1
|
Arrías PN, Osmanli Z, Peralta E, Chinestrad PM, Monzon AM, Tosatto SCE. Diversity and structural-functional insights of alpha-solenoid proteins. Protein Sci 2024; 33:e5189. [PMID: 39465903 PMCID: PMC11514114 DOI: 10.1002/pro.5189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/29/2024]
Abstract
Alpha-solenoids are a significant and diverse subset of structured tandem repeat proteins (STRPs) that are important in various domains of life. This review examines their structural and functional diversity and highlights their role in critical cellular processes such as signaling, apoptosis, and transcriptional regulation. Alpha-solenoids can be classified into three geometric folds: low curvature, high curvature, and corkscrew, as well as eight subfolds: ankyrin repeats; Huntingtin, elongation factor 3, protein phosphatase 2A, and target of rapamycin; armadillo repeats; tetratricopeptide repeats; pentatricopeptide repeats; Pumilio repeats; transcription activator-like; and Sel-1 and Sel-1-like repeats. These subfolds represent distinct protein families with unique structural properties and functions, highlighting the versatility of alpha-solenoids. The review also discusses their association with disease, highlighting their potential as therapeutic targets and their role in protein design. Advances in state-of-the-art structure prediction methods provide new opportunities and challenges in the functional characterization and classification of this kind of fold, emphasizing the need for continued development of methods for their identification and proper data curation and deposition in the main databases.
Collapse
Affiliation(s)
- Paula Nazarena Arrías
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - Zarifa Osmanli
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Estefanía Peralta
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | | | | | - Silvio C. E. Tosatto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Institute of Biomembranes, Bioenergetics and Molecular BiotechnologiesNational Research Council (CNR‐IBIOM)BariItaly
| |
Collapse
|
2
|
Imler JL, Cai H, Meignin C, Martins N. Evolutionary immunology to explore original antiviral strategies. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230068. [PMID: 38497262 PMCID: PMC10945398 DOI: 10.1098/rstb.2023.0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/25/2023] [Indexed: 03/19/2024] Open
Abstract
Over the past 25 years, the field of evolutionary developmental biology (evo-devo) has used genomics and genetics to gain insight on the developmental mechanisms underlying the evolution of morphological diversity of animals. Evo-devo exploits the key insight that conserved toolkits of development (e.g. Hox genes) are used in animals to produce genetic novelties that provide adaptation to a new environment. Like development, immunity is forged by interactions with the environment, namely the microbial world. Yet, when it comes to the study of immune defence mechanisms in invertebrates, interest primarily focuses on evolutionarily conserved molecules also present in humans. Here, focusing on antiviral immunity, we argue that immune genes not conserved in humans represent an unexplored resource for the discovery of new antiviral strategies. We review recent findings on the cGAS-STING pathway and explain how cyclic dinucleotides produced by cGAS-like receptors may be used to investigate the portfolio of antiviral genes in a broad range of species. This will set the stage for evo-immuno approaches, exploiting the investment in antiviral defences made by metazoans over hundreds of millions of years of evolution. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Jean-Luc Imler
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Hua Cai
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Carine Meignin
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
| | - Nelson Martins
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UPR9022, Strasbourg 67070, France
| |
Collapse
|
3
|
Clayton E, Atasoy MO, Naggar RFE, Franco AC, Rohaim MA, Munir M. Interferon-induced protein with tetratricopeptide repeats 5 of black fruit bat ( Pteropus alecto) displays a broad inhibition of RNA viruses. Front Immunol 2024; 15:1284056. [PMID: 38440728 PMCID: PMC10909918 DOI: 10.3389/fimmu.2024.1284056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/24/2024] [Indexed: 03/06/2024] Open
Abstract
Bats are natural host reservoirs and have adapted a unique innate immune system that permits them to host many viruses without exhibiting symptoms. Notably, bat interferon stimulated genes (ISGs) have been shown to play antiviral roles. Interferon induced protein with tetratricopeptide repeats 5 (IFIT5) is a well-characterised ISG in humans with antiviral activities against negative-sense RNA viruses via inhibiting viral transcription. Here, we aim to investigate if Pteropus alecto (pa) IFIT5 (paIFIT5) possess the ability to inhibit negative-sense RNA viruses. Initially, gene syntenic and comparative structural analyses of multiple animals highlighted a high level of similarity between Pteropus alecto and human IFIT5 proteins. Our results showed that paIFIT5 was significantly inducible by viral and dsRNA stimulation. Transient overexpression of paIFIT5 inhibited the replication of vesicular stomatitis virus (VSV). Using minireplicon and transcription reporter assays, we demonstrated the ability of paIFIT5 specifically to inhibit H17N10 polymerase activity. Mechanistically, we noticed that the antiviral potential of paIFIT5 against negative sense RNA viruses was retributed to its interaction with 5'ppp containing RNA. Taken together, these findings highlight the genetic and functional conservation of IFIT5 among mammals.
Collapse
Affiliation(s)
| | | | | | | | | | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
4
|
Jena D, Srivastava N, Chauhan I, Verma M. Challenges and Therapeutic Approaches for the Protein Delivery System: A Review. Pharm Nanotechnol 2024; 12:391-411. [PMID: 38192140 DOI: 10.2174/0122117385265979231115074255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 01/10/2024]
Abstract
The protein delivery system is one of the innovative or novel drug delivery systems in the present era. Proteins play an indispensable role in our body and are mainly found in every part, like tissue and cells of our body. It also controls various functions, such as maintaining our tissue, transportation, muscle recovery, enzyme production and acting as an energy source for our body. Protein therapeutics have big future perspectives, and their use in the treatment of a wide range of serious diseases has transformed the delivery system in the pharmaceutical and biotechnology industries. The chief advantage of protein delivery is that it can be delivered directly to the systemic circulation. So far, parenteral routes, such as intravenous, intramuscular, and subcutaneous, are the most often used method of administering protein drugs. Alternative routes like buccal, oral, pulmonary, transdermal, nasal, and ocular routes have also shown a remarkable success rate. However, as with all other types of delivery, here, several challenges are posed due to the presence of various barriers, such as the enzymatic barrier, intestinal epithelial barrier, capillary endothelial barrier, and blood-brain barrier. There are several approaches that have been explored to overcome these barriers, such as chemical modification, enzymatic inhibitors, penetration enhancers, and mucoadhesive polymers. This review article discusses the protein, its functions, routes of administration, challenges, and strategies to achieve ultimate formulation goals. Recent advancements like the protein Pegylation method and Depofoam technology are another highlight of the article.
Collapse
Affiliation(s)
- Devashish Jena
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow, Sector 125, Noida, 201313, India
| | - Nimisha Srivastava
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow, Sector 125, Noida, 201313, India
| | - Iti Chauhan
- Department of Pharmaceutics, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, 201206, Uttar Pradesh, India
| | - Madhu Verma
- Department of Pharmaceutics, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, 201206, Uttar Pradesh, India
| |
Collapse
|
5
|
Sarkar SN, Harioudh MK, Shao L, Perez J, Ghosh A. The Many Faces of Oligoadenylate Synthetases. J Interferon Cytokine Res 2023; 43:487-494. [PMID: 37751211 PMCID: PMC10654648 DOI: 10.1089/jir.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 09/27/2023] Open
Abstract
2'-5' Oligoadenylate synthetases (OAS) are interferon-stimulated genes that are most well-known to protect hosts from viral infections. They are evolutionarily related to an ancient family of Nucleotidyltransferases, which are primarily involved in pathogen-sensing and innate immune response. Classical function of OAS proteins involves double-stranded RNA-stimulated polymerization of adenosine triphosphate in 2'-5' oligoadenylates (2-5A), which can activate the latent RNase (RNase L) to degrade RNA. However, accumulated evidence over the years have suggested alternative mode of antiviral function of several OAS family proteins. Furthermore, recent studies have connected some OAS proteins with wider function beyond viral infection. Here, we review some of the canonical and noncanonical functions of OAS proteins and their mechanisms.
Collapse
Affiliation(s)
- Saumendra N. Sarkar
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Munesh K. Harioudh
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lulu Shao
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joseph Perez
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Arundhati Ghosh
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Pradeep P, Sivakumar KC, Sreekumar E. Host Factor Nucleophosmin 1 (NPM1/B23) Exerts Antiviral Effects against Chikungunya Virus by Its Interaction with Viral Nonstructural Protein 3. Microbiol Spectr 2023; 11:e0537122. [PMID: 37409962 PMCID: PMC10433958 DOI: 10.1128/spectrum.05371-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023] Open
Abstract
Chikungunya virus (CHIKV) hijacks host cell machinery to support its replication. Nucleophosmin 1 (NPM1/B23), a nucleolar phosphoprotein, is one of the host proteins known to restrict CHIKV infection; however, the mechanistic details of the antiviral role of NPM1 are not elucidated. It was seen in our experiments that the level of NPM1 expression affected the expression levels of interferon-stimulated genes (ISGs) that play antiviral roles in CHIKV infection, such as IRF1, IRF7, OAS3, and IFIT1, indicating that one of the antiviral mechanisms could be through modulation of interferon-mediated pathways. Our experiments also identified that for CHIKV restriction, NPM1 must move from the nucleus to the cytoplasm. A deletion of the nuclear export signal (NES), which confines NPM1 within the nucleus, abolishes its anti-CHIKV action. We observed that NPM1 binds CHIKV nonstructural protein 3 (nsP3) strongly via its macrodomain, thereby exerting a direct interaction with viral proteins to limit infection. Based on site-directed mutagenesis and coimmunoprecipitation studies, it was also observed that amino acid residues N24 and Y114 of the CHIKV nsP3 macrodomain, known to be involved in virus virulence, bind ADP-ribosylated NPM1 to inhibit infection. Overall, the results show a key role of NPM1 in CHIKV restriction and indicate it as a promising host target for developing antiviral strategies against CHIKV. IMPORTANCE Chikungunya, a recently reemerged mosquito-borne infection caused by a positive-sense, single-stranded RNA virus, has caused explosive epidemics in tropical regions. Unlike the classical symptoms of acute fever and debilitating arthralgia, incidences of neurological complications and mortality were reported. Currently there are no antivirals or commercial vaccines available against chikungunya. Like all viruses, CHIKV uses host cellular machinery for establishment of infection and successful replication. To counter this, the host cell activates several restriction factors and innate immune response mediators. Understanding these host-virus interactions helps to develop host-targeted antivirals against the disease. Here, we report the antiviral role of the multifunctional host protein NPM1 against CHIKV. The significant inhibitory effect of this protein against CHIKV involves its increased expression and movement from its natural location within the nucleus to the cytoplasm. There, it interacts with functional domains of key viral proteins. Our results support ongoing efforts toward development of host-directed antivirals against CHIKV and other alphaviruses.
Collapse
Affiliation(s)
- Parvanendhu Pradeep
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Research Centre, University of Kerala, Thiruvananthapuram, India
| | | | - Easwaran Sreekumar
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Molecular Bioassay Laboratory, Institute of Advanced Virology (IAV), Thiruvananthapuram, India
| |
Collapse
|
7
|
Arwansyah A, Arif AR, Kade A, Taiyeb M, Ramli I, Santoso T, Ningsih P, Natsir H, Tahril T, Uday Kumar K. Molecular modelling on multiepitope-based vaccine against SARS-CoV-2 using immunoinformatics, molecular docking, and molecular dynamics simulation. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:649-675. [PMID: 36083166 DOI: 10.1080/1062936x.2022.2117846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The pandemic of COVID-19 caused by SARS-CoV-2 has made a worldwide health emergency. Despite the fact that current vaccines are readily available, several SARSCoV-2 variants affecting the existing vaccine are to be less effective due to the mutations in the structural proteins. Furthermore, the appearance of the new variants cannot be easily predicted in the future. Therefore, the attempts to construct new vaccines or to modify the current vaccines are still pivotal works for preventing the spread of the virus. In the present investigation, the computational analysis through immunoinformatics, molecular docking, and molecular dynamics (MD) simulation is employed to construct an effective vaccine against SARS-CoV2. The structural proteins of SARS-CoV2 are utilized to create a multiepitope-based vaccine (MEV). According to our findings presented by systematic procedures in the current investigation, the MEV construct may be able to trigger a strong immunological response against the virus. Therefore, the designed MEV could be a potential vaccine candidate against SARS-CoV-2, and also it is expected to be effective for other variants.
Collapse
Affiliation(s)
- A Arwansyah
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - A R Arif
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
| | - A Kade
- Department of Physics Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - M Taiyeb
- Department of Biology, Faculty of Mathematics and Natural Sciences, Makassar State University, Makassar, Indonesia
| | - I Ramli
- Department of Physics, Faculty of Science, Universitas Cokroaminoto Palopo, Palopo, Indonesia
| | - T Santoso
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - P Ningsih
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - H Natsir
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
| | - T Tahril
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - K Uday Kumar
- Department of Radiology, Toxicology and Population Protection, Faculty of Health and Social Studies, University of South Bohemia Cesk´e Budˇejovice, Czech Republic
| |
Collapse
|
8
|
Poxviral ANKR/F-box Proteins: Substrate Adapters for Ubiquitylation and More. Pathogens 2022; 11:pathogens11080875. [PMID: 36014996 PMCID: PMC9414399 DOI: 10.3390/pathogens11080875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Poxviruses are double-stranded DNA viruses that infect insects and a variety of vertebrate species. The large genomes of poxviruses contain numerous genes that allow these viruses to successfully establish infection, including those that help evade the host immune response and prevent cell death. Ankyrin-repeat (ANKR)/F-box proteins are almost exclusively found in poxviruses, and they function as substrate adapters for Skp1-Cullin-1-F-box protein (SCF) multi-subunit E3 ubiquitin (Ub)-ligases. In this regard, they use their C-terminal F-box domain to bind Skp1, Cullin-1, and Roc1 to recruit cellular E2 enzymes to facilitate the ubiquitylation, and subsequent proteasomal degradation, of proteins bound to their N-terminal ANKRs. However, these proteins do not just function as substrate adapters as they also have Ub-independent activities. In this review, we examine both Ub-dependent and -independent activities of ANKR/F-box proteins and discuss how poxviruses use these proteins to counteract the host innate immune response, uncoat their genome, replicate, block cell death, and influence transcription. Finally, we consider important outstanding questions that need to be answered in order to better understand the function of this versatile protein family.
Collapse
|
9
|
Madhvi A, Mishra H, Chegou NN, Baker B. Increased Interferon-Induced Protein With Tetracopeptides (IFITs) Reduces Mycobacterial Growth. Front Cell Infect Microbiol 2022; 12:828439. [PMID: 35873142 PMCID: PMC9296360 DOI: 10.3389/fcimb.2022.828439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/30/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives The host immune response towards Mycobacterium tuberculosis (M. tb) is known to vary with the virulence of mycobacterial species. While the majority of M. tb-exposed individuals develop latent TB infection (LTBI), a small proportion develops active TB disease. The milieu of understudied immune factors is believed to play an important role against host immune response towards mycobacteria. Here, we investigate the role of antiviral factors of the interferon-induced proteins with tetracopeptides (IFITs) family, which, in our previous research, have shown to be upregulated in response to pathogenic M. tb, but as yet have no established role in host response to bacterial infections. Methods We performed vector-driven overexpression and siRNA-mediated downregulation of IFITs in THP-1 cells infected with different mycobacterial species. Also, we investigated the mRNA levels of IFITs in the LTBI and active-TB cases. Results Overexpression of IFITs reduces CFUs by ~32% (30%–43%) [Median (IQR)] across three different mycobacterial strains, while knock-down increases CFUs by ~57% (41%–78%). Compared to IFN-γ, treatment of infected THP-1 cells with IFN-β significantly increases the expression of IFITs, while the overexpression of IFITs had higher mRNA expression of IFN-β than IFN-γ. Cytokines like IDO-1, IL-6, IL-23, and IFN- γ are observed to play key roles in mycobacterial survival upon IFITs intervention. mRNA expression levels of IFITs were higher in LTBI cases as compared to active TB. Conclusion Higher expression levels of IFITs reduce in vitro survival of different drug-susceptible and drug-resistant mycobacteria and correlates with latent TB infection in infected individuals, hence emerging as an immuno-therapeutic target against M. tb.
Collapse
Affiliation(s)
- Abhilasha Madhvi
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Hridesh Mishra
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
- *Correspondence: Hridesh Mishra, ; Bienyameen Baker,
| | - Novel N. Chegou
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Bienyameen Baker
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- *Correspondence: Hridesh Mishra, ; Bienyameen Baker,
| |
Collapse
|
10
|
Cho SY, Kim SR, Vaidya B, Kwon J, Kim D. Identification of rearing temperature-dependent host defense signaling against viral hemorrhagic septicemia virus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 123:257-264. [PMID: 35301114 DOI: 10.1016/j.fsi.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Viral hemorrhagic septicemia virus (VHSV) infection is associated with fatal outcomes in the aquaculture production of olive flounder (Paralichthys olivaceus). Olive flounders at low and high temperatures are known to be highly susceptible and resistant to VHSV infection, respectively. To study temperature-dependent innate immune activity, 4-aminobenzoic hydrazide (4-AH), a myeloperoxidase (MPO) inhibitor, was used to treat VHSV-infected olive flounders reared at a high temperature of 20 °C (20VI). Mortality, the MPO transcription, and the proteomic expression pattern of the 20VI group were then compared with those of groups of VHSV-infected flounders reared at 15 °C (15V) and 20 °C (20V). The cumulative mortality rate of the 20VI group was increased by 35% compared with that of the untreated 20V group. The MPO transcription was decreased 5.8-fold in 20VI than in 20V group. Its expression decreased further at a lower temperature and after exposure to VHSV. Histopathological analysis revealed necrosis of splenic tissue in 20VI and 15V, but not in 20V group. Based on clustering analysis, proteins with increased expression in 15V and 20VI groups were associated with viral mRNA translation and reproduction compared with those of 20V group. Increased expression of DHX58, MX1, and UBB was detected in 15V and 20VI groups, suggesting a role in triggering innate immune response. Unfortunately, these genes failed to induce the translocation of GLUT4 to the surface membrane from the intracellular location due to decreased expression of 14-3-3 proteins (YWHAB and YWHAZ) and microtubules (TUBA1A and TUBB4B). Suppression of glucose supply led to inactivation of MPO and suppression of MHC-I and MHC-II-linked immune activity, resulting in high viral infection and spread. In conclusion, this study highlights that defective GLUT4 translocation-dependent glucose uptake increases the mortality of VHSV-infected olive flounders by inhibiting MPO activity.
Collapse
Affiliation(s)
- Se-Young Cho
- Department of Food Science and Technology, Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seok Ryel Kim
- Department of Smart Fishery Resources Science, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Bipin Vaidya
- Department of Food Science and Technology, Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Joseph Kwon
- Department of BioChemical Analysis, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea.
| | - Duwoon Kim
- Department of Food Science and Technology, Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
11
|
Lee SH, Kang SH, Han MS, Kwak JW, Kim HG, Lee TH, Lee DB, Kim TH. The Expression of ephrinA1/ephA2 Receptor Increases in Chronic Rhinosinusitis and ephrinA1/ephA2 Signaling Affects Rhinovirus-Induced Innate Immunity in Human Sinonasal Epithelial Cells. Front Immunol 2021; 12:793517. [PMID: 34975898 PMCID: PMC8716742 DOI: 10.3389/fimmu.2021.793517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
EphA2 receptor and its ephrin ligands are involved in virus infection, epithelial permeability, and chemokine secretion. We hypothesized that ephrinA1/ephA2 signaling participates in rhinovirus (RV)-induced antiviral immune response in sinonasal mucosa of patients with chronic rhinosinusitis (CRS). Therefore, we investigated the expression of ephrinA1/ephA2 in normal and inflamed sinonasal mucosa and evaluated whether they regulate chemokine secretion and the production of antiviral immune mediators including interferons (IFNs) in RV-infected human primary sinonasal epithelial cells. For this purpose, the expression and distribution of ephrinA1/ephA2 in sinonasal mucosa were evaluated with RT-qPCR, immunofluorescence, and western blot. Their roles in chemokine secretion and the production of antiviral immune mediators such as type I and III IFNs, and interferon stimulated genes were evaluated by stimulating ephA2 with ephrinA1 and inactivating ephA2 with ephA2 siRNA or inhibitor in cells exposed to RV and poly(I:C). We found that ephrinA1/ephA2 were expressed in normal mucosa and their levels increased in inflamed sinonasal mucosa of CRS patients. RV infection or poly(I:C) treatment induced chemokine secretion which were attenuated by blocking the action of ephA2 with ephA2 siRNA or inhibitor. The production of antiviral immune mediators enhanced by rhinovirus or poly (I:C) is increased by blocking ephA2 compared with that of cells stimulated by either rhinovirus or poly(I:C) alone. In addition, blocking ephA2 attenuated RV replication in cultured cells. Taken together, these results describe a novel role of ephrinA1/ephA2 signaling in antiviral innate immune response in sinonasal epithelium, suggesting their participation in RV-induced development and exacerbations of CRS.
Collapse
Affiliation(s)
- Sang Hag Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Tariq MH, Bhatti R, Ali NF, Ashfaq UA, Shahid F, Almatroudi A, Khurshid M. Rational design of chimeric Multiepitope Based Vaccine (MEBV) against human T-cell lymphotropic virus type 1: An integrated vaccine informatics and molecular docking based approach. PLoS One 2021; 16:e0258443. [PMID: 34705829 PMCID: PMC8550388 DOI: 10.1371/journal.pone.0258443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/27/2021] [Indexed: 01/03/2023] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is an infectious virus that has been linked to adult T cell leukemia /lymphoma, aggressive CD4-T cell malignancy and many other immune-related medical illnesses. So far, no effective vaccine is known to combat HTLV-1, hence, the current research work was performed to design a potential multi-epitope-based subunit vaccine (MEBV) by adopting the latest methodology of reverse vaccinology. Briefly, three highly antigenic proteins (Glycoprotein, Accessory protein, and Tax protein) with no or minimal (<37%) similarity with human proteome were sorted out and potential B- and T-cell epitopes were forecasted from them. Highly antigenic, immunogenic, non-toxic, non-allergenic and overlapping epitopes were short-listed for vaccine development. The chosen T-cell epitopes displayed a strong binding affinity with their corresponding Human Leukocyte Antigen alleles and demonstrated 95.8% coverage of the world's population. Finally, nine Cytotoxic T Lymphocytes, six Helper T Lymphocytes and five Linear B Lymphocytes epitopes, joint through linkers and adjuvant, were exploited to design the final MEBV construct, comprising of 382 amino acids. The developed MEBV structure showed highly antigenic properties while being non-toxic, soluble, non-allergenic, and stable in nature. Moreover, disulphide engineering further enhanced the stability of the final vaccine protein. Additionally, Molecular docking analysis and Molecular Dynamics (MD) simulations confirmed the strong association between MEBV construct and human pathogenic immune receptor TLR-3. Repeated-exposure simulations and Immune simulations ensured the rapid antigen clearance and higher levels of cell-mediated immunity, respectively. Furthermore, MEBV codon optimization and in-silico cloning was carried out to confirm its augmented expression. Results of our experiments suggested that the proposed MEBV could be a potential immunogenic against HTLV-1; nevertheless, additional wet lab experiments are needed to elucidate our conclusion.
Collapse
Affiliation(s)
- Muhammad Hamza Tariq
- Atta ur Rehman School of Applied Bioscience, National University of Science and Technology, Islamabad, Pakistan
| | - Rashid Bhatti
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nida Fatima Ali
- Atta ur Rehman School of Applied Bioscience, National University of Science and Technology, Islamabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
13
|
Greenan E, Gallagher S, Khalil R, Murphy CC, Ní Gabhann-Dromgoole J. Advancing Our Understanding of Corneal Herpes Simplex Virus-1 Immune Evasion Mechanisms and Future Therapeutics. Viruses 2021; 13:v13091856. [PMID: 34578437 PMCID: PMC8473450 DOI: 10.3390/v13091856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/24/2022] Open
Abstract
Herpes stromal keratitis (HSK) is a disease that commonly affects the cornea and external eye and is caused by Herpes Simplex Virus type 1 (HSV-1). This virus infects approximately 66% of people worldwide; however, only a small portion of these people will develop symptoms in their lifetime. There is no cure or vaccine available for HSV-1; however, there are treatments available that aim to control the inflammation caused by the virus and prevent its recurrence. While these treatments are beneficial to those suffering with HSK, there is a need for more effective treatments to minimise the need for topical steroids, which can have harmful effects, and to prevent bouts of disease reactivation, which can lead to progressive corneal scarring and visual impairment. This review details the current understanding of HSV-1 infection and discusses potential novel treatment options including microRNAs, TLRs, mAbs, and aptamers.
Collapse
Affiliation(s)
- Emily Greenan
- Department of Ophthalmology, Royal College of Surgeons in Ireland, D02 XK51 Dublin, Ireland; (E.G.); (C.C.M.)
- School of Pharmacy and Biomolecular Sciences (PBS), RSCI Research Institute, Royal College of Surgeons in Ireland, D02 XK51 Dublin, Ireland;
| | - Sophie Gallagher
- School of Biological and Health Sciences, Technological University (TU) Dublin, Kevin Street, D02 XK51 Dublin, Ireland;
| | - Rana Khalil
- School of Pharmacy and Biomolecular Sciences (PBS), RSCI Research Institute, Royal College of Surgeons in Ireland, D02 XK51 Dublin, Ireland;
| | - Conor C. Murphy
- Department of Ophthalmology, Royal College of Surgeons in Ireland, D02 XK51 Dublin, Ireland; (E.G.); (C.C.M.)
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland
| | - Joan Ní Gabhann-Dromgoole
- Department of Ophthalmology, Royal College of Surgeons in Ireland, D02 XK51 Dublin, Ireland; (E.G.); (C.C.M.)
- School of Pharmacy and Biomolecular Sciences (PBS), RSCI Research Institute, Royal College of Surgeons in Ireland, D02 XK51 Dublin, Ireland;
- Correspondence:
| |
Collapse
|
14
|
Lenart M, Działo E, Kluczewska A, Węglarczyk K, Szaflarska A, Rutkowska-Zapała M, Surmiak M, Sanak M, Pituch-Noworolska A, Siedlar M. miRNA Regulation of NK Cells Antiviral Response in Children With Severe and/or Recurrent Herpes Simplex Virus Infections. Front Immunol 2021; 11:589866. [PMID: 33679688 PMCID: PMC7931645 DOI: 10.3389/fimmu.2020.589866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Severe and/or recurrent infection with Herpes simplex virus (HSV) is observed in a large group of patients treated in clinical immunology facilities. Atypical and prolonged HSV infection is the most common clinical manifestation of disturbed NK cell development and functions, yet the molecular basis of these disorders is still largely unknown. Since recent findings indicated the importance of miRNA in regulating NK cell development, maturation and functions, the aim of our study was to investigate miRNA expression pattern in NK cells in patients with severe and/or recurrent infections with HSV and analyze the role of these miRNAs in NK cell antiviral response. As a result, miRNA expression pattern analysis of human best known 754 miRNAs revealed that patients with severe and/or recurrent HSV infection had substantially upregulated expression of four miRNAs: miR-27b, miR-199b, miR-369-3p and miR-491-3p, when compared to healthy controls. Selective inhibition of miR-27b, miR-199b, miR-369-3p and miR-491-3p expression in NK-92 cells resulted in profound upregulation of 4 genes (APOBEC3G, MAP2K3, MAVS and TLR7) and downregulation of 36 genes taking part in antiviral response or associated with signaling pathways of Toll-like receptors (TLR), NOD-like receptors, the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and type I IFN-related response. Additionally, flow cytometry analysis revealed that miR-369-3p and miR-491-3p inhibitors downregulated NK cell intracellular perforin expression, while the expression of granzyme B and IFNγ remained unchanged. Taken together, our study suggests a novel mechanism which may promote recurrence and severity of HSV infection, based on miRNAs-dependent posttranscriptional regulation of genes taking part in antiviral response of human NK cells.
Collapse
Affiliation(s)
- Marzena Lenart
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Edyta Działo
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Kluczewska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Szaflarska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- II Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Sanak
- II Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Pituch-Noworolska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
15
|
Pseudorabies virus UL24 antagonizes OASL-mediated antiviral effect. Virus Res 2021; 295:198276. [PMID: 33476694 DOI: 10.1016/j.virusres.2020.198276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022]
Abstract
Oligoadenylate synthetases-like (OASL) protein exerts various effects on DNA and RNA viruses by inhibiting cGAS-mediated IFN production and by enhancing RIG-I-mediated IFN induction, respectively. In this study, we aimed to examine the role of OASL in pseudorabies virus (PRV) proliferation and investigate the function of the PRV UL24 protein in cellular innate immunity. We found that OASL regulates PRV proliferation by enhancing RIG-I signaling. PRV infection decreased the expression of OASL at both the mRNA and protein levels in PK15 and HeLa cells. OASL expression suppressed the proliferation of PRV in a RIG-I-dependent manner and boosted RIG-I-mediated IFN expression as well as IFN-stimulated gene (ISG) induction. In contrast, knockdown of OASL enhanced PRV proliferation and reduced RIG-I signaling. However, the PRV UL24 protein was found to impair RIG-I signaling, thus inhibiting transcription of IFN and ISGs. In addition, the UL24 protein reduced RIG-I-induced expression of endogenous OASL in an IRF3-dependent manner, thereby antagonizing the OASL antiviral effect. Taken together, our findings characterize the role of OASL in PRV proliferation and provide new insights into the role of UL24 in PRV pathogenesis.
Collapse
|
16
|
Liu S, Liao Y, Chen B, Chen Y, Yu Z, Wei H, Zhang L, Huang S, Rothman PB, Gao GF, Chen JL. Critical role of Syk-dependent STAT1 activation in innate antiviral immunity. Cell Rep 2021; 34:108627. [PMID: 33472080 DOI: 10.1016/j.celrep.2020.108627] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/29/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
The JAK/STAT1 pathway is generally activated by cytokines, providing essential antiviral defense. Here, we identify that STAT1 activation is independent of cytokines and JAKs at the early infection stage of some viruses, including influenza A virus (IAV). Instead, STAT1 is activated mainly through spleen tyrosine kinase (Syk) downstream of retinoic acid-inducible gene-I/mitochondrial antiviral-signaling protein (RIG-I/MAVS) signaling. Syk deletion profoundly impairs immediate innate immunity, as evidenced by the finding that Syk deletion attenuates tyrosine phosphorylation of STAT1 and reduces the expressions of interferon-stimulated genes (ISGs) in vitro and in vivo. The antiviral response to IAV infection is also significantly suppressed in the STAT1Y701F knockin mice. The results demonstrate that STAT1 activation is dependent on Syk rather than the cytokine-activated JAK signaling at the early stage of viral infection, which is critical for initial antiviral immunity. Our finding provides insights into the complicated mechanisms underlying host immune responses to viral infection.
Collapse
Affiliation(s)
- Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Liao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Ziding Yu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haitao Wei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Paul B Rothman
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
17
|
Tahir ul Qamar M, Rehman A, Tusleem K, Ashfaq UA, Qasim M, Zhu X, Fatima I, Shahid F, Chen LL. Designing of a next generation multiepitope based vaccine (MEV) against SARS-COV-2: Immunoinformatics and in silico approaches. PLoS One 2020; 15:e0244176. [PMID: 33351863 PMCID: PMC7755200 DOI: 10.1371/journal.pone.0244176] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/04/2020] [Indexed: 01/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory coronavirus 2 (SARS-COV-2) is a significant threat to global health security. Till date, no completely effective drug or vaccine is available to cure COVID-19. Therefore, an effective vaccine against SARS-COV-2 is crucially needed. This study was conducted to design an effective multiepitope based vaccine (MEV) against SARS-COV-2. Seven highly antigenic proteins of SARS-COV-2 were selected as targets and different epitopes (B-cell and T-cell) were predicted. Highly antigenic and overlapping epitopes were shortlisted. Selected epitopes indicated significant interactions with the HLA-binding alleles and 99.93% coverage of the world's population. Hence, 505 amino acids long MEV was designed by connecting 16 MHC class I and eleven MHC class II epitopes with suitable linkers and adjuvant. MEV construct was non-allergenic, antigenic, stable and flexible. Furthermore, molecular docking followed by molecular dynamics (MD) simulation analyses, demonstrated a stable and strong binding affinity of MEV with human pathogenic toll-like receptors (TLR), TLR3 and TLR8. Finally, MEV codons were optimized for its in silico cloning into Escherichia coli K-12 system, to ensure its increased expression. Designed MEV in present study could be a potential candidate for further vaccine production process against COVID-19. However, to ensure its safety and immunogenic profile, the proposed MEV needs to be experimentally validated.
Collapse
Affiliation(s)
| | - Abdur Rehman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Xitong Zhu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Israr Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ling-Ling Chen
- College of Life Science and Technology, Guangxi University, Nanning, P. R. China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
18
|
Bela-Ong DB, Greiner-Tollersrud L, Andreas van der Wal Y, Jensen I, Seternes OM, Jørgensen JB. Infection and microbial molecular motifs modulate transcription of the interferon-inducible gene ifit5 in a teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103746. [PMID: 32445651 DOI: 10.1016/j.dci.2020.103746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Interferon-induced proteins with tetratricopeptide repeats (IFITs) are involved in antiviral defense. Members of this protein family contain distinctive multiple structural motifs comprising tetratricopeptides that are tandemly arrayed or dispersed along the polypeptide. IFIT-encoding genes are upregulated by type I interferons (IFNs) and other stimuli. IFIT proteins inhibit virus replication by binding to and regulating the functions of cellular and viral RNA and proteins. In teleost fish, knowledge about genes and functions of IFITs is currently limited. In the present work, we describe an IFIT5 orthologue in Atlantic salmon (SsaIFIT5) with characteristic tetratricopeptide repeat motifs. We show here that the gene encoding SsaIFIT5 (SsaIfit5) was ubiquitously expressed in various salmon tissues, while bacterial and viral challenge of live fish and in vitro stimulation of cells with recombinant IFNs and pathogen mimics triggered its transcription. The profound expression in response to various immune stimulation could be ascribed to the identified IFN response elements and binding sites for various immune-relevant transcription factors in the putative promoter of the SsaIfit5 gene. Our results establish SsaIfit5 as an IFN-stimulated gene in A. salmon and strongly suggest a phylogenetically conserved role of the IFIT5 protein in antimicrobial responses in vertebrates.
Collapse
Affiliation(s)
- Dennis Berbulla Bela-Ong
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries, and Economics, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Linn Greiner-Tollersrud
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries, and Economics, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Yorick Andreas van der Wal
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries, and Economics, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway; Vaxxinova Research &Development GmBH, Münster, Germany
| | - Ingvill Jensen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries, and Economics, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Ole Morten Seternes
- Department of Pharmacy, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Jorunn B Jørgensen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries, and Economics, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway.
| |
Collapse
|
19
|
Tahir ul Qamar M, Shokat Z, Muneer I, Ashfaq UA, Javed H, Anwar F, Bari A, Zahid B, Saari N. Multiepitope-Based Subunit Vaccine Design and Evaluation against Respiratory Syncytial Virus Using Reverse Vaccinology Approach. Vaccines (Basel) 2020; 8:E288. [PMID: 32521680 PMCID: PMC7350008 DOI: 10.3390/vaccines8020288] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) is primarily associated with respiratory disorders globally. Despite the availability of information, there is still no competitive vaccine available for RSV. Therefore, the present study has been designed to develop a multiepitope-based subunit vaccine (MEV) using a reverse vaccinology approach to curb RSV infections. Briefly, two highly antigenic and conserved proteins of RSV (glycoprotein and fusion protein) were selected and potential epitopes of different categories (B-cell and T-cell) were identified from them. Eminently antigenic and overlapping epitopes, which demonstrated strong associations with their respective human leukocyte antigen (HLA) alleles and depicted collective ~70% coverage of the world's populace, were shortlisted. Finally, 282 amino acids long MEV construct was established by connecting 13 major histocompatibility complex (MHC) class-I with two MHC class-II epitopes with appropriate adjuvant and linkers. Adjuvant and linkers were added to increase the immunogenic stimulation of the MEV. Developed MEV was stable, soluble, non-allergenic, non-toxic, flexible and highly antigenic. Furthermore, molecular docking and molecular dynamics (MD) simulations analyses were carried out. Results have shown a firm and robust binding affinity of MEV with human pathogenic toll-like receptor three (TLR3). The computationally mediated immune response of MEV demonstrated increased interferon-γ production, a significant abundance of immunoglobulin and activation of macrophages which are essential for immune-response against RSV. Moreover, MEV codons were optimized and in silico cloning was performed, to ensure its increased expression. These outcomes proposed that the MEV developed in this study will be a significant candidate against RSV to control and prevent RSV-related disorders if further investigated experimentally.
Collapse
Affiliation(s)
| | - Zeeshan Shokat
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (Z.S.); (U.A.A.); (H.J.)
| | - Iqra Muneer
- School of Life Sciences, University of Science and Technology of China, Hefei 230052, China;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (Z.S.); (U.A.A.); (H.J.)
| | - Hamna Javed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (Z.S.); (U.A.A.); (H.J.)
| | - Farooq Anwar
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan;
| | - Amna Bari
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Barira Zahid
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China;
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
20
|
Miedziak B, Dobieżyńska A, Darżynkiewicz ZM, Bartkowska J, Miszkiewicz J, Kowalska J, Warminski M, Tyras M, Trylska J, Jemielity J, Darzynkiewicz E, Grzela R. Kinetic analysis of IFIT1 and IFIT5 interactions with different native and engineered RNAs and its consequences for designing mRNA-based therapeutics. RNA (NEW YORK, N.Y.) 2020; 26:58-68. [PMID: 31658992 PMCID: PMC6913129 DOI: 10.1261/rna.073304.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
In response to foreign RNA, cellular antiviral mechanisms stimulate high expression of interferon-induced proteins with tetratricopeptide repeats (IFITs). Two members of the IFIT protein family, IFIT1 and IFIT5, are capable of binding the very terminal 5' end of mRNA. In eukaryotes, these mRNA termini contain a cap structure (m7GpppN, cap 0) that is often subjected to further modifications. Here, we performed a thorough examination of IFIT1 and IFIT5 binding to a wide spectrum of differently capped as well as fully uncapped mRNAs. The kinetic analysis of IFIT1 and IFIT5 interactions with mRNA ligands indicates that the cap structure modifications considerably influence the stability of IFIT1/RNA complexes. The most stable complexes were formed between IFIT1 and GpppG/A- and m7GpppG/A-RNAs. Unexpectedly, we found that NAD+- and NADH-capped RNAs associate with IFIT5 with kinetic parameters comparable to pppG-RNA. Finally, we measured interactions of IFIT1 with mRNAs bearing modified synthetic cap analogs that start to become the important tools in biotechnological and medicinal research. We found that incorporation of modified cap analogs to the RNA protects the latter, to a certain degree, from the translational inhibition caused by IFIT1 protein.
Collapse
Affiliation(s)
- Beata Miedziak
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Anna Dobieżyńska
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Zbigniew M Darżynkiewicz
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Julia Bartkowska
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Joanna Miszkiewicz
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Michal Tyras
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-097 Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Edward Darzynkiewicz
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Renata Grzela
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
21
|
Pidugu VK, Pidugu HB, Wu MM, Liu CJ, Lee TC. Emerging Functions of Human IFIT Proteins in Cancer. Front Mol Biosci 2019; 6:148. [PMID: 31921891 PMCID: PMC6930875 DOI: 10.3389/fmolb.2019.00148] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Interferon-induced protein with tetratricopeptide repeats (IFIT) genes are prominent interferon-stimulated genes (ISGs). The human IFIT gene family consists of four genes named IFIT1, IFIT2, IFIT3, and IFIT5. The expression of IFIT genes is very low in most cell types, whereas their expression is greatly enhanced by interferon treatment, viral infection, and pathogen-associated molecular patterns (PAMPs). The proteins encoded by IFIT genes have multiple tetratricopeptide repeat (TPR) motifs. IFIT proteins do not have any known enzymatic roles. However, they execute a variety of cellular functions by mediating protein-protein interactions and forming multiprotein complexes with cellular and viral proteins through their multiple TPR motifs. The versatile tertiary structure of TPR motifs in IFIT proteins enables them to be involved in distinct biological functions, including host innate immunity, antiviral immune response, virus-induced translation initiation, replication, double-stranded RNA signaling, and PAMP recognition. The current understanding of the IFIT proteins and their role in cellular signaling mechanisms is limited to the antiviral immune response and innate immunity. However, recent studies on IFIT protein functions and their involvement in various molecular signaling mechanisms have implicated them in cancer progression and metastasis. In this article, we focused on critical molecular, biological and oncogenic functions of human IFIT proteins by reviewing their prognostic significance in health and cancer. Research suggests that IFIT proteins could be novel therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
| | | | - Meei-Maan Wu
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Oral and Maxillofacial Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
22
|
Yang L, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao X, Huang J, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Rehman MU, Chen X. Innate Immune Evasion of Alphaherpesvirus Tegument Proteins. Front Immunol 2019; 10:2196. [PMID: 31572398 PMCID: PMC6753173 DOI: 10.3389/fimmu.2019.02196] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
Alphaherpesviruses are a large family of highly successful human and animal DNA viruses that can establish lifelong latent infection in neurons. All alphaherpesviruses have a protein-rich layer called the tegument that, connects the DNA-containing capsid to the envelope. Tegument proteins have a variety of functions, playing roles in viral entry, secondary envelopment, viral capsid nuclear transportation during infection, and immune evasion. Recently, many studies have made substantial breakthroughs in characterizing the innate immune evasion of tegument proteins. A wide range of antiviral tegument protein factors that control incoming infectious pathogens are induced by the type I interferon (IFN) signaling pathway and other innate immune responses. In this review, we discuss the immune evasion of tegument proteins with a focus on herpes simplex virus type I.
Collapse
Affiliation(s)
- Linjiang Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
23
|
Zhang X, Zhang W, Liu Y, Qi H, Hao C, Zhang W, Gao M, Wang J, Ma B. Molecular cloning and mRNA expression of IFIT5 in tissues of ducklings infected with virulent duck hepatitis A virus type 3. Res Vet Sci 2019; 124:256-262. [PMID: 30999161 DOI: 10.1016/j.rvsc.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/30/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023]
Abstract
Interferon-induced proteins with tetratricopeptide repeats (IFITs) are a family of proteins strongly induced downstream of type I interferon signaling. The function of IFITs has been investigated extensively in mammals. IFIT5 is the sole protein in this family found in birds and little information is available about the function of avian IFIT5. In this study, duck IFIT5 was cloned from peripheral blood mononuclear cells. Multiple amino acid sequence alignment and phylogenetic analysis showed that duck IFIT5 is highly homologous to chicken IFIT5. Tissue specificity analysis demonstrated that duck IFIT5 was ubiquitously expressed in all examined tissues of five-day-old ducklings, with the highest expression levels in heart, followed by thymus, cerebrum, liver, and lung; kidney expressed the lowest. Quantitative real-time PCR (qRT-PCR) analysis revealed that duck IFIT5 expression rapidly increased both in vitro and in vivo after stimulation with polyinosinic:polycytidylic acid [poly (I:C)] and infection with virulent duck hepatitis A virus type 3 (DHAV-3), respectively. Altogether, these results indicate that the expression of duck IFIT5 is positively correlated with viral load and may play an important role in the immune response to DHAV-3 infection. This study lays a foundation for further research into the innate antiviral immune responses of ducklings.
Collapse
Affiliation(s)
- Xuelian Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang Province, PR China; College of Life Science and Engineering, Foshan University, Foshan 528231, Guangdong Province, PR China
| | - Wenjing Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang Province, PR China
| | - Yue Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang Province, PR China
| | - Haihui Qi
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang Province, PR China
| | - Chunxue Hao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang Province, PR China
| | - Wenlong Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang Province, PR China
| | - Mingchun Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang Province, PR China
| | - Junwei Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang Province, PR China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeast Agricultural University, Harbin 150030, PR China.
| | - Bo Ma
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, Heilongjiang Province, PR China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
24
|
Polymorphism of OAS2 rs739901 C/A Involves the Susceptibility to EV71 Infection in Chinese Children. Curr Med Sci 2018; 38:640-647. [DOI: 10.1007/s11596-018-1925-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/15/2018] [Indexed: 10/28/2022]
|
25
|
Green R, Ireton RC, Gale M. Interferon-stimulated genes: new platforms and computational approaches. Mamm Genome 2018; 29:593-602. [PMID: 29982912 DOI: 10.1007/s00335-018-9755-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022]
Abstract
Interferon-stimulated genes (ISGs) are the effectors of interferon (IFN) actions and play major roles in innate immune defense against microbial infection. During virus infection, ISGs impart antiviral actions to control virus replication and spread but can also contribute to disease pathology if their expression is unchecked. Antiviral ISGs have been identified by a variety of biochemical, genetic, and virologic methods. New computational approaches are expanding and redefining ISGs as responders to a variety of stimuli beyond IFNs, including virus infection, stress, and other events that induce cytokines. These studies reveal that the expression of ISG subsets link to interferon regulatory factors (IRF)s, NF-kB, and other transcription factors that impart gene expression in specific cell types independently of IFNs, including stem cells and other cell types where ISGs are constitutively expressed. Here, we provide a broad overview of ISGs, define virus-induced genes (VSG)s, and discuss the application of computational approaches and bioinformatics platforms to evaluate the functional role of ISGs in epigenetics, immune programming, and vaccine responses.
Collapse
Affiliation(s)
- Richard Green
- Department of Immunology and the Center for Innate Immunity and Immune Disease (CIIID), University of Washington, Seattle, WA, USA.
| | - Reneé C Ireton
- Department of Immunology and the Center for Innate Immunity and Immune Disease (CIIID), University of Washington, Seattle, WA, USA
| | - Michael Gale
- Department of Immunology and the Center for Innate Immunity and Immune Disease (CIIID), University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
Feng B, Zhang Q, Wang J, Dong H, Mu X, Hu G, Zhang T. IFIT1 Expression Patterns Induced by H9N2 Virus and Inactivated Viral Particle in Human Umbilical Vein Endothelial Cells and Bronchus Epithelial Cells. Mol Cells 2018; 41:271-281. [PMID: 29629559 PMCID: PMC5935096 DOI: 10.14348/molcells.2018.2091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/09/2017] [Accepted: 01/07/2018] [Indexed: 12/25/2022] Open
Abstract
IFIT1 (also known as ISG56) is a member of the interferon-inducible protein with tetratricopeptide repeats (IFITs) family. IFITs are strongly induced by type I interferon (IFN), double-stranded RNA and virus infection. Here, we investigated IFIT1 expression in human umbilical vein endothelial cells (HUVECs) and in human bronchus epithelial cells (BEAS-2Bs) induced by the H9N2 virus and inactivated viral particle at different time points. We also investigated the effect of H9N2 virus and viral particle infection on IFN-α/β production, and assessed whether hemagglutinin or neuraminidase protein induced IFIT1 expression. Results showed that both H9N2 virus infection and viral particle inoculation induced the expression of IFIT1 at mRNA and protein levels in the two cell lines. Hemagglutinin or neuraminidase protein binding alone is not sufficient to induce IFIT1 expression. Surprisingly, the expression patterns of IFIT1 in response to H9N2 virus and viral particles in the two cell lines were opposite, and production kinetics of IFN-α/β also differed. An additional finding was that induction of IFIT1 in response to H9N2 virus infection or viral particle inoculation was more sensitive in HUVECs than in BEAS-2Bs. Our data offers new insight into the innate immune response of endothelial cells to H9N2 virus infection.
Collapse
Affiliation(s)
- Bo Feng
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Qian Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Jianfang Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Xiang Mu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Ge Hu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
| |
Collapse
|
27
|
Abstract
Barrier sites such as the skin play a critical role in immune defense. They must maintain homeostasis with commensals and rapidly detect and limit pathogen invasion. This is accomplished in part through the production of endogenous antimicrobial peptides and proteins, which can be either constitutive or inducible. Here, we focus particularly on the control of innate antiviral proteins and present the basic aspects of their regulation in the skin by interferons (IFNs), IFN-independent immunity, and environmental factors. We also discuss the activity and (dys-)function of antiviral proteins in the context of skin-tropic viruses and highlight the relevance of the innate antiviral pathway as a potential therapeutic avenue for vulnerable patient populations and skin diseases with high risk for virus infections.
Collapse
|
28
|
Kim KH, Yang IJ, Kim WJ, Park CJ, Park JW, Noh GE, Lee S, Lee YM, Hwang HK, Kim HC. Expression Analysis of Interferon-Stimulated Gene 15 in the Rock Bream Oplegnathus fasciatus against Rock Bream Iridovirus (RSIV) Challenge. Dev Reprod 2018; 21:371-378. [PMID: 29354783 PMCID: PMC5769131 DOI: 10.12717/dr.2017.21.4.371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/13/2017] [Accepted: 12/18/2017] [Indexed: 11/17/2022]
Abstract
Interferon-stimulated gene 15 (ISG15) is known to interfere with viral
replication and infection by limiting the viral infection of cells.
Interferon-stimulated gene 15 (ISG15) interferes with viral replication and
infectivity by limiting viral infection in cells. It also plays an important
role in the immune response. In this study, tissue-specific expression of ISG15
in healthy rock bream samples and spatial and temporal expression analysis of
rock bream ISG15 (RbISG15) were performed following rock bream iridovirus (RSIV)
infection. RbISG15 expression was significantly higher in the eye, gill,
intestine, kidney, liver, muscle, spleen, and stomach, but low in the brain.
There were particularly high levels of expression in the liver and muscle.
RbISG15 expression was also examined in several tissues and at various times
following RSIV infection. ISG15 expression increased within 3 h in the whole
body and decreased at 24 h after infection. In addition, temporal expression of
several tissues following RSIV infection showed a similar pattern in the muscle,
kidney, and spleen, increasing at 3 h and decreasing at 72 h. These results
suggest that ISG15 plays an important role in the immune response of rock bream.
Overall, this study characterizes the response of RbISG15 following RSIV
infection.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geoje 53334, Republic of Korea
| | - In Jung Yang
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geoje 53334, Republic of Korea
| | - Woo-Jin Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geoje 53334, Republic of Korea
| | - Choul-Ji Park
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geoje 53334, Republic of Korea
| | - Jong-Won Park
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geoje 53334, Republic of Korea
| | - Gyeong Eon Noh
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geoje 53334, Republic of Korea
| | - Seunghyung Lee
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geoje 53334, Republic of Korea
| | - Young Mee Lee
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geoje 53334, Republic of Korea
| | - Hyung Kyu Hwang
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geoje 53334, Republic of Korea
| | - Hyun Chul Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS), Geoje 53334, Republic of Korea
| |
Collapse
|
29
|
Hwang JY, Ahn SJ, Kwon MG, Seo JS, Hwang SD, Son MH. Interferon-induced protein 56 (IFI56) is induced by VHSV infection but not by bacterial infection in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2017; 66:382-389. [PMID: 28499966 DOI: 10.1016/j.fsi.2017.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/30/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Interferon-inducible protein 56 (IFI56, also known as ISG56/IFIT1, interferon-induced protein with tetratricopeptide repeats 1) is strongly induced in response to interferon and a potent inhibitor of viral replication and translational initiation. Here, we describe the identification of IFI56 (OfIFI56) in olive flounder, its characteristic features, and expression levels in various tissues before and after viral hemorrhagic septicemia virus (VHSV) infection. The full-length OfIFI56 sequence was identified from rapid amplification of cDNA ends PCR. The complete coding sequence of OfIFI56 is 1971 bp in length and encodes 431 amino acids. The putative OfIFI56 protein has multiple tetratricopeptide (TPR) motifs, which regulate diverse biological processes, such as organelle targeting, protein import, and vesicle fusion. Based on sequence analysis, the Larimichthys crocea IFI56 protein (61%) had the highest sequence homology to OfIFI56. In healthy olive flounder, OfIFI56 mRNA expression was detected in many tissues such as intestine, gill, head kidney, heart, spleen, and trunk kidney tissues. After VHSV challenge, OfIFI56 mRNA was significantly up-regulated in these tissues. Additionally, OfIFI56 expression was induced by poly I:C but not by Streptococcus parauberis and S. iniae infection or lipopolysaccharide injection in kidney and spleen tissues of olive flounder. These results demonstrate that piscine OfIFI56 expression is not induced by bacterial infection but is selectively induced by viral infection, especially VHSV, and that OfIFI56 may play an important role in the host response against VHSV infection.
Collapse
Affiliation(s)
- Jee Youn Hwang
- Aquatic Disease Control Division, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 46083, Republic of Korea.
| | - Sang Jung Ahn
- Fisheries R&D Management Center, Korea Institute of Marine Science & Technology Promotion (KIMST), Seoul 06775, Republic of Korea.
| | - Mun-Gyeong Kwon
- Aquatic Disease Control Division, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 46083, Republic of Korea.
| | - Jung Soo Seo
- Aquatic Disease Control Division, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 46083, Republic of Korea.
| | - Seong Don Hwang
- Aquatic Disease Control Division, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 46083, Republic of Korea.
| | - Maeng-Hyun Son
- Aquatic Disease Control Division, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 46083, Republic of Korea.
| |
Collapse
|
30
|
Interferon-Inducible Oligoadenylate Synthetase-Like Protein Acts as an Antiviral Effector against Classical Swine Fever Virus via the MDA5-Mediated Type I Interferon-Signaling Pathway. J Virol 2017; 91:JVI.01514-16. [PMID: 28331099 PMCID: PMC5432864 DOI: 10.1128/jvi.01514-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/07/2017] [Indexed: 01/02/2023] Open
Abstract
Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), which poses a serious threat to the global pig industry. Interferons (IFNs) and IFN-stimulated genes (ISGs) play a key role in host antiviral defense. We have previously screened the porcine 2′-5′-oligoadenylate synthetase-like protein (pOASL) as a potential anti-CSFV ISG using a reporter CSFV. This study aimed to clarify the underlying antiviral mechanism of pOASL against CSFV. We confirmed that CSFV replication was significantly suppressed in lentivirus-delivered, pOASL-overexpressing PK-15 cells, whereas silencing the expression of endogenous pOASL by small interfering RNAs markedly enhanced CSFV growth. In addition, the transcriptional level of pOASL was upregulated both in vitro and in vivo upon CSFV infection. Interestingly, the anti-CSFV effects of pOASL are independent of the canonical RNase L pathway but depend on the activation of the type I IFN response. Glutathione S-transferase pulldown and coimmunoprecipitation assays revealed that pOASL interacts with MDA5, a double-stranded RNA sensor, and further enhances MDA5-mediated type I IFN signaling. Moreover, we showed that pOASL exerts anti-CSFV effects in an MDA5-dependent manner. In conclusion, pOASL suppresses CSFV replication via the MDA5-mediated type I IFN-signaling pathway. IMPORTANCE The host innate immune response plays an important role in mounting the initial resistance to viral infection. Here, we identify the porcine 2′-5′-oligoadenylate synthetase-like protein (pOASL) as an interferon (IFN)-stimulated gene (ISG) against classical swine fever virus (CSFV). We demonstrate that the anti-CSFV effects of pOASL depend on the activation of type I IFN response. In addition, we show that pOASL, as an MDA5-interacting protein, is a coactivator of MDA5-mediated IFN induction to exert anti-CSFV actions. This work will be beneficial to the development of novel anti-CSFV strategies by targeting pOASL.
Collapse
|
31
|
Tan Y, Yang T, Liu P, Chen L, Tian Q, Guo Y, He H, Liu Y, Chen Z. Association of the OAS3 rs1859330 G/A genetic polymorphism with severity of enterovirus-71 infection in Chinese Han children. Arch Virol 2017; 162:2305-2313. [PMID: 28444539 DOI: 10.1007/s00705-017-3381-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/21/2017] [Indexed: 01/08/2023]
Abstract
The 2'5'-oligoadenylate synthetase (OAS) is an interferon (IFN)-induced protein that plays an important role in the antiviral action of IFN, with OAS3 being one of the four OAS classes (OAS1, OAS2, OAS3, OASL). The effect of OAS on several infectious viral diseases has been reported; however, a study of the effect of OAS3 on enterovirus 71 (EV71) is lacking. The purpose of this study was to evaluate the association of the OAS3 rs1859330 G/A genetic polymorphism with susceptibility and severity of EV71 infection. We investigated 370 Chinese Han children with hand-foot-mouth disease (HFMD) (214 of which were mild cases while 156 were severe). An improved multiplex ligation detection reaction (iMLDR) technique was carried out to examine the genotype. The AA genotype distribution (p = 0.002) and A allele frequency (OR = 1.83, 95% CI 1.32-2.52, p < 0.001) of OAS3 rs1859330 in severe cases were significantly higher than in mild cases. When comparing the different genotypes in EV71-infected patients, there were statistical differences in relation to rash (p = 0.03), oral ulcers (p = 0.005), pathologic reflex (p = 0.003), WBC counts (p = 0.032), CRP (p = 0.024), BG concentrations (p = 0.029), ALT (p = 0.02), and EEG (p = 0.019). However, there were no differences in relation to age, gender, AST, CK-MB, CT/ MRI, as well as some symptoms and signs (e.g. duration of fever (days), headache, convulsions, consciousness disturbance, paralysis, sign of meningeal irritation). In the cerebrospinal fluid (CSF) of severe cases, there were no differences in the levels of white cells, protein, glucose, chloride, lymphocytes and monocytes between the different genotypes. The plasma levels of IFN-γ in EV71-infected patients were significantly higher than in the control group (p < 0.01). IFN-γ concentrations in severe cases were lower in A allele carriers (AA+GA) (118.5 ± 12.6pg/mL) than in GG homozygotes (152.6 ± 56.3pg/mL p < 0.05). These findings suggest that the OAS3 rs1859330 G/A genetic polymorphism is associated with the severity of EV-71 infection, and that the A allele is a risk factor for the development of severe EV71 infection.
Collapse
Affiliation(s)
- Yuxia Tan
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266000, China
- Department of Pediatrics, Zibo City Maternal and Child Health Hospital, Zibo, 255029, Shandong, China
| | - Tingting Yang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003, China
| | - Peipei Liu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266000, China
| | - Liping Chen
- Department of Pediatrics, Zibo City Maternal and Child Health Hospital, Zibo, 255029, Shandong, China
| | - Qingwu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003, China
| | - Ya Guo
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266000, China
| | - Hongfang He
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266000, China
| | - Yedan Liu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266000, China
| | - Zongbo Chen
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266000, China.
| |
Collapse
|
32
|
Zheng C, Su C. Herpes simplex virus 1 infection dampens the immediate early antiviral innate immunity signaling from peroxisomes by tegument protein VP16. Virol J 2017; 14:35. [PMID: 28222744 PMCID: PMC5320731 DOI: 10.1186/s12985-017-0709-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/15/2017] [Indexed: 12/25/2022] Open
Abstract
Background Herpes simplex virus 1 (HSV-1) is an archetypal member of the alphaherpesvirus subfamily with a large genome encoding over 80 proteins, many of which play a critical role in virus-host interactions and immune modulation. Upon viral infections, the host cells activate innate immune responses to restrict their replications. Peroxisomes, which have long been defined to regulate metabolic activities, are reported to be important signaling platforms for antiviral innate immunity. It has been verified that signaling from peroxisomal MAVS (MAVS-Pex) triggers a rapid interferon (IFN) independent IFN-stimulated genes (ISGs) production against invading pathogens. However, little is known about the interaction between DNA viruses such as HSV-1 and the MAVS-Pex mediated signaling. Results HSV-1 could activate the MAVS-Pex signaling pathway at a low multiplicity of infection (MOI), while infection at a high MOI dampens MAVS-Pex induced immediately early ISGs production. A high-throughput screen assay reveals that HSV-1 tegument protein VP16 inhibits the immediate early ISGs expression downstream of MAVS-Pex signaling. Moreover, the expression of ISGs was recovered when VP16 was knockdown with its specific short hairpin RNA. Conclusion HSV-1 blocks MAVS-Pex mediated early ISGs production through VP16 to dampen the immediate early antiviral innate immunity signaling from peroxisomes.
Collapse
Affiliation(s)
- Chunfu Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China. .,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Chenhe Su
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| |
Collapse
|
33
|
RNA-Seq analysis of chikungunya virus infection and identification of granzyme A as a major promoter of arthritic inflammation. PLoS Pathog 2017; 13:e1006155. [PMID: 28207896 PMCID: PMC5312928 DOI: 10.1371/journal.ppat.1006155] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023] Open
Abstract
Chikungunya virus (CHIKV) is an arthritogenic alphavirus causing epidemics of acute and chronic arthritic disease. Herein we describe a comprehensive RNA-Seq analysis of feet and lymph nodes at peak viraemia (day 2 post infection), acute arthritis (day 7) and chronic disease (day 30) in the CHIKV adult wild-type mouse model. Genes previously shown to be up-regulated in CHIKV patients were also up-regulated in the mouse model. CHIKV sequence information was also obtained with up to ≈8% of the reads mapping to the viral genome; however, no adaptive viral genome changes were apparent. Although day 2, 7 and 30 represent distinct stages of infection and disease, there was a pronounced overlap in up-regulated host genes and pathways. Type I interferon response genes (IRGs) represented up to ≈50% of up-regulated genes, even after loss of type I interferon induction on days 7 and 30. Bioinformatic analyses suggested a number of interferon response factors were primarily responsible for maintaining type I IRG induction. A group of genes prominent in the RNA-Seq analysis and hitherto unexplored in viral arthropathies were granzymes A, B and K. Granzyme A-/- and to a lesser extent granzyme K-/-, but not granzyme B-/-, mice showed a pronounced reduction in foot swelling and arthritis, with analysis of granzyme A-/- mice showing no reductions in viral loads but reduced NK and T cell infiltrates post CHIKV infection. Treatment with Serpinb6b, a granzyme A inhibitor, also reduced arthritic inflammation in wild-type mice. In non-human primates circulating granzyme A levels were elevated after CHIKV infection, with the increase correlating with viral load. Elevated granzyme A levels were also seen in a small cohort of human CHIKV patients. Taken together these results suggest granzyme A is an important driver of arthritic inflammation and a potential target for therapy. Trial Registration: ClinicalTrials.gov NCT00281294 The largest chikungunya virus (CHIKV) epidemic ever recorded began in 2004 in Africa and spread across Asia reaching Europe and recently the Americas, with millions of cases reported. We undertook a detailed analysis of the mRNA expression profile during acute and chronic arthritis in an adult wild-type mouse model of CHIKV infection and disease. Gene induction profiles showed a high concordance with published human data, providing some validation of the mouse model. The host response was overwhelmingly dominated by type I interferon response genes, even after type I interferon induction was lost. The analysis also provided information on CHIKV RNA, with no adaptive viral genome changes identified. An important goal of the analysis was to identify new players in arthritic inflammation. Granzyme A was prominent in the RNA-Seq data and granzyme A deficient mice showed reduced arthritis, with no effects on viral loads. Arthritic disease could also be ameliorated in wild-type mice with a granzyme A inhibitor. Elevated circulating granzyme A levels were seen in non-human primates infected with CHIKV and in human CHIKV patients. Granzyme A thus emerges to be a major driver of CHIKV-mediated arthritic inflammation and a potential target for anti-inflammatory interventions.
Collapse
|
34
|
Xie DY, Wang SM, Yang JM, Wang LH, Chen HY, Huai C, Shang J, Mao Q, Lei CL, Luo GH, Qian J, Lu DR. IFIT1 polymorphisms predict interferon-α treatment efficiency for hepatitis B virus infection. World J Gastroenterol 2016; 22:9813-9821. [PMID: 27956805 PMCID: PMC5124986 DOI: 10.3748/wjg.v22.i44.9813] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/19/2016] [Accepted: 09/08/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the association between interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) polymorphisms and interferon-α (IFNα) treatment efficiency among Chinese hepatitis B virus (HBV) infection patients.
METHODS Two hundred and twenty five newly diagnosed chronic hepatitis B (CHB) patients were enrolled in the study. All of these patients received IFNα treatment for a course of 48 wk, and were followed up for 24 wk after the treatment was end. Clinical information about virological response, hepatitis B e antigen (HBeAg) seroconversion rate and combined response at the end of the treatment, as well as the sustained response by the time of following up 24 wk after the treatment, was collected. Four tag-single nucleotide polymorphisms (SNPs) of IFIT1 were selected and assessed for their association with these clinical outcomes.
RESULTS At the end of the treatment, HBeAg seroconversion was observed in 27.1% patients. Thirty-six point nine percent patients achieved virological response, and 15.6% patients exhibited combined response. Sustained response was obtained in 26.2% patients. The main HBV genotype of the study was genotype B. Patients who infected with HBV genotype B or C showed better treatment efficiency, no matter which clinical outcome was considered. Among the four SNPs assessed, rs303218 (A > G) was found to be significantly associated with the end point virological response when assuming additive model [OR = 0.64 (95%CI: 0.42-0.96), P = 0.032]. Patients who carried rs303218 GG genotype had a rather higher rate of achieving virological response (response rate: 52%, OR = 0.40, 95%CI: 0.18-0.91; P = 0.028) when compared to those had AA genotype (response rate: 27%). The most significant interaction was observed in patients who had relative lower baseline aspartate transaminase. No association between SNPs and HBeAg seroconversion, combined response or sustained response was observed.
CONCLUSION IFIT1 involves in the regulation of IFNα treatment for CHB and its polymorphism rs303218 can predict the end point virological response. The finding requires further validation.
Collapse
|
35
|
Bhalla N, Sun C, Metthew Lam LK, Gardner CL, Ryman KD, Klimstra WB. Host translation shutoff mediated by non-structural protein 2 is a critical factor in the antiviral state resistance of Venezuelan equine encephalitis virus. Virology 2016; 496:147-165. [PMID: 27318152 PMCID: PMC5821108 DOI: 10.1016/j.virol.2016.06.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
Most previous studies of interferon-alpha/beta (IFN-α/β) response antagonism by alphaviruses have focused upon interruption of IFN-α/β induction and/or receptor signaling cascades. Infection of mice with Venezuelan equine encephalitis alphavirus (VEEV) or Sindbis virus (SINV) induces serum IFN-α/β, that elicits a systemic antiviral state in uninfected cells successfully controlling SINV but not VEEV replication. Furthermore, VEEV replication is more resistant than that of SINV to a pre-existing antiviral state in vitro. While host macromolecular shutoff is proposed as a major antagonist of IFN-α/β induction, the underlying mechanisms of alphavirus resistance to a pre-existing antiviral state are not fully defined, nor is the mechanism for the greater resistance of VEEV. Here, we have separated viral transcription and translation shutoff with multiple alphaviruses, identified the viral proteins that induce each activity, and demonstrated that VEEV nonstructural protein 2-induced translation shutoff is likely a critical factor in enhanced antiviral state resistance of this alphavirus.
Collapse
Affiliation(s)
- Nishank Bhalla
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chengqun Sun
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - L K Metthew Lam
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christina L Gardner
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kate D Ryman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - William B Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
36
|
Herpes Simplex Virus 1 Serine Protease VP24 Blocks the DNA-Sensing Signal Pathway by Abrogating Activation of Interferon Regulatory Factor 3. J Virol 2016; 90:5824-5829. [PMID: 27076640 DOI: 10.1128/jvi.00186-16] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/05/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The interferon (IFN)-mediated antiviral response is a central aspect of host defense; however, viruses have evolved multiple strategies to counteract IFN-mediated responses in order to successfully infect the host. Herpes simplex virus 1 (HSV-1), a typical human-restricted DNA virus, is capable of counteracting host immune responses via several distinct viral proteins, thus establishing a lifelong latent infection. In this study, we demonstrate that the VP24 protein, a serine protease of HSV-1 essential for the formation and maturation of capsids, is a novel antagonist of the beta interferon (IFN-β) pathway. Here, VP24 was shown for the first time to dampen interferon stimulatory DNA (ISD)-triggered IFN-β production and inhibit IFN-β promoter activation induced by cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) and by STING, respectively. Further study demonstrated that ectopic expression of VP24 selectively blocked IFN regulatory factor 3 (IRF3) but not NF-κB promoter activation. In addition, VP24 was demonstrated to downregulate ISD-induced phosphorylation and dimerization of IRF3 during HSV-1 infection with a VP24 stable knockdown human foreskin fibroblast cell line. The underlying molecular mechanism is that VP24 abrogates the interaction between TANK-binding kinase 1 (TBK1) and IRF3, hence impairing IRF3 activation. These results illustrate that VP24 is able to block the production of IFN-β by inhibiting IRF3 activation, which may represent a critical adaptation to enable viral effective replication within the host. IMPORTANCE This study demonstrated that HSV-1 protein VP24 could inhibit IFN-β production and promoter activation triggered by ISD, cGAS and STING and by STING, respectively. VP24 selectively blocked IRF3 promoter activation and ISD-induced phosphorylation and dimerization of IRF3 without affecting the NF-κB promoter activation during viral infection. VP24 also inhibited IRF3 activation by impeding the interaction between TBK1 and IRF3 during viral infection. This study provides new insights into the immune evasion mediated by HSV-1 and identifies VP24 as a crucial effector for HSV-1 to evade the host DNA-sensing signal pathway.
Collapse
|
37
|
Niess H, Camaj P, Mair R, Renner A, Zhao Y, Jäckel C, Nelson PJ, Jauch KW, Bruns CJ. Overexpression of IFN-induced protein with tetratricopeptide repeats 3 (IFIT3) in pancreatic cancer: cellular "pseudoinflammation" contributing to an aggressive phenotype. Oncotarget 2016; 6:3306-18. [PMID: 25650658 PMCID: PMC4413655 DOI: 10.18632/oncotarget.2494] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/16/2014] [Indexed: 12/20/2022] Open
Abstract
Inflammation contributes to important traits that cancer cells acquire during malignant progression. Gene array data recently identified upregulation of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in aggressive pancreatic cancer cells. IFIT3 belongs to the group of interferon stimulated genes (ISG), can be induced by several cellular stress stimuli and by its tetratricopeptide repeats interacts with a multitude of cellular proteins. Upregulation of IFIT3 was confirmed in the aggressive pancreatic cancer cell line L3.6pl compared with its less aggressive cell line of origin, COLO357FG. Transgenic induction of IFIT3 expression in COLO357FG resulted in greater mass of orthotopic tumors and higher prevalence of metastases. Several important traits that mediate malignancy were altered by IFIT3: increased VEGF and IL-6 secretion, chemoresistance and decreased starvation-induced apoptosis. IFIT3 showed binding to JNK and STAT1, the latter being an important inducer of IFIT3 expression. Despite still being alterable by “classical” IFN or NFκB signaling, our findings indicate constitutive - possibly auto-regulated - upregulation of IFIT3 in L3.6pl without presence of an adequate inflammatory stimulus. The transcription factor SOX9, which is linked to regulation of hypoxia-related genes, was identified as a key mediator of upregulation of the oncogene IFIT3 and thereby sustaining a “pseudoinflammatory” cellular condition.
Collapse
Affiliation(s)
- Hanno Niess
- Department of Surgery, Medical Center of the Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Peter Camaj
- Department of Surgery, Medical Center of the Otto-von-Guericke-University, Magdeburg, Germany
| | - Ruth Mair
- Department of Surgery, Medical Center of the Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Andrea Renner
- Department of Surgery, Medical Center of the Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Yue Zhao
- Department of Surgery, Medical Center of the Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Carsten Jäckel
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universitaet Muenchen, Arbeitsgruppe Klinische Biochemie, Munich, Germany
| | - Peter J Nelson
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universitaet Muenchen, Arbeitsgruppe Klinische Biochemie, Munich, Germany
| | - Karl-Walter Jauch
- Department of Surgery, Medical Center of the Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | - Christiane J Bruns
- Department of Surgery, Medical Center of the Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
38
|
Appolinário CM, Allendorf SD, Peres MG, Ribeiro BD, Fonseca CR, Vicente AF, Antunes JMADP, Megid J. Profile of Cytokines and Chemokines Triggered by Wild-Type Strains of Rabies Virus in Mice. Am J Trop Med Hyg 2015; 94:378-83. [PMID: 26711511 DOI: 10.4269/ajtmh.15-0361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/02/2015] [Indexed: 12/25/2022] Open
Abstract
Rabies is a lethal infectious disease that causes 55,000 human deaths per year and is transmitted by various mammalian species, such as dogs and bats. The host immune response is essential for avoiding viral progression and promoting viral clearance. Cytokines and chemokines are crucial in the development of an immediate antiviral response; the rabies virus (RABV) attempts to evade this immune response. The virus's capacity for evasion is correlated with its pathogenicity and the host's inflammatory response, with highly pathogenic strains being the most efficient at hijacking the host's defense mechanisms and thereby decreasing inflammation. The purpose of this study was to evaluate the expression of a set of cytokine and chemokine genes that are related to the immune response in the brains of mice inoculated intramuscularly or intracerebrally with two wild-type strains of RABV, one from dog and the other from vampire bat. The results demonstrated that the gene expression profile is intrinsic to the specific rabies variant. The prompt production of cytokines and chemokines seems to be more important than their levels of expression for surviving a rabies infection.
Collapse
Affiliation(s)
- Camila Michele Appolinário
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Susan Dora Allendorf
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Marina Gea Peres
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Bruna Devidé Ribeiro
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Clóvis R Fonseca
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Acácia Ferreira Vicente
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - João Marcelo A de Paula Antunes
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Jane Megid
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| |
Collapse
|
39
|
Yasuike M, Fujiwara A, Nakamura Y, Iwasaki Y, Nishiki I, Sugaya T, Shimizu A, Sano M, Kobayashi T, Ototake M. A functional genomics tool for the Pacific bluefin tuna: Development of a 44K oligonucleotide microarray from whole-genome sequencing data for global transcriptome analysis. Gene 2015; 576:603-9. [PMID: 26477480 DOI: 10.1016/j.gene.2015.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bluefin tunas are one of the most important fishery resources worldwide. Because of high market values, bluefin tuna farming has been rapidly growing during recent years. At present, the most common form of the tuna farming is based on the stocking of wild-caught fish. Therefore, concerns have been raised about the negative impact of the tuna farming on wild stocks. Recently, the Pacific bluefin tuna (PBT), Thunnus orientalis, has succeeded in completing the reproduction cycle under aquaculture conditions, but production bottlenecks remain to be solved because of very little biological information on bluefin tunas. Functional genomics approaches promise to rapidly increase our knowledge on biological processes in the bluefin tuna. Here, we describe the development of the first 44K PBT oligonucleotide microarray (oligo-array), based on whole-genome shotgun (WGS) sequencing and large-scale expressed sequence tags (ESTs) data. In addition, we also introduce an initial 44K PBT oligo-array experiment using in vitro grown peripheral blood leukocytes (PBLs) stimulated with immunostimulants such as lipopolysaccharide (LPS: a cell wall component of Gram-negative bacteria) or polyinosinic:polycytidylic acid (poly I:C: a synthetic mimic of viral infection). This pilot 44K PBT oligo-array analysis successfully addressed distinct immune processes between LPS- and poly I:C- stimulated PBLs. Thus, we expect that this oligo-array will provide an excellent opportunity to analyze global gene expression profiles for a better understanding of diseases and stress, as well as for reproduction, development and influence of nutrition on tuna aquaculture production.
Collapse
Affiliation(s)
- Motoshige Yasuike
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan.
| | - Atushi Fujiwara
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Yoji Nakamura
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Yuki Iwasaki
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Issei Nishiki
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Takuma Sugaya
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Akio Shimizu
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Motohiko Sano
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Takanori Kobayashi
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Mitsuru Ototake
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| |
Collapse
|
40
|
Alexander-Bryant AA, Dumitriu A, Attaway CC, Yu H, Jakymiw A. Fusogenic-oligoarginine peptide-mediated silencing of the CIP2A oncogene suppresses oral cancer tumor growth in vivo. J Control Release 2015; 218:72-81. [PMID: 26386438 DOI: 10.1016/j.jconrel.2015.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/28/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022]
Abstract
Intracellular delivery and endosomal escape of functional small interfering RNAs (siRNAs) remain major barriers limiting the clinical translation of RNA interference (RNAi)-based therapeutics. Recently, we demonstrated that a cell-penetrating endosome-disruptive peptide we synthesized, termed 599, enhanced the intracellular delivery and bioavailability of siRNAs designed to target the CIP2A oncoprotein (siCIP2A) into oral cancer cells and consequently inhibited oral cancer cell invasiveness and anchorage-independent growth in vitro. Thus, to further assess the therapeutic potential of the 599 peptide in mediating RNAi-based therapeutics for oral cancer and its prospective applicability in clinical settings, the objective of the current study was to determine whether intratumoral dosing of the 599 peptide-siCIP2A complex could induce silencing of CIP2A and consequently impair tumor growth using a xenograft oral cancer mouse model. Our results demonstrate that the 599 peptide is able to protect siRNAs from degradation by serum and ribonucleases in vitro and upon intratumoral injection in vivo, confirming the stability of the 599 peptide-siRNA complex and its potential for therapeutic utility. Moreover, 599 peptide-mediated delivery of siCIP2A to tumor tissue induces CIP2A silencing without any associated toxicity, consequently resulting in reduction of the mitotic index and significant inhibition of tumor growth. Together, these data suggest that the 599 peptide carrier is a clinically effective mediator of RNAi-based cancer therapeutics.
Collapse
Affiliation(s)
- Angela A Alexander-Bryant
- Department of Oral Health Sciences and Center for Oral Health Research, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA; Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Anca Dumitriu
- Department of Pediatrics, Division of Hematology/Oncology, MUSC, Charleston, SC 29425, USA
| | - Christopher C Attaway
- Department of Oral Health Sciences and Center for Oral Health Research, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Hong Yu
- Department of Oral Health Sciences and Center for Oral Health Research, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Andrew Jakymiw
- Department of Oral Health Sciences and Center for Oral Health Research, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA; Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
41
|
Patel OP, Giorno RC, Dibbern DA, Andrews KY, Durairaj S, Dreskin SC. Gene expression profiles in chronic idiopathic (spontaneous) urticaria. ALLERGY & RHINOLOGY 2015; 6:101-10. [PMID: 26302730 PMCID: PMC4541630 DOI: 10.2500/ar.2015.6.0124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The pathophysiology of chronic idiopathic (spontaneous) urticaria (CIU) is poorly understood. OBJECTIVE We hypothesized that a study of gene expression in active lesions from patients with CIU would uncover unexpected associations. METHODS We enrolled eight patients with CIU and six healthy controls, and obtained 4 mm punch biopsy specimens of active lesions and unaffected skin of patients with CIU and of skin from normal controls. Routine histologic evaluation was performed, RNA was isolated, and gene expression data were assessed. Due to technical reasons, the final evaluation included six samples of lesional skin, six samples of nonlesional skin, and five samples of normal skin. RESULTS As expected, lesional skin had more inflammatory cells per high-powered field (mean ± SE, 96 ± 6) than did samples from nonlesional skin of the subjects with CIU (17 ± 2) (p < 0.01). Lesions of CIU showed significant upregulation of 506 genes and reduced expression of 51 genes. Those most upregulated were predominantly involved in cell adhesion (e.g., selectin E [SELE]), cell activation (e.g., CD69), and chemotaxis (e.g., CCL2). Twelve independent canonical pathways with p ≤ 0.001 were identified (including intracellular kinase pathways (RAs-related nuclear protein [RAN] and Janus activated kinase/interferon), cytokine signaling pathways (IL-9, IL10, and IFN), a strong inflammatory response (interferon, IL-9, IL-10, inducible nitric oxide synthase and glucocorticoid pathways) and increased cell proliferation (RAN signaling, cell cycle control, and tRNA charging). CONCLUSIONS This preliminary study describes a method to study gene activation in urticarial lesions and demonstrated a strong inflammatory response with a large variety of activated genes that are distinct from those reported with other dermatologic conditions.
Collapse
Affiliation(s)
- Ojas P Patel
- 1Division of Allergy and Clinical Immunology, Departments of Medicine and Immunology, University of Colorado Denver, Aurora, Colorado, USA
| | | | | | | | | | | |
Collapse
|
42
|
2'-5'-Oligoadenylate Synthetase-Like Protein Inhibits Respiratory Syncytial Virus Replication and Is Targeted by the Viral Nonstructural Protein 1. J Virol 2015; 89:10115-9. [PMID: 26178980 DOI: 10.1128/jvi.01076-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
2'-5'-Oligoadenylate synthetase-like protein (OASL) is an interferon-inducible antiviral protein. Here we describe differential inhibitory activities of human OASL and the two mouse OASL homologs against respiratory syncytial virus (RSV) replication. Interestingly, nonstructural protein 1 (NS1) of RSV promoted proteasome-dependent degradation of specific OASL isoforms. We conclude that OASL acts as a cellular antiviral protein and that RSV NS1 suppresses this function to evade cellular innate immunity and allow virus growth.
Collapse
|
43
|
Histone deacetylase inhibitor romidepsin inhibits de novo HIV-1 infections. Antimicrob Agents Chemother 2015; 59:3984-94. [PMID: 25896701 DOI: 10.1128/aac.00574-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/14/2015] [Indexed: 11/20/2022] Open
Abstract
Adjunct therapy with the histone deacetylase inhibitor (HDACi) romidepsin increases plasma viremia in HIV patients on combination antiretroviral therapy (cART). However, a potential concern is that reversing HIV latency with an HDACi may reactivate the virus in anatomical compartments with suboptimal cART concentrations, leading to de novo infection of susceptible cells in these sites. We tested physiologically relevant romidepsin concentrations known to reactivate latent HIV in order to definitively address this concern. We found that romidepsin significantly inhibited HIV infection in peripheral blood mononuclear cells and CD4(+) T cells but not in monocyte-derived macrophages. In addition, romidepsin impaired HIV spreading in CD4(+) T cell cultures. When we evaluated the impact of romidepsin on quantitative viral outgrowth assays with primary resting CD4(+) T cells, we found that resting CD4(+) T cells exposed to romidepsin exhibited reduced proliferation and viability. This significantly lowered assay sensitivity when measuring the efficacy of romidepsin as an HIV latency reversal agent. Altogether, our data indicate that romidepsin-based HIV eradication strategies are unlikely to reseed a latent T cell reservoir, even under suboptimal cART conditions, because romidepsin profoundly restricts de novo HIV infections.
Collapse
|
44
|
Zhu J, Ghosh A, Sarkar SN. OASL-a new player in controlling antiviral innate immunity. Curr Opin Virol 2015; 12:15-9. [PMID: 25676874 DOI: 10.1016/j.coviro.2015.01.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/17/2015] [Accepted: 01/22/2015] [Indexed: 01/17/2023]
Abstract
The cellular innate immune system plays a crucial role in mounting the initial resistance to virus infection. It is comprised of various pattern-recognition receptors that induce type I interferon production, which further shapes the adaptive immunity. However, to overcome this resistance and promote replication, viruses have evolved mechanisms to evade this host innate immune response. Here we discuss a recently described mechanism of boosting the innate immunity by oligoadenylate synthetase-like (OASL) protein, which can potentially be used to overcome viral evasion and enhance innate immunity.
Collapse
Affiliation(s)
- Jianzhong Zhu
- Cancer Virology Program, University of Pittsburgh Cancer Institute, United States; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Arundhati Ghosh
- Cancer Virology Program, University of Pittsburgh Cancer Institute, United States; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Saumendra N Sarkar
- Cancer Virology Program, University of Pittsburgh Cancer Institute, United States; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
45
|
Wang X, Zhao YR, Liu HL, Ma XH, Zhang Y. In vitro immunomodulatory activity of interferon alpha on toll-like receptor 9 signaling pathway in chronic hepatitis B. J Interferon Cytokine Res 2014; 35:385-91. [PMID: 25535670 DOI: 10.1089/jir.2014.0182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferon alpha (IFN-α) is registered for chronic hepatitis B (CHB) treatment. However, the antiviral mechanism of IFN-α and the biological function of many IFN-α responsive genes have not been fully elucidated. We investigated to determine the regulative effect of IFN-α on toll-like receptor (TLR) 9 signaling in peripheral blood mononuclear cells (PBMCs) from CHB patients in vitro. We examined the changes of expression and function of TLR9 signaling pathway in the PBMCs with different treatment methods and investigated the synergism of IFN-α and TLR9 ligand on antiviral cytokine secretions in vitro. The data showed that, for the TLR9 signaling pathway, IFN-α not only augmented the expressions of TLR9 signal transduction molecules but also activated the TLR9 signal function. This study has clearly demonstrated that the TLR9 ligand could stimulate PBMCs that have been pretreated with IFN-α. Furthermore, the quantity of antiviral cytokines secreted by the pretreated PBMCs was greater than those without pretreatment. The interaction between IFN-α and TLR9 ligand appears to be synergistic. Data revealed IFN-α could influence TLR9 signaling transduction and synergistically improve the immune efficacy of TLR9 ligand against CHB. The present study suggests a potential novel mechanism for the antiviral activity against hepatitis B virus and a new individualized antiviral strategy.
Collapse
Affiliation(s)
- Xin Wang
- 1 Department of Infectious Diseases, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University , Xi'an, P.R. China
| | | | | | | | | |
Collapse
|
46
|
Shivakoti R, Hauer D, Adams RJ, Lin WHW, Duprex WP, de Swart RL, Griffin DE. Limited in vivo production of type I or type III interferon after infection of macaques with vaccine or wild-type strains of measles virus. J Interferon Cytokine Res 2014; 35:292-301. [PMID: 25517681 DOI: 10.1089/jir.2014.0122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The innate immune response to viral infections often includes induction of types I and III interferons (IFNs) and production of antiviral proteins. Measles is a severe virus-induced rash disease, but in vitro studies suggest that in the absence of defective interfering RNAs, neither wild-type (WT) nor vaccine strains of measles virus (MeV) induce IFN. To determine whether IFN is produced in vivo, we studied tissues from macaques infected with vaccine or WT strains of MeV using quantitative reverse transcriptase-polymerase chain reaction to assess levels of IFN and IFN-stimulated gene (ISG) mRNAs and a flow cytometry-based bioassay to assess levels of biologically active IFN. There was little to no induction of type I IFN, type III IFN, Mx, or ISG56 mRNAs in monkeys infected with vaccine or WT MeV and no IFN detection by bioassay. Therefore, the innate responses to infection with vaccine or WT strains of MeV are not dependent on IFN production.
Collapse
Affiliation(s)
- Rupak Shivakoti
- 1 W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhu J, Zhang Y, Ghosh A, Cuevas RA, Forero A, Dhar J, Ibsen MS, Schmid-Burgk JL, Schmidt T, Ganapathiraju MK, Fujita T, Hartmann R, Barik S, Hornung V, Coyne CB, Sarkar SN. Antiviral activity of human OASL protein is mediated by enhancing signaling of the RIG-I RNA sensor. Immunity 2014; 40:936-48. [PMID: 24931123 PMCID: PMC4101812 DOI: 10.1016/j.immuni.2014.05.007] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 04/28/2014] [Indexed: 02/07/2023]
Abstract
Virus infection is sensed in the cytoplasm by retinoic acid-inducible gene I (RIG-I, also known as DDX58), which requires RNA and polyubiquitin binding to induce type I interferon (IFN) and activate cellular innate immunity. We show that the human IFN-inducible oligoadenylate synthetases-like (OASL) protein has antiviral activity and mediates RIG-I activation by mimicking polyubiquitin. Loss of OASL expression reduced RIG-I signaling and enhanced virus replication in human cells. Conversely, OASL expression suppressed replication of a number of viruses in a RIG-I-dependent manner and enhanced RIG-I-mediated IFN induction. OASL interacted and colocalized with RIG-I, and through its C-terminal ubiquitin-like domain specifically enhanced RIG-I signaling. Bone-marrow-derived macrophages from mice deficient for Oasl2 showed that among the two mouse orthologs of human OASL, Oasl2 is functionally similar to human OASL. Our findings show a mechanism by which human OASL contributes to host antiviral responses by enhancing RIG-I activation.
Collapse
Affiliation(s)
- Jianzhong Zhu
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yugen Zhang
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Arundhati Ghosh
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rolando A Cuevas
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Adriana Forero
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jayeeta Dhar
- Center for Gene Regulation in Health and Disease, and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Mikkel Søes Ibsen
- Department of Molecular Biology, Aarhus University, Aarhus 8000, Denmark
| | | | - Tobias Schmidt
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn 53127, Germany
| | - Madhavi K Ganapathiraju
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Takashi Fujita
- Laboratory of Molecular Genetics, Kyoto University, Kyoto 606-8507, Japan
| | - Rune Hartmann
- Department of Molecular Biology, Aarhus University, Aarhus 8000, Denmark
| | - Sailen Barik
- Center for Gene Regulation in Health and Disease, and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Veit Hornung
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn 53127, Germany
| | - Carolyn B Coyne
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Saumendra N Sarkar
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
48
|
IFIT1: A dual sensor and effector molecule that detects non-2'-O methylated viral RNA and inhibits its translation. Cytokine Growth Factor Rev 2014; 25:543-50. [PMID: 24909568 PMCID: PMC4234691 DOI: 10.1016/j.cytogfr.2014.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/12/2014] [Indexed: 02/08/2023]
Abstract
Our understanding of the antiviral actions of IFIT1, one of the most strongly induced interferon stimulated genes (ISGs), has advanced remarkably within the last few years. This review focuses on the recent cellular, biochemical, and structural discoveries that have provided new insight as to how IFIT1 functions as both a sensor and effector molecule of the cellular innate immune system. IFIT1 can detect viral RNA lacking 2′-O methylation on their cap structures or displaying a 5′-triphosphate moiety and inhibit their translation or sequester them from active replication. Because of these inhibitory actions, many viruses have evolved unique mechanisms to evade IFIT1 to facilitate replication, spread of infection, and disease pathogenesis.
Collapse
|
49
|
Stimulation with the Aureobasidium pullulans-produced β-glucan effectively induces interferon stimulated genes in macrophage-like cell lines. Sci Rep 2014; 4:4777. [PMID: 24759061 PMCID: PMC3998088 DOI: 10.1038/srep04777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/04/2014] [Indexed: 12/12/2022] Open
Abstract
A β-(1,3),(1,6)-D-glucan produced by A. pullulans (AP-PG) is known to be an immune stimulating agent. In this study, we demonstrate that the stimulation with AP-PG effectively induces the interferon (IFN) stimulated genes (ISGs) in macrophage-like cell lines. The ISGs, Mx1, ISG15, and viperin mRNAs were significantly increased in RAW264.7 cells after stimulation with AP-PG. The stimulation with AP-PG transiently induced IFN-β mRNA. However, the expression of viperin mRNA was also increased after stimulation with AP-PG even when new protein synthesis was completely blocked by treatment with cycloheximide. Further, in IFN-α receptor knockdown RAW264.7 cells, AP-PG stimulation more effectively induced viperin mRNA compared with that of IFN-α stimulation. The phosphorylation of Ser 727 in STAT1 involved in the enhancement of STAT1 activation was immediately increased after stimulation with AP-PG. In addition, viperin mRNA expression induced after stimulation with IFN-α was significantly increased by combined stimulation with AP-PG. These results suggest that stimulation with AP-PG effectively induces the ISGs through the induction of IFN and the enhancement of STAT1-mediated transcriptional activation.
Collapse
|
50
|
Vladimer GI, Górna MW, Superti-Furga G. IFITs: Emerging Roles as Key Anti-Viral Proteins. Front Immunol 2014; 5:94. [PMID: 24653722 PMCID: PMC3948006 DOI: 10.3389/fimmu.2014.00094] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/23/2014] [Indexed: 12/25/2022] Open
Abstract
Interferon-induced proteins with tetratricopeptide repeats (IFITs) are a family of proteins, which are strongly induced downstream of type I interferon signaling. The molecular mechanism of IFIT anti-viral activity has been studied in some detail, including the recently discovered direct binding of viral nucleic acid, the binding to viral and host proteins, and the possible involvement in anti-viral immune signal propagation. The unique structures of some members of the IFIT family have been solved to reveal an internal pocket for non-sequence-specific, but conformation- and modification-specific, nucleic acid binding. This review will focus on recent discoveries, which link IFITs to the anti-viral response, intrinsic to the innate immune system.
Collapse
Affiliation(s)
- Gregory I Vladimer
- Laboratory of Giulio Superti-Furga, Center for Molecular Medicine of the Austrian Academy of Sciences , Vienna , Austria
| | - Maria W Górna
- Laboratory of Giulio Superti-Furga, Center for Molecular Medicine of the Austrian Academy of Sciences , Vienna , Austria
| | - Giulio Superti-Furga
- Laboratory of Giulio Superti-Furga, Center for Molecular Medicine of the Austrian Academy of Sciences , Vienna , Austria
| |
Collapse
|