1
|
Wang X, Geng L, Wu M, Xu W, Cheng J, Li Z, Tao L, Zhang Y. Molecular mechanisms of cardiotoxicity induced by acetamide and its chiral isomers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166349. [PMID: 37598958 DOI: 10.1016/j.scitotenv.2023.166349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Acetamide (ACT) is used in a racemic form, and the considerable residues of this compound in the environment raise potential safety concerns for human health. We investigated the toxicity of ACT and its chiral isomers on human cardiomyocyte (AC16) cell line and zebrafish embryonic heart, and found that (+)-S-ACT was the main component causing cardiac toxicity. Our findings indicate that the IC50 of (±)-Rac-ACT on AC16 cells was 20.19 μg/mL. (-)-R-ACT, (±)-Rac-ACT, and (+)-S-ACT caused DNA damage and apoptosis in AC16 cells at this concentration. The underlying molecular mechanism may involve the induction of reactive oxygen species (ROS). The accumulation of ROS results in a decline in mitochondrial membrane potential (MMP) and prompts the release of cytochrome c (cyt c) from the mitochondria. This cascade of events ultimately activates the caspase-3 and caspase-9 signaling pathways, resulting in apoptosis. Furthermore, in vivo observations in zebrafish hearts demonstrated caspase-3 activation and the presence of the DNA damage marker (γH2AX), indicating that (+)-S-ACT is more toxic to cardiomyocytes than (-)-R-ACT and (±)-Rac-ACT. These findings suggest that (+)-S-ACT may be the primary component responsible for the toxicity of (±)-Rac-ACT in AC16 cells. Overall, these findings raise public awareness regarding the risks associated with chiral isomeric pesticides and provide a scientific foundation for their appropriate use.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Li Geng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengqi Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
He X, Lu L, Huang P, Yu B, Peng L, Zou L, Ren Y. Insect Cell-Based Models: Cell Line Establishment and Application in Insecticide Screening and Toxicology Research. INSECTS 2023; 14:104. [PMID: 36835673 PMCID: PMC9965340 DOI: 10.3390/insects14020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
During the past decades, research on insect cell culture has grown tremendously. Thousands of lines have been established from different species of insect orders, originating from several tissue sources. These cell lines have often been employed in insect science research. In particular, they have played important roles in pest management, where they have been used as tools to evaluate the activity and explore the toxic mechanisms of insecticide candidate compounds. This review intends to first briefly summarize the progression of insect cell line establishment. Then, several recent studies based on insect cell lines coupled with advanced technologies are introduced. These investigations revealed that insect cell lines can be exploited as novel models with unique advantages such as increased efficiency and reduced cost compared with traditional insecticide research. Most notably, the insect cell line-based models provide a global and in-depth perspective to study the toxicology mechanisms of insecticides. However, challenges and limitations still exist, especially in the connection between in vitro activity and in vivo effectiveness. Despite all this, recent advances have suggested that insect cell line-based models promote the progress and sensible application of insecticides, which benefits pest management.
Collapse
|
3
|
Gu G, Jiang M, Hu H, Qiao W, Jin H, Hou T, Tao K. Neochamaejasmin B extracted from Stellera chamaejasme L. induces apoptosis through caspase-10-dependent way in insect neuronal cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21892. [PMID: 35478464 DOI: 10.1002/arch.21892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
To explore the toxicity mechanisms of neochamaejasmin B (NCB) extracted from Stellera chamaejasme L., we first evaluated its cytotoxicity in neuronal cells of Helicoverpa zea (AW1 cells). NCB inhibited cell growth and was cytotoxic to AW1 cells in a dose-dependent manner. Further, transmission electron microscopy (TEM) was used to analyze the microstructure, and typical apoptotic characteristics were observed in AW1 cells treated with NCB. Moreover, the NCB-induced apoptosis was dose dependent. Subsequently, we explored the mechanism of apoptosis. A decline in the mitochondrial membrane potential (MMP) was found. Also, the levels of Bax were increased with increases in drug concentration, but there was no statistical difference in Bcl-2 levels at different NCB doses. Caspase-3 and caspase-10 activity was increased. These findings confirmed that NCB induced apoptosis in AW1 cells through a caspase-10-dependent mechanism. The results provide the basic information needed for understanding the toxicity and mechanisms of action of NCB, which could potentially be used to develop NCB as a new insecticide.
Collapse
Affiliation(s)
- Guirong Gu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Mingfang Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Hanying Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Weijie Qiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Hong Jin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Taiping Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ke Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
4
|
Li R, Liu B, Xu W, Yu L, Zhang C, Cheng J, Tao L, Li Z, Zhang Y. DNA damage and cell apoptosis induced by fungicide difenoconazole in mouse mononuclear macrophage RAW264.7. ENVIRONMENTAL TOXICOLOGY 2022; 37:650-659. [PMID: 34877763 DOI: 10.1002/tox.23432] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Difenoconazole (DFC) is a typical triazole fungicide. Because of its effective bactericidal activity, it has been widely used in agricultural products such as fruits and vegetables. This study revealed the cytotoxic effect of fungicide DFC on mouse monocyte macrophage RAW264.7. The results showed that the IC50 value of DFC on RAW264.7 cells was 37.08 μM (24 h). DFC can significantly inhibit the viability of RAW264.7 cells, induce DNA damage and enhance apoptosis. The established cytotoxicity test showed that DFC-induced DNA double strand breaks in RAW264.7 cells. DFC-treated cells showed typical morphological changes of apoptosis, including chromatin condensation and nuclear lysis. In addition, DFC can induce the release of Cyt c, promote the collapse of mitochondrial membrane potential and increase the Bax/Bcl-2 ratio in RAW264.7 cells. Through this research, people further understand the toxicity of DFC and provide a more scientific basis for its safety application and risk management.
Collapse
Affiliation(s)
- Ruirui Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Bin Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Shanghai Qingpu District Agricultural Technology Extension Service Center, Shanghai, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lvnan Yu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Cheng Zhang
- Department of Pathology, UT southwestern Medical Center, Dallas, Texas, USA
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Wang X, Ni H, Xu W, Wu B, Xie T, Zhang C, Cheng J, Li Z, Tao L, Zhang Y. Difenoconazole induces oxidative DNA damage and mitochondria mediated apoptosis in SH-SY5Y cells. CHEMOSPHERE 2021; 283:131160. [PMID: 34139443 DOI: 10.1016/j.chemosphere.2021.131160] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Difenoconazole is one of the most typical triazole fungicides. Difenoconazole is widely used in the field of agricultural production, and its health and safety problems need to be further studied. The main purpose of this paper is to verify the neurotoxicity of Difenoconazole at the cellular level. In this study, SH-SY5Y cell line of human neuroblastoma was used to evaluate its potentially toxic effects and molecular mechanism in vitro. The research indicated that Difenoconazole could reduce cell viability and inhibit cell proliferation, induce DNA damage and accelerate programmed cell death. Further studies showed that Difenoconazole induced DNA double-strand breaks, intracellular generation of ROS, cleaved PARP, mitochondrial membrane potential collapse, induced Cyt c release, and Bax/Bcl-2 ratio increase in SH-SY5Y cells. In conclusion, the cytotoxicity of Difenoconazole revealed its toxic effect on SH-SY5Y cells, and the IC50 value was 55.41 μM after 24 h exposure. Meanwhile, the genetic toxicity of Difenoconazole has revealed that it can induce DNA damage and apoptosis of SH-SY5Y cells. Through this study, the toxic effects of Difenoconazole on SH-SY5Y cells are further understood, which provides a more scientific basis for its safe use and risk control.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongfei Ni
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Bing Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Te Xie
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
6
|
Wang J, Zhang J, Xia Q, Peng Y, Song G. Synthesis of 9-Phenanthrols through a Sequential Ligand-Free Suzuki/Intramolecular Friedel-Crafts Reaction and Their Cytotoxic Activity. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2020.1714674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jiayi Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Juan Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Qi Xia
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Yanqing Peng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Gonghua Song
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
7
|
Xu Z, Zhu L, Yang Y, Zhang Y, Lu M, Tao L, Xu W. Bifenthrin induces DNA damage and autophagy in Spodoptera frugiperda (Sf9) insect cells. In Vitro Cell Dev Biol Anim 2021; 57:264-271. [PMID: 33689124 DOI: 10.1007/s11626-021-00554-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Bifenthrin is one of the most commonly used synthetic pyrethroid insecticides. It targets the nervous system of insects, mainly acting on sodium channels in nerve cell membranes. The high use of bifrenthrin may lead to an increase in pest insect resistance. Additionally, there are only a few studies describing its cytotoxic action. A series of bioassays were carried out, and the results showed that bifenthrin has a significant ability to induce DNA damage and the inhibition of viability in Spodoptera frugiperda (Sf9) cells. Monodansylcadaverine staining and transmission electron microscope assays were used to observe significant levels of autophagosomes and mitochondrial dysfunction in the cytoplasm. Additionally, western blot analysis showed an upregulation in LC3-II and beclin-1 protein expression and a downregulation in p62 expression, which contributed to the cytotoxic effect of bifenthrin on Sf9 cells. Overall, bifenthrin significantly impacts the viability of Sf9 cells by inducing DNA damage and autophagy. These results provide a theoretical basis for understanding bifrenthin's mechanism of cytotoxicity.
Collapse
Affiliation(s)
- Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lianhua Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Miaoqing Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
8
|
Bailly C, Vergoten G. Fraxinellone: From pesticidal control to cancer treatment. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104624. [PMID: 32711764 DOI: 10.1016/j.pestbp.2020.104624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Fraxinellone (FRA) is a degraded limonoid isolated from the root bark of Dictamnus plants. The potent insecticidal activity of FRA has led to the synthesis of numerous derivatives (presented here with the structure-activity relationships) active against the oriental armyworm Mythimna separata Walker. In addition to its pesticidal activity, the natural product displays potent anti-inflammatory and immuno-modulatory effects at the origin of hepatoprotective and anticancer properties. This mini-review provides an update of the mechanism of action of FRA to highlight the recently discovered capacity of the compound to deactivate cancer-associated fibroblasts and thus to limit the immunosuppressive tumor microenvironment. The anticancer mode of action of FRA raises new ideas to better understand its primary insecticidal activity. The relationship between drug-induced cancer cell death and insect cell death is discussed. A drug interaction with the insect cytokine growth-blocking peptide (GBP), a member of the large EGF family, is proposed, supported by preliminary molecular modeling data. Altogether, the review shed light on the pharmacological properties of fraxinellone as an antitumor agent and a natural insecticide.
Collapse
Affiliation(s)
| | - Gérard Vergoten
- University of Lille, Inserm, U995 - LIRIC - Lille Inflammation Research International Center, ICPAL, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
| |
Collapse
|
9
|
Pan RL, Hu WQ, Pan J, Huang L, Luan CC, Shen HM. Achyranthes bidentata polypeptides prevent apoptosis by inhibiting the glutamate current in cultured hippocampal neurons. Neural Regen Res 2020; 15:1086-1093. [PMID: 31823889 PMCID: PMC7034289 DOI: 10.4103/1673-5374.270317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glutamate-induced excitotoxicity plays a critical role in the neurological impairment caused by middle cerebral artery occlusion. Achyranthes bidentata polypeptides have been shown to protect against neurological functional damage caused by middle cerebral artery occlusion, but the underlying neuroprotective mechanisms and the relationship to glutamate-induced excitotoxicity remain unclear. Therefore, in the current study, we investigated the protective effects of Achyranthes bidentata polypeptides against glutamate-induced excitotoxicity in cultured hippocampal neurons. Hippocampal neurons were treated with Mg2+-free extracellular solution containing glutamate (300 µM) for 3 hours as a model of glutamate-mediated excitotoxicity (glutamate group). In the normal group, hippocampal neurons were incubated in Mg2+-free extracellular solution. In the Achyranthes bidentata polypeptide group, hippocampal neurons were incubated in Mg2+-free extracellular solution containing glutamate (300 µM) and Achyranthes bidentata polypeptide at different concentrations. At 24 hours after exposure to the agents, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and Hoechst 33258 staining were used to assess neuronal viability and nuclear morphology, respectively. Caspase-3 expression and activity were evaluated using western blot assay and colorimetric enzymatic assay, respectively. At various time points after glutamate treatment, reactive oxygen species in cells were detected by H2DCF-DA, and mitochondrial membrane potential was detected by rhodamine 123 staining. To examine the effect of Achyranthes bidentata polypeptides on glutamate receptors, electrophysiological recording was used to measure the glutamate-induced inward current in cultured hippocampal neurons. Achyranthes bidentata polypeptide decreased the percentage of apoptotic cells and reduced the changes in caspase-3 expression and activity induced by glutamate. In addition, Achyranthes bidentata polypeptide attenuated the amplitude of the glutamate-induced current. Furthermore, the glutamate-induced increase in intracellular reactive oxygen species and reduction in mitochondrial membrane potential were attenuated by Achyranthes bidentata polypeptide treatment. These findings collectively suggest that Achyranthes bidentata polypeptides exert a neuroprotective effect in cultured hippocampal neurons by suppressing the overactivation of glutamate receptors and inhibiting the caspase-3-dependent mitochondrial apoptotic pathway. All animal studies were approved by the Animal Care and Use Committee, Nantong University, China (approval No. 20120216-001) on February 16, 2012.
Collapse
Affiliation(s)
- Rong-Lu Pan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Institute of Nautical Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Wen-Qing Hu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Institute of Nautical Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China; Department of Neurobiology, Physiology and Behavior, College of Biological Science, Davis, CA, USA
| | - Jie Pan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Institute of Nautical Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Li Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Institute of Nautical Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Cheng-Cheng Luan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Institute of Nautical Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Hong-Mei Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Institute of Nautical Medicine, Co-Innovation Center of Neuroregeneration, Nantong University; Affiliated Mental Health Center of Nantong University, Nantong Brain Hospital, Nantong, Jiangsu Province, China
| |
Collapse
|
10
|
Hao Y, Xu W, Gao J, Zhang Y, Yang Y, Tao L. Roundup-Induced AMPK/mTOR-Mediated Autophagy in Human A549 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11364-11372. [PMID: 31542934 DOI: 10.1021/acs.jafc.9b04679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The extensive use of pesticide caused an amount of pressure on the environment and increased the potential human health risk. Glyphosate-based herbicide (GBH) is one of the most widely used pesticides based on a 5-enolpyruvylshikimate-3-phosphate synthase target, which does not exist in vertebrates. Here, we study autophagic effects of the most famous commercial GBH Roundup (RDP) on human A549 cells in vitro. Intracellular biochemical assay indicated opening of mitochondrial permeability transition pore, LC3-II conversion, up-regulation of beclin-1, down-regulation of p62, and the changes in the phosphorylation of AMPK and mTOR induced by RDP in A549 cells. Further experimental results indicated that all the effects induced by RDP were related to its adjuvant polyethoxylated tallow amine, not its herbicidal active ingredient glyphosate isopropylamine salt. All these results showed that RDP has the ability to induce AMPK/mTOR-mediated cell autophagy in human A549 cells. This study would provide a theoretical basis for understanding RDP's autophagic effects on human A549 cells and attract attention on the potential human health risks induced by the adjuvant.
Collapse
Affiliation(s)
- Youwu Hao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Jufang Gao
- College of Life Sciences , Shanghai Normal University , Shanghai 200234 , China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Yun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
11
|
Zhang Y, Guo W, Chen H, Gao J, Tao L, Li Z, Xu W. The cytotoxic effects of spinetoram on human HepG2 cells by inducing DNA damage and mitochondria-associated apoptosis. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1650900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Wei Guo
- CCPIA International Trade Committee, China Crop Protection Industry Association, Beijing, People’s Republic of China
| | - Hui Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Jufang Gao
- College of Life Sciences, Shanghai Normal University, Shanghai, People’s Republic of China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| |
Collapse
|
12
|
Hao Y, Zhang Y, Ni H, Gao J, Yang Y, Xu W, Tao L. Evaluation of the cytotoxic effects of glyphosate herbicides in human liver, lung, and nerve. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:737-744. [PMID: 31232652 DOI: 10.1080/03601234.2019.1633215] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glyphosate-based herbicides are broad-spectrum pesticides widely used in the world, which is considered a highly safe pesticide due to their target specificity, but recently, there has been an ongoing controversy regarding their carcinogenicity and possible side effects of glyphosate on human health. Commercial glyphosate-based herbicides (GBHs) consist of declared active ingredient (glyphosate salts) and a number of formulants such as ethoxylated formulants (4130®, 3780®, and A-178®). The aim of our study is to investigate whether the toxicity of GBHs is related to formulants. The effects of GBHs on human health were studied at the cellular level based on their toxicity to liver, lungs and nerve tissue. The inhibitory toxicity to cell viability by GBHs was examined with cell-based systems using three human cell lines: HepG2, A549, and SH-SY5Y. Data obtained showed that all tested ethoxylated formulants and their mixtures with declared active ingredient glyphosate isopropylamine salt (GP) have significant inhibitory effect on cell proliferation, while the declared active ingredient has no significant toxicity. Our study demonstrates that the toxic effect of GBH is primarily due to the use of formulants. This result suggests that GP is relatively safe and a new approach for the assessment of toxicity should be made.
Collapse
Affiliation(s)
- Youwu Hao
- School of Pharmacy, East China University of Science and Technology, Shanghai Key Laboratory of Chemical Biology , Shanghai , China
| | - Yang Zhang
- School of Pharmacy, East China University of Science and Technology, Shanghai Key Laboratory of Chemical Biology , Shanghai , China
| | - Hongfei Ni
- School of Pharmacy, East China University of Science and Technology, Shanghai Key Laboratory of Chemical Biology , Shanghai , China
| | - Jufang Gao
- College of Life Sciences, Shanghai Normal University , Shanghai , China
| | - Yun Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai Key Laboratory of Chemical Biology , Shanghai , China
| | - Wenping Xu
- School of Pharmacy, East China University of Science and Technology, Shanghai Key Laboratory of Chemical Biology , Shanghai , China
| | - Liming Tao
- School of Pharmacy, East China University of Science and Technology, Shanghai Key Laboratory of Chemical Biology , Shanghai , China
| |
Collapse
|
13
|
Ōmura S, Asami Y, Crump A. Staurosporine: new lease of life for parent compound of today's novel and highly successful anti-cancer drugs. J Antibiot (Tokyo) 2018; 71:688-701. [PMID: 29934602 DOI: 10.1038/s41429-018-0029-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
Abstract
Staurosporine, together with such examples as penicillin, aspirin, ivermectin and sildenafil, exemplifies the role that serendipity has in drug discovery and why 'finding things without actually searching for them' retains a prominent role in drug discovery. Hitherto not clinically useful, due to its potency and promiscuity, new delivery technology is opening up new horizons for what was previously just the parent compound of innovative, highly-successful anti-cancer agents.
Collapse
Affiliation(s)
- Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan.
| | - Yukihiro Asami
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Andy Crump
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
14
|
Cao H, Liu W, Chang Y, Chen H, Zhang Y, Xu W, Tao L. 5′-Epi-SPA-6952A, a new insecticidal 24-membered macrolide produced by Streptomyces diastatochromogenes SSPRC-11339. Nat Prod Res 2017; 33:659-664. [DOI: 10.1080/14786419.2017.1405401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Haijing Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenjing Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yuansen Chang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hui Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
15
|
Xu Z, Lu M, Yang M, Xu W, Gao J, Zhang Y, Yang Y, Tao L. Pyrethrum-extract induced autophagy in insect cells: A new target? PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 137:21-26. [PMID: 28364800 DOI: 10.1016/j.pestbp.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/08/2016] [Accepted: 09/18/2016] [Indexed: 06/07/2023]
Abstract
Pyrethrum extract (PY) is a natural insecticide that is extensively used across the world, and its insecticidal activity is attributed to the presence of six active esters known as pyrethrins. PY targets the nervous systems of insects by delaying the closure of voltage-gated sodium ion channels in the nerve cells. However, limited information is available regarding the toxicity and detailed mechanisms of PY activity. This study is aimed at understanding the toxicity effect and the underlying mechanisms of PY in cellular level, which have not yet been investigated on the non-nervous system of insects. Results of the MTT assay showed that the viability of Sf9 cells was inhibited by PY in a time- and concentration-dependent manner, and observation under a microscope revealed accumulation of intracellular vacuoles. Monodansylcadaverine staining analysis and transmission electron microscope images revealed typical autophagic morphological changes in PY-treated Sf9 cells. Autophagy-related proteins such as LC3, p62, and beclin-1 were detected using by Western blotting. Protein expression levels of LC3-II and beclin-1 were upregulated while that of p62 was markedly downregulated in a dose-dependent manner upon the PY treatment in Sf9 cells. In conclusion, these results indicate that PY could induce autophagy in the non-nervous system of insects which may contribute to its insecticidal mechanism.
Collapse
Affiliation(s)
- Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Miaoqing Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mingjun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jufang Gao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
16
|
Zhang Y, Wu J, Xu W, Gao J, Cao H, Yang M, Wang B, Hao Y, Tao L. Cytotoxic effects of Avermectin on human HepG2 cells in vitro bioassays. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1127-1137. [PMID: 27852506 DOI: 10.1016/j.envpol.2016.11.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Avermectin (AVM) has been widely used in agriculture and animal husbandry based on its broad spectrum of effective anthelmintic activity and specificity targets. However, AVM induction of cytotoxicity in human liver is largely unknown. In this study, we investigate the cytotoxic effects of AVM on HepG2 cells in vitro. The results revealed that AVM inhibited the viability of HepG2 cells and enhanced apoptosis. Established assays of cytotoxicity were performed to characterize the mechanism of AVM toxicity on HepG2 cells. Typical apoptosis morphological changes were shown in AVM-treatment cells including chromatin condensation and DNA fragmentation. We demonstrated that AVM-induced apoptosis of HepG2 cells were mediated by generated ROS. Moreover, a decrease in mitochondrial membrane potential (MMP) and up-regulating the Bax/Bcl-2 ratio, resulted in a release of cytochrome-c as well as activation of caspase-9/-3. In conclusion, our experimental results show that AVM has a potential threat to human health which may be induce apoptosis of human hepatocyte cells via caspase-dependent mitochondrial pathways.
Collapse
Affiliation(s)
- Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jigang Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jufang Gao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Haijing Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mingjun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Bo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Youwu Hao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
17
|
Zhang Y, Luo M, Xu W, Yang M, Wang B, Gao J, Li Y, Tao L. Avermectin Confers Its Cytotoxic Effects by Inducing DNA Damage and Mitochondria-Associated Apoptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6895-902. [PMID: 27551889 DOI: 10.1021/acs.jafc.6b02812] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Avermectin (AVM) has been widely used in agriculture and animal husbandry on the basis of its broad spectrum of effective anthelmintic activity and specificity targets. However, AVM induction of cytotoxicity through DNA damage is remains elusive. Here we investigate the cytotoxic effects of AVM in human nontarget cells in vitro. We clarify that AVM inhibited the viability of HeLa cells and enhanced apoptosis. We have used alkaline comet assay and γH2AX foci formation to detect DNA damage of HeLa cells. As expected, we found AVM caused DNA double-strand breaks in HeLa cells, as measured by significance of comet assay parameters (e.g., tail DNA) and increases of γH2AX foci in HeLa cells. Moreover, established assays of cytotoxicity were performed to characterize the mechanism of AVM toxicity on HeLa cells. The results demonstrated the collapse of mitochondrial membrane potential, and up-regulating the expression level of Bax/Bcl-2 resulted in a release of cytochrome c into cytosol as well as the activation of caspase-9/-3 and cleavage of poly(ADP-ribose) polymerase (PARP). We conclude that AVM has a potential risk to human health by inducing human cell DNA damage and mitochondria-associated apoptosis.
Collapse
Affiliation(s)
- Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Mingming Luo
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Mingjun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Bo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| | - Jufang Gao
- College of Life and Environmental Sciences, Shanghai Normal University , Shanghai 200234, China
| | - Yaxiao Li
- Department of Biology and Biochemistry, University of Bath , Claverton Down, Bath BA2 7AY, United Kingdom
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology , Shanghai 200237, China
| |
Collapse
|