout the trials. CONCLUSION Either Bb or TBb formulation competes with imidacloprid in reducing percent infestation and aphid density. The overall efficacy was significantly higher in the treatments of TBb than of Bb. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dan-Yi Qi
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Yan-Zhi Shao
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Ru Yang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Chun-Ling Liu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Guan-Hua Feng
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Wen-Yue Pan
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sen-Miao Tong
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
41
|
Hirai A, Toda C, Yohannes YB, Collins N, Tamba M, Nomiyama K, Eguchi A, Hoshi N, Hirano T, Nakayama SMM, Ishizuka M, Ikenaka Y. Role of brain monoamines in acetamiprid-induced anxiety-like behavior. Toxicology 2024; 505:153839. [PMID: 38782113 DOI: 10.1016/j.tox.2024.153839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Neonicotinoid (NN) pesticides have been linked to increased brain dysfunction in mammals, such as anxiety-like behavior; this is thought to involve monoamines (MA), neurotransmitters that control behavior, memory, and learning. However, the mechanism by which NNs affect the central nervous system is not fully understood. In this study, we aimed to investigate whether MAs affect NNs-induced anxiety-like behavior. Mice were orally administered acetamiprid (ACE), an NN, at the no observed adverse effect level (NOAEL) of mouse (20 mg/kg body mass) set by the Food Safety Commission of Japan, and the elevated zero-maze (EZM) test was performed 30 min after administration. After behavioral analysis, levels of four MA (dopamine, 3-MT, serotonin, and histamine) in selected brain regions were determined by liquid chromatography mass spectrometry (LC/MS/MS). In the exposed group, a trend toward increased anxiety-like behavior was observed, and at least one MA concentration was significantly increased in each region. Further, significant correlations were found between behavioral test results and hippocampal serotonin and striatal dopamine concentrations, as well as between dopamine and serotonin concentrations, in the exposed group. As anxiety can influence activity in the behavioral tests, the activity of neurons in the raphe nuclei (RN), a brain region greatly involved in anxiety via the serotonergic system, was examined by staining with anti-serotonin antibodies, and increased serotonergic activity was observed. Taken together, these results suggest that ACE regulates MA levels, notably serotonin levels in the hippocampus and that RN plays an important role in ACE-induced anxiety-like behavior.
Collapse
Affiliation(s)
- Anri Hirai
- Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Chitoku Toda
- Department of Neuroscience for Metabolic Control, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yared Beyene Yohannes
- Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Nimako Collins
- Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Mai Tamba
- Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Division of Environmental Chemistry and Ecotoxicology, Ehime University, Matsuyama 790-8577, Japan
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba 263-8522, Japan
| | - Nobuhiko Hoshi
- Department of Animal Science, Laboratory of Animal Molecular Morphology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Tetsushi Hirano
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Shouta M M Nakayama
- Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Mayumi Ishizuka
- Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yoshinori Ikenaka
- Department of Environmental Veterinary Sciences, Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
42
|
Ding L, Guo J, Chen S, Wang Y. Electrochemical sensing mechanisms of neonicotinoid pesticides and recent progress in utilizing functional materials for electrochemical detection platforms. Talanta 2024; 273:125937. [PMID: 38503124 DOI: 10.1016/j.talanta.2024.125937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
The excessive residue of neonicotinoid pesticides in the environment and food poses a severe threat to human health, necessitating the urgent development of a sensitive and efficient method for detecting trace amounts of these pesticides. Electrochemical sensors, characterized by their simplicity of operation, rapid response, low cost, strong selectivity, and high feasibility, have garnered significant attention for their immense potential in swiftly detecting trace target molecules. The detection capability of electrochemical sensors primarily relies on the catalytic activity of electrode materials towards the target analyte, efficient loading of biomolecular functionalities, and the effective conversion of interactions between the target analyte and its receptor into electrical signals. Electrode materials with superior performance play a crucial role in enhancing the detection capability of electrochemical sensors. With the continuous advancement of nanotechnology, particularly the widespread application of novel functional materials, there is paramount significance in broadening the applicability and expanding the detection range of pesticide sensors. This comprehensive review encapsulates the electrochemical detection mechanisms of neonicotinoid pesticides, providing detailed insights into the outstanding roles, advantages, and limitations of functional materials such as carbon-based materials, metal-organic framework materials, supramolecular materials, metal-based nanomaterials, as well as molecular imprinted materials, antibodies/antigens, and aptamers as molecular recognition elements in the construction of electrochemical sensors for neonicotinoid pesticides. Furthermore, prospects and challenges facing various electrochemical sensors based on functional materials for neonicotinoid pesticides are discussed, providing valuable insights for the future development and application of biosensors for simplified on-site detection of agricultural residues.
Collapse
Affiliation(s)
- Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Shu Chen
- School of Bioengineering, Shandong Polytechnic, Jinan, 250104, PR China
| | - Yawen Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
43
|
Li SC, Cheng LY, Yang QQ, Huang ZH, Shao BB, Yu SJ, Ding LL, Pan Q, Lei S, Liu L, Cong L, Ran C. Overexpression of a nuclear receptor HR96 contributes to spirodiclofen susceptibility in Panonychus citri (McGregor). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105952. [PMID: 38879306 DOI: 10.1016/j.pestbp.2024.105952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024]
Abstract
The citrus red mite, Panonychus citri, is one of the most notorious and devastating citrus pests around the world that has developed resistance to multiple chemical acaricides. In previous research, we found that spirodiclofen-resistant is related to overexpression of P450, CCE, and ABC transporter genes in P. citri. However, the regulatory mechanisms of these detoxification genes are still elusive. This study identified all hormone receptor 96 genes of P. citri. 8 PcHR96 genes contained highly conserved domains. The expression profiles showed that PcHR96h was significantly upregulated in spirodiclofen resistant strain and after exposure to spirodiclofen. RNA interference of PcHR96h decreased expression of detoxification genes and increased spirodiclofen susceptibility in P. citri. Furthermore, molecular docking, heterologous expression, and drug affinity responsive target stability demonstrated that PcHR96h can interact with spirodiclofen in vitro. Our research results indicate that PcHR96h plays an important role in regulating spirodiclofen susceptibility and provides theoretical support for the resistance management of P. citri.
Collapse
Affiliation(s)
- Si-Chen Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Lu-Yan Cheng
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China; Chongqing Institute for Food and Drug Control, Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China
| | - Qi-Qi Yang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Ze-Hao Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin-Bin Shao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Shi-Jiang Yu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Li-Li Ding
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Qi Pan
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Shuang Lei
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Liu Liu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Lin Cong
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Chun Ran
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China.
| |
Collapse
|
44
|
Fang Y, Lv S, Xiao S, Hou H, Yao J, Cao Y, He B, Liu X, Wang P, Liu D, Zhou Z. Enantioselective bioaccumulation and toxicological effects of chiral neonicotinoid sulfoxaflor in rats. CHEMOSPHERE 2024; 358:142065. [PMID: 38636916 DOI: 10.1016/j.chemosphere.2024.142065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Sulfoxaflor is a widely used fourth-generation neonicotinoid pesticide, which has been detected in biological and environmental samples. Sulfoxaflor can potentially be exposed to humans via the food chain, thus understanding its toxic effects and enantioselective bioaccumulation is crucial. In this study, toxicokinetics, bioaccumulation, tissue distribution and enantiomeric profiles of sulfoxaflor in rats were investigated through single oral exposure and 28-days continuous exposure experiment. Sulfoxaflor mainly accumulated in liver and kidney, and the (-)-2R,3R-sulfoxaflor and (-)-2S,3R-sulfoxaflor had higher enrichment than their enantiomers in rats. The toxicological effects were evaluated after 28-days exposure. Slight inflammation in liver and kidney were observed by histopathology. Sphingolipid, amino acid, and vitamin B6 metabolism pathways were significantly disturbed in metabonomics analysis. These toxicities were in compliance with dose-dependent effects. These results improve understanding of enantioselective bioaccumulation and the potential health risk of sulfoxaflor.
Collapse
Affiliation(s)
- Yaofeng Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Shengchen Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Shouchun Xiao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Haonan Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Jianing Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Yue Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Bingying He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Xueke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China.
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|
45
|
Guan Y, Huang F, Ma C, Fan J, Hao G. Dissipation and residues of imidacloprid in amaranth under greenhouse and open field cultivations. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:390-398. [PMID: 38794798 DOI: 10.1080/03601234.2024.2356991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Despite the extensive exposure to imidacloprid residues in food plants, there has been little research on imidacloprid residues in amaranth. The dissipation trend and residue behavior of imidacloprid were evaluated to provide guidelines for imidacloprid application on amaranth under open field and greenhouse. The dissipation rate of imidacloprid in amaranth conformed to the first-order kinetic equation, and the half-lives of imidacloprid in amaranth ranged from 0.29 days in open field to 1.29 days in the greenhouse. After 7 and 14 days from the application of imidacloprid (pesticide dosage, 45 or 67.5 g a.i./ha), the amaranth under the open field and greenhouse growth could be consumed safely with average residues of 0.19 and 0.38 mg/kg, respectively. This result demonstrated that the cultivation has the dominant influence on imidacloprid residue, and the residue of imidacloprid in amaranth planting on open field was much lower than that in the greenhouse, indicating a significant difference in the pesticide residues between the two cultivations with a p-value less than 0.05.
Collapse
Affiliation(s)
- Yidong Guan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Feifei Huang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Chunwei Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, China
| | - Jianlin Fan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, China
| | - Guohui Hao
- Jiangsu Provincial Agro-product Supervision & Testing Center, Nanjing, China
| |
Collapse
|
46
|
Hou J, Zhang L, Xu W, Liu Z, Yu J, Yu R, Chen L. Glycometabolic disorder induced by chronic exposure to low-concentration imidacloprid in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173421. [PMID: 38788955 DOI: 10.1016/j.scitotenv.2024.173421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/11/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
The health risks induced by chronic exposure to low concentrations of imidacloprid (IMI) to zebrafish were investigated in this study. The results indicated that the growth of zebrafish was inhibited after being exposed to 10, 100, and 500 μg/L of IMI for 90 days. Moreover, the blood glucose levels in the IMI-exposed groups were significantly higher compared to the control group. Investigation into the development of zebrafish larvae revealed that IMI exposure hindered the development of the liver and pancreatic islets, organs crucial for glucose metabolism. In addition, the IMI-exposed groups exhibited reduced liver glycogen and plasma insulin levels, along with changes in the activity of enzymes and the transcription levels of genes associated with liver glucose metabolism. These findings suggest that IMI induces glycometabolic disorders in zebrafish. The analysis of intestinal flora revealed that several key bacteria associated with an elevated risk of diabetes were significantly altered in IMI-exposed fish. Specifically, a remarkable decrease was found in the abundance of the genera Aeromonas and Shewanella, which have been found closely related to the development of pancreatic islets. This implies that the alteration of key bacteria in the fish gut by IMI, which in turn affects the development of organs such as the pancreatic islets, may be the initial trigger for abnormalities in glucose metabolism. Our results revealed that chronic exposure to low concentrations of IMI led to glycometabolic disorder in fish. Therefore, considering the pervasive existence of IMI residues in the environment, the health hazards posed by low-concentration IMI to fish cannot be overlooked.
Collapse
Affiliation(s)
- Jiayin Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Lulu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Ningbo Univ, Coll Food & Pharmaceut Sci, Ningbo 315832, Zhejiang, China
| | - Wanghui Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Zhejiang Univ Technol, Catalyt Hydrogenat Res Ctr, Zhejiang Green Pesticide Collaborat Innovat Ctr, Zhejiang Key Lab Green Pesticides & Cleaner Prod, Hangzhou 310014, Zhejiang, China
| | - Zhiyu Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Ningbo Univ, Coll Food & Pharmaceut Sci, Ningbo 315832, Zhejiang, China
| | - Jianzhong Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ruixian Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
47
|
Sinčić Modrić G, Marinić J, Karleuša R, Dubrović I, Kosobucki P, Broznić D. Those That Remain Caught in the "Organic Matter Trap": Sorption/Desorption Study for Levelling the Fate of Selected Neonicotinoids. Int J Mol Sci 2024; 25:5700. [PMID: 38891887 PMCID: PMC11172031 DOI: 10.3390/ijms25115700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
With projections suggesting an increase in the global use of neonicotinoids, contemporary farmers can get caught on the "pesticide treadmill", thus creating ecosystem side effects. The aim of this study was to investigate the sorption/desorption behavior of acetamiprid, imidacloprid, and thiacloprid that controls their availability to other fate-determining processes and thus could be useful in leveling the risk these insecticides or their structural analogues pose to the environment, animals, and human health. Sorption/desorption isotherms in four soils with different organic matter (OC) content were modelled by nonlinear equilibrium models: Freundlich's, Langmuir's, and Temkin's. Sorption/desorption parameters obtained by Freundlich's model were correlated to soil physico-chemical characteristics. Even though the OC content had the dominant role in the sorption of the three insecticides, the role of its nature as well as the chemical structure of neonicotinoids cannot be discarded. Insecticides sorbed in the glassy OC phase will be poorly available unlike those in the rubbery regions. Imidacloprid will fill the sorption sites equally in the rubbery and glassy phases irrespective of its concentration. The sorption of thiacloprid at low concentrations and acetamiprid at high concentrations is controlled by hydrophilic aromatic structures, "trapping" the insecticides in the pores of the glassy phase of OC.
Collapse
Affiliation(s)
- Gordana Sinčić Modrić
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia; (G.S.M.); (I.D.)
| | - Jelena Marinić
- Department for Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; (J.M.); (R.K.)
| | - Romano Karleuša
- Department for Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; (J.M.); (R.K.)
| | - Igor Dubrović
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia; (G.S.M.); (I.D.)
| | - Przemysław Kosobucki
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, University of Science and Technology of Bydgoszcz, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| | - Dalibor Broznić
- Department for Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; (J.M.); (R.K.)
| |
Collapse
|
48
|
Salam MTB, Ito K, Kataoka R. Biodegradation of nitenpyram (neonicotinoid insecticide) by endophytic bacterium, Bacillus thuringiensis strain NIT-2, isolated from neonicotinoid-treated plant samples. JOURNAL OF PESTICIDE SCIENCE 2024; 49:94-103. [PMID: 38882709 PMCID: PMC11176044 DOI: 10.1584/jpestics.d24-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/24/2024] [Indexed: 06/18/2024]
Abstract
Nitenpyram (neonicotinoid insecticide) is commonly used for crop protection from pests. Currently, due to its widespread use, the nitenpyram accumulation in the environment is anticipated to be high. Hence, the removal of nitenpyram residue from the environment is essential. However, the biodegradation of nitenpyram by endophytes is still unreported. Therefore, we aimed to isolate and identify a bacterial strain capable of degrading nitenpyram. We isolated approximately 300 endophytic strains from Brassica rapa var. perviridis that had been exposed to different neonicotinoid insecticides. After 14 days of incubation, a bacterial strain, NIT-2, with nitenpyram degradation capability (approximately 65%) was found. Via 16S rRNA gene sequencing, the strain was identified as Bacillus thuringiensis. In addition, metabolites, 2-[N-(6-chloro-3-pyridylmethyl)-N-ethyl]amino-2-methyliminoacetic acid, N-(6-chloro-3-pyridilmethyl)-N-ethyl-N-methylformamidine (CPMF), and N-(6-chloro-3-pyridilmethyl)-N-ethylformamide (CPF), were identified during the degradation. Moreover, CPMF and CPF were further degraded 71% and 18%, respectively by NIT-2. Thus, B. thuringiensis strain NIT-2 is the first reported endophytic bacterium capable of degrading nitenpyram.
Collapse
Affiliation(s)
- Md Tareq Bin Salam
- Faculty of Life and Environmental Sciences, University of Yamanashi
- Soil, Water and Environment Discipline, Khulna University
| | - Koji Ito
- The Institute for Agro-Environmental Sciences
| | - Ryota Kataoka
- Faculty of Life and Environmental Sciences, University of Yamanashi
| |
Collapse
|
49
|
Lu YP, Liu JH, Zhang XX, Xu C, Zheng PH, Li JT, Li JJ, Wang DM, Xian JA, Zhang ZL. Integration of transcriptome, gut microbiota, and physiology reveals toxic responses of the red claw crayfish (Cherax quadricarinatus) to imidacloprid. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134293. [PMID: 38615646 DOI: 10.1016/j.jhazmat.2024.134293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Imidacloprid enters the water environment through rainfall and causes harm to aquatic crustaceans. However, the potential chronic toxicity mechanism of imidacloprid in crayfish has not been comprehensively studied. In this study, red claw crayfish (Cherax quadricarinatus) were exposed to 11.76, 35.27, or 88.17 μg/L imidacloprid for 30 days, and changes in the physiology and biochemistry, gut microbiota, and transcriptome of C. quadricarinatus and the interaction between imidacloprid, gut microbiota, and genes were studied. Imidacloprid induced oxidative stress and decreased growth performance in crayfish. Imidacloprid exposure caused hepatopancreas damage and decreased serum immune enzyme activity. Hepatopancreatic and plasma acetylcholine decreased significantly in the 88.17 μg/L group. Imidacloprid reduced the diversity of the intestinal flora, increased the abundance of harmful flora, and disrupted the microbiota function. Transcriptomic analysis showed that the number of up-and-down-regulated differentially expressed genes (DEGs) increased significantly with increasing concentrations of imidacloprid. DEG enrichment analyses indicated that imidacloprid inhibits neurotransmitter transduction and immune responses and disrupts energy metabolic processes. Crayfish could alleviate imidacloprid stress by regulating antioxidant and detoxification-related genes. A high correlation was revealed between GST, HSPA1s, and HSP90 and the composition of gut microorganisms in crayfish under imidacloprid stress. This study highlights the negative effects and provides detailed sequencing data from transcriptome and gut microbiota to enhance our understanding of the molecular toxicity of imidacloprid in crustaceans.
Collapse
Affiliation(s)
- Yao-Peng Lu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jia-Han Liu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiu-Xia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chi Xu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Pei-Hua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jun-Tao Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jia-Jun Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Dong-Mei Wang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jian-An Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Ze-Long Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
50
|
Qin R, Zhang B, Huang Y, Song S, Zhang Z, Wen X, Zhong Z, Zhang F, Zhang T. The fate and transport of neonicotinoid insecticides and their metabolites through municipal wastewater treatment plants in South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123968. [PMID: 38631448 DOI: 10.1016/j.envpol.2024.123968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Neonicotinoid insecticides (NEOs) have gained widespread usage as the most prevalent class of insecticides globally and are frequently detected in the environment, posing potential risks to biodiversity and human health. Wastewater discharged from wastewater treatment plants (WWTPs) is a substantial source of environmental NEOs. However, research tracking NEO variations in different treatment units at the WWTPs after being treated by the treatment processes remains limited. Therefore, this study aimed to comprehensively investigate the fate of nine parent NEOs (p-NEOs) and five metabolites in two municipal WWTPs using distinct treatment processes. The mean concentrations of ∑NEOs in influent (effluent) for the UNITANK, anaerobic-anoxic-oxic (A2/O), and cyclic activated sludge system (CASS) processes were 189 ng/L (195 ng/L), 173 ng/L (177 ng/L), and 123 ng/L (138 ng/L), respectively. Dinotefuran, imidacloprid, thiamethoxam, acetamiprid, and clothianidin were the most abundant p-NEOs in the WWTPs. Conventional wastewater treatment processes were ineffective in removing NEOs from wastewater (-4.91% to -12.1%), particularly major p-NEOs. Moreover, the behavior of the NEOs in various treatment units was investigated. The results showed that biodegradation and sludge adsorption were the primary mechanisms responsible for eliminating NEO. An anoxic or anaerobic treatment unit can improve the removal efficiency of NEOs during biological treatment. However, the terminal treatment unit (chlorination disinfection tank) did not facilitate the removal of most of the NEOs. The estimated total amount of NEOs released from WWTPs to receiving waters in the Pearl River of South China totaled approximately 6.90-42.6 g/d. These findings provide new insights into the efficiency of different treatment processes for removing NEOs in current wastewater treatment systems.
Collapse
Affiliation(s)
- Ronghua Qin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China; School of Chemistry and Environment, Jiaying University, Mei Zhou, 514015, China.
| | - Yingyan Huang
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou, 510530, China.
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China; School of Chemistry and Environment, Jiaying University, Mei Zhou, 514015, China.
| | - Ziqi Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xiaoyu Wen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zhiqing Zhong
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Fengru Zhang
- School of Chemistry and Environment, Jiaying University, Mei Zhou, 514015, China.
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|