1
|
Deng M, Xu X, Huang X, Xiao T, Wang W, Li J, Zhao X, Pan B, Jiang Y, He Z, Yang Z, Lu K. Mechanistic exploration of odorant binding protein-mediated chlorpyrifos resistance in Nilaparvata lugens: Insights from insecticide sequestration and transcriptional regulation. Int J Biol Macromol 2025; 284:138108. [PMID: 39608539 DOI: 10.1016/j.ijbiomac.2024.138108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The effectiveness and sustainable application of insecticides are severely threatened by the rapid evolution of resistance in agricultural pests. Recent research indicates that odorant binding proteins (OBPs) may be involved in facilitating insecticide resistance, while the specific mechanisms remain poorly understood. Herein, 11 OBPs were identified from Nilaparvata lugens. Among them, OBP5 exhibited high and specific expression in the head, and showed constitutive overexpression in the chlorpyrifos-resistant strain. Knockdown of OBP5 notably restored susceptibility to chlorpyrifos in N. lugens, while overexpression of OBP5 in Escherichia coli significantly enhanced bacterial tolerance to chlorpyrifos. Fluorescence competitive binding assay confirmed the strong binding affinities of OBP5 to chlorpyrifos and its active metabolite chlorpyrifos-oxon. Molecular docking studies proposed a critical interacting amino acid (Lys147) in the binding site, which was further validated by comparative binding studies between wildtype OBP5 and the mutated protein OBP5K147A. Furthermore, Lim1β that also presented overexpression pattern in the resistant strain, was found to regulate expression of OBP5 through a dual-luciferase reporter assay. Our findings demonstrate that the overexpression of OBP5 contributes to chlorpyrifos resistance by binding and sequestering the insecticides, shedding light on the sequestration resistance mechanism conferred by OBPs and offering potential targets for resistance management.
Collapse
Affiliation(s)
- Mengqing Deng
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiyue Xu
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiaodan Huang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tianxiang Xiao
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Jun Li
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xinyu Zhao
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bo Pan
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yingjie Jiang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Ziyu He
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhiming Yang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kai Lu
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Xie J, Ali A, Li Y, Zhuang Z, Liu X. Functional investigation of CYP304F1 in Tuta absoluta (Lepidoptera: Gelechiidae) by RNA interference. JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae283. [PMID: 39671380 DOI: 10.1093/jee/toae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/16/2024] [Accepted: 11/22/2024] [Indexed: 12/15/2024]
Abstract
Tuta absoluta has developed resistance to many biological insecticides, causing substantial agricultural and economic losses annually. P450s have been the most extensively studied enzymes in the context of insecticide metabolism in insect pests, and the detoxification metabolism of P450s in T. absoluta against biological insecticides remains poorly understood. In T. absoluta, CYP304F1 was screened from the comparative transcriptome of 2 regional populations in Xinjiang, China. The objective of the present study was to characterize and analyze CYP304F1 of T. absoluta and explore its role in detoxification of spinetoram as well as the growth and development of T. absoluta. Following cloning and sequence analysis of the target gene, it was named CYP304F1. Expression levels of CYP304F1 were then determined after spinetoram exposure and across various developmental instars and tissues. Finally, dsCYP304F1 was synthesized and utilized to assess the effects of post-RNAi on larval spinetoram susceptibility, growth, and development. Sequence analysis revealed that CYP304F1 harbors conserved domains characteristic of P450 proteins, exhibiting high conservation within the Lepidoptera clade. Treatment with an LC50 dose of spinetoram significantly upregulated CYP304F1 expression in T. absoluta larvae. Silencing CYP304F1 significantly enhanced larval susceptibility to spinetoram and prolonged leaf-mining duration and developmental time from the 2nd instar to 4th instar by 40% and 17.6%, respectively, compared to controls. And feeding on dsCYP304F1-treated leaves for 6 days resulted in 71% larval mortality. These results suggested that CYP304F1 played a crucial role in detoxification of spinetoram as well as in the growth and development of T. absoluta larvae.
Collapse
Affiliation(s)
- Jingang Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Amjad Ali
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yuan Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Ziyan Zhuang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoning Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
3
|
Gong C, Wang W, Ma Y, Zhan X, Peng A, Pu J, Yang J, Wang X. Dendritic mesoporous silica-delivered siRNAs nano insecticides to prevent Sogatella furcifera by inhibiting metabolic detoxification and reproduction. J Nanobiotechnology 2024; 22:736. [PMID: 39605075 PMCID: PMC11600678 DOI: 10.1186/s12951-024-02966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Migratory insect infestation caused by Sogatella furcifera is a serious threat to rice production. The most effective method available for S. furcifera control is intensive insecticide spraying, which cause widespread resistance. RNA interference (RNAi) insecticides hold enormous potential in managing pest resistance. However, the instability and the poor efficiency of cross-kingdom RNA trafficking are key obstacles for the application in agricultural pest management. METHODS We present dendritic mesoporous silica nanoparticles (DMSNs)-based nanocarrier for delivering siRNA and nitenpyram to inhibit the metabolic detoxification and development of S. furcifera, thereby preventing its proliferation. RESULTS This nano complex (denoted as N@UK-siRNA/DMSNs) significantly enhanced the stability of siRNA (efficacy lasting 21 days) and released cargos in GSH or planthopper bodily fluid with a maximum release rate of 84.99%. Moreover, the released UK-siRNA targeting two transcription factors (Ultraspiracle and Krüppel-homolog 1) downregulated the developmental genes Ultraspiracle (0.09-fold) and Krüppel-homolog 1 (0.284-fold), and downstream detoxification genes ABC SfABCH4 (0.016-fold) and P450 CYP6FJ3 (0.367-fold). CONCLUSION The N@UK-siRNA/DMSNs inhibited pest development and detoxification, significantly enhancing susceptibility to nitenpyram to nanogram level (LC50 is 250-252 ng/mL), resulting in a 5.37-7.13-fold synergistic ratio. This work proposes a comprehensive management strategy for controlling S. furcifera to ensure the green and safe production of rice.
Collapse
Affiliation(s)
- Changwei Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Wang
- College of Science, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yanxin Ma
- College of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoxu Zhan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 611130, China
| | - Anchun Peng
- College of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Pu
- College of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jizhi Yang
- College of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuegui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- College of Agriculture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Niu D, Zhao Q, Xu L, Lin K. Physiological and Molecular Mechanisms of Lepidopteran Insects: Genomic Insights and Applications of Genome Editing for Future Research. Int J Mol Sci 2024; 25:12360. [PMID: 39596426 PMCID: PMC11594828 DOI: 10.3390/ijms252212360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Lepidopteran insects are a major threat to global agriculture, causing significant crop losses and economic damage. Traditional pest control methods are becoming less effective due to the rapid evolution of insecticide resistance. This study explores the current status and genomic characteristics of 1315 Lepidopteran records, alongside an overview of relevant research, utilizing advanced functional genomics techniques, including RNA-seq and CRISPR/Cas9 gene-editing technologies to uncover the molecular mechanisms underlying insecticide resistance. Our genomic analysis revealed significant variability in genome size, assembly quality, and chromosome number, which may influence species' biology and resistance mechanisms. We identified key resistance-associated genes and pathways, including detoxification and metabolic pathways, which help these insects evade chemical control. By employing CRISPR/Cas9 gene-editing techniques, we directly manipulated resistance-associated genes to confirm their roles in resistance, demonstrating their potential for targeted interventions in pest management. These findings emphasize the value of integrating genomic data into the development of effective and sustainable pest control strategies, reducing reliance on chemical insecticides and promoting environmentally friendly integrated pest management (IPM) approaches. Our study highlights the critical role of functional genomics in IPM and its potential to provide long-term solutions to the growing challenge of Lepidopteran resistance.
Collapse
Affiliation(s)
- Dongsheng Niu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| | - Qing Zhao
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| | - Linbo Xu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| | - Kejian Lin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| |
Collapse
|
5
|
Zhang H, Gao H, Lin X, Yang B, Wang J, Yuan X, Zhang Z, He T, Liu Z. Akt-FoxO signaling drives co-adaptation to insecticide and host plant stresses in an herbivorous insect. J Adv Res 2024:S2090-1232(24)00498-3. [PMID: 39510378 DOI: 10.1016/j.jare.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/07/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Ongoing interactions between host and herbivorous insect trigger a co-evolutionary arms race. Genetic diversity within insects facilitates their adaptation to phytochemicals and their derivatives, including plant-derived insecticides. Cytochrome P450s play important roles in metabolizing phytochemicals and insecticides, due to their diversity and almost perfect evolution. OBJECTIVES This study aims to uncover a common molecular mechanism in herbivorous insects by investigating the role of kinase-transcription factor regulation of P450s in conferring tolerance to both insecticides and phytochemicals. METHODS RNA interference, transcriptome sequencing, insecticide, and phytochemical bioassays were conducted to validate the functions of Akt, FoxO, and candidate P450s. Dual-luciferase activity assays were employed to identify the regulation of P450s by the Akt-FoxO signaling pathway. Recombinant P450 enzymes were utilized to investigate the metabolism of insecticides and phytochemicals. RESULTS We identified an Akt-FoxO signaling cascade, a representative of kinase-transcription factor pathways. This cascade mediates the expression of eight P450 enzymes involved in the metabolism of insecticides and phytochemicals in Nilaparvata lugens. These P450s are from different families and with different substrate selectivity, enabling them to respectively metabolize insecticides and phytochemicals with structure diversity. Nevertheless, the eight P450 genes were up-regulated by FoxO, which was inhibited in a higher cascade by Akt through phosphorylation. The discovery of the Akt-FoxO signaling pathway regulating a series of P450 genes elucidates the finely tuned regulatory mechanism in insects for adapting to phytochemicals and insecticides. CONCLUSION These finding sheds light on the physiological balance maintained by these regulatory processes. The work provides the experimental evidence of co-adaptation to the stresses imposed by host plant and insecticide within the model of the kinase-TF involving various P450s. This model provides a comprehensive view of how pests adapt to multiple environmental stresses.
Collapse
Affiliation(s)
- Huihui Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Haoli Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xumin Lin
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Baojun Yang
- Rice Technology Research and Development Center, China National Rice Research Institute, Stadium 359, Hangzhou 310006, China
| | - Jingting Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xiaowei Yuan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zhen Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Tianshun He
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
6
|
McCaw BA, Leonard AM, Lancaster LT. Nonlinear transcriptomic responses to compounded environmental changes across temperature and resources in a pest beetle, Callosobruchus maculatus (Coleoptera: Chrysomelidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:11. [PMID: 39670892 PMCID: PMC11638975 DOI: 10.1093/jisesa/ieae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024]
Abstract
Many species are experiencing drastic and multidimensional changes to their environment due to anthropogenic events. These multidimensional changes may act nonadditively on physiological and life history responses, and thus may not be predicted by responses to single dimensional environmental changes. Therefore, work is needed to understand species' responses to multiple aspects of change. We used whole-transcriptomic RNA-Sequencing and life history assays to uncover responses to singly-applied shifts in resource or temperature environmental dimensions, in comparison to combined, multidimensional change, in the crop pest seed beetle, Callosobruchus maculatus. We found that multidimensional change caused larger fecundity, developmental period and offspring viability life history changes than predicted by additive effects of 1-dimensional changes. In addition, there was little overlap between genes differentially expressed under multidimensional treatment versus under altered resource or temperature conditions alone. Moreover, 115 genes exhibited significant resource × temperature interaction effects on expression, including those involved in energy metabolism, detoxification, and enhanced formation of cuticle structural components. We conclude that single dimensional changes alone cannot determine life history and transcriptomic responses to multidimensional environmental change. These results highlight the importance of studying multidimensional environmental change for understanding the molecular and phenotypic responses that may allow organisms including insects to rapidly adapt simultaneously to multiple aspects of environmental change.
Collapse
Affiliation(s)
- Beth A McCaw
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Aoife M Leonard
- Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | | |
Collapse
|
7
|
Li C, Zhao X, Liu W, Wen L, Deng Y, Shi W, Zhou N, Song R, Hu E, Guo Q, Gailike B. Biological Characteristics of the Cytochrome P 450 Family and the Mechanism of Terpinolene Metabolism in Hyalomma asiaticum (Acari: Ixodidae). Int J Mol Sci 2024; 25:11467. [PMID: 39519019 PMCID: PMC11546871 DOI: 10.3390/ijms252111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
The CYP450 enzyme is a superfamily enzyme ubiquitously found in nearly all organisms, playing a vital role in the metabolism of both endogenous and exogenous compounds, and in biosynthesis. Unfortunately, an understanding of its classification, functions, expression characteristics, and other biological traits in Hyalomma asiaticum, a vector for Crimean-Congo Hemorrhagic Fever, as well as of the genes implicated in its natural product metabolism, is lacking. Towards this end, this study has identified 120 H. asiaticum CYP450 genes via transcriptome data in the face of a joint genome threat from terpinolene. The proteins these genes encode are of higher molecular weight, devoid of a signal peptide, and composed of unstable hydrophobic proteins principally containing 1-3 variable transmembrane regions. Phylogenetic evolution classifies these H. asiaticum CYP450 genes into four subfamilies. These genes all encompass complete CYP450 conserved domains, and five specific conserved motifs, albeit with different expression levels. GO and KEGG annotation findings suggest a widespread distribution of these CYP450 genes in many physiological systems, predominantly facilitating lipid metabolism, terpenoid compound metabolism, and polyketone compound metabolism, as well as cofactor and vitamin metabolism at a cellular level. Molecular docking results reveal a hydrophobic interaction between the ARG-103, ARG-104, LEU-106, PHE-109, and ILE-119 amino acid residues in CYP3A8, which is primarily expressed in the fat body, and terpinolene, with a notably up-regulated expression, with affinity = -5.6 kcal/mol. The conservation of these five key amino acid residues varies across 12 tick species, implying differences in terpinolene metabolism efficacy among various tick species. This study thereby fills an existing knowledge gap regarding the biological characteristics of H. asiaticum CYP450 genes and paves the way for further research into the functions of these particular genes.
Collapse
Affiliation(s)
- Caishan Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Xueqing Zhao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China;
| | - Licui Wen
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Yuqian Deng
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Wenyu Shi
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Na Zhou
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Ruiqi Song
- School of Medicine, Shihezi University, Shihezi 832003, China;
| | - Ercha Hu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
- Veterinary Medicine Postdoctoral Research Station of Xinjiang Agricultural University, Urumqi 830052, China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Bayinchahan Gailike
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| |
Collapse
|
8
|
Tan M, Jiang H, Chai R, Fan M, Niu Z, Sun G, Yan S, Jiang D. Cd exposure confers β-cypermethrin tolerance in Lymantria dispar by activating the ROS/CnCC signaling pathway-mediated P450 detoxification. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135566. [PMID: 39173384 DOI: 10.1016/j.jhazmat.2024.135566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Heavy metal pollutants are important abiotic environmental factors affecting pest habitats. In this study, Cd pre-exposure significantly increased the tolerance of Lymantria dispar larvae to β-cypermethrin, but did not significantly alter their tolerance to λ-cyhalothrin and bifenthrin. The activation of P450 by Cd exposure is the key mechanism that induces insecticide cross-tolerance in L. dispar larvae. Both before and after β-cypermethrin treatment, Cd exposure significantly increased the expression of CYP6AB224 and CYP6AB226 in L. dispar larvae. Silencing CYP6AB224 and CYP6AB226 reduced the tolerance of Cd-treated L. dispar larvae to β-cypermethrin. Transgenic CYP6AB224 and CYP6AB226 genes significantly increased the tolerance of Drosophila and Sf9 cells to β-cypermethrin, and the recombinant proteins of both genes could significantly metabolise β-cypermethrin. Cd exposure significantly increased the expression of CnCC and Maf. CnCC was found to be a key transcription factor regulating CYP6AB224- and CYP6AB226-activated insecticide cross-tolerance in Cd-treated larvae. Decreasing reactive oxygen species (ROS) levels in the Cd-treated larvae or increasing ROS levels in the untreated larvae reduced or enhanced the expression of CnCC, CYP6AB224 and CYP6AB226 and β-cypermethrin tolerance in L. dispar larvae, respectively. Collectively, Cd exposure confers β-cypermethrin tolerance in L. dispar larvae through the ROS/CnCC signalling pathway-mediated P450 detoxification.
Collapse
Affiliation(s)
- Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Hong Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Rusong Chai
- Forest Botanical Garden of Heilongjiang Province, Harbin 150040, PR China
| | - Miao Fan
- Forest Botanical Garden of Heilongjiang Province, Harbin 150040, PR China
| | - Zengting Niu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Guotong Sun
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
9
|
Wang P, Liu Q, Wang X, Sun T, Liu B, Wang B, Li H, Wang C, Sun W, Pan B. Point mutations in the voltage-gated sodium channel gene conferring pyrethroid resistance in China populations of the Dermanyssus gallinae. PEST MANAGEMENT SCIENCE 2024; 80:4950-4958. [PMID: 38828899 DOI: 10.1002/ps.8223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Dermanyssus gallinae, the poultry red mite (PRM), is a worldwide ectoparasite posing significant economic challenges in poultry farming. The extensive use of pyrethroids for PRM control has led to the emergence of pyrethroid resistance. The objective of this study is to detect the pyrethroid resistance and explore its associated point mutations in the voltage-gated sodium channel (VGSC) gene among PRM populations in China. RESULTS Several populations of D. gallinae, namely CJF-1, CJP-2, CJP-3, CSD-4 and CLD-5, displayed varying degrees of resistance to beta-cypermethrin compared to a susceptible field population (CBP-5). Mutations of VGSC gene in populations of PRMs associated with pyrethroid resistance were identified through sequencing its fragments IIS4-IIS5 and IIIS6. The mutations I917V, M918T/L, A924G and L925V were present in multiple populations, while no mutations were found at positions T929, I936, F1534 and F1538. CONCLUSION The present study confirmed the presence of extremely high levels of pyrethroid resistance in PRM populations in China, and for the first time detected four pyrethroid resistance mutations in the VGSC gene. Identifying pyrethroid resistance in the field population of PRM in China can be achieved through screening for VGSC gene mutations as an early detection method. Our findings underscore the importance of implementing chemical PRM control strategies based on resistance evidence, while also considering the management of acaricide resistance in the control of PRMs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Penglong Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xu Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tiancong Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Boxing Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bohan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huan Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuanwen Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Weiwei Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Baoliang Pan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Li J, Jin L, Yan K, Xu P, Pan Y, Shang Q. STAT5B, Akt and p38 Signaling Activate FTZ-F1 to Regulate the Xenobiotic Tolerance-Related Gene SlCyp9a75b in Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20331-20342. [PMID: 39253853 DOI: 10.1021/acs.jafc.4c04465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Cytochrome P450 monooxygenases in insects have been verified to implicated in insecticide and phytochemical detoxification metabolism. However, the regulation of P450s, which are modulated by signal-regulated transcription factors (TFs), is less well studied in insects. Here, we found that the Malpighian tubule specific P450 gene SlCYP9A75b in Spodoptera litura is induced by xenobiotics. The transgenic Drosophila bioassay and RNAi results indicated that this P450 gene contributes to α-cypermethrin, cyantraniliprole, and nicotine tolerance. In addition, functional analysis revealed that the MAPKs p38, PI3K/Akt, and JAK-STAT activate the transcription factor fushi tarazu factor 1 (FTZ-F1) to regulate CYP9A75b expression. These findings provide mechanistic insights into the contributions of CYP9A genes to xenobiotic detoxification and support the possible involvement of different signaling pathways and TFs in tolerance to xenobiotics in insects.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Long Jin
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
11
|
Wu T, Choi YS, Kim DW, Wei X, Kang Y, Han B, Yang S, Gao J, Dai P. Interactive effects of chlorothalonil and Varroa destructor on Apis mellifera during adult stage. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106107. [PMID: 39277411 DOI: 10.1016/j.pestbp.2024.106107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024]
Abstract
The interaction between environmental factors affecting honey bees is of growing concern due to their potential synergistic effects on bee health. Our study investigated the interactive impact of Varroa destructor and chlorothalonil on workers' survival, fat body morphology, and the expression of gene associated with detoxification, immunity, and nutrition metabolism during their adult stage. We found that both chlorothalonil and V. destructor significantly decreased workers' survival rates, with a synergistic effect observed when bees were exposed to both stressors simultaneously. Morphological analysis of fat body revealed significant alterations in trophocytes, particularly a reduction in vacuoles and granules after Day 12, coinciding with the transition of the bees from nursing to other in-hive work tasks. Gene expression analysis showed significant changes in detoxification, immunity, and nutrition metabolism over time. Detoxification genes, such as CYP9Q2, CYP9Q3, and GST-D1, were downregulated in response to stressor exposure, indicating a potential impairment in detoxification processes. Immune-related genes, including defensin-1, Dorsal-1, and Kayak, exhibited an initially upregulation followed by varied expression patterns, suggesting a complex immune response to stressors. Nutrition metabolism genes, such as hex 70a, AmIlp2, VGMC, AmFABP, and AmPTL, displayed dynamic expression changes, reflecting alterations in nutrient utilization and energy metabolism in response to stressors. Overall, these findings highlight the interactive and dynamic effects of environmental stressor on honey bees, providing insights into the mechanisms underlying honey bee decline. These results emphasize the need to consider the interactions between multiple stressors in honey bee research and to develop management strategies to mitigate their adverse effects on bee populations.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yong Soo Choi
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Dong Won Kim
- Department of Agricultural Biology, National Institute of Agricultural Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Xiaoping Wei
- Modern Agricultural Development Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yuxin Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sa Yang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
12
|
Das P, Das S, Saha A, Raha D, Saha D. Effects of deltamethrin exposure on the cytochrome P450 monooxygenases of Aedes albopictus (Skuse) larvae from a dengue-endemic region of northern part of West Bengal, India. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:269-279. [PMID: 38478926 DOI: 10.1111/mve.12713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/01/2024] [Indexed: 08/07/2024]
Abstract
Aedes albopictus is highly prevalent in the northern part of West Bengal and is considered to be responsible for the recent dengue outbreaks in this region. Control of this vector is largely relied on the use of synthetic pyrethroids, which can lead to the development of resistance. In the present study, larvae of three wild Ae. albopictus populations from the dengue-endemic regions were screened for deltamethrin resistance, and the role of cytochrome P450 monooxygenases (CYPs) was investigated in deltamethrin exposed and unexposed larvae. Two populations were incipient resistant, and one population was completely resistant against deltamethrin. Monooxygenase titration assay revealed the involvement of CYPs in deltamethrin resistance along with an induction effect of deltamethrin exposure. Gene expression studies revealed differential expression of five CYP6 family genes, CYP6A8, CYP6P12, CYP6A14, CYP6N3 and CYP6N6, with high constitutive expression of CYP6A8 and CYP6P12 in all the populations before and after deltamethrin exposure. From these findings, it was evident that CYPs play an important role in the development of deltamethrin resistance in the Ae. albopictus populations in this region.
Collapse
Affiliation(s)
- Prapti Das
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India
| | - Subhajit Das
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India
| | - Abhirup Saha
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India
| | - Debayan Raha
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India
| | - Dhiraj Saha
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India
| |
Collapse
|
13
|
Pfannenstiel LJ, Scott JG, Buchon N. Piperonyl butoxide elicits a robust transcriptional response in adult Drosophila melanogaster. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106102. [PMID: 39277424 PMCID: PMC11403202 DOI: 10.1016/j.pestbp.2024.106102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/06/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
While much attention has been devoted to understanding the transcriptional changes underlying resistance to insecticides, comparatively little is known about the transcriptional response of naive insects to agrochemicals. In this study, we analyze the transcriptomic response of an insecticide susceptible strain of Drosophila melanogaster to nine agrochemicals using a robust method that goes beyond classical replication standards. Our findings demonstrate that exposure to piperonyl butoxide (PBO), but not to eight other compounds, elicits a robust transcriptional response in a wild-type strain of Drosophila melanogaster. PBO exposure leads to the upregulation of a subset of Cyps, GSTs, UGTs and EcKls. This response is both time and concentration-dependent, suggesting that the degree of inhibition of P450 activity correlates with the magnitude of the transcriptional response. Furthermore, the upregulation of these enzymes is excluded from reproductive organs. Additionally, different sets of genes are regulated in the digestive/secretory tract and the carcass. Our results suggest that P450s play a role in metabolizing yet unidentified endogenous compounds and are involved in an as-yet-unknown physiological regulatory feedback loop.
Collapse
Affiliation(s)
- Luke J Pfannenstiel
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, USA
| | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, USA
| | - Nicolas Buchon
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
14
|
Liu S, Yang HL, Gao Y, Liu XY, Shi W, Liu DY, Yu JM, Li MY. Zeta class glutathione S-transferase is involved in phoxim tolerance and is potentially regulated by the transcription factor CncC in Agrotis ipsilon (Lepidoptera: Noctuidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106106. [PMID: 39277410 DOI: 10.1016/j.pestbp.2024.106106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024]
Abstract
The black cutworm, Agrotis ipsilon (Lepidoptera: Noctuidae), is an important agricultural pest. Phoxim is an organophosphate insecticide that has been widely used to control A. ipsilon. The extensive application of phoxim has resulted in a reduction in phoxim susceptibility in A. ipsilon. However, the molecular mechanisms underlying phoxim tolerance in A. ipsilon remain unclear. In this work, we report the involvement of AiGSTz1, a zeta class glutathione S-transferase, in phoxim tolerance in A. ipsilon. Exposure to a sublethal concentration (LC50) of phoxim dramatically upregulated the transcription level of the AiGSTz1 gene in A. ipsilon larvae, and this upregulation might be caused by phoxim-induced oxidative stress. The recombinant AiGSTz1 protein expressed in Escherichia coli was able to metabolize phoxim. Furthermore, AiGSTz1 displayed antioxidant activity to protect against oxidative stress. Knockdown of AiGSTz1 by RNA interference significantly increased the mortality rate of A. ipsilon larvae in response to phoxim. In addition, the transcription factor AiCncC can bind to the cap 'n' collar isoform C: muscle aponeurosis fibromatosis (CncC:Maf) binding site in the putative promoter of the AiGSTz1 gene. Silencing of AiCncC resulted in a dramatic downregulation of AiGSTz1. These results indicated that AiGSTz1 is involved in phoxim tolerance and is potentially regulated by AiCncC. These findings provide valuable insights into the defense mechanisms used by A. ipsilon against phoxim.
Collapse
Affiliation(s)
- Su Liu
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Hao-Lan Yang
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yu Gao
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xin-Yi Liu
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wen Shi
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Dong-Yang Liu
- Liangshan Branch of Sichuan Tobacco Corporation, Xichang 646600, China
| | - Jia-Min Yu
- Sichuan Tobacco Science Institute, Sichuan Branch of China National Tobacco Corporation, Chengdu 610041, China.
| | - Mao-Ye Li
- Key Laboratory of Agri-products Quality and Biosafety, Ministry of Education, Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
15
|
Winkiel MJ, Chowański S, Sulli M, Diretto G, Słocińska M. Analysis of glycoalkaloid distribution in the tissues of mealworm larvae (Tenebrio molitor). Sci Rep 2024; 14:16540. [PMID: 39020013 PMCID: PMC11254912 DOI: 10.1038/s41598-024-67258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
Solanine (SOL) and chaconine (CHA) are glycoalkaloids (GAs) produced mainly by Solanum plants. These plant secondary metabolites affect insect metabolism; thus, they have the potential to be applied as natural plant protection products. However, it is not known which GA concentration induces physiological changes in animals. Therefore, the aim of this study was to perform a quantitative analysis of SOL and CHA in the larvae of Tenebrio molitor using LC‒MS to assess how quickly they are eliminated or metabolised. In this experiment, the beetles were injected with 2 μL of 10-5 M SOL or CHA solution, which corresponds to a dosage range of 0.12-0.14 ng/mg body mass. Then, 0.5, 1.5, 8, and 24 h after GA application, the haemolymph (H), gut (G), and the remainder of the larval body (FB) were isolated. GAs were detected in all samples tested for 24 h, with the highest percentage of the amount applied in the FB, while the highest concentration was measured in the H sample. The SOL and CHA concentrations decreased in the haemolymph over time, while they did not change in other tissues. CHA had the highest elimination rate immediately after injection, while SOL slightly later. None of the GA hydrolysis products were detected in the tested samples. One possible mechanism of the detoxification of GAs may be oxidation and/or sequestration. They may be excreted by Malpighian tubules, with faeces or with cuticles during moulting. The results presented are significant because they facilitate the interpretation of studies related to the effects of toxic substances on insect metabolism.
Collapse
Affiliation(s)
- Magdalena Joanna Winkiel
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Maria Sulli
- Italian National Agency for New Technologies, Energy and Sustainable Development ENEA, Via Anguillarese 301, 00123, Roma, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy and Sustainable Development ENEA, Via Anguillarese 301, 00123, Roma, Italy
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| |
Collapse
|
16
|
Wang Z, He W, Fu L, Cheng H, Lin C, Dong X, Liu C. Detoxification and neurotransmitter clearance drive the recovery of Arma chinensis from β-cypermethrin-triggered knockdown. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135175. [PMID: 39002489 DOI: 10.1016/j.jhazmat.2024.135175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Natural enemies of arthropods contribute considerably to agriculture by suppressing pests, particularly when combined with chemical control. Studies show that insect recovery after insecticide application is rare. Here, we discovered the recovery of the predatory bug Arma chinensis from knockdown following the application of β-cypermethrin but not five other insecticides. A. chinensis individuals were more tolerant to β-cypermethrin than lepidopteran and coleopteran larvae, which did not recover from knockdown. We assessed A. chinensis recovery by monitoring their respiration and tracking locomotion through the entire process. We identified and verified the trans-regulation of detoxifying genes, including those encoding cytochrome P450s and α/β-hydrolase, which confer recovery from β-cypermethrin exposure in A. chinensis, by mitogen-activated protein kinase (MAPK) and cAMP response element binding protein (CREB). Furthermore, we discovered a novel mechanism, the neurotransmitter clearance, in vivo during the recovery process, by which the insect initiated the removal of excessive dopamine with a degrading enzyme ebony. Overall, these results provide mechanistic insights into the detoxification and neurotransmitter clearance that jointly drive insect recovery from insecticide exposure.
Collapse
Affiliation(s)
- Zhen Wang
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenjie He
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Luyao Fu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongmei Cheng
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changjin Lin
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolin Dong
- Department of Entomology, Yangtze University, Jingzhou 434023, China
| | - Chenxi Liu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
17
|
Fu B, Liang J, Hu J, Du T, Tan Q, He C, Wei X, Gong P, Yang J, Liu S, Huang M, Gui L, Liu K, Zhou X, Nauen R, Bass C, Yang X, Zhang Y. GPCR-MAPK signaling pathways underpin fitness trade-offs in whitefly. Proc Natl Acad Sci U S A 2024; 121:e2402407121. [PMID: 38959045 PMCID: PMC11252912 DOI: 10.1073/pnas.2402407121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
Trade-offs between evolutionary gain and loss are prevalent in nature, yet their genetic basis is not well resolved. The evolution of insect resistance to insecticide is often associated with strong fitness costs; however, how the fitness trade-offs operates remains poorly understood. Here, we show that the mitogen-activated protein kinase (MAPK) pathway and its upstream and downstream actors underlie the fitness trade-offs associated with insecticide resistance in the whitefly Bemisia tabaci. Specifically, we find a key cytochrome P450 gene CYP6CM1, that confers neonicotinoids resistance to in B. tabaci, is regulated by the MAPKs p38 and ERK through their activation of the transcription factor cAMP-response element binding protein. However, phosphorylation of p38 and ERK also leads to the activation of the transcription repressor Cap "n" collar isoform C (CncC) that negatively regulates exuperantia (Ex), vasa (Va), and benign gonial cell neoplasm (Bg), key genes involved in oogenesis, leading to abnormal ovary growth and a reduction in female fecundity. We further demonstrate that the transmembrane G protein-coupled receptor (GPCR) neuropeptide FF receptor 2 (NPFF2) triggers the p38 and ERK pathways via phosphorylation. Additionally, a positive feedback loop between p38 and NPFF2 leads to the continuous activation of the MAPK pathways, thereby constitutively promoting neonicotinoids resistance but with a significant reproductive cost. Collectively, these findings provide fundamental insights into the role of cis-trans regulatory networks incurred by GPCR-MAPK signaling pathways in evolutionary trade-offs and applied knowledge that can inform the development of strategies for the sustainable pest control.
Collapse
Affiliation(s)
- Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou571101, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou434025, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Jinyu Hu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou571101, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou434025, China
| | - Qimei Tan
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha430125, China
| | - Chao He
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou434025, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
- College of Plant Protection, Hunan Agricultural University, Changsha410125, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
- College of Plant Protection, Hunan Agricultural University, Changsha410125, China
| | - Lianyou Gui
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou434025, China
| | - Kui Liu
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou571101, China
| | - Xuguo Zhou
- Department of Entomology School of Integrative Biology College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL61801-3795
| | - Ralf Nauen
- Pest Control Biology, Bayer AG, CropScience Division, D40789Monheim, Germany
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn, CornwallTR10 9FE, United Kingdom
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing100081, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou434025, China
- College of Plant Protection, Hunan Agricultural University, Changsha410125, China
| |
Collapse
|
18
|
Odhiambo CA, Derilus D, Impoinvil LM, Omoke D, Saizonou H, Okeyo S, Dada N, Mulder N, Nyamai D, Nyanjom S, Lenhart A, Djogbénou LS, Ochomo E. Key gene modules and hub genes associated with pyrethroid and organophosphate resistance in Anopheles mosquitoes: a systems biology approach. BMC Genomics 2024; 25:665. [PMID: 38961324 PMCID: PMC11223346 DOI: 10.1186/s12864-024-10572-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Indoor residual spraying (IRS) and insecticide-treated nets (ITNs) are the main methods used to control mosquito populations for malaria prevention. The efficacy of these strategies is threatened by the spread of insecticide resistance (IR), limiting the success of malaria control. Studies of the genetic evolution leading to insecticide resistance could enable the identification of molecular markers that can be used for IR surveillance and an improved understanding of the molecular mechanisms associated with IR. This study used a weighted gene co-expression network analysis (WGCNA) algorithm, a systems biology approach, to identify genes with similar co-expression patterns (modules) and hub genes that are potential molecular markers for insecticide resistance surveillance in Kenya and Benin. A total of 20 and 26 gene co-expression modules were identified via average linkage hierarchical clustering from Anopheles arabiensis and An. gambiae, respectively, and hub genes (highly connected genes) were identified within each module. Three specific genes stood out: serine protease, E3 ubiquitin-protein ligase, and cuticular proteins, which were top hub genes in both species and could serve as potential markers and targets for monitoring IR in these malaria vectors. In addition to the identified markers, we explored molecular mechanisms using enrichment maps that revealed a complex process involving multiple steps, from odorant binding and neuronal signaling to cellular responses, immune modulation, cellular metabolism, and gene regulation. Incorporation of these dynamics into the development of new insecticides and the tracking of insecticide resistance could improve the sustainable and cost-effective deployment of interventions.
Collapse
Affiliation(s)
- Cynthia Awuor Odhiambo
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya.
| | - Dieunel Derilus
- Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Lucy Mackenzie Impoinvil
- Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Diana Omoke
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
| | - Helga Saizonou
- Tropical Infectious Diseases Research Center (TIDRC), University of Abomey-Calavi (UAC), Cotonou, Benin
| | - Stephen Okeyo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
| | - Nsa Dada
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Nicola Mulder
- Human, Heredity, and Health in Africa H3A Bionet Network, Cape Town, South Africa
| | - Dorothy Nyamai
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Steven Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Audrey Lenhart
- Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Center (TIDRC), University of Abomey-Calavi (UAC), Cotonou, Benin
- Regional Institute of Public Health (IRSP), Ouidah, Benin
| | - Eric Ochomo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
- Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
19
|
Zeng T, Teng FY, Wei H, Lu YY, Xu YJ, Qi YX. AANAT1 regulates insect midgut detoxification through the ROS/CncC pathway. Commun Biol 2024; 7:808. [PMID: 38961219 PMCID: PMC11222512 DOI: 10.1038/s42003-024-06505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Insecticide resistance has been a problem in both the agricultural pests and vectors. Revealing the detoxification mechanisms may help to better manage insect pests. Here, we showed that arylalkylamine N-acetyltransferase 1 (AANAT1) regulates intestinal detoxification process through modulation of reactive oxygen species (ROS)-activated transcription factors cap"n"collar isoform-C (CncC): muscle aponeurosis fibromatosis (Maf) pathway in both the oriental fruit fly, Bactrocera dorsalis, and the arbovirus vector, Aedes aegypti. Knockout/knockdown of AANAT1 led to accumulation of biogenic amines, which induced a decreased in the gut ROS level. The reduced midgut ROS levels resulted in decreased expression of CncC and Maf, leading to lower expression level of detoxification genes. AANAT1 knockout/knockdown insects were more susceptible to insecticide treatments. Our study reveals that normal functionality of AANAT1 is important for the regulation of gut detoxification pathways, providing insights into the mechanism underlying the gut defense against xenobiotics in metazoans.
Collapse
Affiliation(s)
- Tian Zeng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Fei-Yue Teng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Hui Wei
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yong-Yue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yi-Juan Xu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China.
| | - Yi-Xiang Qi
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
20
|
Lu Z, Lu K, Li Y, Xiao T, Zhou Z, Chen Y, Liu J, Sun Z, Gui F. Screening and functional validation of the core detoxification genes conferring broad-spectrum response to insecticides in Spodoptera frugiperda. PEST MANAGEMENT SCIENCE 2024; 80:3491-3503. [PMID: 38426637 DOI: 10.1002/ps.8054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Fall armyworm, Spodoptera frugiperda, a formidable agricultural pest, has developed resistance to various synthetic insecticides. However, how S. frugiperda utilizes its limited energy and resources to deal with various insecticides remains largely unexplored. RESULTS We utilized transcriptome sequencing to decipher the broad-spectrum adaptation mechanism of S. frugiperda to eight insecticides with distinct modes-of-action. Analysis of the Venn diagram revealed that 1014 upregulated genes and 778 downregulated genes were present in S. frugiperda treated with at least five different insecticides, compared to the control group. Exposure to various insecticides led to the significant upregulation of eight cytochrome P450 monooxygenases (P450s), four UDP glucosyltransferases (UGTs), two glutathione-S-transferases (GSTs) and two ATP-binding cassette transporters (ABCs). Among them, the sfCYP340AD3 and sfCYP4G74 genes were demonstrated to respond to stress from six different insecticides in S. frugiperda, as evidenced by RNA interference and toxicity bioassays. Furthermore, homology modeling and molecular docking analyses showed that sfCYP340AD3 and sfCYP4G74 possess strong binding affinities to a variety of insecticides. CONCLUSION Collectively, these findings showed that S. frugiperda utilizes a battery of core detoxification genes to cope with the exposure of synthetic insecticides. This study also sheds light on the identification of efficient insecticidal targets gene and the development of resistance management strategies in S. frugiperda, thereby facilitating the sustainable control of this serious pest. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhihui Lu
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yahong Li
- Yunnan Plant Protection and Quarantine Station, Kunming, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zhonglin Zhou
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yaping Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jianhui Liu
- Yuxi Plant Protection and Quarantine Station in Yunnan, Yuxi, China
| | - Zhongxiang Sun
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Furong Gui
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
21
|
Mugenzi LMJ, Tekoh TA, Ntadoun ST, Chi AD, Gadji M, Menze BD, Tchouakui M, Irving H, Wondji MJ, Weedall GD, Hearn J, Wondji CS. Association of a rapidly selected 4.3kb transposon-containing structural variation with a P450-based resistance to pyrethroids in the African malaria vector Anopheles funestus. PLoS Genet 2024; 20:e1011344. [PMID: 39074161 PMCID: PMC11309504 DOI: 10.1371/journal.pgen.1011344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/08/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
Deciphering the evolutionary forces controlling insecticide resistance in malaria vectors remains a prerequisite to designing molecular tools to detect and assess resistance impact on control tools. Here, we demonstrate that a 4.3kb transposon-containing structural variation is associated with pyrethroid resistance in central/eastern African populations of the malaria vector Anopheles funestus. In this study, we analysed Pooled template sequencing data and direct sequencing to identify an insertion of 4.3kb containing a putative retro-transposon in the intergenic region of two P450s CYP6P5-CYP6P9b in mosquitoes of the malaria vector Anopheles funestus from Uganda. We then designed a PCR assay to track its spread temporally and regionally and decipher its role in insecticide resistance. The insertion originates in or near Uganda in East Africa, where it is fixed and has spread to high frequencies in the Central African nation of Cameroon but is still at low frequency in West Africa and absent in Southern Africa. A marked and rapid selection was observed with the 4.3kb-SV frequency increasing from 3% in 2014 to 98% in 2021 in Cameroon. A strong association was established between this SV and pyrethroid resistance in field populations and is reducing pyrethroid-only nets' efficacy. Genetic crosses and qRT-PCR revealed that this SV enhances the expression of CYP6P9a/b but not CYP6P5. Within this structural variant (SV), we identified putative binding sites for transcription factors associated with the regulation of detoxification genes. An inverse correlation was observed between the 4.3kb SV and malaria parasite infection, indicating that mosquitoes lacking the 4.3kb SV were more frequently infected compared to those possessing it. Our findings highlight the underexplored role and rapid spread of SVs in the evolution of insecticide resistance and provide additional tools for molecular surveillance of insecticide resistance.
Collapse
Affiliation(s)
- Leon M. J. Mugenzi
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Theofelix A. Tekoh
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science University of Buea, Buea, Cameroon
| | - Stevia T. Ntadoun
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Achille D. Chi
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Mahamat Gadji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - Benjamin D. Menze
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Magellan Tchouakui
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Murielle J. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Gareth D. Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College, An Lòchran, 10 Inverness Campus, Inverness, Scotland, United Kingdom
| | - Charles S. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
22
|
Kline O, Joshi NK. Microbial Symbiont-Based Detoxification of Different Phytotoxins and Synthetic Toxic Chemicals in Insect Pests and Pollinators. J Xenobiot 2024; 14:753-771. [PMID: 38921652 PMCID: PMC11204611 DOI: 10.3390/jox14020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Insects are the most diverse form of life, and as such, they interact closely with humans, impacting our health, economy, and agriculture. Beneficial insect species contribute to pollination, biological control of pests, decomposition, and nutrient cycling. Pest species can cause damage to agricultural crops and vector diseases to humans and livestock. Insects are often exposed to toxic xenobiotics in the environment, both naturally occurring toxins like plant secondary metabolites and synthetic chemicals like herbicides, fungicides, and insecticides. Because of this, insects have evolved several mechanisms of resistance to toxic xenobiotics, including sequestration, behavioral avoidance, and enzymatic degradation, and in many cases had developed symbiotic relationships with microbes that can aid in this detoxification. As research progresses, the important roles of these microbes in insect health and function have become more apparent. Bacterial symbionts that degrade plant phytotoxins allow host insects to feed on otherwise chemically defended plants. They can also confer pesticide resistance to their hosts, especially in frequently treated agricultural fields. It is important to study these interactions between insects and the toxic chemicals they are exposed to in order to further the understanding of pest insect resistance and to mitigate the negative effect of pesticides on nontarget insect species like Hymenopteran pollinators.
Collapse
Affiliation(s)
| | - Neelendra K. Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
23
|
Deng M, Xiao T, Xu X, Wang W, Yang Z, Lu K. Nicotinamide deficiency promotes imidacloprid resistance via activation of ROS/CncC signaling pathway-mediated UGT detoxification in Nilaparvata lugens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172035. [PMID: 38565349 DOI: 10.1016/j.scitotenv.2024.172035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Metabolic alternation is a typical characteristic of insecticide resistance in insects. However, mechanisms underlying metabolic alternation and how altered metabolism in turn affects insecticide resistance are largely unknown. Here, we report that nicotinamide levels are decreased in the imidacloprid-resistant strain of Nilaparvata lugens, may due to reduced abundance of the symbiotic bacteria Arsenophonus. Importantly, the low levels of nicotinamide promote imidacloprid resistance via metabolic detoxification alternation, including elevations in UDP-glycosyltransferase enzymatic activity and enhancements in UGT386B2-mediated metabolism capability. Mechanistically, nicotinamide suppresses transcriptional regulatory activities of cap 'n' collar isoform C (CncC) and its partner small muscle aponeurosis fibromatosis isoform K (MafK) by scavenging the reactive oxygen species (ROS) and blocking the DNA binding domain of MafK. In imidacloprid-resistant N. lugens, nicotinamide deficiency re-activates the ROS/CncC signaling pathway to provoke UGT386B2 overexpression, thereby promoting imidacloprid detoxification. Thus, nicotinamide metabolism represents a promising target to counteract imidacloprid resistance in N. lugens.
Collapse
Affiliation(s)
- Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiyue Xu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
24
|
Wang X, Dai W, Zhang C. Transcription Factors AhR and ARNT Regulate the Expression of CYP6SX1 and CYP3828A1 Involved in Insecticide Detoxification in Bradysia odoriphaga. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10805-10813. [PMID: 38712504 DOI: 10.1021/acs.jafc.4c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) mediate the responses of adaptive metabolism to various xenobiotics. Here, we found that BoAhR and BoARNT are highly expressed in the midgut of Bradysia odoriphaga larvae. The expression of BoAhR and BoARNT was significantly increased after exposure to imidacloprid and phoxim. The knockdown of BoAhR and BoARNT significantly decreased the expression of CYP6SX1 and CYP3828A1 as well as P450 enzyme activity and caused a significant increase in the sensitivity of larvae to imidacloprid and phoxim. Exposure to β-naphthoflavone (BNF) significantly increased the expression of BoAhR, BoARNT, CYP6SX1, and CYP3828A1 as well as P450 activity and decreased larval sensitivity to imidacloprid and phoxim. Furthermore, CYP6SX1 and CYP3828A1 were significantly induced by imidacloprid and phoxim, and the silencing of these two genes significantly reduced larval tolerance to imidacloprid and phoxim. Taken together, the BoAhR/BoARNT pathway plays key roles in larval tolerance to imidacloprid and phoxim by regulating the expression of CYP6SX1 and CYP3828A1.
Collapse
Affiliation(s)
- Xinxiang Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wu Dai
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunni Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
25
|
Aremu HK, Dare CA, Adekale IA, Adetunji BD, Musa DA, Azeez LA, Oyewole OI. Phytomediated stress modulates antioxidant status, induces overexpression of CYP6M2, Hsp70, α-esterase, and suppresses the ABC transporter in Anopheles gambiae (sensu stricto) exposed to Ocimum tenuiflorum extracts. PLoS One 2024; 19:e0302677. [PMID: 38696463 PMCID: PMC11065307 DOI: 10.1371/journal.pone.0302677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
The incorporation of phytoactive compounds in the management of malarial vectors holds promise for the development of innovative and efficient alternatives. Nevertheless, the molecular and physiological responses that these bioactive substances induce remain underexplored. This present study investigated the toxicity of different concentrations of aqueous and methanol extracts of Ocimum tenuiflorum against larvae of Anopheles gambiae (sensu stricto) and unraveled the possible underlying molecular pathways responsible for the observed physiological effects. FTIR and GCMS analyses of phytoactive compounds in aqueous and methanol crude extracts of O. tenuiflorum showed the presence of OH stretching vibration, C = C stretching modes of aromatics and methylene rocking vibration; ring deformation mode with high levels of trans-β-ocimene, 3,7-dimethyl-1,3,6-octatriene in aqueous extract and 4-methoxy-benzaldehyde, 1,3,5-trimethyl-cyclohexane and o-cymene in methanol extract. The percentage mortality upon exposure to methanol and aqueous extracts of O. tenuiflorum were 21.1% and 26.1% at 24 h, 27.8% and 36.1% at 48 h and 36.1% and 45% at 72 h respectively. Using reverse transcription quantitative polymerase chain reaction (RT-qPCR), down-regulation of ABC transporter, overexpression of CYP6M2, Hsp70, and α-esterase, coupled with significantly increased levels of SOD, CAT, and GSH, were observed in An. gambiae (s.s.) exposed to aqueous and methanol extracts of O. tenuiflorum as compared to the control. Findings from this study have significant implications for our understanding of how An. gambiae (s.s.) larvae detoxify phytoactive compounds.
Collapse
Affiliation(s)
- Harun K. Aremu
- Department of Biochemistry, Osun State University, Osogbo, Nigeria
- Trans-Saharan Disease Research Centre, Ibrahim Badamasi Babangida University, Nigeria
| | | | - Idris A. Adekale
- Department of Biochemistry, Osun State University, Osogbo, Nigeria
| | | | - Dickson A. Musa
- Trans-Saharan Disease Research Centre, Ibrahim Badamasi Babangida University, Nigeria
- Department of Biochemistry and Biotechnology, Ibrahim Badamasi Babangida University, Nigeria
| | - Luqmon A. Azeez
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| | - Olu I. Oyewole
- Department of Biochemistry, Osun State University, Osogbo, Nigeria
| |
Collapse
|
26
|
Xie X, Wang Q, Deng Z, Gu S, Liang G, Li X. Keap1 Negatively Regulates Transcription of Three Counter-Defense Genes and Susceptibility to Plant Toxin Gossypol in Helicoverpa armigera. INSECTS 2024; 15:328. [PMID: 38786884 PMCID: PMC11122223 DOI: 10.3390/insects15050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Expressions of a wide range of cytoprotective counter-defense genes are mainly regulated by the Keap1-Nrf2-ARE signaling pathway in response to oxidative stress from xenobiotics. Gossypol is the major antiherbivore secondary metabolite of cotton, but how the polyphagous pest Helicoverpa armigera copes with this phytochemical to utilize its favorite host plant cotton remains largely elusive. In this study, we first suppressed the Keap1 gene in newly hatched larvae of cotton bollworm by feeding them the siRNA diet for 4 days. All of the larvae were subsequently fed the artificial diet supplied with gossypol or the control diet for 5 days. We identified that the knockdown of the Keap1 gene significantly decreased larval mortality and significantly increased the percentages of larval survival, reaching the fourth instar, compared with ncsiRNA when exposed to a diet containing gossypol. Three counter-defense genes CYP9A17, CYP4L11 and UGT41B3, which were related to the induction or metabolism of gossypol according to the report before, were all significantly up-regulated after the knockdown of the Keap1 gene. The Antioxidant Response Elements (AREs) were also detected in the promoter regions of the three counter-defense genes above. These data indicate that the suppression of the Keap1 gene activates the Keap1-Nrf2-ARE signaling pathway, up-regulates the expressions of counter-defense genes involved in the resistance of oxidative stress and finally contributes to reducing the susceptibility of gossypol. Our results provide more knowledge about the transcriptional regulation mechanisms of counter-defense genes that enable the cotton bollworm to adapt to the diversity of host plants including cotton.
Collapse
Affiliation(s)
- Xingcheng Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.X.); (Q.W.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.X.); (Q.W.)
| | - Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Shaohua Gu
- Department of Entomology, China Agricultural University, Beijing 100193, China;
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.X.); (Q.W.)
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
27
|
Tang J, Zhang Q, Qu C, Su Q, Luo C, Wang R. Knockdown of one cytochrome P450 gene CYP6DW4 increases the susceptibility of Bemisia tabaci to dimpropyridaz, a novel pyridazine pyrazolecarboxamide insecticide. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105888. [PMID: 38685219 DOI: 10.1016/j.pestbp.2024.105888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 05/02/2024]
Abstract
Bemisia tabaci is a formidable insect pest worldwide, and it exhibits significant resistance to various insecticides. Dimpropyridaz is a novel pyridazine pyrazolecarboxamide insecticide used against sucking insect pests, but there is little information regarding its metabolic detoxification in arthropods or cross-resistance with other insecticides. In this study, we found that dimpropyridaz shows no cross-resistance with three other popular insecticides, namely abamectin, cyantraniliprole, and flupyradifurone. After treatment of B. tabaci adults with a high dose of dimpropyridaz, higher cytochrome P450 monooxygenase (P450) activity was detected in the survivors, and the expression of the P450 gene CYP6DW4 was highly induced. Cloning and characterization of the full-length amino acid sequence of CYP6DW4 indicated that it contains conserved domains typical of P450 genes, phylogenetic analysis revealed that it was closely related to a B. tabaci protein, CYP6DW3, known to be involved in detoxification of imidacloprid. Silencing of CYP6DW4 by feeding insects with dsRNA significantly increased the susceptibility of B. tabaci to dimpropyridaz. In addition, homology modeling and molecular docking analyses showed the stable binding of dimpropyridaz to CYP6DW4, with binding free energy of -6.65 kcal/mol. Our findings indicate that CYP6DW4 plays an important role in detoxification of dimpropyridaz and possibly promotes development of resistance in B. tabaci.
Collapse
Affiliation(s)
- Juan Tang
- College of Agriculture, Yangtze University, Jingzhou 434000, China; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Qinghe Zhang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Qi Su
- College of Agriculture, Yangtze University, Jingzhou 434000, China.
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| |
Collapse
|
28
|
Dos Santos AB, Dos Anjos JS, Dos Santos GGP, Mariano MVT, Leandro LP, Farina M, Franco JL, Gomes KK, Posser T. Developmental iron exposure induces locomotor alterations in Drosophila: Exploring potential association with oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109861. [PMID: 38373512 DOI: 10.1016/j.cbpc.2024.109861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Prenatal iron (Fe) exposure has been associated with learning and cognitive impairments, which may be linked to oxidative stress resulting from elevated Fe levels and harm to the vulnerable brain. Drosophila melanogaster has contributed to our understanding of molecular mechanisms involved in neurological conditions. This study aims to explore Fe toxicity during D. melanogaster development, assessing oxidative stress and investigating behaviors in flies that are related to neurological conditions in humans. To achieve this goal, flies were exposed to Fe during the developmental period, and biochemical and behavioral analyses were conducted. The results indicated that 20 mM Fe decreased fly hatching by 50 %. At 15 mM, Fe exposure increased lipid peroxidation, and GSH levels decreased starting from 5 mM of Fe. Superoxide Dismutase activity was enhanced at 15 mM, while Glutathione S-Transferase activity was inhibited from 5 mM. Although chronic Fe exposure did not alter acetylcholinesterase (AChE) activity, flies exhibited reduced locomotion, increased grooming, and antisocial behavior from 5 mM of Fe. This research highlights potential Fe toxicity risks during development and underscores the utility of D. melanogaster in unraveling neurological disorders, emphasizing its relevance for future research.
Collapse
Affiliation(s)
- Ana Beatriz Dos Santos
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology, CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, RS, Brazil
| | - Jaciana Sousa Dos Anjos
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology, CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, RS, Brazil
| | - Giany Gabriely Padão Dos Santos
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology, CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, RS, Brazil
| | - Maria Vitória Takemura Mariano
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology, CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, RS, Brazil
| | - Luana Paganotto Leandro
- Department of Chemistry, Post Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, RS, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis 88040-900, Santa Catarina, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology, CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, RS, Brazil; Department of Chemistry, Post Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, RS, Brazil
| | - Karen Kich Gomes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology, CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, RS, Brazil.
| | - Thais Posser
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology, CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, RS, Brazil.
| |
Collapse
|
29
|
Tang H, Liu X, Wang S, Wang Y, Bai L, Peng X, Chen M. A relaxin receptor gene RpGPCR41 is involved in the resistance of Rhopalosiphum padi to pyrethroids. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105894. [PMID: 38685221 DOI: 10.1016/j.pestbp.2024.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Rhopalosiphum padi is a global pest that poses a significant threat to wheat crops and has developed resistance to various insecticides. G protein-coupled receptors (GPCRs), known for their crucial role in signaling and biological processes across insect species, have recently gained attention as a potential target for insecticides. GPCR has the potential to contribute to insect resistance through the regulation of P450 gene expression. However, GPCRs in R. padi remained unexplored until this study. We identified a total of 102 GPCRs in R. padi, including 81 receptors from family A, 10 receptors from family B, 8 receptors from family C, and 3 receptors from family D. Among these GPCR genes, 16 were up-regulated in both lambda-cyhalothrin and bifenthrin-resistant strains of R. padi (LC-R and BIF-R). A relaxin receptor gene, RpGPCR41, showed the highest up-regulated expression in both the resistant strains, with a significant increase of 14.3-fold and 22.7-fold compared to the susceptible strain (SS). RNA interference (RNAi) experiments targeting the relaxin receptor significantly increase the mortality of R. padi when exposed to the LC50 concentration of lambda-cyhalothrin and bifenthrin. The expression levels of five P450 genes (RpCYP6CY8, RpCYP6DC1, RpCYP380B1, RpCYP4CH2, and RpCYP4C1) were significantly down-regulated following knockdown of RpGPCR41 in LC-R and BIF-R strains. Our results highlight the involvement of GPCR gene overexpression in the resistance of R. padi to pyrethroids, providing valuable insights into the mechanisms underlying aphid resistance and a potential target for aphid control.
Collapse
Affiliation(s)
- Hongcheng Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yixuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lingling Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
30
|
Zhao L, Xue H, Elumalai P, Zhu X, Wang L, Zhang K, Li D, Ji J, Luo J, Cui J, Gao X. Sublethal acetamiprid affects reproduction, development and disrupts gene expression in Binodoxys communis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33415-6. [PMID: 38656721 DOI: 10.1007/s11356-024-33415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
At present, understanding of neonicotinoid toxicity in arthropods remains limited. We here evaluated the lethal and sublethal effects of acetamiprid in F0 and F1 generations of Binodoxys communis using a range of sublethal concentrations. The 10% lethal concentration (LC10) and half lethal concentration (LC25) of ACE had negative effects on the B. communis survival rate, adult longevity, parasitism rate, and emergence rate, and significantly prolonged the duration of the developmental cycle. ACE also had intergenerational effects, with some biological indices affected in the F1 generation after pesticide exposure. Transcriptomic analysis demonstrated that differentially expressed genes were enriched in specific pathways including the amino acid metabolism, carbohydrate metabolism, energy metabolism, exogenous metabolism, signal transduction, and glutathione metabolism pathways. These results indicated strong contact toxicity of ACE to B. communis, which may inhibit their biological control capacity. These results improve our understanding of the toxicological mechanisms of parasitic natural enemies in response to insecticide exposure.
Collapse
Affiliation(s)
- Likang Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hui Xue
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Punniyakotti Elumalai
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiangzhen Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Kaixin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Dongyang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
31
|
Gouesbet G, Renault D, Derocles SAP, Colinet H. Strong resistance to β-cyfluthrin in a strain of the beetle Alphitobius diaperinus: a de novo transcriptome analysis. INSECT SCIENCE 2024. [PMID: 38632693 DOI: 10.1111/1744-7917.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
The lesser mealworm, Alphitobius diaperinus, is an invasive tenebrionid beetle and a vector of pathogens. Due to the emergence of insecticide resistance and consequent outbreaks that generate significant phytosanitary and energy costs for poultry farmers, it has become a major insect pest worldwide. To better understand the molecular mechanisms behind this resistance, we studied a strain of A. diaperinus from a poultry house in Brittany that was found to be highly resistant to the β-cyfluthrin. The strain survived β-cyfluthrin exposures corresponding to more than 100 times the recommended dose. We used a comparative de novo RNA-Seq approach to explore genes expression in resistant versus sensitive strains. Our de novo transcriptomic analyses showed that responses to β-cyfluthrin likely involved a whole set of resistance mechanisms. Genes related to detoxification, metabolic resistance, cuticular hydrocarbon biosynthesis and proteolysis were found to be constitutively overexpressed in the resistant compared to the sensitive strain. Follow-up enzymatic assays confirmed that the resistant strain exhibited high basal activities for detoxification enzymes such as cytochrome P450 monooxygenase and glutathione-S-transferase. The in-depth analysis of differentially expressed genes suggests the involvement of complex regulation of signaling pathways. Detailed knowledge of these resistance mechanisms is essential for the establishment of effective pest control.
Collapse
Affiliation(s)
- Gwenola Gouesbet
- CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)-UMR 6553, University of Rennes, Rennes, France
| | - David Renault
- CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)-UMR 6553, University of Rennes, Rennes, France
- Institut Universitaire de France, 1 rue Descartes, CEDEX 05, Paris, France
| | - Stéphane A P Derocles
- CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)-UMR 6553, University of Rennes, Rennes, France
| | - Hervé Colinet
- CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)-UMR 6553, University of Rennes, Rennes, France
| |
Collapse
|
32
|
Chen Y, Lafleur C, Smith RJ, Kaur D, Driscoll BT, Bede JC. Trichoplusia ni Transcriptomic Responses to the Phytosaponin Aglycone Hederagenin: Sex-Related Differences. J Chem Ecol 2024; 50:168-184. [PMID: 38443712 DOI: 10.1007/s10886-024-01482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
Many plant species, particularly legumes, protect themselves with saponins. Previously, a correlation was observed between levels of oleanolic acid-derived saponins, such as hederagenin-derived compounds, in the legume Medicago truncatula and caterpillar deterrence. Using concentrations that reflect the foliar levels of hederagenin-type saponins, the sapogenin hederagenin was not toxic to 4th instar caterpillars of the cabbage looper Trichoplusia ni nor did it act as a feeding deterrent. Female caterpillars consumed more diet than males, presumably to obtain the additional nutrients required for oogenesis, and are, thus, exposed to higher hederagenin levels. When fed the hederagenin diet, male caterpillars expressed genes encoding trypsin-like proteins (LOC113500509, LOC113501951, LOC113501953, LOC113501966, LOC113501965, LOC113499659, LOC113501950, LOC113501948, LOC113501957, LOC113501962, LOC113497819, LOC113501946, LOC113503910) as well as stress-responsive (LOC113503484, LOC113505107) proteins and cytochrome P450 6B2-like (LOC113493761) at higher levels than females. In comparison, female caterpillars expressed higher levels of cytochrome P450 6B7-like (LOC113492289). Bioinformatic tools predict that cytochrome P450s could catalyze the oxygenation of hederagenin which would increase the hydrophilicity of the compound. Expression of a Major Facilitator Subfamily (MFS) transporter (LOC113492899) showed a hederagenin dose-dependent increase in gene expression suggesting that this transporter may be involved in sapogenin efflux. These sex-related differences in feeding and detoxification should be taken into consideration in insecticide evaluations to minimize pesticide resistance.
Collapse
Affiliation(s)
- Yinting Chen
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Christine Lafleur
- Department of Animal Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Ryan J Smith
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Diljot Kaur
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Brian T Driscoll
- Natural Resource Sciences, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Jacqueline C Bede
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
33
|
Wang P, Li H, Meng J, Liu Q, Wang X, Wang B, Liu B, Wang C, Sun W, Pan B. Activation of CncC pathway by ROS burst regulates ABC transporter responsible for beta-cypermethrin resistance in Dermanyssus gallinae (Acari:Dermanyssidae). Vet Parasitol 2024; 327:110121. [PMID: 38286058 DOI: 10.1016/j.vetpar.2024.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 01/31/2024]
Abstract
The drug resistance of poultry red mites to chemical acaricides is a global issue in the control of the mites, which presents an ongoing threat to the poultry industry. Though the increased production of detoxification enzymes has been frequently implicated in resistance development, the overexpression mechanism of acaricide-resistant related genes in mites remains unclear. In the present study, it was observed that the transcription factor Cap 'n' Collar isoform-C (CncC) and its partner small muscle aponeurosis fibromatosis (Maf) were highly expressed in resistant strains compared to sensitive strains under the stress of beta-cypermethrin. When the CncC/Maf pathway genes were down-regulated by RNA interference (RNAi), the expression of the ABC transporter genes was down-regulated, leading to a significant increase in the sensitivity of resistant strains to beta-cypermethrin, suggesting that CncC/Maf played a crucial role in mediating the resistance of D.gallinae to beta-cypermethrin by regulating ABC transporters. Furthermore, it was observed that the content of H2O2 and the activities of peroxidase (POD) and catalase (CAT) enzymes were significantly higher in resistant strains after beta-cypermethrin stress, indicating that beta-cypermethrin activates reactive oxygen species (ROS). In ROS scavenger assays, it was found that the expression of CncC/Maf significantly decreased, along with a decrease in the ABC transporter genes. The present study showed that beta-cypermethrin seemed to trigger the outbreak of ROS, subsequently activated the CncC/Maf pathway, as a result induced the ABC transporter-mediated resistance to the drug, shedding more light on the resistance mechanisms of D.gallinae to pyrethroids.
Collapse
Affiliation(s)
- Penglong Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Huan Li
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Jiali Meng
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Qi Liu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Xu Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Bohan Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Boxing Liu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Chuanwen Wang
- College of Veterinary Medicine, Hebei Agricultural University, No. 289 Lingyusi Street, Baoding 071001, Hebei, China
| | - Weiwei Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| |
Collapse
|
34
|
Yan S, Tan M, Zhang A, Jiang D. The exposure risk of heavy metals to insect pests and their impact on pests occurrence and cross-tolerance to insecticides: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170274. [PMID: 38262537 DOI: 10.1016/j.scitotenv.2024.170274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/26/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Heavy metal (HM) pollution is a severe global environmental issue. HMs in the environment can transfer along the food chain, which aggravates their ecotoxicological effect and exposes the insects to heavy metal stress. In addition to their growth-toxic effects, HMs have been reported as abiotic environmental factors that influence the implementation of integrated pest management strategies, including microbial control, enemy insect control, and chemical control. This will bring new challenges to pest control and further highlight the ecotoxicological impact of HM pollution. In this review, the relationship between HM pollution and insecticide tolerance in pests was analyzed. Our focus is on the risks of HM exposure to pests, pests tolerance to insecticides under HM exposure, and the mechanisms underlying the effect of HM exposure on pests tolerance to insecticides. We infer that HM exposure, as an initial stressor, induces cross-tolerance in pests to subsequent insecticide stress. Additionally, the priming effect of HM exposure on enzymes associated with insecticide metabolism underlies cross-tolerance formation. This is a new interdisciplinary field between pollution ecology and pest control, with an important guidance value for optimizing pest control strategies in HM polluted areas.
Collapse
Affiliation(s)
- Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
35
|
Yang Z, Deng M, Wang W, Xiao T, Peng H, Huang Z, Lu K. Characterization and functional analysis of UDP-glycosyltransferases reveal their contribution to phytochemical flavone tolerance in Spodoptera litura. Int J Biol Macromol 2024; 261:129745. [PMID: 38286378 DOI: 10.1016/j.ijbiomac.2024.129745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Efficient detoxification is the key factor for phytophagous insect to adapt to phytochemicals. However, the role of uridine diphosphate (UDP)-glycosyltransferases (UGTs) in insect anti-defense to phytochemical flavone is largely unknown. In this study, 52 UGT genes were identified in Spodoptera litura and they presented evident gene duplication. UGT played a crucial part in larval tolerance to flavone because the enzyme activity and transcriptional level of 77 % UGT members were remarkably upregulated by flavone administration and suppression of UGT enzyme activity and gene expressions significantly increased larval susceptibility to flavone. Bacteria coexpressing UGTs had high survival rates under flavone treatment and flavone was dramatically metabolized by UGT recombinant cells, which indicated the involvement of UGTs in flavone detoxification. What's more, ecdysone pathway was activated by flavone. Topical application of 20-hydroxyecdysone highly upregulated UGT enzyme activity and more than half of UGT expressions. The effects were opposite when ecdysone receptor (EcR) and ultraspiracle (USP)-mediated ecdysone signaling pathway was inhibited. Furtherly, promoter reporter assays of 5 UGT genes showed that their transcription activities were notably increased by cotransfection with EcR and USP. In consequence, this study suggested that UGTs were involved in flavone detoxification and their transcriptional expressions were regulated by ecdysone pathway.
Collapse
Affiliation(s)
- Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haoxue Peng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zifan Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
36
|
Ding Y, Li J, Yan K, Jin L, Fan C, Bi R, Kong H, Pan Y, Shang Q. CF2-II Alternative Splicing Isoform Regulates the Expression of Xenobiotic Tolerance-Related Cytochrome P450 CYP6CY22 in Aphis gossypii Glover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3406-3414. [PMID: 38329423 DOI: 10.1021/acs.jafc.3c08770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The expression of P450 genes is regulated by trans-regulatory factors or cis-regulatory elements and influences how endogenous or xenobiotic substances are metabolized in an organism's tissues. In this study, we showed that overexpression of the cytochrome P450 gene, CYP6CY22, led to resistance to cyantraniliprole in Aphis gossypii. The expression of CYP6CY22 increased in the midgut and remaining carcass of the CyR strain, and after repressing the expression of CYP6CY22, the mortality of cotton aphids increased 2.08-fold after exposure to cyantraniliprole. Drosophila ectopically expressing CYP6CY22 exhibited tolerance to cyantraniliprole and cross-tolerance to xanthotoxin, quercetin, 2-tridecanone, tannic acid, and nicotine. Moreover, transcription factor CF2-II (XM_027994540.2) is transcribed only as the splicing variant isoform CF2-II-AS, which was found to be 504 nucleotides shorter than CF2-II in A. gossypii. RNAi and yeast one-hybrid (Y1H) results indicated that CF2-II-AS positively regulates CYP6CY22 and binds to cis-acting element p (-851/-842) of CYP6CY22 to regulate its overexpression. The above results indicated that CYP6CY22 was regulated by the splicing isoform CF2-II-AS, which will help us further understand the mechanism of transcriptional adaption of cross-tolerance between synthetic insecticides and plant secondary metabolites mediated by P450s.
Collapse
Affiliation(s)
- Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Long Jin
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Chengcheng Fan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Rui Bi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Haoran Kong
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
37
|
Xu L, Zhao J, Xu D, Xu G, Peng Y, Zhang Y. New insights into chlorantraniliprole metabolic resistance mechanisms mediated by the striped rice borer cytochrome P450 monooxygenases: A case study of metabolic differences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169229. [PMID: 38072259 DOI: 10.1016/j.scitotenv.2023.169229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
The anthranilic diamide insecticide chlorantraniliprole has been extensively applied to control Lepidoptera pests. However, its overuse leads to the development of resistance and accumulation of residue in the environment. Four P450s (CYP6CV5, CYP9A68, CYP321F3, and CYP324A12) were first found to be constitutively overexpressed in an SSB CAP-resistant strain. It is imperative to further elucidate the molecular mechanisms underlying P450s-mediated CAP resistance for mitigating its environmental contamination. Here, we heterologously expressed these four P450s in insect cells and evaluated their abilities to metabolize CAP. Western blotting and reduced CO difference spectrum tests showed that these four P450 proteins had been successfully expressed in Sf9 cells, which are indicative of active functional enzymes. The recombinant proteins CYP6CV5, CYP9A68, CYP321F3, and CYP324A12 exhibited a preference for metabolizing the fluorescent P450 model probe substrates EC, BFC, EFC, and EC with enzyme activities of 0.54, 0.67, 0.57, and 0.46 pmol/min/pmol P450, respectively. In vitro metabolism revealed distinct CAP metabolic rates (0.97, 0.86, 0.75, and 0.55 pmol/min/pmol P450) and efficiencies (0.45, 0.37, 0.30, and 0.17) of the four recombinant P450 enzymes, thereby elucidating different protein catalytic activities. Furthermore, molecular model docking confirmed metabolic differences and efficiencies of these P450s and unveiled the hydroxylation reaction in generating N-demethylation and methylphenyl hydroxylation during CAP metabolism. Our findings not only first provide new insights into the mechanisms of P450s-mediated metabolic resistance to CAP at the protein level in SSB but also demonstrate significant differences in the capacities of multiple P450s for insecticide degradation and facilitate the evaluation and mitigation of toxic risks associated with CAP application in the environment.
Collapse
Affiliation(s)
- Lu Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jun Zhao
- Key Laboratory of Green Preservation and Control of Tobacco Diseases and Pests in the Huanghuai Growing Area, Institute of Tobacco Research, Henan Academy of Agricultural Sciences, Xuchang 461000, China
| | - Dejin Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guangchun Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yingchuan Peng
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yanan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
38
|
Moural TW, Koirala B K S, Bhattarai G, He Z, Guo H, Phan NT, Rajotte EG, Biddinger DJ, Hoover K, Zhu F. Architecture and potential roles of a delta-class glutathione S-transferase in protecting honey bee from agrochemicals. CHEMOSPHERE 2024; 350:141089. [PMID: 38163465 DOI: 10.1016/j.chemosphere.2023.141089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
The European honey bee, Apis mellifera, serves as the principle managed pollinator species globally. In recent decades, honey bee populations have been facing serious health threats from combined biotic and abiotic stressors, including diseases, limited nutrition, and agrochemical exposure. Understanding the molecular mechanisms underlying xenobiotic adaptation of A. mellifera is critical, considering its extensive exposure to phytochemicals and agrochemicals present in the environment. In this study, we conducted a comprehensive structural and functional characterization of AmGSTD1, a delta class glutathione S-transferase (GST), to unravel its roles in agrochemical detoxification and antioxidative stress responses. We determined the 3-dimensional (3D) structure of a honey bee GST using protein crystallography for the first time, providing new insights into its molecular structure. Our investigations revealed that AmGSTD1 metabolizes model substrates, including 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrophenyl acetate (PNA), phenylethyl isothiocyanate (PEITC), propyl isothiocyanate (PITC), and the oxidation byproduct 4-hydroxynonenal (HNE). Moreover, we discovered that AmGSTD1 exhibits binding affinity with the fluorophore 8-Anilinonaphthalene-1-sulfonic acid (ANS), which can be inhibited with various herbicides, fungicides, insecticides, and their metabolites. These findings highlight the potential contribution of AmGSTD1 in safeguarding honey bee health against various agrochemicals, while also mitigating oxidative stress resulting from exposure to these substances.
Collapse
Affiliation(s)
- Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Sonu Koirala B K
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Gaurab Bhattarai
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA 30602, USA.
| | - Ziming He
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Haoyang Guo
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Ngoc T Phan
- Department of Entomology and Plant Pathology, University of Arkansas, AR 72701, USA; Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Gia Lam, Hanoi 100000, Viet Nam.
| | - Edwin G Rajotte
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - David J Biddinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; Penn State Fruit Research and Extension Center, Biglerville, PA 17307, USA.
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
39
|
Liao J, Cai D, Geng S, Lyu Z, Wu Y, Guo J, Li H. Transcriptome-based analysis reveals a crucial role of the 20E/HR3 pathway in the diapause of Pieris rapae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105787. [PMID: 38458687 DOI: 10.1016/j.pestbp.2024.105787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 03/10/2024]
Abstract
Pieris rapae is among the most damaging pests globally, and diapause makes it highly resistant to environmental stresses, playing a crucial role in the survival and reproduction of P. rapae while exacerbating the challenges of pest management and control. However, the mechanisms of its diapause regulation remain poorly understood. This research used RNA sequencing to profile the transcriptomes of three diapause phases (induction and preparation, initiation, maintenance) and synchronous nondiapause phases in P. rapae. During each comparison phase, 759, 1045, and 4721 genes were found to be differentially expressed. Among these, seven clock genes and seven pivotal hormone synthesis and metabolism genes were identified as having differential expression patterns in diapause type and nondiapause type. The weighted gene co-expression network analysis (WGCNA) revealed the red and blue modules as pivotal for diapause initiation, while the grey module was identified to be crucial to diapause maintenance. Meanwhile, the hub genes HDAC11, METLL16D, Dyw-like, GST, and so on, were identified within these hub modules. Moreover, an ecdysone downstream nuclear receptor gene, HR3, was found to be a shared transcription factor across all three phases. RNA interference of HR3 resulted in delayed pupal development, indicating its involvement in regulating pupal dipause in P. rapae. The further hormone assays revealed that the 20-hydroxyecdysone (20E) titer in diapause type pupae was lower than that in nondiapause type pupae, which exhibited a similar trend to HR3. When 20E was injected into diapause pupae, the HR3 expression levels were improved, and the pupal diapause were broken. These results indicate that the 20E/HR3 pathway is a critical pathway for the diapause regulation of P. rapae, and perturbing this pathway by ecdysone treatment or RNAi would result in the disruption of diapause. These findings provide initial insights into the molecular mechanisms of P. rapae diapause and suggest the potential use of ecdysone analogs and HR3 RNAi pesticides, which specifically target to diapause, as a means of pest control in P. rapae.
Collapse
Affiliation(s)
- Jing Liao
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Dingxue Cai
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Shaolei Geng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhaopeng Lyu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Yaling Wu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Jianjun Guo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Haiyin Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China.
| |
Collapse
|
40
|
Ding Y, Lv Y, Pan Y, Li J, Yan K, Yu Z, Shang Q. A masked gene concealed hand in glove in the forkhead protein crocodile regulates the predominant detoxification CYP6DA1 in Aphis gossypii Glover. Int J Biol Macromol 2023; 253:126824. [PMID: 37690634 DOI: 10.1016/j.ijbiomac.2023.126824] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Cytochrome P450-mediated metabolism is an important mechanism of insecticide resistance, most studies show upregulated transcript levels of P450s in resistant insect strains. Our previous studies illustrated that some upregulated P450s were associated with cyantraniliprole resistance, and it is more comprehensive to use the tissue specificity of transcriptomes to compare resistant (CyR) and susceptible (SS) strains. In this study, the expression profiles of P450s in a CyR strain compared with a SS strain in remaining carcass or midgut were investigated by RNA sequencing, and candidate genes were selected for functional study. Drosophila melanogaster bioassays suggested that ectopic overexpression of CYP4CK1, CYP6CY5, CYP6CY9, CYP6CY19, CYP6CZ1 and CYP6DA1 in flies was sufficient to confer cyantraniliprole resistance, among which CYP6DA1 was the predominant contributor to resistance (12.24-fold). RNAi suppression of CYP4CK1, CYP6CY5, CYP6CY9 and CYP6DA1 significantly increased CyR aphid sensitivity to cyantraniliprole. The CYP6DA1 promoter had two predicted binding sites for crocodile (CROC), an intron-free ORF with bidirectional transcription yielding CROC (+) and CROC (-). Y1H, RNAi and EMSA found that CROC (-) was a transcription factor directly regulating CYP6DA1 expression. In conclusion, P450 genes contribute to cyantraniliprole resistance, and the transcription factor CROC (-) regulates the expression of CYP6DA1 in A. gossypii.
Collapse
Affiliation(s)
- Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Zihan Yu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
41
|
Zhu J, Qu R, Wang Y, Ni R, Tian K, Yang C, Li M, Kristensen M, Qiu X. Up-regulation of CYP6G4 mediated by a CncC/maf binding-site-containing insertion confers resistance to multiple classes of insecticides in the house fly Musca domestica. Int J Biol Macromol 2023; 253:127024. [PMID: 37769776 DOI: 10.1016/j.ijbiomac.2023.127024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Populations of many insect species have evolved a variety of resistance mechanisms in response to insecticide selection. Current knowledge about mutations responsible for insecticide resistance is largely achieved from studies on target-site resistance, while much less is known about metabolic resistance. Although it is well known that P450 monooxygenases are one of the major players involved in insecticide metabolism and resistance, understanding mutation(s) responsible for CYP-mediated resistance has been a big challenge. In this study, we used the house fly to pursue a better understanding of P450 mediated insecticide resistance at the molecular level. Metabolism studies illustrated that CYP6G4 had a broad-spectrum metabolic activity in metabolizing insecticides. Population genotyping revealed that the CYP6G4v1 allele harboring a DNA insertion (MdIS1) had been selected in many house fly populations on different continents. Dual luciferase reporter assays identified that the MdIS1 contained a CncC/Maf binding site, and electrophoretic mobility shift assay confirmed that transcription factor CncC was involved in the MdIS1-mediated regulation. This study highlights the common involvement of the CncC pathway in adaptive evolution, and provides an interesting case supportive of parallel evolution in P450-mediated insecticide resistance in insects.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruinan Qu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoyao Ni
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chan Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
42
|
Wu P, Huang Y, Zheng J, Zhang Y, Qiu L. Regulation of CncC in insecticide-induced expression of cytochrome P450 CYP9A14 and CYP6AE11 in Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105707. [PMID: 38072560 DOI: 10.1016/j.pestbp.2023.105707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
The expression of many detoxification genes can be regulated by CncC pathway and contributes to insecticide tolerance in insects. Our previous study has demonstrated that the transcripts of CncC and cytochrome P450s (CYP9A14, CYP6AE11) were significantly up-regulated after different insecticides treatment in Helicoverpa armigera. Further study indicated that H2O2, GSH, and MDA contents and antioxidant enzyme activities of H. armigera were enhanced after chlorantraniliprole, cyantraniliprole, indoxacarb, and spinosad exposure. Silencing CncC by RNA interference significantly down-regulated the expression levels of CYP9A14 and CYP6AE11, and increased the susceptibility of dsRNA-injected larvae to λ-cyhalothrin, chlorantraniliprole, and cyantraniliprole. On the contrary, applying CncC agonist curcumin on H. armigera induced the expression of CYP9A14 and CYP6AE11, and enhanced the tolerance of H. armigera to insecticides. Treatment of ROS scavenger N-acetylcysteine on H. armigera reduced the H2O2 content and antioxidant enzyme activities, suppressed the transcripts of CncC, CYP9A14, and CYP6AE11, and decreased the larval tolerance to insecticides. These results demonstrated that the induced-expression of CYP9A14 and CYP6AE11 related with insecticides tolerance in H. armigera was regulated by CncC, which may be activated by ROS generated by insecticides. This study will help to better understand the underlying regulation mechanisms of CncC pathway in H. armigera tolerance to insecticides.
Collapse
Affiliation(s)
- Peizhuo Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yun Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
43
|
Yang XY, Yang W, Zhao H, Wang BJ, Shi Y, Wang MY, Liu SQ, Liao XL, Shi L. Functional analysis of UDP-glycosyltransferase genes conferring indoxacarb resistance in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105589. [PMID: 37945240 DOI: 10.1016/j.pestbp.2023.105589] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 11/12/2023]
Abstract
UDP-glycosyltransferase (UGT) is the major detoxification enzymes of phase II involved in xenobiotics metabolism, which potentially mediates the formation of insect resistance. Previous transcriptome sequencing studies have found that several UGT genes were upregulated in indoxacarb resistant strains of Spodoptera litura, but whether these UGT genes were involved in indoxacarb resistance and their functions in resistance were unclear. In this study, the UGTs inhibitor, 5-nitrouracil, enhanced the toxicity of indoxacarb against S. litura, preliminarily suggesting that UGTs were participated in indoxacarb resistance. Two UGT genes, UGT33J17 and UGT41D10 were upregulated in the resistant strains and could be induced by indoxacarb. Alignment of UGT protein sequences revealed two conserved donor-binding regions with several key residues that interact with catalytic sites and sugar donors. Further molecular modeling and docking analysis indicated that two UGT proteins were able to stably bind indoxacarb and N-decarbomethoxylated metabolite (DCJW). Furthermore, knockdown of UGT33J17 and UGT41D10 decreased viability of Spli-221 cells and enhanced susceptibility of larvae to indoxacarb. Transgenic overexpression of these genes reduced the toxicity of indoxacarb in Drosophila melanogaster. This work revealed that upregulation of UGT genes significantly contributes to indoxacarb resistance in S. litura, and is of great significance for the development of integrated and sustainable management strategies for resistant pests in the field.
Collapse
Affiliation(s)
- Xi-Yu Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wen Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Hui Zhao
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Bing-Jie Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yao Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Meng-Yu Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shuang-Qing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiao-Lan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| | - Li Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
44
|
Liu J, Wu HH, Zhang YC, Zhang JZ, Ma EB, Zhang XY. Transcription factors, cap 'n' collar isoform C regulates the expression of CYP450 genes involving in insecticides susceptibility in Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105627. [PMID: 37945261 DOI: 10.1016/j.pestbp.2023.105627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/12/2023] [Accepted: 09/17/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The cap 'n' collar (Cnc) belongs to the Basic Leucine Zipper (bZIP) transcription factor super family. Cap 'n' collar isoform C (CncC) is highly conserved in the animal kingdom. CncC contributes to the regulation of growth, development, and aging and takes part in the maintenance of homeostasis and the defense against endogenous and environmental stress. Insect CncC participates in the regulation of various kinds of stress-responsive genes and is involved in the development of insecticide resistance. RESULTS In this study, one full-length CncC sequence of Locusta migratoria was identified and characterized. Upon RNAi silencing of LmCncC, insecticide bioassays showed that LmCncC played an essential role in deltamethrin and imidacloprid susceptibility. To fully investigate the downstream genes regulated by LmCncC and further identify the LmCncC-regulated genes involved in deltamethrin and imidacloprid susceptibility, a comparative transcriptome was constructed. Thirty-five up-regulated genes and 73 down-regulated genes were screened from dsLmCncC-knockdown individuals. We selected 22 LmCncC-regulated genes and verified their gene expression levels using RT-qPCR. Finally, six LmCYP450 genes belonging to the CYP6 family were selected as candidate detoxification genes, and LmCYP6FD1 and LmCYP6FE1 were further validated as detoxification genes of insecticides via RNAi, insecticide bioassays, and metabolite identification. CONCLUSIONS Our data suggest that the locust CncC gene is associated with deltamethrin and imidacloprid susceptibility via the regulation of LmCYP6FD1 and LmCYP6FE1, respectively.
Collapse
Affiliation(s)
- Jiao Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China
| | - Hai-Hua Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China
| | - Yi-Chao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China
| | - Jian-Zhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China
| | - En-Bo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China
| | - Xue-Yao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China.
| |
Collapse
|
45
|
Mappin F, Bellantuono AJ, Ebrahimi B, DeGennaro M. Odor-evoked transcriptomics of Aedes aegypti mosquitoes. PLoS One 2023; 18:e0293018. [PMID: 37874813 PMCID: PMC10597520 DOI: 10.1371/journal.pone.0293018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
Modulation of odorant receptors mRNA induced by prolonged odor exposure is highly correlated with ligand-receptor interactions in Drosophila as well as mammals of the Muridae family. If this response feature is conserved in other organisms, this presents an intriguing initial screening tool when searching for novel receptor-ligand interactions in species with predominantly orphan olfactory receptors. We demonstrate that mRNA modulation in response to 1-octen-3-ol odor exposure occurs in a time- and concentration-dependent manner in Aedes aegypti mosquitoes. To investigate gene expression patterns at a global level, we generated an odor-evoked transcriptome associated with 1-octen-3-ol odor exposure. Transcriptomic data revealed that ORs and OBPs were transcriptionally responsive whereas other chemosensory gene families showed little to no differential expression. Alongside chemosensory gene expression changes, transcriptomic analysis found that prolonged exposure to 1-octen-3-ol modulated xenobiotic response genes, primarily members of the cytochrome P450, insect cuticle proteins, and glucuronosyltransferases families. Together, these findings suggest that mRNA transcriptional modulation of olfactory receptors caused by prolonged odor exposure is pervasive across taxa and can be accompanied by the activation of xenobiotic responses.
Collapse
Affiliation(s)
- Fredis Mappin
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Anthony J. Bellantuono
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Babak Ebrahimi
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Matthew DeGennaro
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
46
|
Xiao T, Wang W, Deng M, Yang Z, Peng H, Huang Z, Sun Z, Lu K. CYP321A Subfamily P450s Contribute to the Detoxification of Phytochemicals and Pyrethroids in Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14989-15002. [PMID: 37792742 DOI: 10.1021/acs.jafc.3c05423] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Although the induction of cytochrome P450 monooxygenases involved in insect detoxification has been well documented, the underlying regulatory mechanisms remain obscure. In Spodoptera litura, CYP321A subfamily members were effectively induced by exposure to flavone, xanthotoxin, curcumin, and λ-cyhalothrin, while knockdown of the CYP321A genes increased larval susceptibility to these xenobiotics. Homology modeling and molecular docking analyses showed that these four xenobiotics could stably bind to the CYP321A enzymes. Furthermore, two transcription factor genes, CncC and MafK, were significantly induced by the xenobiotics. Knockdown of CncC or MafK reduced the expression of four CYP321A genes and increased larval susceptibility to the xenobiotics. Dual-luciferase reporter assays showed that cotransfection of reporter plasmids carrying the CYP321A promoter with CncC and/or MafK-expressing constructs significantly magnified the promoter activity. These results indicate that the induction of CYP321A subfamily members conferring larval detoxification capability to xenobiotics is mediated by the activation of CncC and MafK.
Collapse
Affiliation(s)
- Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haoxue Peng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zifan Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhongxiang Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
47
|
Abendroth JA, Moural TW, Wei H, Zhu F. Roles of insect odorant binding proteins in communication and xenobiotic adaptation. FRONTIERS IN INSECT SCIENCE 2023; 3:1274197. [PMID: 38469469 PMCID: PMC10926425 DOI: 10.3389/finsc.2023.1274197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/15/2023] [Indexed: 03/13/2024]
Abstract
Odorant binding proteins (OBPs) are small water-soluble proteins mainly associated with olfaction, facilitating the transport of odorant molecules to their relevant receptors in the sensillum lymph. While traditionally considered essential for olfaction, recent research has revealed that OBPs are engaged in a diverse range of physiological functions in modulating chemical communication and defense. Over the past 10 years, emerging evidence suggests that OBPs play vital roles in purifying the perireceptor space from unwanted xenobiotics including plant volatiles and pesticides, potentially facilitating xenobiotic adaptation, such as host location, adaptation, and pesticide resistance. This multifunctionality can be attributed, in part, to their structural variability and effectiveness in transporting, sequestering, and concealing numerous hydrophobic molecules. Here, we firstly overviewed the classification and structural properties of OBPs in diverse insect orders. Subsequently, we discussed the myriad of functional roles of insect OBPs in communication and their adaptation to xenobiotics. By synthesizing the current knowledge in this field, our review paper contributes to a comprehensive understanding of the significance of insect OBPs in chemical ecology, xenobiotic adaptation, paving the way for future research in this fascinating area of study.
Collapse
Affiliation(s)
- James A. Abendroth
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Timothy W. Moural
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Hongshuang Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
48
|
Mack LK, Attardo GM. Time-series analysis of transcriptomic changes due to permethrin exposure reveals that Aedes aegypti undergoes detoxification metabolism over 24 h. Sci Rep 2023; 13:16564. [PMID: 37783800 PMCID: PMC10545687 DOI: 10.1038/s41598-023-43676-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023] Open
Abstract
Insecticide resistance is a multifaceted response and an issue across taxa. Aedes aegypti, the mosquito that vectors Zika, dengue, chikungunya, and yellow fever, demonstrates high levels of pyrethroid resistance across the globe, presenting a challenge to public health officials. To examine the transcriptomic shifts across time after exposure to permethrin, a 3'Tag-Seq analysis was employed on samples 6, 10, and 24 h after exposure along with controls. Differential expression analysis revealed significant shifts in detoxifying enzymes and various energy-producing metabolic processes. These findings indicate significant alterations in gene expression associated with key energy mobilization pathways within the system. These changes encompass a coordinated response involving lipolysis, beta-oxidation, and the citric acid cycle, required for the production of energetic molecules such as ATP, NADH, NADPH, and FADH. These findings highlight a complex interplay of metabolic processes that may have broader implications for understanding insect physiology and response to environmental stimuli. Among the upregulated detoxifying enzymes are cytochrome P450s, glutathione s-transferases and peroxidases, and ATP-binding cassette transporters. Additionally, eight heat shock genes or genes with heat shock domains exhibit the highest fold change across time. Twenty-four hours after exposure, samples indicate a global downregulation of these processes, though principal component analysis suggests lasting signatures of the response. Understanding the recovery response to insecticide exposure provides information on possible new genetic and synergist targets to explore.
Collapse
Affiliation(s)
- Lindsey K Mack
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
49
|
An J, Dou Y, Dang Z, Guo J, Gao Z, Li Y. Detoxification enzyme is involved in the temperature effect on the toxicity of tetrachlorantraniliprole to Plutella xylostella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105536. [PMID: 37666608 DOI: 10.1016/j.pestbp.2023.105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 09/06/2023]
Abstract
The efficacy of insecticides is usually influenced by temperature. Insecticides can be divided into "positive", "negative" and "non-effect" temperature coefficient insecticides (TCI). To assess the temperature-dependent effect of tetrachlorantraniliprole (TET) on Plutella xylostella Linnaeus and to elucidate the mechanism of temperature affects TET toxicity, we determined the toxicity of TET against P. xylostella from 15 °C to 35 °C by leaf dipping method. Moreover, we compared the transcriptome data of the third-instar larvae treated by TET, chlorfenapyr (CHL, non-effect TCI), and the control group at 15, 25, 35 °C, respectively. The results showed that the toxicity of TET against P. xylostella increased with increasing temperature from 15 °C to 35 °C. A total of 21 differential expressed genes (DEGs) of detoxification enzymes were screened by RNA-seq, in which 10 up-regulated genes (3 UGTs, 2 GSTs, 5 P450s) may involve the positive temperature effect of TET, and their expression patterns were consistent with qPCR results. Furthermore, the enzyme activities of GSTs and UGTs significantly increased after TET was treated at 15 °C. Especially, the temperature coefficient (TC) of TET was significantly reduced mixed with UGTs enzyme inhibitor 5-NI. Overall, TET showed higher insecticidal activity with increasing temperature, in which detoxifying enzymes associated with regulation of the positive temperature effect of TET on P. xylostella, such as UGTs, GSTs and P450s, are strongly involved. The transcriptome data provide in-depth information to understand the TET mechanism against diamondback moth. Most importantly, we identified detoxification enzymes that might be involved in regulating TET's positive temperature effect process, and contributed to efficient pest management.
Collapse
Affiliation(s)
- Jingjie An
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences / IPM Center of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, China
| | - Ya'nan Dou
- Agricultural Specialty Industry Development Center of Baoding, Baoding 071000, China
| | - Zhihong Dang
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences / IPM Center of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, China
| | - Jianglong Guo
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences / IPM Center of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, China
| | - Zhanlin Gao
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences / IPM Center of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, China
| | - Yaofa Li
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences / IPM Center of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, China.
| |
Collapse
|
50
|
Amezian D, Fricaux T, de Sousa G, Maiwald F, Huditz HI, Nauen R, Le Goff G. Investigating the role of the ROS/CncC signaling pathway in the response to xenobiotics in Spodoptera frugiperda using Sf9 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105563. [PMID: 37666619 DOI: 10.1016/j.pestbp.2023.105563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 09/06/2023]
Abstract
Spodoptera frugiperda (fall armyworm, FAW) is an invasive polyphagous lepidopteran pest that has developed sophisticated resistance mechanisms involving detoxification enzymes to eliminate toxic compounds it encounters in its diet including insecticides. Although its inventory of detoxification enzymes is known, the mechanisms that enable an adapted response depending on the toxic compound remain largely unexplored. Sf9 cells were used to investigate the role of the transcription factors, Cap n' collar isoform C (CncC) and musculoaponeurotic fibrosarcoma (Maf) in the regulation of the detoxification response. We overexpressed CncC, Maf or both genes, and knocked out (KO) CncC or its repressor Kelch-like ECH associated protein 1 (Keap1). Joint overexpression of CncC and Maf is required to confer increased tolerance to indole 3-carbinol (I3C), a plant secondary metabolite, and to methoprene, an insecticide. Both molecules induce reactive oxygen species (ROS) pulses in the different cell lines. The use of an antioxidant reversed ROS pulses and restored the tolerance to I3C and methoprene. The activity of detoxification enzymes varied according to the cell line. Suppression of Keap1 significantly increased the activity of cytochrome P450s, carboxylesterases and glutathione S-transferases. RNAseq experiments showed that CncC mainly regulates the expression of detoxification genes but is also at the crossroads of several signaling pathways (reproduction and immunity) maintaining homeostasis. We present new data in Sf9 cell lines suggesting that the CncC:Maf pathway plays a central role in FAW response to natural and synthetic xenobiotics. This knowledge helps to better understand detoxification gene expression and may help to design next-generation pest insect control measures.
Collapse
Affiliation(s)
- Dries Amezian
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Thierry Fricaux
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Georges de Sousa
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Frank Maiwald
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | | | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany.
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France.
| |
Collapse
|