1
|
Aguilar-Garcia IG, Alpirez J, Castañeda-Arellano R, Dueñas-Jiménez JM, Toro Castillo C, León-Moreno LC, Osuna-Carrasco LP, Dueñas-Jiménez SH. Resveratrol and Exercise Produce Recovered Ankle and Metatarsus Joint Movements after Penetrating Lesion in Hippocampus in Male Rats. Brain Sci 2024; 14:980. [PMID: 39451994 PMCID: PMC11506448 DOI: 10.3390/brainsci14100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction: This study investigates how traumatic injuries alter joint movements in the ankle and foot. We used a brain injury model in rats, focusing on the hippocampus between the CA1 and dentate gyrus. Materials and Methods: We assessed the dissimilarity factor (DF) and vertical displacement (VD) of the ankle and metatarsus joints before and after the hippocampal lesion. We analyzed joint movements in rats after the injury or in rats treated with resveratrol, exercise, or a combination of both. Results: Resveratrol facilitated the recovery of DF in both legs, showing improvements in the ankle and metatarsus joints on the third and seventh days post-injury. The hippocampal lesion affected VD in both legs, observed on the third or seventh day after the injury. Both exercise and resveratrol partially recovered VD in the ankle and metatarsus joints on these days. These effects may be linked to increased hippocampal neurogenesis and reduced neuroinflammation. Conclusions: The study highlights the benefits of resveratrol and exercise in motor recovery following brain injury, suggesting their potential to enhance the quality of life for patients with neurological disorders affecting motor function and locomotion. These findings also suggest that resveratrol could offer a promising or complementary alternative in managing chronic pain and inflammation associated with orthopedic conditions, thus improving overall patient management.
Collapse
Affiliation(s)
- Irene Guadalupe Aguilar-Garcia
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (I.G.A.-G.); (J.A.)
| | - Jonatan Alpirez
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (I.G.A.-G.); (J.A.)
| | - Rolando Castañeda-Arellano
- Laboratorio de Farmacología, Centro de Investigación Multidisciplinario en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico;
| | - Judith Marcela Dueñas-Jiménez
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Carmen Toro Castillo
- Bioingenieria Traslacional, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico; (C.T.C.); (L.P.O.-C.)
| | - Lilia Carolina León-Moreno
- Unidad de Evaluación Preclinica, Biotecnología Médica y Farmacéutica, CIATEJ, Guadalajara 44270, Mexico;
| | - Laura Paulina Osuna-Carrasco
- Bioingenieria Traslacional, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico; (C.T.C.); (L.P.O.-C.)
| | - Sergio Horacio Dueñas-Jiménez
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (I.G.A.-G.); (J.A.)
| |
Collapse
|
2
|
Feng J, Zhang Y. The potential benefits of polyphenols for corneal diseases. Biomed Pharmacother 2023; 169:115862. [PMID: 37979379 DOI: 10.1016/j.biopha.2023.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023] Open
Abstract
The cornea functions as the primary barrier of the ocular surface, regulating temperature and humidity while providing protection against oxidative stress, harmful stimuli and pathogenic microorganisms. Corneal diseases can affect the biomechanical and optical properties of the eye, resulting in visual impairment or even blindness. Due to their diverse origins and potent biological activities, plant secondary metabolites known as polyphenols offer potential advantages for treating corneal diseases owing to their anti-inflammatory, antioxidant, and antibacterial properties. Various polyphenols and their derivatives have demonstrated diverse mechanisms of action in vitro and in vivo, exhibiting efficacy against a range of corneal diseases including repair of tissue damage, treatment of keratitis, inhibition of neovascularization, alleviation of dry eye syndrome, among others. Therefore, this article presents a concise overview of corneal and related diseases, along with an update on the research progress of natural polyphenols in safeguarding corneal health. A more comprehensive understanding of natural polyphenols provides a novel perspective for secure treatment of corneal diseases.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
3
|
Wei ZYD, Liang K, Shetty AK. Complications of COVID-19 on the Central Nervous System: Mechanisms and Potential Treatment for Easing Long COVID. Aging Dis 2023; 14:1492-1510. [PMID: 37163427 PMCID: PMC10529748 DOI: 10.14336/ad.2023.0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/12/2023] [Indexed: 05/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invades human cells by binding to the angiotensin-converting-enzyme-2 (ACE-2) using a spike protein and leads to Coronavirus disease-2019 (COVID-19). COVID-19 primarily causes a respiratory infection that can lead to severe systemic inflammation. It is also common for some patients to develop significant neurological and psychiatric symptoms. The spread of SARS-CoV-2 to the CNS likely occurs through several pathways. Once spread in the CNS, many acute symptoms emerge, and such infections could also transpire into severe neurological complications, including encephalitis or ischemic stroke. After recovery from the acute infection, a significant percentage of patients develop "long COVID," a condition in which several symptoms of COVID-19 persist for prolonged periods. This review aims to discuss acute and chronic neurological problems after SARS-CoV-2 infection. The potential mechanisms by which SARS-CoV-2 enters the CNS and causes neuroinflammation, neuropathological changes observed in post-mortem brains of COVID-19 patients, and cognitive and mood problems in COVID-19 survivors are discussed in the initial part. The later part of the review deliberates the causes of long COVID, approaches for noninvasive tracking of neuroinflammation in long COVID patients, and the potential therapeutic strategies that could ease enduring CNS symptoms observed in long COVID.
Collapse
Affiliation(s)
- Zhuang-Yao D Wei
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA
| | - Ketty Liang
- Sam Houston State University College of Osteopathic Medicine, Conroe, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA
| |
Collapse
|
4
|
Fuchs M, Viel C, Lehto A, Lau H, Klein J. Oxidative stress in rat brain during experimental status epilepticus: effect of antioxidants. Front Pharmacol 2023; 14:1233184. [PMID: 37767398 PMCID: PMC10520702 DOI: 10.3389/fphar.2023.1233184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Antioxidants have been proposed as a treatment for diseases of the central nervous system. However, few studies actually studied their effects in the brain. To test central actions of antioxidants, we used the lithium-pilocarpine (Li-Pilo) model of status epilepticus (SE) in the rat in which seizures are accompanied by significant oxidative stress. We used in vivo microdialysis to determine isoprostane levels during SE in real time and brain homogenates for other measures of oxidative stress. Six different antioxidants were tested in acute and preventive experiments (vitamin C, vitamin E, ebselen, resveratrol, n-tert-butyl-α-phenylnitrone and coenzyme Q10). None of the antioxidants had an effect when given acutely during SE. In contrast, when antioxidants were given for 3 days prior to seizure induction, vitamins C and E reduced isoprostane formation by 58% and 65%, respectively. Pretreatment with the other antioxidants was ineffective. In brain homogenates prepared after 90 min of seizures, SE decreased the ratio of reduced vs. oxidized glutathione (GSH/GSSG ratio) from 60.8 to 7.50 and caused a twofold increase of 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels and protein carbonyls. Pretreatment with vitamin C or vitamin E mitigated these effects and increased the GSH/GSSG ratio to 23.9 and 28.3, respectively. Again, the other antioxidants were not effective. We conclude that preventive treatment with vitamin C or vitamin E ameliorates seizure-induced oxidative damage in the brain. Several well-studied antioxidants were inactive, possibly due to limited brain permeability or a lack of chain-breaking antioxidant activity in hydrophilic compounds.
Collapse
Affiliation(s)
| | | | | | | | - Jochen Klein
- Institute of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Zhang Z, Zhang M, Sun Y, Li M, Chang C, Liu W, Zhu X, Wei L, Wen F, Liu Y. Effects of adipose derived stem cells pretreated with resveratrol on sciatic nerve regeneration in rats. Sci Rep 2023; 13:5812. [PMID: 37037844 PMCID: PMC10085980 DOI: 10.1038/s41598-023-32906-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Abstract
Adipose derived stem cells (ADSCs) are popular in regenerative medicine due to their easy availability, low immunogenicity and lack of controversy regarding their ethical debate use. Although ADSCs can repair nerve damage, the oxidative microenvironment of damaged tissue can induce apoptosis of transplanted stem cells, which weakens the therapeutic efficacy of ADSCs. Resveratrol (Res) is a type of natural polyphenol compound that regulates the proliferation, senescence and differentiation of stem cells. Therefore, we investigated whether incubation of ADSCs with Res improves their to promote peripheral nerve regeneration. ADSCs were cultured in vitro and treated with H2O2 to establish an apoptosis model. The control, H2O2 and Res groups were set up. The cell survival rate was detected by the CCK-8 method. The TUNEL assay was used to detect the apoptosis of the cells. qRT‒PCR was used to analyze the expression of apoptosis-related mRNA, and the effect of Res on the proliferation of ADSCs was investigated. In vivo, 40 SD rats were randomly divided into the control, model, ADSCs and ADSC + Res groups, with 13 rats in each group. The sciatic nerve injury rat model was established by the clamp method. Gait was observed on Days 7, 14, 21, and 28. Sciatic nerve regeneration was detected on Day 28. Res had no effect on the proliferation of ADSCs, and the TUNEL assay confirmed that Res pretreatment could significantly improve H2O2-induced apoptosis in ADSCs. Compared with the control group, caspase-3, Bax and Bcl-2 expression levels were significantly increased in the H2O2 group. Compared with the H2O2 group caspase-3 and Bax expression levels were significantly decreased, and Bcl-2 expression levels were significantly increased in ADSCs + Res group. At 4 weeks after surgery, the functional index of the sciatic nerve in the ADSCs + Res group was significantly higher than that in the model group. On Day 28, the average density of the sciatic nerve myelin sheath in the ADSCs + Res group was significantly increased compared with that in the model group, and Nissl staining showed that the number of motor neurons in the spinal cord was significant compared with that in the model group. Compared with the control group, the wet weight ratio of gastrocnemius muscle and muscle fiber area in ADSCs + Res group were significantly increased. Res enhanced the ability of ADSCs to promote sciatic nerve regeneration in rats.
Collapse
Affiliation(s)
- Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Mengyu Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yingying Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Monan Li
- The School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Chenhao Chang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Weiqi Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xuemin Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Lan Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Fengyun Wen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| |
Collapse
|
6
|
Epigenetics in epilepsy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:249-269. [DOI: 10.1016/bs.pmbts.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
7
|
Liu J, He J, Huang Y, Hu Z. Resveratrol has an Overall Neuroprotective Role in Ischemic Stroke: A Meta-Analysis in Rodents. Front Pharmacol 2022; 12:795409. [PMID: 34987407 PMCID: PMC8721173 DOI: 10.3389/fphar.2021.795409] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Resveratrol, a natural polyphenolic phytoalexin, is broadly presented in dietary sources. Previous research has suggested its potential neuroprotective effects on ischemic stroke animal models. However, these results have been disputable. Here, we conducted a meta-analysis to comprehensively evaluate the effect of resveratrol treatment in ischemic stroke rodent models. Objective: To comprehensively evaluate the effect of resveratrol treatment in ischemic stroke rodent models. Methods: A literature search of the databases Pubmed, Embase, and Web of science identified 564 studies that were subjected to pre-defined inclusion criteria. 54 studies were included and analyzed using a random-effects model to calculate the standardized mean difference (SMD) with corresponding confidence interval (CI). Results: As compared with controls, resveratrol significantly decreased infarct volume (SMD −4.34; 95% CI −4.98 to −3.69; p < 0.001) and the neurobehavioral score (SMD −2.26; 95% CI −2.86 to −1.67; p < 0.001) in rodents with ischemic stroke. Quality assessment was performed using a 10-item checklist. Studies quality scores ranged from 3 to 8, with a mean value of 5.94. In the stratified analysis, a significant decrease of infarct volume and the neurobehavioral score was achieved in resveratrol sub-groups with a dosage of 20–50 mg/kg. In the meta-regression analysis, the impact of the delivery route on an outcome is the possible source of high heterogeneity. Conclusion: Generally, resveratrol treatment presented neuroprotective effects in ischemic stroke models. Furthermore, this study can direct future preclinical and clinical trials, with important implications for human health.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Wang M, Xie Y, Shao Y, Chen Y. LncRNA Snhg5 Attenuates Status Epilepticus Induced Inflammation through Regulating NF-κΒ Signaling Pathway. Biol Pharm Bull 2022; 45:86-93. [PMID: 34980782 DOI: 10.1248/bpb.b21-00574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Status epilepticus (SE) induced inflammation plays an important role in the pathogenesis of SE. Long non-coding RNA small nucleolar RNA host gene 5 (lncRNA Snhg5) has been reported in various inflammatory diseases. However, the mechanism of Snhg5 regulated inflammation in SE remains unclear. Therefore, this study aimed to clarify the role and mechanism of Snhg5 in SE-induced inflammation in vitro and vivo. In vitro, lipopolysaccharide (LPS)-induced inflammation in microglia was used to mimic the inflammation after SE. In vivo, SE model was induced by lithium chloride and pilocarpine. The level of Snhg5, p65, p-p65, p-inhibitor of kappaB (IκB)α, IκBα and inflammatory factors (tumor necrosis factor (TNF)-α, interleukin (IL)-1β) were measured via quantitative real-time PCR or Western blot. The Nissl stain and immunohistochemical stain were performed to observe hippocampal damage and microglia proliferation. The results showed Snhg5 was up-regulated in the rat and microglia. Knockdown of Snhg5 inhibited LPS-induced inflammation and relative expression of p-65/p65, p-IκBα/IκBα. Moreover, down-regulation of Snhg5 attenuated SE-induced inflammation and reduced the number of microglia in hippocampus. These findings indicated that Snhg5 modulates the inflammation via nuclear factor-kappaB (NF-κB) signaling pathway in SE rats.
Collapse
Affiliation(s)
- Ming Wang
- Department of Neurology, Huashan Hospital, Fudan University
| | - Yangmei Xie
- Department of Neurology, Huashan Hospital, Fudan University
| | - Yiye Shao
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yinghui Chen
- Department of Neurology, Huashan Hospital, Fudan University
| |
Collapse
|
9
|
Vishwakarma S, Singh S, Singh TG. Pharmacological modulation of cytokines correlating neuroinflammatory cascades in epileptogenesis. Mol Biol Rep 2021; 49:1437-1452. [PMID: 34751915 DOI: 10.1007/s11033-021-06896-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Epileptic seizure-induced brain injuries include activation of neuroimmune response with activation of microglia, astrocytes cells releasing neurotoxic inflammatory mediators underlies the pathophysiology of epilepsy. A wide spectrum of neuroinflammatory pathways is involved in neurodegeneration along with elevated levels of inflammatory mediators indicating the neuroinflammation in the epileptic brain. Therefore, the neuroimmune response is commonly observed in the epileptic brain, indicating elevated cytokine levels, providing an understanding of the neuroinflammatory mechanism contributing to seizures recurrence. Clinical and experimental-based evidence suggested the elevated levels of cytokines responsible for neuronal excitation and blood-brain barrier (BBB) dysfunctioning causing the drug resistance in epilepsy. Therefore, the understanding of the pathogenesis of neuroinflammation in epilepsy, including migration of microglial cells releasing the inflammatory cytokines indicating the correlation of elevated levels of inflammatory mediators (interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) triggering the generation or recurrence of seizures. The current review summarized the knowledge regarding elevated inflammatory mediators as immunomodulatory response correlating multiple neuroinflammatory NF-kB, RIPK, MAPK, ERK, JNK, JAK-STAT signaling cascades in epileptogenesis. Further selective targeting of inflammatory mediators provides beneficial therapeutic strategies for epilepsy.
Collapse
Affiliation(s)
- Shubham Vishwakarma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
10
|
Hsieh CP, Chang WT, Chen L, Chen HH, Chan MH. Differential inhibitory effects of resveratrol on excitotoxicity and synaptic plasticity: involvement of NMDA receptor subtypes. Nutr Neurosci 2021; 24:443-458. [PMID: 31331257 DOI: 10.1080/1028415x.2019.1641995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objectives: The neuroprotective effects of resveratrol against excitatory neurotoxicity have been associated with N-methyl-D-aspartate receptor (NMDAR) inhibition. This study examined the differential inhibitory effects of resveratrol on NMDAR-mediated responses in neuronal cells with different NMDAR subtype composition.Methods: The effects of resveratrol on NMDA-induced cell death and calcium influx in immature and mature rat primary cortical neurons were determined and compared. Moreover, the potencies and efficacies of resveratrol to inhibit NR1/NR2A, NR1/NR2B, NR1/NR2C, and NR1/NR2D NMDAR expressed in HEK 293 cells were evaluated.Results: Resveratrol significantly attenuated NMDA-induced cell death in mature neurons, but not in immature neurons. Resveratrol also concentration-dependently reduced NMDA-induced calcium influx among all NMDAR subtypes, but displayed NR2 subunit selectivity, with a potency rank order of NR2B = NR2D > NR2A = NR2C and an efficacy rank order of NR2B = NR2C > NR2A = NR2D. Data show the stronger inhibitory effects of resveratrol on NR1/NR2B than other subtypes. Moreover, resveratrol did not affect hippocampal long-term potentiation (LTP), but impaired long-term depression (LTD).Discussion: These findings reveal the specific NMDAR modulating profile of resveratrol, providing further insight into potential mechanisms underlying the protective effects of resveratrol on neurological disorders.
Collapse
Affiliation(s)
- Chung-Pin Hsieh
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Wei-Tang Chang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Hwei-Hsien Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
- Institute of Neuroscience, National Chengchi University, Taipei, Taiwan
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi University, Taipei, Taiwan
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| |
Collapse
|
11
|
Mao XY, Yin XX, Guan QW, Xia QX, Yang N, Zhou HH, Liu ZQ, Jin WL. Dietary nutrition for neurological disease therapy: Current status and future directions. Pharmacol Ther 2021; 226:107861. [PMID: 33901506 DOI: 10.1016/j.pharmthera.2021.107861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Adequate food intake and relative abundance of dietary nutrients have undisputed effects on the brain function. There is now substantial evidence that dietary nutrition aids in the prevention and remediation of neurologic symptoms in diverse pathological conditions. The newly described influences of dietary factors on the alterations of mitochondrial dysfunction, epigenetic modification and neuroinflammation are important mechanisms that are responsible for the action of nutrients on the brain health. In this review, we discuss the state of evidence supporting that distinct dietary interventions including dietary supplement and dietary restriction have the ability to tackle neurological disorders using Alzheimer's disease, Parkinson's disease, stroke, epilepsy, traumatic brain injury, amyotrophic lateral sclerosis, Huntington's disease and multiple sclerosis as examples. Additionally, it is also highlighting that diverse potential mechanisms such as metabolic control, epigenetic modification, neuroinflammation and gut-brain axis are of utmost importance for nutrient supply to the risk of neurologic condition and therapeutic response. Finally, we also highlight the novel concept that dietary nutrient intervention reshapes metabolism-epigenetics-immunity cycle to remediate brain dysfunction. Targeting metabolism-epigenetics-immunity network will delineate a new blueprint for combating neurological weaknesses.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| | - Xi-Xi Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Qi-Wen Guan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Qin-Xuan Xia
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Nan Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
12
|
Folbergrová J, Ješina P, Otáhal J. Treatment With Resveratrol Ameliorates Mitochondrial Dysfunction During the Acute Phase of Status Epilepticus in Immature Rats. Front Neurosci 2021; 15:634378. [PMID: 33746702 PMCID: PMC7973046 DOI: 10.3389/fnins.2021.634378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/11/2021] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to elucidate the effect of resveratrol (natural polyphenol) on seizure activity, production of ROS, brain damage and mitochondrial function in the early phase of status epilepticus (SE), induced in immature 12 day-old rats by substances of a different mechanism of action (Li-pilocarpine, DL-homocysteic acid, 4-amino pyridine, and kainate). Seizure activity, production of superoxide anion, brain damage and mitochondrial function were assessed by EEG recordings, hydroethidium method, FluoroJadeB staining and Complex I activity measurement. A marked decrease of complex I activity associated with the acute phase of SE in immature brain was significantly attenuated by resveratrol, given i.p. in two or three doses (25 mg/kg each), 30 min before, 30 or 30 and 60 min after the induction of SE. Increased O2.– production was completely normalized, brain damage partially attenuated. Since resveratrol did not influence seizure activity itself (latency, intensity, frequency), the mechanism of protection is likely due to its antioxidative properties. The findings have a clinical relevance, suggesting that clinically available substances with antioxidant properties might provide a high benefit as an add-on therapy during the acute phase of SE, influencing also mechanisms involved in the development of epilepsy.
Collapse
Affiliation(s)
| | - Pavel Ješina
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jakub Otáhal
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
13
|
Role of Innate Immune Receptor TLR4 and its endogenous ligands in epileptogenesis. Pharmacol Res 2020; 160:105172. [PMID: 32871246 DOI: 10.1016/j.phrs.2020.105172] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
Understanding the interplay between the innate immune system, neuroinflammation, and epilepsy might offer a novel perspective in the quest of exploring new treatment strategies. Due to the complex pathology underlying epileptogenesis, no disease-modifying treatment is currently available that might prevent epilepsy after a plausible epileptogenic insult despite the advances in pre-clinical and clinical research. Neuroinflammation underlies the etiopathogenesis of epilepsy and convulsive disorders with Toll-like receptor (TLR) signal transduction being highly involved. Among TLR family members, TLR4 is an innate immune system receptor and lipopolysaccharide (LPS) sensor that has been reported to contribute to epileptogenesis by regulating neuronal excitability. Herein, we discuss available evidence on the role of TLR4 and its endogenous ligands, the high mobility group box 1 (HMGB1) protein, the heat shock proteins (HSPs) and the myeloid related protein 8 (MRP8), in epileptogenesis and post-traumatic epilepsy (PTE). Moreover, we provide an account of the promising findings of TLR4 modulation/inhibition in experimental animal models with therapeutic impact on seizures.
Collapse
|
14
|
Long XY, Wang S, Luo ZW, Zhang X, Xu H. Comparison of three administration modes for establishing a zebrafish seizure model induced by N-Methyl-D-aspartic acid. World J Psychiatry 2020; 10:150-161. [PMID: 32844092 PMCID: PMC7418578 DOI: 10.5498/wjp.v10.i7.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/25/2020] [Accepted: 05/27/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Epilepsy is a complex neurological disorder characterized by recurrent, unprovoked seizures resulting from the sudden abnormal discharge of brain neurons. It leads to transient brain dysfunction, manifested by abnormal physical movements and consciousness. It can occur at any age, affecting approximately 65 million worldwide, one third of which are still estimated to suffer from refractory seizures. There is an urgent need for further establishment of seizure models in animals, which provides an approach to model epilepsy and could be used to identify novel anti-epileptic therapeutics in the future.
AIM To compare three administration modes for establishing a seizure model caused by N-Methyl-D-aspartic acid (NMDA) in zebrafish.
METHODS Three administration routes of NMDA, including immersion, intravitreal injection and intraperitoneal injection, were compared with regard to their effects on inducing seizure-like behaviors in adult zebrafish. We evaluated neurotoxicity by observing behavioral changes in zebrafish and graded those behaviors with a seizure score. In addition, the protective effects of MK-801 (Dizocilpine) and natural active constituent resveratrol against NMDA-induced alterations were studied.
RESULTS The three NMDA-administration methods triggered different patterns of the epileptic process in adult zebrafish. Seizure scores were increased after increasing NMDA concentration regardless of the mode of administration. However, the curve of immersion continuously rose to a high plateau (after 50 min), while the curves of intravitreal injection and intraperitoneal injection showed a spike in the early stage (10-20 min) followed by a steady decrease in seizure scores. Furthermore, pretreatment with resveratrol and MK-801 significantly delayed seizure onset time and lowered seizure scores.
CONCLUSION By comparing the three methods of administration, intravitreal injection of NMDA was the most suitable for establishing an acute epileptic model in zebrafish. Thus, intraperitoneal injection in zebrafish can be applied to simulate diseases such as epilepsy. In addition, NMDA immersion may be an appropriate method to induce persistent seizures. Moreover, MK-801 and resveratrol showed strong anti-epileptic effects; thus, both of them may be clinically valuable treatments for epilepsy.
Collapse
Affiliation(s)
- Xin-Yi Long
- Queen Mary School of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Shuang Wang
- Queen Mary School of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zhi-Wen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hong Xu
- Institute of Life Science, Nanchang University, Nanchang 330031, Jiangxi Province, China
| |
Collapse
|
15
|
Hodges SL, Lugo JN. Therapeutic role of targeting mTOR signaling and neuroinflammation in epilepsy. Epilepsy Res 2020; 161:106282. [PMID: 32036255 DOI: 10.1016/j.eplepsyres.2020.106282] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
|
16
|
Targeting prostaglandin receptor EP2 for adjunctive treatment of status epilepticus. Pharmacol Ther 2020; 209:107504. [PMID: 32088247 DOI: 10.1016/j.pharmthera.2020.107504] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/27/2020] [Indexed: 02/08/2023]
Abstract
Status epilepticus (SE) is an emergency condition that can cause permanent brain damage or even death when generalized convulsive seizures last longer than 30 min. Controlling the escalation and propagation of seizures quickly and properly is crucial to the prevention of irreversible neuronal death and the associated morbidity. However, SE often becomes refractory to current anticonvulsant medications, which primarily act on ion channels and commonly impose undesired effects. Identifying new molecular targets for SE might lead to adjunctive treatments that can be delivered even when SE is well established. Recent preclinical studies suggest that prostaglandin E2 (PGE2) is an essential inflammatory mediator for the brain injury and morbidity following prolonged seizures via activating four G protein-coupled receptors, namely, EP1-EP4. Given that EP2 receptor activation has been identified as a common culprit in several inflammation-associated neurological conditions, such as strokes and neurodegenerative diseases, selective small-molecule antagonists targeting EP2 have been recently developed and utilized to suppress PGE2-mediated neuroinflammation. Transient inhibition of the EP2 receptor by these bioavailable and brain-permeable antagonists consistently showed marked anti-inflammatory and neuroprotective effects in several rodent models of SE yet had no noticeable effect on seizures per se. This review provides overviews and perspectives of the EP2 receptor as an emerging target for adjunctive treatment, together with the current first-line anti-seizure drugs, to prevent acute brain inflammation and damage following SE.
Collapse
|
17
|
Radwan RR, Karam HM. Resveratrol attenuates intestinal injury in irradiated rats via PI3K/Akt/mTOR signaling pathway. ENVIRONMENTAL TOXICOLOGY 2020; 35:223-230. [PMID: 31633274 DOI: 10.1002/tox.22859] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/08/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Radiation-induced enteritis is one of the greatest challenges in radiotherapy. The current study was designed to evaluate the ameliorative effect of resveratrol, which exhibits anti-inflammatory property, against radiation-induced intestinal injury in rats and to explore the underlying mechanism. Rats were exposed to a single dose of 5 Gy. Resveratrol (20 mg/kg/day) was orally administered to irradiated rats over 3 weeks. Results showed that resveratrol ameliorated the intestinal oxidative stress parameters; malondialdehyde (MDA) content, glutathione (GSH) level, and catalase (CAT) activity compared to irradiated group. Furthermore, resveratrol reduced the contents of inflammatory cytokines; tumor necrosis factor α (TNF-α), nuclear factor-kappa (NF-κB), and interleukin 1β (IL-1β) in intestine. Western blotting analysis revealed that resveratrol down-regulated the proteins expression of phosphoinositide 3-kinases (PI3K), protein kinase B (Akt) as well as the mammalian target of rapamycin (mTOR) in intestinal tissues of irradiated rats and thus reduced the inflammatory mediator production. These results were confirmed by histopathological investigation. In conclusion, resveratrol attenuated intestinal inflammation following irradiation via modulating PI3K/Akt/mTOR pathway and thereby could be a promising adjuvant in radiotherapy.
Collapse
Affiliation(s)
- Rasha R Radwan
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Heba M Karam
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
18
|
Teixeira J, Chavarria D, Borges F, Wojtczak L, Wieckowski MR, Karkucinska-Wieckowska A, Oliveira PJ. Dietary Polyphenols and Mitochondrial Function: Role in Health and Disease. Curr Med Chem 2019; 26:3376-3406. [PMID: 28554320 DOI: 10.2174/0929867324666170529101810] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/23/2017] [Accepted: 04/23/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria are cytoplasmic double-membraned organelles that are involved in a myriad of key cellular regulatory processes. The loss of mitochondrial function is related to the pathogenesis of several human diseases. Over the last decades, an increasing number of studies have shown that dietary polyphenols can regulate mitochondrial redox status, and in some cases, prevent or delay disease progression. This paper aims to review the role of four dietary polyphenols - resveratrol, curcumin, epigallocatechin-3-gallate nd quercetin - in molecular pathways regulated by mitochondria and their potential impact on human health. Cumulative evidence showed that the aforementioned polyphenols improve mitochondrial functions in different in vitro and in vivo experiments. The mechanisms underlying the polyphenols' beneficial effects include, among others, the attenuation of oxidative stress, the regulation of mitochondrial metabolism and biogenesis and the modulation of cell-death signaling cascades, among other mitochondrial-independent effects. The understanding of the chemicalbiological interactions of dietary polyphenols, namely with mitochondria, may have a huge impact on the treatment of mitochondrial dysfunction-related disorders.
Collapse
Affiliation(s)
- José Teixeira
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal.,CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| | - Daniel Chavarria
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Lech Wojtczak
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| |
Collapse
|
19
|
Jang HJ, Kim JE, Jeong KH, Lim SC, Kim SY, Cho KO. The Neuroprotective Effect of Hericium erinaceus Extracts in Mouse Hippocampus after Pilocarpine-Induced Status Epilepticus. Int J Mol Sci 2019; 20:E859. [PMID: 30781501 PMCID: PMC6413080 DOI: 10.3390/ijms20040859] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
Hericium erinaceus (HE), a culinary-medicinal mushroom, has shown therapeutic potential in many brain diseases. However, the role of HE in status epilepticus (SE)-mediated neuronal death and its underlying mechanisms remain unclear. We investigated the neuroprotective effects of HE using a pilocarpine-induced SE model. Male C57BL/6 mice received crude extracts of HE (60 mg/kg, 120 mg/kg, or 300 mg/kg, p.o.) for 21 d from 14 d before SE to 6 d after SE. At 7 d after SE, cresyl violet and immunohistochemistry of neuronal nuclei revealed improved hippocampal neuronal survival in animals treated with 60 mg/kg and 120 mg/kg of HE, whereas those treated with 300 mg/kg of HE showed similar neuronal death to that of vehicle-treated controls. While seizure-induced reactive gliosis, assessed by immunohistochemistry, was not altered by HE, the number of hippocampal cyclooxygenase 2 (COX2)-expressing cells was significantly reduced by 60 and 120 mg/kg of HE. Triple immunohistochemistry demonstrated no overlap of COX2 labeling with Ox42, in addition to a decrease in COX2/GFAP-co-immunoreactivity in the group treated with 60 mg/kg HE, suggesting that the reduction of COX2 by HE promotes neuroprotection after SE. Our findings highlight the potential application of HE for preventing neuronal death after seizures.
Collapse
Affiliation(s)
- Hyun-Jong Jang
- Department of Physiology, Department of Biomedicine and Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Ji-Eun Kim
- Department of Pharmacology, Department of Biomedicine and Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Kyoung Hoon Jeong
- Department of Pharmacology, Department of Biomedicine and Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Department of Neurology and Epilepsy Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Sung Chul Lim
- Department of Neurology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Seong Yun Kim
- Department of Pharmacology, Department of Biomedicine and Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Kyung-Ok Cho
- Department of Pharmacology, Department of Biomedicine and Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Institute of Aging and Metabolic Diseases, The Catholic University of Korea, Seoul 06591, Korea.
| |
Collapse
|
20
|
Nieoczym D, Socała K, Gawel K, Esguerra CV, Wyska E, Wlaź P. Anticonvulsant Activity of Pterostilbene in Zebrafish and Mouse Acute Seizure Tests. Neurochem Res 2019; 44:1043-1055. [PMID: 30689162 PMCID: PMC6482291 DOI: 10.1007/s11064-019-02735-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/19/2019] [Indexed: 12/29/2022]
Abstract
Pterostilbene (PTE), a natural dimethylated analog of resveratrol, possesses numerous health-beneficial properties. The ability of PTE to cross the blood–brain barrier raised the possibility that this compound may modulate central nervous system functions, including seizure activity. The aim of our study was to investigate the activity of PTE in the larval zebrafish pentylenetetrazole (PTZ) seizure assay and three acute seizure tests in mice, i.e., in the maximal electroshock seizure threshold (MEST), 6 Hz-induced psychomotor seizure threshold and intravenous (iv) PTZ tests. Additionally, potential antidepressant activity of PTE was estimated in the forced swim test in mice. The chimney test was used to determine the influence of PTE on motor coordination in mice, while its influence on neuromuscular strength was assessed in the grip strength test in mice. Locomotor activity was determined to verify the results from the forced swim test. PTE revealed an evident anticonvulsant effect both in zebrafish larvae (10 µM; 2 h-incubation) and mice (at doses of 100 and 200 mg/kg, intraperitoneally) but it did not exhibit antidepressant potential in the forced swim test. Furthermore, it did not cause any statistically significant changes in motor coordination, neuromuscular strength and locomotor activity in mice. In conclusion, our present findings demonstrate for the first time the anticonvulsant potential of PTE. The aforementioned results suggest that it might be employed in epilepsy treatment, however, further precise studies are required to verify its activity in other experimental seizure and epilepsy models and its precise mechanism of action should be determined.
Collapse
Affiliation(s)
- Dorota Nieoczym
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Collegium Medicum, Jagiellonian University, Kraków, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
21
|
Shetty AK, Kodali M, Upadhya R, Madhu LN. Emerging Anti-Aging Strategies - Scientific Basis and Efficacy. Aging Dis 2018; 9:1165-1184. [PMID: 30574426 PMCID: PMC6284760 DOI: 10.14336/ad.2018.1026] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
The prevalence of age-related diseases is in an upward trend due to increased life expectancy in humans. Age-related conditions are among the leading causes of morbidity and death worldwide currently. Therefore, there is an urgent need to find apt interventions that slow down aging and reduce or postpone the incidence of debilitating age-related diseases. This review discusses the efficacy of emerging anti-aging approaches for maintaining better health in old age. There are many anti-aging strategies in development, which include procedures such as augmentation of autophagy, elimination of senescent cells, transfusion of plasma from young blood, intermittent fasting, enhancement of adult neurogenesis, physical exercise, antioxidant intake, and stem cell therapy. Multiple pre-clinical studies suggest that administration of autophagy enhancers, senolytic drugs, plasma from young blood, drugs that enhance neurogenesis and BDNF are promising approaches to sustain normal health during aging and also to postpone age-related neurodegenerative diseases such as Alzheimer's disease. Stem cell therapy has also shown promise for improving regeneration and function of the aged or Alzheimer's disease brain. Several of these approaches are awaiting critical appraisal in clinical trials to determine their long-term efficacy and possible adverse effects. On the other hand, procedures such as intermittent fasting, physical exercise, intake of antioxidants such as resveratrol and curcumin have shown considerable promise for improving function in aging, some of which are ready for large-scale clinical trials, as they are non-invasive, and seem to have minimal side effects. In summary, several approaches are at the forefront of becoming mainstream therapies for combating aging and postponing age-related diseases in the coming years.
Collapse
Affiliation(s)
- Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | - Leelavathi N. Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
| |
Collapse
|
22
|
Wang M, Chen Y. Inflammation: A Network in the Pathogenesis of Status Epilepticus. Front Mol Neurosci 2018; 11:341. [PMID: 30344475 PMCID: PMC6182087 DOI: 10.3389/fnmol.2018.00341] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022] Open
Abstract
Status epilepticus (SE) is an abnormally prolonged or recurrent epileptic seizure that is a serious, life-threatening medical emergency. Notably, it requires prompt and aggressive treatment. SE is characterized by high mortality and morbidity. However, its pathogenesis remains unclear. Numerous studies of SE have reported widespread brain inflammation, suggesting that inflammation plays a vital role in the occurrence and development of SE. This mini review article reviews the current knowledge with regard to the role of inflammation in SE.
Collapse
Affiliation(s)
- Ming Wang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yinghui Chen
- Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Colica C, Milanović M, Milić N, Aiello V, De Lorenzo A, Abenavoli L. A Systematic Review on Natural Antioxidant Properties of Resveratrol. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300923] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polyphenols, including anthocyanins, flavonoids and stilbenes, which constitute one of the most abundant and ubiquitous groups of plant metabolites, are an integral part of the human diet. Resveratrol (3,5,4'-trihydroxystilbene), a naturally occurring polyphenol produced by some plants as a self-defence agent, has an antifungal activity. Resveratrol has been found in some plants (such as grapevine, pine and peanuts) and is considered to have beneficial effects also on human health. The number of studies on resveratrol greatly increased in PubMed database since 1997, after the anticancer effect of this molecule was first reported. The interest in resveratrol in grape was originally sparked by epidemiological studies indicating an inverse relationship between long-standing moderate consumption of red wine and the risk of coronary heart disease; this effect has been ascribed to resveratrol, which possesses diverse biochemical and physiological properties, including antiplatelet and anti-inflammatory proprieties, and provides a wide range of health benefits ranging from chemoprevention to cardioprotection. Recently, resveratrol has been described as an anti-aging compound. The consumption of resveratrol (red wine) together with a Mediterranean diet or a fast-food meal (“McDonald'sMeal”) had a positive impact on oxidized (ox-) LDL and on the expression of oxidative and inflammatory genes. Therefore, this review summarized the most important scientific data about healing and preventive potential of resveratrol, acting as cardioprotective, neuroprotective, chemopreventive and antioxidant agent.
Collapse
Affiliation(s)
- Carmela Colica
- CNR, IBFM UOS of Germaneto, University “Magna Graecia” of Catanzaro, Italy
| | - Maja Milanović
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
| | - Nataša Milić
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
| | - Vincenzo Aiello
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
24
|
SIRT1 Mediates Apelin-13 in Ameliorating Chronic Normobaric Hypoxia-induced Anxiety-like Behavior by Suppressing NF-κB Pathway in Mice Hippocampus. Neuroscience 2018; 381:22-34. [DOI: 10.1016/j.neuroscience.2018.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
|
25
|
Wang YJ, Hsieh CP, Chan MH, Chan TY, Chen L, Chen HH. Distinct effects of resveratrol on seizures and hyperexcitability induced by NMDA and 4-aminopyridine. Nutr Neurosci 2018; 22:867-876. [DOI: 10.1080/1028415x.2018.1461458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ya-Jean Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Department of Nursing, Hsin Sheng College of Medical Care and Management, Longtan Township, Taoyuan County, Taiwan
| | - Chung-Pin Hsieh
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi University, Taipei City, Taiwan
- Research Center for Mind, Brain, and Learning, National Chengchi University, Taipei City, Taiwan
| | - Tzu-Yi Chan
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Hwei-Hisen Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Institute of Neuroscience, National Chengchi University, Taipei City, Taiwan
| |
Collapse
|
26
|
Folbergrová J, Ješina P, Kubová H, Otáhal J. Effect of Resveratrol on Oxidative Stress and Mitochondrial Dysfunction in Immature Brain during Epileptogenesis. Mol Neurobiol 2018; 55:7512-7522. [PMID: 29427088 DOI: 10.1007/s12035-018-0924-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 01/04/2023]
Abstract
The presence of oxidative stress in immature brain has been demonstrated during the acute phase of status epilepticus (SE). The knowledge regarding the long periods of survival after SE is not unequivocal, lacking direct evidence. To examine the presence and time profile of oxidative stress, its functional effect on mitochondria and the influence of an antioxidant treatment in immature rats during epileptogenesis, status epilepticus (SE) was induced in immature 12-day-old rats by Li-pilocarpine and at selected periods of the epileptogenesis; rat pups were subjected to examinations. Hydroethidine method was employed for detection of superoxide anion (O2.-), 3-nitrotyrosine (3-NT), and 4-hydroxynonenal (4-HNE) for oxidative damage of mitochondrial proteins and complex I activity for mitochondrial function. Natural polyphenolic antioxidant resveratrol was given in two schemes: "acute treatment," i.p. administration 30 min before, 30 and 60 min after induction of SE and "full treatment" when applications continued once daily for seven consecutive days (25 mg/kg each dose). The obtained results clearly document that the period of epileptogenesis studied (up to 4 weeks) in immature brain is associated with the significant enhanced production of O2.-, the increased levels of 3-NT and 4-HNE and the persisting deficiency of complex I activity. Application of resveratrol either completely prevented or significantly reduced markers both of oxidative stress and mitochondrial dysfunction. The findings suggest that targeting oxidative stress in combination with current antiepileptic therapies may provide a benefit in the treatment of epilepsy.
Collapse
Affiliation(s)
- Jaroslava Folbergrová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Pavel Ješina
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Hana Kubová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Jakub Otáhal
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
27
|
Castro OW, Upadhya D, Kodali M, Shetty AK. Resveratrol for Easing Status Epilepticus Induced Brain Injury, Inflammation, Epileptogenesis, and Cognitive and Memory Dysfunction-Are We There Yet? Front Neurol 2017; 8:603. [PMID: 29180982 PMCID: PMC5694141 DOI: 10.3389/fneur.2017.00603] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
Status epilepticus (SE) is a medical emergency exemplified by self-sustaining, unceasing seizures or swiftly recurring seizure events with no recovery between seizures. The early phase after SE event is associated with neurodegeneration, neuroinflammation, and abnormal neurogenesis in the hippocampus though the extent of these changes depends on the severity and duration of seizures. In many instances, over a period, the initial precipitating injury caused by SE leads to temporal lobe epilepsy (TLE), typified by spontaneous recurrent seizures, cognitive, memory and mood impairments associated with chronic inflammation, reduced neurogenesis, abnormal synaptic reorganization, and multiple molecular changes in the hippocampus. While antiepileptic drugs are efficacious for terminating or greatly reducing seizures in most cases of SE, they have proved ineffective for easing SE-induced epileptogenesis and TLE. Despite considerable advances in elucidating SE-induced multiple cellular, electrophysiological, and molecular changes in the brain, efficient strategies that prevent SE-induced TLE development are yet to be discovered. This review critically confers the efficacy and promise of resveratrol, a phytoalexin found in the skin of red grapes, for easing SE-induced neurodegeneration, neuroinflammation, aberrant neurogenesis, and for restraining the evolution of SE-induced brain injury into a chronic epileptic state typified by spontaneous recurrent seizures, and learning, memory, and mood impairments.
Collapse
Affiliation(s)
- Olagide W Castro
- Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, United States.,Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States.,Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil
| | - Dinesh Upadhya
- Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, United States.,Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States.,Department of Anatomy, Kasturba Medical College, Manipal University, Manipal, India
| | - Maheedhar Kodali
- Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, United States.,Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States
| | - Ashok K Shetty
- Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, United States.,Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States
| |
Collapse
|
28
|
Abdu SB, Al-Bogami FM. Influence of resveratrol on liver fibrosis induced by dimethylnitrosamine in male rats. Saudi J Biol Sci 2017; 26:201-209. [PMID: 30622427 PMCID: PMC6319027 DOI: 10.1016/j.sjbs.2017.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/03/2017] [Accepted: 09/20/2017] [Indexed: 01/29/2023] Open
Abstract
Liver fibrosis is a significant health problem which represents the liver’s scarring process and response to injury through deposition of collagen and extracellular matrix, and ultimately leads to cirrhosis. Resveratrol is a naturally occurring phytoalexin found predominantly in grapes. This study aimed to investigate the antifibrotic role of resveratrol on dimethylnitrosamine (DMN)-induced liver fibrosis in rats. Rats were divided into four groups and treated for three weeks; control, resveratrol administered orally (20 mg/kg daily), DMN intraperitoneally injected (10 mg/kg 3 days/week), and the last group was pre-treated daily with resveratrol then injected with DMN, 3 days/week. DMN administration induced severe liver pathological alterations. However, oral administration of resveratrol before DMN significantly prevented the induced loss in body weight, as well as the increase in liver weight which arise from DMN administration. Resveratrol has also inhibited the elevation of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and bilirubin levels. Furthermore, resveratrol significantly increased hepatic reduced glutathione (GSH) levels and reduced the levels of malondialdehyde (MDA) due to its antioxidants effect as well as increased serum protein levels. In addition, DMN induced elevation in hydroxyproline content. On the other hand, hydroxyproline level was significantly reduced in the resveratrol pretreated rats. Resveratrol has also remarkably maintained the normal liver lobular architecture. Moreover, resveratrol had displayed potent potentials to prevent collagen deposition, lymphocytic infiltration, necrosis, steatosis, vascular damage, blood hypertention, cholangiocyte proliferation. It can be concluded that resveratrol has a marked protective role on DMN-induced liver fibrosis in rats, and can be considered as antiproliferative, antihypertensive, as well as antifibrotic agent and may be used to block the development of liver fibrosis.
Collapse
Affiliation(s)
- Suzan B Abdu
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Fatima M Al-Bogami
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| |
Collapse
|
29
|
Ethemoglu MS, Seker FB, Akkaya H, Kilic E, Aslan I, Erdogan CS, Yilmaz B. Anticonvulsant activity of resveratrol-loaded liposomes in vivo. Neuroscience 2017; 357:12-19. [PMID: 28577913 DOI: 10.1016/j.neuroscience.2017.05.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 12/25/2022]
Abstract
Resveratrol (3,5,4'-stilbenetriol), a natural polyphenol produced by various plants, has attracted attention over the past decade because of its multiple beneficial properties, including anti-inflammatory, anti-oxidant and chemopreventive, yet, there is limited information about its antiepileptic effects. Moreover, its poor solubility in water and low bioavailability are the challenging issues. In the present study, we aimed to investigate effects of free resveratrol and resveratrol delivered in amphipathic liposomal delivery system, which has a high blood-brain barrier crossing potential, on penicillin-induced epileptic seizure model. For this purpose, adult male Sprague-Dawley rats were divided into four groups as saline (Control), liposome (LIP), free resveratrol (RES) and resveratrol+liposome (RES+LIP). Penicillin-induced epileptic activity was recorded for 120 min by electrocorticography. Glutathione S-transferase (GST), Glutathione (GSH), Superoxide dismutase (SOD) and Malondialdehyde (MDA) assays were performed in brain tissues collected. Our results showed that RES+LIP was the most effective anticonvulsant treatment on penicillin-induced epileptic seizures when compared to control, as RES+LIP immediately decreased the number of spikes per minute. GST and SOD activity, as well as the GSH levels, were significantly increased in the RES+LIP group as compared with the control group. Also, the MDA levels were significantly higher in the RES+LIP compared to RES and control groups. In conclusion, RES+LIP treatment was more effective on the decrease in spike frequency and spike amplitudes than other treatments. Our results suggest that the RES+LIP is more effective than RES on penicillin-induced epileptiform activity.
Collapse
Affiliation(s)
- M S Ethemoglu
- Yeditepe University, Medical School, Department of Physiology, Ataşehir, İstanbul, Turkey
| | - F B Seker
- Yeditepe University, Medical School, Department of Physiology, Ataşehir, İstanbul, Turkey
| | - H Akkaya
- Yeditepe University, Experimental Research Center, Ataşehir, İstanbul, Turkey
| | - E Kilic
- Istanbul Medipol University, Department of Physiology, Istanbul, Turkey
| | - I Aslan
- Yeditepe University, Faculty of Pharmacy, Ataşehir, İstanbul, Turkey
| | - C S Erdogan
- Yeditepe University, Medical School, Department of Physiology, Ataşehir, İstanbul, Turkey
| | - B Yilmaz
- Yeditepe University, Medical School, Department of Physiology, Ataşehir, İstanbul, Turkey.
| |
Collapse
|
30
|
Tomaciello F, Leclercq K, Kaminski RM. Resveratrol lacks protective activity against acute seizures in mouse models. Neurosci Lett 2016; 632:199-203. [PMID: 27600732 DOI: 10.1016/j.neulet.2016.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 01/02/2023]
Abstract
Resveratrol (3,4',5-stilbenetriol) is a natural product having diverse anti-inflammatory and antioxidant properties. The compound has a wide spectrum of pharmacological and metabolic activity, including cardioprotective, neuroprotective, anticarcinogenic and anti-aging effects reported in numerous studies. Some reports also suggest potential anticonvulsant properties of resveratrol. In the present study, we used in mice three different seizure models which are routinely applied in preclinical drug discovery. The protective effects of resveratrol were evaluated in the pentylenetetrazole (PTZ), maximal electroshock (MES) and 6-Hz electrical seizure models. Resveratrol (up to 300mg/kg) administered ip (5-60min pre-treatment time) remained without any protective activity against seizures induced in these models. There was only a trend towards a delay in seizure latency, which reached statistical significance after treatment with resveratrol (100mg/kg; 15min) in case of tonic convulsions induced by PTZ. Phenobarbital (PHB, ip, 45min), used as a reference compound, displayed a clear-cut and dose-dependent protection against seizures in all the models. The ED50 values obtained with PHB were as follows: 7.3mg/kg (PTZ model), 13.3mg/kg (MES model) and 29.7mg/kg (6-Hz model). The present data demonstrate that an acute treatment with resveratrol does not provide any significant protection in three seizure models which collectively are able to detect anticonvulsants with diverse mechanisms of action. However, it cannot be excluded that chronic treatment with resveratrol may offer some protection in these or other seizure models.
Collapse
Affiliation(s)
- Francesca Tomaciello
- UCB Pharma, Neurosciences TA, B-1420 Braine-l'Alleud, Belgium; Faculty of Science, University of Sannio, Benevento, Italy
| | - Karine Leclercq
- UCB Pharma, Neurosciences TA, B-1420 Braine-l'Alleud, Belgium.
| | | |
Collapse
|
31
|
Hoda U, Agarwal NB, Vohora D, Parvez S, Raisuddin S. Resveratrol suppressed seizures by attenuating IL-1β, IL1-Ra, IL-6, and TNF-α in the hippocampus and cortex of kindled mice. Nutr Neurosci 2016; 20:497-504. [PMID: 27256583 DOI: 10.1080/1028415x.2016.1189057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE There is an urge to identify new molecules which can modulate process of epileptogenesis, since currently available drugs act symptomatically and one-third of the patients remain refractory to the disease. Hence, the present study was conducted to evaluate the effects of Resveratrol (RESV) on epileptogenesis in pentylenetetrazole (PTZ)-induced kindling in mice. METHOD Swiss albino mice were administered RESV (10, 20 and 40 mg/kg,p.o) in acute study. On the seventh day animals were subjected to various neurological and neurobehavioral tests viz, Increasing Current Electroshock Test (ICES), PTZ-induced seizures, passive avoidance response, and elevated plus maze test. For the development of kindling PTZ was administered in a dose of 25 mg/kg, i.p. on every alternate day and RESV in all the three doses was administered daily. Seizure score was continuously monitored till the development of kindling and cognition tests were performed in the end of the study. The animals were sacrificed and levels of inflammatory biomarkers viz., IL-1β, interleukin-1 receptor antagonist (IL1-Ra), IL-6, and TNF-α were assessed in the hippocampus and cortex of the kindled animals. RESULTS RESV in all three doses increased the seizure threshold to hind limb extension in the ICES test. RESV in all the tested doses suppressed the development of kindling and reduced the levels of IL-1β, IL1-Ra, IL-6, and TNF-α in kindled mice. CONCLUSION RESV suppressed the development of kindling in mice and decreased the levels of inflammatory biomarkers in their hippocampus. RESV modified brain inflammation during epileptogenesis and found to possess nootropic activity in the kindled mice.
Collapse
Affiliation(s)
- Ubedul Hoda
- a Department of Pharmacology and Centre for Translational and Clinical Research , Jamia Hamdard, New Delhi 110062 , India
| | - Nidhi Bharal Agarwal
- b Centre for Translational and Clinical Research, Faculty of Science , Jamia Hamdard, New Delhi 110062 , India
| | - Divya Vohora
- c Department of Pharmacology, Faculty of Pharmacy , Jamia Hamdard, New Delhi 110062 , India
| | - Suhel Parvez
- d Department of Medical Elementology and Toxicology, Faculty of Science , Jamia Hamdard, New Delhi 110062 , India
| | - Sheikh Raisuddin
- b Centre for Translational and Clinical Research, Faculty of Science , Jamia Hamdard, New Delhi 110062 , India
| |
Collapse
|
32
|
Wang YJ, Chan MH, Chen L, Wu SN, Chen HH. Resveratrol attenuates cortical neuron activity: roles of large conductance calcium-activated potassium channels and voltage-gated sodium channels. J Biomed Sci 2016; 23:47. [PMID: 27209372 PMCID: PMC4875746 DOI: 10.1186/s12929-016-0259-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/06/2016] [Indexed: 12/19/2022] Open
Abstract
Background Resveratrol, a phytoalexin found in grapes and red wine, exhibits diverse pharmacological activities. However, relatively little is known about whether resveratrol modulates the ion channels in cortical neurons. The large-conductance calcium-activated potassium channels (BKCa) and voltage-gated sodium channels were expressed in cortical neurons and play important roles in regulation of neuronal excitability. The present study aimed to determine the effects of resveratrol on BKCa currents and voltage-gated sodium currents in cortical neurons. Results Resveratrol concentration-dependently increased the current amplitude and the opening activity of BKCa channels, but suppressed the amplitude of voltage-gated sodium currents. Similar to the BKCa channel opener NS1619, resveratrol decreased the firing rate of action potentials. In addition, the enhancing effects of BKCa channel blockers tetraethylammonium (TEA) and paxilline on action potential firing were sensitive to resveratrol. Our results indicated that the attenuation of action potential firing rate by resveratrol might be mediated through opening the BKCa channels and closing the voltage-gated sodium channels. Conclusions As BKCa channels and sodium channels are critical molecular determinants for seizure generation, our findings suggest that regulation of these two channels in cortical neurons probably makes a considerable contribution to the antiseizure activity of resveratrol.
Collapse
Affiliation(s)
- Ya-Jean Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi University, 64, Sec.2, ZhiNan Road, Wenshan District, Taipei City, 11605, Taiwan.,Research Center for Mind, Brain, and Learning, National Chengchi University, 64, Sec.2, ZhiNan Road, Wenshan District, Taipei City, 11605, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, 1 University Road, Tainan City, 70101, Taiwan.
| | - Hwei-Hisen Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan. .,Institute of Neuroscience, National Chengchi University, 64, Sec.2, ZhiNan Road, Wenshan District, Taipei City, 11605, Taiwan. .,Department of Pharmacology and Toxicology, School of Medicine, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan.
| |
Collapse
|
33
|
Li Z, Fang F, Wang Y, Wang L. Resveratrol protects CA1 neurons against focal cerebral ischemic reperfusion-induced damage via the ERK-CREB signaling pathway in rats. Pharmacol Biochem Behav 2016; 146-147:21-7. [PMID: 27143440 DOI: 10.1016/j.pbb.2016.04.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/06/2016] [Accepted: 04/29/2016] [Indexed: 12/22/2022]
Abstract
Ischemic stroke is a primary cause of mortality and disability in the aged population. Resveratrol (Res), a natural polyphenol enriched in plants, presents diverse biological activities, e.g., antiinflammatory and anti-oxidation effects. Here, we evaluated whether Res pretreatment influenced focal cerebral ischemia-induced cognitive impairment, and we explored the underlying mechanisms in rats. The results showed that a single administration of Res (30mg/kg, i.p.) at 1 or 4h, but not at 24h before focal cerebral ischemia exerted significant neuroprotective effects, including a reduction in hippocampal CA1 neuronal death and spatial cognition deficits caused by ischemia. The neuroprotective effects of Res were suppressed by pretreatment with MK801, an NMDA receptor blocker, or U0126, an extracellular signal regulated kinase 1/2 (ERK1/2) kinase inhibitor. A western blot analysis revealed that Res treatment at 1h before ischemia significantly increased ERK1/2 phosphorylation and cyclic-AMP response element binding protein (CREB) phosphorylation in the CA1 region of the hippocampus, which can be prevented with U0126 pretreatment. The results showed that the NMDA receptor-mediated ERK-CREB signaling pathway might participates in Res-induced neuroprotection in rats with focal cerebral ischemia.
Collapse
Affiliation(s)
- Zhen Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Fang Fang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Pharmacy Intravenous Admiture Services, Binhu Hospital of Hefei, Anhui Medical University, Hefei, China
| | - Yuanyin Wang
- College of Stomatology, Anhui Medical University, Hefei, China
| | - Liecheng Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
34
|
Hu P, Zhu W, Zhu C, Jin L, Guan Y, Guan X. Resveratrol fails to affect cocaine conditioned place preference behavior, but alleviates anxiety-like behaviors in cocaine withdrawn rats. Psychopharmacology (Berl) 2016; 233:1279-87. [PMID: 26790673 DOI: 10.1007/s00213-016-4210-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/08/2016] [Indexed: 12/21/2022]
Abstract
RATIONALE Resveratrol participates in regulating abnormal behaviors in psychostimulant-exposed animals. OBJECTIVES To examine effects of resveratrol on relapse and anxiety-like behaviors in cocaine withdrawn rats and to investigate possible molecular mechanisms underlying resveratrol effects in hippocampus (HP) and prefrontal cortex (PFC). METHODS Conditioned place preference (CPP) assay and elevated plus maze (EPM) test were used to examine cocaine CPP behavior and anxiety-like behaviors in rats, respectively. Resveratrol was administrated to cocaine withdrawn rats. Levels of MDA, GSH and SOD were examined to evaluate oxidative status, and levels of IL-6, IL-1β and TNF α were measured to examine inflammatory status and levels of caspase-3 and BAX was examined to evaluate apoptotic status in HP and PFC. SIRT expression was also examined here. RESULTS Resveratrol did not affect cocaine CPP behaviors, but attenuated anxiety-like behaviors in cocaine withdrawn rats. Levels of MDA and TNFα in PFC, and levels of MDA, SOD, GSH, IL-6, IL-1β, TNFα, caspase-3 and BAX in HP, but not SIRT1 expression in both regions were significantly changed during cocaine withdrawal period. Except SOD, resveratrol reversed above neurochemical changes induced by cocaine withdrawal. Furthermore, RSV induced a greater upregulation of SIRT1 expression in PFC in cocaine withdrawn rats than that in saline controls. CONCLUSIONS Current findings suggest that resveratrol may influence behaviors in cocaine withdrawn rats. Oxidative stress, inflammation, apoptosis, and SIRT1 signaling pathway in HP or PFC might be involved in mediating effects of RSV on behaviors in cocaine withdrawn rats.
Collapse
Affiliation(s)
- Panpan Hu
- Department of Human Anatomy, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Wei Zhu
- Department of Human Anatomy, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Lai Jin
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaowei Guan
- Department of Human Anatomy, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|
35
|
Wang D, Li Z, Zhang Y, Wang G, Wei M, Hu Y, Ma S, Jiang Y, Che N, Wang X, Yao J, Yin J. Targeting of microRNA-199a-5p protects against pilocarpine-induced status epilepticus and seizure damage via SIRT1-p53 cascade. Epilepsia 2016; 57:706-16. [PMID: 26945677 DOI: 10.1111/epi.13348] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2016] [Indexed: 01/10/2023]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are noncoding small RNAs that control gene expression at the posttranscriptional level. Some dysregulated miRNAs have been shown to play important roles in epileptogenesis. The aim of this study was to determine if miR-199a-5p regulates seizures and seizure damage by targeting the antiapoptotic protein silent information regulator 1 (SIRT1). METHODS Hippocampal expression levels of miR-199a-5p, SIRT1, and acetylated p53 were quantified by quantitative real-time polymerase chain reaction (RT-PCR) and Western blotting in the acute, latent, and chronic stages of epilepsy in a rat lithium-pilocarpine epilepsy model. Silencing of miR-199a-5p expression in vivo was achieved by intracerebroventricular injection of antagomirs. The effects of targeting miR-199a-5p and SIRT1 protein on seizure and epileptic damage post-status epilepticus were assessed by electroencephalography (EEG) and immunohistochemistry, respectively. RESULTS miR-199a-5p expression was up-regulated, SIRT1 levels were decreased, and neuron loss and apoptosis were induced in epilepsy model rats compared with normal controls, as determined by up-regulation of acetylated p53 and cleaved caspase-3 expression. In vivo knockdown of miR-199a-5p by an antagomir alleviated the seizure-like EEG findings and protected against neuron damage, in accordance with up-regulation of SIRT1 and subsequent deacetylation of p53. Furthermore, the seizure-suppressing effect of the antagomir was partly SIRT1 dependent. SIGNIFICANCE The results of this study suggest that silencing of miR-199a-5p exerts a seizure-suppressing effect in rats, and that SIRT1 is a direct target of miR-199a-5p in the hippocampus. The effect of miR-199a-5p on seizures and seizure damage is mediated via down-regulation of SIRT1. The miR-199a-5p/SIRT1 pathway may thus represent a potential target for the prevention and treatment of epilepsy and epileptic damage.
Collapse
Affiliation(s)
- Dong Wang
- Department of Neurosurgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhenlu Li
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning, China
| | - Yukun Zhang
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning, China
| | - Guangzhi Wang
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning, China
| | - Minghai Wei
- Department of Neurosurgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yan Hu
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning, China
| | - Shuo Ma
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning, China
| | - Yue Jiang
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning, China
| | - Ningwei Che
- Department of Neurosurgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaofeng Wang
- Department of Neurosurgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning, China
| | - Jian Yin
- Department of Neurosurgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
36
|
Łukawski K, Gryta P, Łuszczki J, Czuczwar SJ. Exploring the latest avenues for antiepileptic drug discovery and development. Expert Opin Drug Discov 2016; 11:369-82. [DOI: 10.1517/17460441.2016.1154840] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Bulaj G, Ahern MM, Kuhn A, Judkins ZS, Bowen RC, Chen Y. Incorporating Natural Products, Pharmaceutical Drugs, Self-Care and Digital/Mobile Health Technologies into Molecular-Behavioral Combination Therapies for Chronic Diseases. CURRENT CLINICAL PHARMACOLOGY 2016; 11:128-45. [PMID: 27262323 PMCID: PMC5011401 DOI: 10.2174/1574884711666160603012237] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 02/08/2023]
Abstract
Merging pharmaceutical and digital (mobile health, mHealth) ingredients to create new therapies for chronic diseases offers unique opportunities for natural products such as omega-3 polyunsaturated fatty acids (n-3 PUFA), curcumin, resveratrol, theanine, or α-lipoic acid. These compounds, when combined with pharmaceutical drugs, show improved efficacy and safety in preclinical and clinical studies of epilepsy, neuropathic pain, osteoarthritis, depression, schizophrenia, diabetes and cancer. Their additional clinical benefits include reducing levels of TNFα and other inflammatory cytokines. We describe how pleiotropic natural products can be developed as bioactive incentives within the network pharmacology together with pharmaceutical drugs and self-care interventions. Since approximately 50% of chronically-ill patients do not take pharmaceutical drugs as prescribed, psychobehavioral incentives may appeal to patients at risk for medication non-adherence. For epilepsy, the incentive-based network therapy comprises anticonvulsant drugs, antiseizure natural products (n-3 PUFA, curcumin or/and resveratrol) coupled with disease-specific behavioral interventions delivered by mobile medical apps. The add-on combination of antiseizure natural products and mHealth supports patient empowerment and intrinsic motivation by having a choice in self-care behaviors. The incentivized therapies offer opportunities: (1) to improve clinical efficacy and safety of existing drugs, (2) to catalyze patient-centered, disease self-management and behavior-changing habits, also improving health-related quality-of-life after reaching remission, and (3) merging copyrighted mHealth software with natural products, thus establishing an intellectual property protection of medical treatments comprising the natural products existing in public domain and currently promoted as dietary supplements. Taken together, clinical research on synergies between existing drugs and pleiotropic natural products, and their integration with self-care, music and mHealth, expands precision/personalized medicine strategies for chronic diseases via pharmacological-behavioral combination therapies.
Collapse
Affiliation(s)
- Grzegorz Bulaj
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Pharmacy Institute, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Mishra V, Shuai B, Kodali M, Shetty GA, Hattiangady B, Rao X, Shetty AK. Resveratrol Treatment after Status Epilepticus Restrains Neurodegeneration and Abnormal Neurogenesis with Suppression of Oxidative Stress and Inflammation. Sci Rep 2015; 5:17807. [PMID: 26639668 PMCID: PMC4671086 DOI: 10.1038/srep17807] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/06/2015] [Indexed: 12/18/2022] Open
Abstract
Antiepileptic drug therapy, though beneficial for restraining seizures, cannot thwart status epilepticus (SE) induced neurodegeneration or down-stream detrimental changes. We investigated the efficacy of resveratrol (RESV) for preventing SE-induced neurodegeneration, abnormal neurogenesis, oxidative stress and inflammation in the hippocampus. We induced SE in young rats and treated with either vehicle or RESV, commencing an hour after SE induction and continuing every hour for three-hours on SE day and twice daily thereafter for 3 days. Seizures were terminated in both groups two-hours after SE with a diazepam injection. In contrast to the vehicle-treated group, the hippocampus of animals receiving RESV during and after SE presented no loss of glutamatergic neurons in hippocampal cell layers, diminished loss of inhibitory interneurons expressing parvalbumin, somatostatin and neuropeptide Y in the dentate gyrus, reduced aberrant neurogenesis with preservation of reelin + interneurons, lowered concentration of oxidative stress byproduct malondialdehyde and pro-inflammatory cytokine tumor necrosis factor-alpha, normalized expression of oxidative stress responsive genes and diminished numbers of activated microglia. Thus, 4 days of RESV treatment after SE is efficacious for thwarting glutamatergic neuron degeneration, alleviating interneuron loss and abnormal neurogenesis, and suppressing oxidative stress and inflammation. These results have implications for restraining SE-induced chronic temporal lobe epilepsy.
Collapse
Affiliation(s)
- Vikas Mishra
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - Geetha A. Shetty
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Texas A & M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA
- Research Service, Olin E. Teague Veterans’ Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| |
Collapse
|
39
|
The role and potential mechanism of resveratrol in the prevention and control of epilepsy. Future Med Chem 2015; 7:2005-18. [PMID: 26505553 DOI: 10.4155/fmc.15.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epilepsy is one of the most common diseases affecting the nervous system, with more than 50 million patients suffering from epilepsy worldwide. Although epilepsy has been prevalent for thousands of years, it is still not possible to completely control the disease. Despite an increase in the number of available antiepileptic drugs, the incidence of epilepsy and its cure rate have not been substantially improved; thus, there is an urgent need to identify new drugs that treat, cure or protect against epilepsy. Resveratrol is a polyphenol compound with a broad range of biological activity; not only it has considerable antiepileptic effects, but it is also neuroprotective and has functions to counter epileptic depression. Resveratrol has the potential to be a new antiepileptic drug, thus further studies are needed to better investigate its potential.
Collapse
|
40
|
Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation. Sci Rep 2015; 5:8075. [PMID: 25627672 PMCID: PMC4894403 DOI: 10.1038/srep08075] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/05/2015] [Indexed: 12/18/2022] Open
Abstract
Greatly waned neurogenesis, diminished microvasculature, astrocyte hypertrophy and activated microglia are among the most conspicuous structural changes in the aged hippocampus. Because these alterations can contribute to age-related memory and mood impairments, strategies efficacious for mitigating these changes may preserve cognitive and mood function in old age. Resveratrol, a phytoalexin found in the skin of red grapes having angiogenic and antiinflammatory properties, appears ideal for easing these age-related changes. Hence, we examined the efficacy of resveratrol for counteracting age-related memory and mood impairments and the associated detrimental changes in the hippocampus. Two groups of male F344 rats in late middle-age having similar learning and memory abilities were chosen and treated with resveratrol or vehicle for four weeks. Analyses at ~25 months of age uncovered improved learning, memory and mood function in resveratrol-treated animals but impairments in vehicle-treated animals. Resveratrol-treated animals also displayed increased net neurogenesis and microvasculature, and diminished astrocyte hypertrophy and microglial activation in the hippocampus. These results provide novel evidence that resveratrol treatment in late middle age is efficacious for improving memory and mood function in old age. Modulation of the hippocampus plasticity and suppression of chronic low-level inflammation appear to underlie the functional benefits mediated by resveratrol.
Collapse
|
41
|
Bedada SK, Nearati P. Effect of resveratrol on the pharmacokinetics of carbamazepine in healthy human volunteers. Phytother Res 2015; 29:701-6. [PMID: 25624269 DOI: 10.1002/ptr.5302] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/12/2014] [Accepted: 12/27/2014] [Indexed: 01/06/2023]
Abstract
The purpose of the present study was to assess the effect of resveratrol (RSV) pretreatment on CYP3A4 enzyme activity and pharmacokinetics of carbamazepine (CBZ) in healthy human volunteers. The open-label, two period, sequential study was conducted in 12 healthy human volunteers. A single dose of RSV 500 mg was administered once daily for 10 days during treatment phase. A single dose of CBZ 200 mg was administered during control and after treatment phases under fasting conditions. The blood samples were collected after CBZ dosing at predetermined time intervals and analyzed by LC-MS/MS. In comparison with the control, RSV pretreatment significantly enhanced maximum plasma concentration (Cmax ), area under the curve (AUC), and half life (t1/2 ) and significantly decreased apparent oral clearance (CL/F) and apparent volume of distribution (Vd/F), while there was no significant change observed in time to reach maximum concentration (tmax ) and elimination rate constant (kel ) of CBZ. Furthermore, RSV pretreatment significantly decreased metabolite to parent (CBZE/CBZ) ratios of Cmax and AUC and significantly increased CBZE/CBZ ratios of CL/F and Vd/F, indicating the reduced formation of CBZE to CBZ. The results suggest that the altered CYP3A4 enzyme activity and pharmacokinetics of CBZ might be attributed to RSV-mediated inhibition of CYP3A4 enzyme. Thus, there is a potential pharmacokinetic interaction between RSV and CBZ including other CYP3A4 substrates.
Collapse
Affiliation(s)
- Satish Kumar Bedada
- DMPK & Clinical Pharmacology Division, Department of Pharmacology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, AP, India
| | | |
Collapse
|
42
|
Quincozes-Santos A, Bobermin LD, Tramontina AC, Wartchow KM, Tagliari B, Souza DO, Wyse AT, Gonçalves CA. Oxidative stress mediated by NMDA, AMPA/KA channels in acute hippocampal slices: Neuroprotective effect of resveratrol. Toxicol In Vitro 2014; 28:544-51. [DOI: 10.1016/j.tiv.2013.12.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/19/2013] [Accepted: 12/28/2013] [Indexed: 12/19/2022]
|
43
|
Saha L, Chakrabarti A. Understanding the anti-kindling role and its mechanism of Resveratrol in Pentylenetetrazole induced-kindling in a rat model. Pharmacol Biochem Behav 2014; 120:57-64. [DOI: 10.1016/j.pbb.2014.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/18/2014] [Accepted: 01/22/2014] [Indexed: 12/18/2022]
|
44
|
Kaminski RM, Rogawski MA, Klitgaard H. The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments. Neurotherapeutics 2014; 11:385-400. [PMID: 24671870 PMCID: PMC3996125 DOI: 10.1007/s13311-014-0266-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A major goal of contemporary epilepsy research is the identification of therapies to prevent the development of recurrent seizures in individuals at risk, including those with brain injuries, infections, or neoplasms; status epilepticus; cortical dysplasias; or genetic epilepsy susceptibility. In this review we consider the evidence largely from preclinical models for the antiepileptogenic activity of a diverse range of potential therapies, including some marketed antiseizure drugs, as well as agents that act by immune and inflammatory mechanisms; reduction of oxidative stress; activation of the mammalian target of rapamycin or peroxisome proliferator-activated receptors γ pathways; effects on factors related to thrombolysis, hematopoesis, and angiogenesis; inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reducatase; brain-derived neurotrophic factor signaling; and blockade of α2 adrenergic and cannabinoid receptors. Antiepileptogenesis refers to a therapy of which the beneficial action is to reduce seizure frequency or severity outlasting the treatment period. To date, clinical trials have failed to demonstrate that antiseizure drugs have such disease-modifying activity. However, studies in animal models with levetiracetam and ethosuximide are encouraging, and clinical trials with these agents are warranted. Other promising strategies are inhibition of interleukin 1β signaling by drugs such as VX-765; modulation of sphingosine 1-phosphate signaling by drugs such as fingolimod; activation of the mammalian target of rapamycin by drugs such as rapamycin; the hormone erythropoietin; and, paradoxically, drugs such as the α2 adrenergic receptor antagonist atipamezole and the CB1 cannabinoid antagonist SR141716A (rimonabant) with proexcitatory activity. These approaches could lead to a new paradigm in epilepsy drug therapy where treatment for a limited period prevents the occurrence of spontaneous seizures, thus avoiding lifelong commitment to symptomatic treatment.
Collapse
Affiliation(s)
| | - Michael A. Rogawski
- />Department of Neurology, University of California, Davis School of Medicine, Sacramento, CA USA
| | | |
Collapse
|
45
|
Meng XJ, Wang F, Li CK. Resveratrol is Neuroprotective and Improves Cognition in Pentylenetetrazole-kindling Model of Epilepsy in Rats. Indian J Pharm Sci 2014; 76:125-31. [PMID: 24843185 PMCID: PMC4023281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 01/19/2014] [Accepted: 01/25/2014] [Indexed: 12/03/2022] Open
Abstract
S100B protein in serum and cerebral spinal fluid is increasingly used as a biochemical marker in early examinations after seizure to assess brain damage. Resveratrol, a nonflavonoid polyphenol, has been identified as a potent antiepileptic agent. However, a potential association between epilepsy with S100B protein in the cerebral spinal fluid and the sera of animal models lacks investigation. In this study, we evaluated the effects of resveratrol on behaviour and S100B protein levels in cerebral spinal fluid and serum in a rat model of chronic epilepsy induced via pentylenetetrazole kindling. By Morris water maze experiment analysis, we found that recovery of cognitive function in the resveratrol group (15 mg/kg/day), was significantly better than that of either the untreated or the vehicle groups. Further Nissl staining revealed that resveratrol significantly reduced pentylenetetrazole-induced death of neurons in the CA1 and CA3 regions of the hippocampus. Moreover, S100B protein levels in the cerebral spinal fluid and serum of rats treated with resveratrol were significantly reduced compared with the untreated and vehicle groups. These novel findings suggest an important mechanism of resveratrol and contribute to the treatment of epilepsy.
Collapse
Affiliation(s)
- X. J. Meng
- Department of Neurosurgery, School of Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - F. Wang
- Department of Neurosurgery, School of Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - C. K. Li
- Department of Neurosurgery, School of Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
46
|
Dong WH, Chen JC, He YL, Xu JJ, Mei YA. Resveratrol inhibits Kv2.2 currents through the estrogen receptor GPR30-mediated PKC pathway. Am J Physiol Cell Physiol 2013; 305:C547-57. [DOI: 10.1152/ajpcell.00146.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resveratrol (REV) is a naturally occurring phytoalexin that inhibits neuronal K+ channels; however, the molecular mechanisms behind the effects of REV and the relevant α-subunit are not well defined. With the use of patch-clamp technique, cultured cerebellar granule cells, and HEK-293 cells transfected with the Kv2.1 and Kv2.2 α-subunits, we investigated the effect of REV on Kv2.1 and Kv2.2 α-subunits. Our data demonstrated that REV significantly suppressed Kv2.2 but not Kv2.1 currents with a fast, reversible, and mildly concentration-dependent manner and shifted the activation or inactivation curve of Kv2.2 channels. Activating or inhibiting the cAMP/PKA pathway did not abolish the inhibition of Kv2.2 current by REV. In contrast, activation of PKC with phorbol 12-myristate 13-acetate mimicked the inhibitory effect of REV on Kv2.2 by modifying the activation or inactivation properties of Kv2.2 channels and eliminated any further inhibition by REV. PKC and PKC-α inhibitor completely eliminated the REV-induced inhibition of Kv2.2. Moreover, the effect of REV on Kv2.2 was reduced by preincubation with antagonists of GPR30 receptor and shRNA for GPR30 receptor. Western blotting results indicated that the levels of PKC-α and PKC-β were significantly increased in response to REV application. Our data reveal, for the first time, that REV inhibited Kv2.2 currents through PKC-dependent pathways and a nongenomic action of the oestrogen receptor GPR30.
Collapse
Affiliation(s)
- Wen-Hao Dong
- Institutes of Brain Science, School of Life Sciences and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Jia-Chen Chen
- Institutes of Brain Science, School of Life Sciences and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yan-Lin He
- Institutes of Brain Science, School of Life Sciences and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Jia-Jie Xu
- Institutes of Brain Science, School of Life Sciences and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yan-Ai Mei
- Institutes of Brain Science, School of Life Sciences and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiol Dis 2013; 59:183-93. [PMID: 23938763 DOI: 10.1016/j.nbd.2013.07.015] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 07/29/2013] [Indexed: 02/06/2023] Open
Abstract
We studied whether pharmacological blockade of the IL-1β-mediated signaling, rapidly activated in forebrain by epileptogenic injuries, affords neuroprotection in two different rat models of status epilepticus (SE). As secondary outcome, we measured treatment's effect on SE-induced epileptogenesis. IL-1β signaling was blocked by systemic administration of two antiinflammatory drugs, namely human recombinant IL-1 receptor antagonist (anakinra), the naturally occurring and clinically used competitive IL-1 receptor type 1 antagonist, and VX-765 a specific non-peptide inhibitor of IL-1β cleavage and release. Antiinflammatory drugs were given 60min after antiepileptic (AED) drug-controlled SE induced by pilocarpine, or 180min after unrestrained electrical SE, for 7days using a protocol yielding therapeutic drug levels in brain. This drug combination significantly decreased both IL-1β expression in astrocytes and cell loss in rat forebrain. Neuroprotection and the antiinflammatory effect were more pronounced in the electrical SE model. Onset of epilepsy, and frequency and duration of seizures 3months after electrical SE were not significantly modified. Transcriptomic analysis in the hippocampus showed that the combined treatment did not affect the broad inflammatory response induced by SE during epileptogenesis. In particular, the treatment did not prevent the induction of the complement system and Toll-like receptors, both contributing to cell loss and seizure generation. We conclude that the IL-1β signaling represents an important target for reducing cell loss after SE. The data highlight a new class of clinically tested agents affording neuroprotection after a delayed post-injury intervention. Earlier blockade of this rapid onset inflammatory pathway during SE, or concomitant treatment with antiinflammatory drugs targeting additional components of the broad inflammatory response to SE, or co-treatment with AEDs, is likely to be required for optimizing beneficial outcomes.
Collapse
|
48
|
Yuan J, Lu L, Zhang Z, Zhang S. Dietary intake of resveratrol enhances the adaptive immunity of aged rats. Rejuvenation Res 2013; 15:507-15. [PMID: 22950432 DOI: 10.1089/rej.2012.1321] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It is well known that immune response declines with aging. Resveratrol, a polyphenol that occurs naturally in several plant species including grapevines and berries, has been shown to have potent antiaging and health-promoting activities. However, the mechanism underlying these activities remains largely unknown. Here we clearly demonstrate that: (1) Dietary intake of resveratrol induced a significant increase in T helper cells (CD4(+)) in middle-aged (12 months old) and aged (21 months old) Wistar male rats; (2) resveratrol supplementation considerably increased the delayed-type hypersensitivity response, a T cell-mediated immune response, in aged rats; and (3) reveratrol supplementation remarkably promoted the production of total anti-keyhole limpet hemocyanin (KLH) immunoglobulin G (IgG), anti-KLH IgG(1), and anti-KLH IgG(2α) in aged rats without disturbing immune homeostasis. These data together indicate that resveratrol is capable of counteracting immunosenescence, thereby leading to rejuvenation. In practice, resveratrol can be useful to help the elderly generate an improved response to vaccine with stronger humoral and cell-mediated immune responses.
Collapse
Affiliation(s)
- Jiangshui Yuan
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, China
| | | | | | | |
Collapse
|
49
|
Dasgupta S, Bandyopadhyay M. Neuroprotective mode of action of resveratrol in central nervous system. PHARMANUTRITION 2013. [DOI: 10.1016/j.phanu.2013.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Method Validation for the One - Month Stability Study of trans – Resveratrol in Human Plasma. Jundishapur J Nat Pharm Prod 2013. [DOI: 10.5812/jjnpp.9566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|