1
|
Yang D. TRPA1-Related Diseases and Applications of Nanotherapy. Int J Mol Sci 2024; 25:9234. [PMID: 39273183 PMCID: PMC11395144 DOI: 10.3390/ijms25179234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Transient receptor potential (TRP) channels, first identified in Drosophila in 1969, are multifunctional ion channels expressed in various cell types. Structurally, TRP channels consist of six membrane segments and are classified into seven subfamilies. Transient receptor potential ankyrin 1 (TRPA1), the first member of the TRPA family, is a calcium ion affinity non-selective cation channel involved in sensory transduction and responds to odors, tastes, and chemicals. It also regulates temperature and responses to stimuli. Recent studies have linked TRPA1 to several disorders, including chronic pain, inflammatory diseases, allergies, and respiratory problems, owing to its activation by environmental toxins. Mutations in TRPA1 can affect the sensory nerves and microvasculature, potentially causing nerve pain and vascular problems. Understanding the function of TRPA1 is important for the development of treatments for these diseases. Recent developments in nanomedicines that target various ion channels, including TRPA1, have had a significant impact on disease treatment, providing innovative alternatives to traditional disease treatments by overcoming various adverse effects.
Collapse
Affiliation(s)
- Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
2
|
de Melo Cardoso M, Scussel R, da Silva Abel J, Pereira FO, Cruz LA, da Costa Constante F, De Pieri E, Abelaira HM, Ferreira J, Gomez MV, Rigo FK, Machado-de-Ávila RA. Intravenous administration of recombinant Phα1β: Antinociceptive properties and morphine tolerance reversal in a cancer-associated pain model. Toxicon 2024; 243:107717. [PMID: 38614245 DOI: 10.1016/j.toxicon.2024.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Cancer-related pain is considered one of the most prevalent symptoms for those affected by cancer, significantly influencing quality of life and treatment outcomes. Morphine is currently employed for analgesic treatment in this case, however, chronic use of this opioid is limited by the development of analgesic tolerance and adverse effects, such as digestive and neurological disorders. Alternative therapies, such as ion channel blockade, are explored. The toxin Phα1β has demonstrated efficacy in blocking calcium channels, making it a potential candidate for alleviating cancer-related pain. This study aims to assess the antinociceptive effects resulting from intravenous administration of the recombinant form of Phα1β (r-Phα1β) in an experimental model of cancer-related pain in mice, tolerant or not to morphine. The model of cancer-induced pain was used to evaluate these effects, with the injection of B16F10 cells, followed by the administration of the r-Phα1β, and evaluation of the mechanical threshold by the von Frey test. Also, adverse effects were assessed using a score scale, the rotarod, and open field tests. Results indicate that the administration of r-Phα1β provoked antinociception in animals with cancer-induced mechanical hyperalgesia, with or without morphine tolerance. Previous administration of r-Phα1β was able to recover the analgesic activity of morphine in animals tolerant to this opioid. r-Phα1β was proved safe for these parameters, as no adverse effects related to motor and behavioral activity were observed following intravenous administration. This study suggests that the concomitant use of morphine and r-Phα1β could be a viable strategy for pain modulation in cancer patients.
Collapse
Affiliation(s)
- Mariana de Melo Cardoso
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil; Postgraduate Program in Health Sciences: Infectious Diseases and Tropical Medicine, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, MG, Brazil
| | - Rahisa Scussel
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil
| | - Jéssica da Silva Abel
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil
| | - Fernando Oriques Pereira
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil
| | - Lidiane Anastácio Cruz
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil
| | - Franciane da Costa Constante
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil
| | - Ellen De Pieri
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil
| | - Helena Mendes Abelaira
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil
| | - Juliano Ferreira
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Marcus Vinícius Gomez
- Graduate Program in Health Sciences, Institute of Education and Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil; Center of Technology in Molecular Medicine, School of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Flávia Karine Rigo
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South Catarinense (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
3
|
Fialho MFP, Brum ES, Becker G, Oliveira SM. TRPV4 Activation and its Intracellular Modulation Mediated by Kinin Receptors Contribute to Painful Symptoms Induced by Anastrozole. Mol Neurobiol 2024; 61:1627-1642. [PMID: 37740866 DOI: 10.1007/s12035-023-03654-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Anastrozole, an aromatase inhibitor, induces painful musculoskeletal symptoms, which affect patients' quality of life and lead to therapy discontinuation. Efforts have been made to understand the mechanisms involved in these painful symptoms to manage them better. In this context, we explored the role of the Transient Receptor Potential Vanilloid 4 (TRPV4), a potential transducer of several nociceptive mechanisms, in anastrozole-induced musculoskeletal pain in mice. Besides, we evaluated the possible sensibilization of TRPV4 by signalling pathways downstream, PLC, PKC and PKCε from kinin B2 (B2R) and B1 (B1R) receptors activation in anastrozole-induced pain. Anastrozole caused mechanical allodynia and muscle strength loss in mice. HC067047, TRPV4 antagonist, reduced the anastrozole-induced mechanical allodynia and muscle strength loss. In animals previously treated with anastrozole, the local administration of sub-nociceptive doses of the TRPV4 (4α-PDD or hypotonic solution), B2R (Bradykinin) or B1R (DABk) agonists enhanced the anastrozole-induced pain behaviours. The sensitizing effects induced by local injection of the TRPV4, B2R and B1R agonists in animals previously treated with anastrozole were reduced by pre-treatment with TRPV4 antagonist. Furthermore, inhibition of PLC, PKC or PKCε attenuated the mechanical allodynia and muscle strength loss induced by TRPV4, B2R and B1R agonists. The generation of painful conditions caused by anastrozole depends on direct TRPV4 activation or indirect, e.g., PLC, PKC and PKCε pathways downstream from B2R and B1R activation. Thus, the TRPV4 channels act as sensors of extracellular and intracellular changes, making them potential therapeutic targets for alleviating pain related to aromatase inhibitors use, such as anastrozole.
Collapse
Affiliation(s)
- Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Evelyne Silva Brum
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Becker
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
4
|
Marini M, Titiz M, Souza Monteiro de Araújo D, Geppetti P, Nassini R, De Logu F. TRP Channels in Cancer: Signaling Mechanisms and Translational Approaches. Biomolecules 2023; 13:1557. [PMID: 37892239 PMCID: PMC10605459 DOI: 10.3390/biom13101557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Ion channels play a crucial role in a wide range of biological processes, including cell cycle regulation and cancer progression. In particular, the transient receptor potential (TRP) family of channels has emerged as a promising therapeutic target due to its involvement in several stages of cancer development and dissemination. TRP channels are expressed in a large variety of cells and tissues, and by increasing cation intracellular concentration, they monitor mechanical, thermal, and chemical stimuli under physiological and pathological conditions. Some members of the TRP superfamily, namely vanilloid (TRPV), canonical (TRPC), melastatin (TRPM), and ankyrin (TRPA), have been investigated in different types of cancer, including breast, prostate, lung, and colorectal cancer. TRP channels are involved in processes such as cell proliferation, migration, invasion, angiogenesis, and drug resistance, all related to cancer progression. Some TRP channels have been mechanistically associated with the signaling of cancer pain. Understanding the cellular and molecular mechanisms by which TRP channels influence cancer provides new opportunities for the development of targeted therapeutic strategies. Selective inhibitors of TRP channels are under initial scrutiny in experimental animals as potential anti-cancer agents. In-depth knowledge of these channels and their regulatory mechanisms may lead to new therapeutic strategies for cancer treatment, providing new perspectives for the development of effective targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139 Florence, Italy; (M.M.); (M.T.); (D.S.M.d.A.); (P.G.); (F.D.L.)
| | | |
Collapse
|
5
|
Becker G, Fialho MFP, Brum ES, Oliveira SM. Kinin B 2 Receptor Mediates Cisplatin-Induced Painful Peripheral Neuropathy by Intracellular Kinase Pathways and TRPA1 Channel Sensitisation. Pharmaceuticals (Basel) 2023; 16:959. [PMID: 37513871 PMCID: PMC10386204 DOI: 10.3390/ph16070959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy is a severe clinical problem frequently associated with cisplatin use. Although its pathophysiology is poorly understood, it is known that kinin receptors and the transient receptor potential ankyrin 1 (TRPA1) channel play a significant role in the peripheral neuropathy induced by cisplatin in rodents. However, the role of signalling pathways downstream from B2 kinin receptors activation and sensitisation of the TRPA1 channel remains unknown in this model. The cisplatin-induced neuropathy model caused mechanical and cold allodynia in male Swiss mice. Antagonists for kinin B2 and B1 receptors and the TRPA1 channel attenuated the painful parameters. Local sub-nociceptive doses of kinin B2 receptor (bradykinin) and TRPA1 channel (allyl isothiocyanate; AITC) agonists enhanced the painful parameters in cisplatin-treated mice, which their respective antagonists attenuated. Furthermore, we demonstrated the interaction between the kinin B2 receptor and the TRPA1 channel in cisplatin-induced peripheral neuropathy since phospholipase C (PLC) and protein kinase C epsilon (PKCε) inhibitors attenuated the increase in mechanical and cold allodynia evoked by bradykinin and AITC in cisplatin-treated mice. Therefore, regulating the activation of signalling pathways downstream from the kinin B2 receptors activation and TRPA1 channel sensitisation can mitigate the painful peripheral neuropathy decurrent of the oncology treatment with cisplatin.
Collapse
Affiliation(s)
- Gabriela Becker
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Evelyne Silva Brum
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Sara Marchesan Oliveira
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
6
|
Fialho MFP, Brum ES, Becker G, Brusco I, Oliveira SM. Kinin B2 and B1 Receptors Activation Sensitize the TRPA1 Channel Contributing to Anastrozole-Induced Pain Symptoms. Pharmaceutics 2023; 15:pharmaceutics15041136. [PMID: 37111622 PMCID: PMC10143169 DOI: 10.3390/pharmaceutics15041136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Aromatase inhibitors (AIs) cause symptoms of musculoskeletal pain, and some mechanisms have been proposed to explain them. However, signaling pathways downstream from kinin B2 (B2R) and B1 (B1R) receptor activation and their possible sensitizing of the Transient Receptor Potential Ankyrin 1 (TRPA1) remain unknown. The interaction between the kinin receptor and the TRPA1 channel in male C57BL/6 mice treated with anastrozole (an AI) was evaluated. PLC/PKC and PKA inhibitors were used to evaluate the signaling pathways downstream from B2R and B1R activation and their effect on TRPA1 sensitization. Anastrozole caused mechanical allodynia and muscle strength loss in mice. B2R (Bradykinin), B1R (DABk), or TRPA1 (AITC) agonists induced overt nociceptive behavior and enhanced and prolonged the painful parameters in anastrozole-treated mice. All painful symptoms were reduced by B2R (Icatibant), B1R (DALBk), or TRPA1 (A967079) antagonists. We observed the interaction between B2R, B1R, and the TRPA1 channel in anastrozole-induced musculoskeletal pain, which was dependent on the activation of the PLC/PKC and PKA signaling pathways. TRPA1 seems to be sensitized by mechanisms dependent on the activation of PLC/PKC, and PKA due to kinin receptors stimulation in anastrozole-treated animals. Thus, regulating this signaling pathway could contribute to alleviating AIs-related pain symptoms, patients’ adherence to therapy, and disease control.
Collapse
Affiliation(s)
- Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Evelyne Silva Brum
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Gabriela Becker
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Indiara Brusco
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, RS, Brazil
- Department of Biochemical and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
7
|
Rapp E, Lu Z, Sun L, Serna SN, Almestica-Roberts M, Burrell KL, Nguyen ND, Deering-Rice CE, Reilly CA. Mechanisms and Consequences of Variable TRPA1 Expression by Airway Epithelial Cells: Effects of TRPV1 Genotype and Environmental Agonists on Cellular Responses to Pollutants in Vitro and Asthma. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:27009. [PMID: 36847817 PMCID: PMC9969990 DOI: 10.1289/ehp11076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Transient receptor potential ankyrin-1 [transient receptor potential cation channel subfamily A member 1 (TRPA1)] and vanilloid-1 [transient receptor potential cation channel subfamily V member 1 (TRPV1)] detect inhaled irritants, including air pollutants and have roles in the development and exacerbation of asthma. OBJECTIVES This study tested the hypothesis that increased expression of TRPA1, stemming from expression of the loss-of-function TRPV1 (I585V; rs8065080) polymorphic variant by airway epithelial cells may explain prior observations of worse asthma symptom control among children with the TRPV1 I585I/V genotype, by virtue of sensitizing epithelial cells to particulate materials and other TRPA1 agonists. METHODS TRP agonists, antagonists, small interfering RNA (siRNA), a nuclear factor kappa light chain enhancer of activated B cells (NF-κB) pathway inhibitor, and kinase activators and inhibitors were used to modulate TRPA1 and TRPV1 expression and function. Treatment of genotyped airway epithelial cells with particulate materials and analysis of asthma control data were used to assess consequences of TRPV1 genotype and variable TRPA1 expression on cellular responses in vitro and asthma symptom control among children as a function of voluntarily reported tobacco smoke exposure. RESULTS A relationship between higher TRPA1 expression and function and lower TRPV1 expression and function was revealed. Findings of this study pointed to a mechanism whereby NF-κB promoted TRPA1 expression, whereas NF-κB-regulated nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 2 (NLRP2) limited expression. Roles for protein kinase C and p38 mitogen activated protein kinase were also demonstrated. Finally, the TRPV1 I585I/V genotype was associated with increased TRPA1 expression by primary airway epithelial cells and amplified responses to selected air pollution particles in vitro. However, the TRPV1 I585I/V genotype was not associated with worse asthma symptom control among children exposed to tobacco smoke, whereas other TRPA1 and TRPV1 variants were. DISCUSSION This study provides insights on how airway epithelial cells regulate TRPA1 expression, how TRPV1 genetics can affect TRPA1 expression, and that TRPA1 and TRPV1 polymorphisms differentially affect asthma symptom control. https://doi.org/10.1289/EHP11076.
Collapse
Affiliation(s)
- Emmanuel Rapp
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Zhenyu Lu
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Lili Sun
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Samantha N. Serna
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Katherine L. Burrell
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Nam D. Nguyen
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Cassandra E. Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Christopher A. Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
8
|
Mesch S, Walter D, Laux-Biehlmann A, Basting D, Flanagan S, Miyatake Ondozabal H, Bäurle S, Pearson C, Jenkins J, Elves P, Hess S, Coelho AM, Rotgeri A, Bothe U, Nawaz S, Zollner TM, Steinmeyer A. Discovery of BAY-390, a Selective CNS Penetrant Chemical Probe as Transient Receptor Potential Ankyrin 1 (TRPA1) Antagonist. J Med Chem 2023; 66:1583-1600. [PMID: 36622903 PMCID: PMC9884088 DOI: 10.1021/acs.jmedchem.2c01830] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 01/10/2023]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a voltage-dependent, ligand-gated ion channel, and activation thereof is linked to a variety of painful conditions. Preclinical studies have demonstrated the role of TRPA1 receptors in a broad range of animal models of acute, inflammatory, and neuropathic pain. In addition, a clinical study using the TRPA1 antagonist GRC-17536 (Glenmark Pharmaceuticals) demonstrated efficacy in a subgroup of patients with painful diabetic neuropathy. Consequently, there is an increasing interest in TRPA1 inhibitors as potential analgesics. Herein, we report the identification of a fragment-like hit from a high-throughput screening (HTS) campaign and subsequent optimization to provide a novel and brain-penetrant TRPA1 inhibitor (compound 18, BAY-390), which is now being made available to the research community as an open-source in vivo probe.
Collapse
Affiliation(s)
- Stefanie Mesch
- Pharmaceutical
R&D, Drug Discovery, Medicinal Chemistry, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Daryl Walter
- Discovery
Chemistry, Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - Alexis Laux-Biehlmann
- Exploratory
Pathobiology, RED preMED, R&D, Bayer
AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Daniel Basting
- Pharmaceutical
R&D, Drug Discovery, Lead Identification and Characterization, Bayer AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Stuart Flanagan
- Discovery
Chemistry, Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - Hideki Miyatake Ondozabal
- Pharmaceutical
R&D, Drug Discovery, Medicinal Chemistry, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Stefan Bäurle
- Pharmaceutical
R&D, Drug Discovery, Medicinal Chemistry, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Christopher Pearson
- Discovery
Chemistry, Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - James Jenkins
- Discovery
Chemistry, Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - Philip Elves
- Discovery
Chemistry, Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - Stephen Hess
- In
Vitro Pharmacology, Evotec SE, Manfred Eigen Campus, Essener Bogen
7, 22419 Hamburg, Germany
| | - Anne-Marie Coelho
- In Vivo Pharmacology, Evotec SE, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Andrea Rotgeri
- Pharmaceutical
R&D, Early Development, Drug Metabolism and Pharmacokinetics, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Ulrich Bothe
- Pharmaceutical
R&D, Drug Discovery, Medicinal Chemistry, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Schanila Nawaz
- In Vivo Pharmacology, Evotec SE, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Thomas M. Zollner
- Pharmaceutical
R&D, Preclinical Research, Therapeutic Area Endocrinology, Metabolism
and Reproductive Health, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Andreas Steinmeyer
- Pharmaceutical
R&D, Drug Discovery, Medicinal Chemistry, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| |
Collapse
|
9
|
TRPV3: Structure, Diseases and Modulators. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020774. [PMID: 36677834 PMCID: PMC9865980 DOI: 10.3390/molecules28020774] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Transient receptor potential vanillin 3 (TRPV3) is a member of the transient receptor potential (TRP) superfamily. As a Ca2+-permeable nonselective cation channel, TRPV3 can recognize thermal stimulation (31-39 °C), and it plays an important regulatory role in temperature perception, pain transduction, skin physiology, inflammation, cancer and other diseases. TRPV3 is not only activated by the changes in the temperature, but it also can be activated by a variety of chemical and physical stimuli. Selective TRPV3 agonists and antagonists with regulatory effects and the physiological functions for clinical application are highly demanded. In recent years, significant progress has been made in the study of TRPV3, but there is still a lack of modulators with a strong affinity and excellent selectivity. This paper reviews the functional characteristics of TRPV3 in terms of the structure, diseases and the research on TRPV3 modulators.
Collapse
|
10
|
TRPA1 participation in behavioral impairment induced by chronic corticosterone administration. Psychopharmacology (Berl) 2023; 240:157-169. [PMID: 36520197 DOI: 10.1007/s00213-022-06290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
RATIONALE Major depressive disorder (MDD) is one of the most diagnosed mental disorders. Despite this, its pathophysiology remains poorly understood. In this context, basic research aims to unravel the pathophysiological mechanisms of MDD as well as investigate new targets and substances with therapeutic potential. Transient receptor potential ankyrin 1 (TRPA1) is a transmembrane channel considered a sensor for inflammation and oxidative stress. Importantly, both inflammation and oxidative stress have been suggested as participants in the pathophysiology of MDD. However, the potential participation of TRPA1 in depressive disorder remains poorly investigated. OBJECTIVE To investigate the involvement of the TRPA1 channel in the behavioral changes induced by chronic corticosterone administration (CCA) in male mice. METHODS Swiss male mice were exposed to 21 days of CCA protocol and then treated with HC-030031 or A-967079, TRPA1 antagonists. Behavioral tests, analyzes of oxidative parameters and TRPA1 immunocontent were performed in the prefrontal cortex (PFC) and hippocampus (HIP). RESULTS CCA induced despair-like behavior in mice accompanied by an increase in the levels of hydrogen peroxide (H2O2), a TRPA1 agonist, which was reversed by TRPA1 antagonists and ketamine (positive control). In addition, CCA protocol reduced the immunocontent of this channel in the HIP and showed a tendency to increase the TRPA1 protein expression in the PFC. CONCLUSION Our work suggests that TRPA1 channel appears crucial to mediate the behavioral impairment induced by CCA in male Swiss mice.
Collapse
|
11
|
Li Z, Zhang H, Wang Y, Li Y, Li Q, Zhang L. The distinctive role of menthol in pain and analgesia: Mechanisms, practices, and advances. Front Mol Neurosci 2022; 15:1006908. [PMID: 36277488 PMCID: PMC9580369 DOI: 10.3389/fnmol.2022.1006908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Menthol is an important flavoring additive that triggers a cooling sensation. Under physiological condition, low to moderate concentrations of menthol activate transient receptor potential cation channel subfamily M member 8 (TRPM8) in the primary nociceptors, such as dorsal root ganglion (DRG) and trigeminal ganglion, generating a cooling sensation, whereas menthol at higher concentration could induce cold allodynia, and cold hyperalgesia mediated by TRPM8 sensitization. In addition, the paradoxical irritating properties of high concentrations of menthol is associated with its activation of transient receptor potential cation channel subfamily A member 1 (TRPA1). Under pathological situation, menthol activates TRPM8 to attenuate mechanical allodynia and thermal hyperalgesia following nerve injury or chemical stimuli. Recent reports have recapitulated the requirement of central group II/III metabotropic glutamate receptors (mGluR) with endogenous κ-opioid signaling pathways for menthol analgesia. Additionally, blockage of sodium channels and calcium influx is a determinant step after menthol exposure, suggesting the possibility of menthol for pain management. In this review, we will also discuss and summarize the advances in menthol-related drugs for pathological pain treatment in clinical trials, especially in neuropathic pain, musculoskeletal pain, cancer pain and postoperative pain, with the aim to find the promising therapeutic candidates for the resolution of pain to better manage patients with pain in clinics.
Collapse
Affiliation(s)
- Ziping Li
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Haoyue Zhang
- The Graduate School, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yigang Wang
- The Graduate School, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Qing Li,
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Linlin Zhang,
| |
Collapse
|
12
|
Jain SM, Balamurugan R, Tandon M, Mozaffarian N, Gudi G, Salhi Y, Holland R, Freeman R, Baron R. Randomized, double-blind, placebo-controlled trial of ISC 17536, an oral inhibitor of transient receptor potential ankyrin 1, in patients with painful diabetic peripheral neuropathy: impact of preserved small nerve fiber function. Pain 2022; 163:e738-e747. [PMID: 34490850 PMCID: PMC9100440 DOI: 10.1097/j.pain.0000000000002470] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Patients with chronic pain syndromes, such as those with painful peripheral neuropathy due to diabetes mellitus, have limited treatment options and suffer ongoing attrition of their quality of life. Safer and more effective treatment options are needed. One therapeutic approach encompasses phenotypic characterization of the neuropathic pain subtype, combined with the selection of agents that act on relevant mechanisms. ISC 17536 is a novel, orally available inhibitor of the widely expressed pain receptor, transient receptor potential ankyrin 1, which mediates nociceptive signaling in peripheral small nerve fibers. In this randomized, placebo-controlled, proof-of-concept trial, we assessed the safety and efficacy of 28-day administration of ISC 17536 in 138 patients with chronic, painful diabetic peripheral neuropathy and used quantitative sensory testing to characterize the baseline phenotype of patients. The primary end point was the change from baseline to end of treatment in the mean 24-hour average pain intensity score based on an 11-point pain intensity numeric rating scale. The study did not meet the primary end point in the overall patient population. However, statistically significant and clinically meaningful improvement in pain were seen with ISC 17536 in an exploratory hypothesis-generating subpopulation of patients with preserved small nerve fiber function defined by quantitative sensory testing. These results may provide a mechanistic basis for targeted therapy in specific pain phenotypes in line with current approaches of "precision medicine" or personalized pain therapeutics. The hypothesis is planned to be tested in a larger phase 2 study.
Collapse
Affiliation(s)
| | | | - Monika Tandon
- Clinical Sciences, Glenmark Pharmaceuticals Limited, Mumbai, India
| | | | - Girish Gudi
- Ichnos Sciences, Inc, New York, NY, United States
| | - Yacine Salhi
- Ichnos Sciences, Inc, New York, NY, United States
| | - Robert Holland
- Early Clinical Development Consulting Ltd, Macclesfield, United Kingdom
| | - Roy Freeman
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Universitätsklinikum Schleswig-Holstein, Campus-Kiel, Germany
| |
Collapse
|
13
|
Systemic, Intrathecal, and Intracerebroventricular Antihyperalgesic Effects of the Calcium Channel Blocker CTK 01512–2 Toxin in Persistent Pain Models. Mol Neurobiol 2022; 59:4436-4452. [DOI: 10.1007/s12035-022-02864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
|
14
|
Landini L, Souza Monteiro de Araujo D, Titiz M, Geppetti P, Nassini R, De Logu F. TRPA1 Role in Inflammatory Disorders: What Is Known So Far? Int J Mol Sci 2022; 23:ijms23094529. [PMID: 35562920 PMCID: PMC9101260 DOI: 10.3390/ijms23094529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, is primarily localized in a subpopulation of primary sensory neurons of the trigeminal, vagal, and dorsal root ganglia, where its activation mediates neurogenic inflammatory responses. TRPA1 expression in resident tissue cells, inflammatory, and immune cells, through the indirect modulation of a large series of intracellular pathways, orchestrates a range of cellular processes, such as cytokine production, cell differentiation, and cytotoxicity. Therefore, the TRPA1 pathway has been proposed as a protective mechanism to detect and respond to harmful agents in various pathological conditions, including several inflammatory diseases. Specific attention has been paid to TRPA1 contribution to the transition of inflammation and immune responses from an early defensive response to a chronic pathological condition. In this view, TRPA1 antagonists may be regarded as beneficial tools for the treatment of inflammatory conditions.
Collapse
|
15
|
Del C Reyes-Vázquez N, de la Rosa LA, Morales-Landa JL, García-Fajardo JA, García-Cruz MÁ. Phytochemical content and potential health applications of pecan [Carya illinoinensis (Wangenh) K. Koch] nutshell. Curr Top Med Chem 2022; 22:150-167. [PMID: 34986772 DOI: 10.2174/1568026622666220105104355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The pecan nutshell contains phytochemicals with various biological activities that are potentially useful in the prevention or treatment of diseases such as cancer, diabetes, and metabolic imbalances associated with heart diseases. OBJECTIVE To update this topic by means of a literature review and include those that contribute to the knowledge of the chemical composition and biological activities of pecan nutshell, particularly of those related to the therapeutic potential against some chronic degenerative diseases associated with oxidative stress. METHOD Exhaustive and detailed review of the existing literature using electronic databases. CONCLUSION The pecan nutshell is a promising natural product with pharmaceutical uses in various diseases. However, additional research related to the assessment of efficient extraction methods and characterization, particularly the evaluation of the mechanisms of action in new in vivo models, is necessary to confirm these findings and development of new drugs with therapeutic use.
Collapse
Affiliation(s)
- Nohemí Del C Reyes-Vázquez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C. Subsede Noreste. 66629 Apodaca-66629, Nuevo León, México
| | - Laura A de la Rosa
- Departamento de Ciencias Químico Biológicas. Instituto de Ciencias Biomédicas. Universidad Autónoma de Ciudad Juárez. Ciudad Juárez-32310, Chihuahua, México
| | - Juan Luis Morales-Landa
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C. Subsede Noreste. 66629 Apodaca-66629, Nuevo León, México
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C. Subsede Noreste. 66629 Apodaca-66629, Nuevo León, México
| | - Jorge Alberto García-Fajardo
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C. Subsede Noreste. 66629 Apodaca-66629, Nuevo León, México
| | - Miguel Ángel García-Cruz
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza-66450, Nuevo León, México
| |
Collapse
|
16
|
Qin C, Wang Y, Gao Y. Overactive Bladder Symptoms Within Nervous System: A Focus on Etiology. Front Physiol 2021; 12:747144. [PMID: 34955876 PMCID: PMC8703002 DOI: 10.3389/fphys.2021.747144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Overactive bladder (OAB) is a common debilitating condition characterized by urgency symptoms with detrimental effects on the quality of life and survival. The exact etiology of OAB is still enigmatic, and none of therapeutic approaches seems curative. OAB is generally regarded as a separate syndrome, whereas in clinic, OAB symptoms could be found in numerous diseases of other non-urogenital systems, particularly nervous system. The OAB symptoms in neurological diseases are often poorly recognized and inadequately treated. This review provided a comprehensive overview of recent findings related to the neurogenic OAB symptoms. Relevant neurological diseases could be mainly divided into seven kinds as follows: multiple sclerosis and related neuroinflammatory disorders, Parkinson’s diseases, multiple system atrophy, spinal cord injury, dementia, peripheral neuropathy, and others. Concurrently, we also summarized the hypothetical reasonings and available animal models to elucidate the underlying mechanism of neurogenic OAB symptoms. This review highlighted the close association between OAB symptoms and neurological diseases and expanded the current knowledge of pathophysiological basis of OAB. This may increase the awareness of urological complaints in neurological disorders and inspire robust therapies with better outcomes.
Collapse
Affiliation(s)
- Chuying Qin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yunliang Gao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Duitama M, Moreno Y, Santander SP, Casas Z, Sutachan JJ, Torres YP, Albarracín SL. TRP Channels as Molecular Targets to Relieve Cancer Pain. Biomolecules 2021; 12:1. [PMID: 35053150 PMCID: PMC8774023 DOI: 10.3390/biom12010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential (TRP) channels are critical receptors in the transduction of nociceptive stimuli. The microenvironment of diverse types of cancer releases substances, including growth factors, neurotransmitters, and inflammatory mediators, which modulate the activity of TRPs through the regulation of intracellular signaling pathways. The modulation of TRP channels is associated with the peripheral sensitization observed in patients with cancer, which results in mild noxious sensory stimuli being perceived as hyperalgesia and allodynia. Secondary metabolites derived from plant extracts can induce the activation, blocking, and desensitization of TRP channels. Thus, these compounds could act as potential therapeutic agents, as their antinociceptive properties could be beneficial in relieving cancer-derived pain. In this review, we will summarize the role of TRPV1 and TRPA1 in pain associated with cancer and discuss molecules that have been reported to modulate these channels, focusing particularly on the mechanisms of channel activation associated with molecules released in the tumor microenvironment.
Collapse
Affiliation(s)
- Milena Duitama
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Yurany Moreno
- Department of Lymphoma & Myeloma, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA;
| | - Sandra Paola Santander
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá 111111, Colombia;
| | - Zulma Casas
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Jhon Jairo Sutachan
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Yolima P. Torres
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Sonia L. Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| |
Collapse
|
18
|
Hu F, Song X, Long D. Transient receptor potential ankyrin 1 and calcium: Interactions and association with disease (Review). Exp Ther Med 2021; 22:1462. [PMID: 34737802 PMCID: PMC8561754 DOI: 10.3892/etm.2021.10897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Calcium (Ca2+) is an essential signaling molecule in all cells. It is involved in numerous fundamental functions, including cell life and death. Abnormal regulation of Ca2+ homeostasis may cause human diseases. Usually known as a member of the transient receptor potential (TRP) family, TRP ankyrin 1 (TRPA1) is the only member of the ankyrin subfamily identified in mammals so far and widely expressed in cells and tissues. As it is involved in numerous sensory disorders such as pain and pruritus, TRPA1 is a potential target for the treatment of neuropathy. The functions of TRP family members are closely related to Ca2+. TRPA1 has a high permeability to Ca2+, sodium and potassium ions as a non-selective cation channel and the Ca2+ influx mediated by TRPA1 is involved in a variety of biological processes. In the present review, research on the relationship between the TRPA1 channel and Ca2+ ions and their interaction in disease-associated processes was summarised. The therapeutic potential of the TRPA1 channel is highlighted, which is expected to become a novel direction for the prevention and treatment of health conditions such as cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fangyan Hu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaohua Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
19
|
Synthesis, structural and spectroscopic characterization, in silico study, and antinociceptive effect in adult zebrafish of 2-(4-isobutylphenyl) -N'-phenylpropanohydrazide. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
20
|
Lajoso W, Flower G, Giacco V, Kaul A, La Mache C, Brăban A, Roxas A, Hamilton NB. Transient Receptor Potential Ankyrin-1 (TRPA1) Block Protects against Loss of White Matter Function during Ischaemia in the Mouse Optic Nerve. Pharmaceuticals (Basel) 2021; 14:ph14090909. [PMID: 34577609 PMCID: PMC8469017 DOI: 10.3390/ph14090909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/28/2022] Open
Abstract
Oligodendrocytes produce myelin, which provides insulation to axons and speeds up neuronal transmission. In ischaemic conditions, myelin is damaged, resulting in mental and physical disabilities. Recent evidence suggests that oligodendrocyte damage during ischaemia can be mediated by Transient Receptor Potential Ankyrin-1 (TRPA1), whose activation raises intracellular Ca2+ concentrations and damages compact myelin. Here, we show that TRPA1 is constitutively active in oligodendrocytes and the optic nerve, as the specific TRPA1 antagonist, A-967079, decreases basal oligodendrocyte Ca2+ concentrations and increases the size of the compound action potential (CAP). Conversely, TRPA1 agonists reduce the size of the optic nerve CAP in an A-967079-sensitive manner. These results indicate that glial TRPA1 regulates neuronal excitability in the white matter under physiological as well as pathological conditions. Importantly, we find that inhibition of TRPA1 prevents loss of CAPs during oxygen and glucose deprivation (OGD) and improves the recovery. TRPA1 block was effective when applied before, during, or after OGD, indicating that the TRPA1-mediated damage is occurring during both ischaemia and recovery, but importantly, that therapeutic intervention is possible after the ischaemic insult. These results indicate that TRPA1 has an important role in the brain, and that its block may be effective in treating many white matter diseases.
Collapse
|
21
|
Fan Y, Xue G, Chen Q, Lu Y, Dong R, Yuan H. CY-09 Inhibits NLRP3 Inflammasome Activation to Relieve Pain via TRPA1. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9806690. [PMID: 34426748 PMCID: PMC8380162 DOI: 10.1155/2021/9806690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/05/2021] [Accepted: 07/24/2021] [Indexed: 01/18/2023]
Abstract
Peripheral tissue damage leads to inflammatory pain, and inflammatory cytokine releasing is the key factor for inducing the sensitization of nociceptors. As a calcium ion channel, TRPA1 plays an important role in pain and inflammation, thus becoming a new type of anti-inflammatory and analgesic target. However, there is no consensus on the role of this channel in mechanical hyperalgesia caused by inflammation. Here, we aim to explore the role and underlying mechanism of the inflammasome inhibitor CY-09 in two classic inflammatory pain models. We evaluated pain behavior on animal models, cytokine levels, intracellular Ca2+ levels, transient TRPA1 expression, NF-κB transcription, and NLPR3 inflammasome activation. Consistently, CY-09 reduced the production of inflammatory cytokines, intracellular Ca2+ levels, and the activation of TRPA1 by inhibiting the activation of inflammasomes, thereby reducing the proinflammatory polarization of macrophages and alleviating animal pain and injury. Importantly, AITC (TRPA1 agonist) significantly reversed the analgesic effect of CY-09, indicating that TRPA1 was involved in the analgesic effect of CY-09. Our findings indicate that CY-09 relieves inflammation and pain via inhibiting TRPA1-mediated activation of NLRP3 inflammasomes. Thus, NLRP3 inflammasome may be a potential therapeutic target for pain treatment and CY-09 may be a pharmacological agent to relieve inflammatory pain, which needs further research.
Collapse
Affiliation(s)
- Youjia Fan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Gaici Xue
- Department of Neurosurgery, Southern Theater Command of the People's Liberation Army, Shanghai 510010, China
| | - Qianbo Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Naval Military Medical University, Shanghai 200438, China
| | - Ye Lu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Rong Dong
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
22
|
Luostarinen S, Hämäläinen M, Hatano N, Muraki K, Moilanen E. The inflammatory regulation of TRPA1 expression in human A549 lung epithelial cells. Pulm Pharmacol Ther 2021; 70:102059. [PMID: 34302984 DOI: 10.1016/j.pupt.2021.102059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/06/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Transient receptor potential ankyrin-1 (TRPA1) is an ion channel mediating pain and cough signals in sensory neurons. We and others have shown that TRPA1 is also expressed in some non-neuronal cells and supports inflammatory responses. To address the pathogenesis and to uncover potential targets for pharmacotherapy in inflammatory lung diseases, we set out to study the expression of TRPA1 in human A549 lung epithelial cells under inflammatory conditions. TRPA1 expression was determined by RT-qPCR and Western blotting at a mRNA and protein level, respectively and its function was studied by Fluo 3-AM intracellular Ca2+ measurement in A549 lung epithelial cells. TRPA1 promoter activity was assessed by reporter gene assay. TRPA1 expression was very low in A549 cells in the absence of inflammatory stimuli. Tumor necrosis factor-α (TNF-α) significantly increased TRPA1 expression and a synergy was found between TNF-α, interleukin-1β (IL-1β) and interferon-γ (IFN-γ). Reporter gene experiments indicate that the combination of TNF-α and IL-1β increases TRPA1 promoter activity while the effect of IFN-γ seems to be non-transcriptional. Interestingly, the glucocorticoid dexamethasone downregulated TRPA1 expression in A549 cells by reducing TRPA1 mRNA stability in a transcription-dependent manner. Furthermore, pharmacological blockade of TRPA1 reduced the production of the pro-inflammatory cytokine IL-8. In conclusion, TRPA1 was found to be expressed and functional in human A549 lung epithelial cells under inflammatory conditions. The anti-inflammatory steroid dexamethasone reduced TRPA1 expression through post-transcriptional mechanisms. The results reveal TRPA1 as a potential mediator and drug target in inflammatory lung conditions.
Collapse
Affiliation(s)
- Samu Luostarinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
23
|
Eller OC, Yang X, Fuentes IM, Pierce AN, Jones BM, Brake AD, Wang R, Dussor G, Christianson JA. Voluntary Wheel Running Partially Attenuates Early Life Stress-Induced Neuroimmune Measures in the Dura and Evoked Migraine-Like Behaviors in Female Mice. Front Physiol 2021; 12:665732. [PMID: 34122137 PMCID: PMC8194283 DOI: 10.3389/fphys.2021.665732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Migraine is a complex neurological disorder that affects three times more women than men and can be triggered by endogenous and exogenous factors. Stress is a common migraine trigger and exposure to early life stress increases the likelihood of developing chronic pain disorders later in life. Here, we used our neonatal maternal separation (NMS) model of early life stress to investigate whether female NMS mice have an increased susceptibility to evoked migraine-like behaviors and the potential therapeutic effect of voluntary wheel running. NMS was performed for 3 h/day during the first 3 weeks of life and initial observations were made at 12 weeks of age after voluntary wheel running (Exercise, -Ex) or sedentary behavior (-Sed) for 4 weeks. Mast cell degranulation rates were significantly higher in dura mater from NMS-Sed mice, compared to either naïve-Sed or NMS-Ex mice. Protease activated receptor 2 (PAR2) protein levels in the dura were significantly increased in NMS mice and a significant interaction of NMS and exercise was observed for transient receptor potential ankyrin 1 (TRPA1) protein levels in the dura. Behavioral assessments were performed on adult (>8 weeks of age) naïve and NMS mice that received free access to a running wheel beginning at 4 weeks of age. Facial grimace, paw mechanical withdrawal threshold, and light aversion were measured following direct application of inflammatory soup (IS) onto the dura or intraperitoneal (IP) nitroglycerin (NTG) injection. Dural IS resulted in a significant decrease in forepaw withdrawal threshold in all groups of mice, while exercise significantly increased grimace score across all groups. NTG significantly increased grimace score, particularly in exercised mice. A significant effect of NMS and a significant interaction effect of exercise and NMS were observed on hindpaw sensitivity following NTG injection. Significant light aversion was observed in NMS mice, regardless of exercise, following NTG. Finally, exercise significantly reduced calcitonin gene-related peptide (CGRP) protein level in the dura of NMS and naïve mice. Taken together, these findings suggest that while voluntary wheel running improved some measures in NMS mice that have been associated with increased migraine susceptibility, behavioral outcomes were not impacted or even worsened by exercise.
Collapse
Affiliation(s)
- Olivia C. Eller
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Xiaofang Yang
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Isabella M. Fuentes
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Angela N. Pierce
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Physiology, Kansas City University of Medicine and Biosciences, Joplin, MO, United States
| | - Brittni M. Jones
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Aaron D. Brake
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Ruipeng Wang
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, United States
| | - Julie A. Christianson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
24
|
de Almeida AS, Bernardes LDB, Trevisan G. TRP channels in cancer pain. Eur J Pharmacol 2021; 904:174185. [PMID: 34015320 DOI: 10.1016/j.ejphar.2021.174185] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 01/06/2023]
Abstract
Chronic pain is a common symptom experienced during cancer progression. Additionally, some patients experience bone pain caused by cancer metastasis, which further complicates the prognosis. Cancer pain is often treated using opioid-based pharmacotherapy, but these drugs possess several adverse effects. Accordingly, new mechanisms for cancer pain management are being explored, including transient receptor potential channels (TRPs). TRP ion channels are expressed in several tissues and play a key role in pain detection, especially TRP vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1). In the present review, we describe the role of TRPV1 and TRPA1 involved in cancer pain mechanisms. Several studies have revealed that the administration of TRPV1 or TRPA1 agonists/antagonists and TRPV1 or TRPA1 knockdown reduced sensitivity to nociception in cancer pain models. TRPV1 was also found to be involved in various models of cancer-induced bone pain (CIBP), with TRPV1 expression reportedly enhanced in some models. These studies have demonstrated the TRPV1 or TRPA1 association with cancer pain in models induced by tumour cell inoculation into the bone cavity, hind paw, mammary fat pad, and sciatic nerve in mice or rats. To date, only resiniferatoxin, a TRPV1 agonist, has been evaluated in clinical trials for cancer pain and showed preliminary positive results. Thus, TRP channels are potential targets for managing cancer-related pain syndromes.
Collapse
Affiliation(s)
- Amanda Spring de Almeida
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Laura de Barros Bernardes
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Gabriela Trevisan
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
25
|
Lin J, Taggart M, Borthwick L, Fisher A, Brodlie M, Sassano MF, Tarran R, Gray MA. Acute cigarette smoke or extract exposure rapidly activates TRPA1-mediated calcium influx in primary human airway smooth muscle cells. Sci Rep 2021; 11:9643. [PMID: 33953304 PMCID: PMC8100124 DOI: 10.1038/s41598-021-89051-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
Tobacco smoking is the largest risk factor for developing chronic obstructive pulmonary disease (COPD), and is associated with hyperresponsiveness of airway smooth muscle (ASM). Chronic exposure to cigarette smoke (CS) leads to airway inflammation and remodelling. However, the direct effect of gaseous CS or CS extract (CSE) on human airway smooth muscle cell (hASMC) function remains poorly understood. This study investigated the acute effect of CS/CSE on calcium homeostasis, a key regulator of ASM physiology and pathophysiology. Primary hASMC were isolated from non-smoking donor lungs, and subjected to Ca2+ imaging studies. We found that both CS, and CSE, rapidly elevated cytosolic Ca2+ in hASMC through stimulation of plasmalemmal Ca2+ influx, but excluded store-operated and L-type Ca2+ channels as mediators of this effect. Using a specific pharmacological inhibitor, or shRNA-driven knockdown, we established that both CS and CSE stimulated Ca2+ influx in hASMC through the neurogenic pain receptor channel, transient receptor potential ankyrin 1 (TRPA1). CS/CSE-dependent, TRPA1-mediated Ca2+ influx led to myosin light-chain phosphorylation, a key process regulating ASM contractility. We conclude that TRPA1 is likely an important link between CS/CSE exposure and airway hyperresponsiveness, and speculate that acute CS/CSE-induced Ca2+ influx could lead to exacerbated ASM contraction and potentially initiate further chronic pathological effects of tobacco smoke.
Collapse
Affiliation(s)
- JinHeng Lin
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK
| | - Michael Taggart
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK
| | - Lee Borthwick
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK
| | - Andrew Fisher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Malcolm Brodlie
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
- Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, Tyne and Wear, UK
| | - M Flori Sassano
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert Tarran
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael A Gray
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK.
| |
Collapse
|
26
|
Sensory neuron-associated macrophages as novel modulators of neuropathic pain. Pain Rep 2021; 6:e873. [PMID: 33981924 PMCID: PMC8108583 DOI: 10.1097/pr9.0000000000000873] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
The peripheral nervous system comprises an infinity of neural networks that act in the communication between the central nervous system and the most diverse tissues of the body. Along with the extension of the primary sensory neurons (axons and cell bodies), a population of resident macrophages has been described. These newly called sensory neuron-associated macrophages (sNAMs) seem to play an essential role in physiological and pathophysiological processes, including infection, autoimmunity, nerve degeneration/regeneration, and chronic neuropathic pain. After different types of peripheral nerve injury, there is an increase in the number and activation of sNAMs in the sciatic nerve and sensory ganglia. The activation of sNAMs and their participation in neuropathic pain development depends on the stimulation of pattern recognition receptors such as Toll-like receptors and Nod-like receptors, chemokines/cytokines, and microRNAs. On activation, sNAMs trigger the production of critical inflammatory mediators such as proinflammatory cytokines (eg, TNF and IL-1β) and reactive oxygen species that can act in the amplification of primary sensory neurons sensitization. On the other hand, there is evidence that sNAMs can produce antinociceptive mediators (eg, IL-10) that counteract neuropathic pain development. This review will present the cellular and molecular mechanisms behind the participation of sNAMs in peripheral nerve injury-induced neuropathic pain development. Understanding how sNAMs are activated and responding to nerve injury can help set novel targets for the control of neuropathic pain.
Collapse
|
27
|
Mukaiyama M, Usui T, Nagumo Y. Non-electrophilic TRPA1 agonists, menthol, carvacrol and clotrimazole, open epithelial tight junctions via TRPA1 activation. J Biochem 2021; 168:407-415. [PMID: 32428205 DOI: 10.1093/jb/mvaa057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Activation of the transient receptor potential A1 channel (TRPA1) by electrophilic agonists was reported to induce the opening of tight junctions (TJs). Because compounds that increase TJ permeability can be paracellular permeability enhancers, we investigated the effect of non-electrophilic TRPA1 activators, including food ingredients (menthol and carvacrol) and medication (clotrimazole), on epithelial permeability. We show that all three compounds induced increase of the permeability of fluorescein isothiocyanate-conjugated dextran (4 kDa) and decrease of transepithelial electrical resistance, accompanied by Ca2+ influx and cofilin activation in epithelial MDCK II monolayers. These phenotypes were attenuated by pretreatment of a TRPA1 antagonist, suggesting TRPA1-mediated opening of TJs. These results suggest that non-electrophilic TRPA1 activators with established safety can be utilized to regulate epithelial barriers.
Collapse
Affiliation(s)
| | - Takeo Usui
- Faculty of Life and Environmental Sciences.,Microbiology Research Center for Sustainability (MiCS)
| | - Yoko Nagumo
- Faculty of Life and Environmental Sciences.,Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
28
|
Abstract
The transient receptor potential (TRP) channel superfamily is comprised of a large group of cation-permeable channels, which display an extraordinary diversity of roles in sensory signaling and are involved in plethora of animal behaviors. These channels are activated through a wide variety of mechanisms and participate in virtually every sensory modality. Modulating TRP channel activity provides an important way to regulate membrane excitability and intracellular calcium levels. This is reflected by the fact that small molecule compounds modulating different TRPs have all entered clinical trials for a variety of diseases. The role of TRPs will be further elucidated in complex diseases of the nervous, intestinal, renal, urogenital, respiratory, and cardiovascular systems in diverse therapeutic areas including pain and itch, headache, pulmonary function, oncology, neurology, visceral organs, and genetic diseases. This review focuses on recent developments in the TRP ion channel-related area and highlights evidence supporting TRP channels as promising targets for new analgesic drugs for therapeutic intervention. This review presents a variety of: (1) phylogeny aspects of TRP channels; (2) some structural and functional characteristics of TRPs; (3) a general view and short characteristics of main seven subfamilies of TRP channels; (4) the evidence for consider TRP channels as therapeutic and analgesic targets; and finally (5) further perspectives of TRP channels research.
Collapse
|
29
|
Calmodulin Supports TRPA1 Channel Association with Opioid Receptors and Glutamate NMDA Receptors in the Nervous Tissue. Int J Mol Sci 2020; 22:ijms22010229. [PMID: 33379368 PMCID: PMC7795679 DOI: 10.3390/ijms22010229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Transient receptor potential ankyrin member 1 (TRPA1) belongs to the family of thermo TRP cation channels that detect harmful temperatures, acids and numerous chemical pollutants. TRPA1 is expressed in nervous tissue, where it participates in the genesis of nociceptive signals in response to noxious stimuli and mediates mechanical hyperalgesia and allodynia associated with different neuropathies. The glutamate N-methyl-d-aspartate receptor (NMDAR), which plays a relevant role in allodynia to mechanical stimuli, is connected via histidine triad nucleotide-binding protein 1 (HINT1) and type 1 sigma receptor (σ1R) to mu-opioid receptors (MORs), which mediate the most potent pain relief. Notably, neuropathic pain causes a reduction in MOR antinociceptive efficacy, which can be reversed by blocking spinal NMDARs and TRPA1 channels. Thus, we studied whether TRPA1 channels form complexes with MORs and NMDARs that may be implicated in the aforementioned nociceptive signals. Our data suggest that TRPA1 channels functionally associate with MORs, delta opioid receptors and NMDARs in the dorsal root ganglia, the spinal cord and brain areas. These associations were altered in response to pharmacological interventions and the induction of inflammatory and also neuropathic pain. The MOR-TRPA1 and NMDAR-TRPA1 associations do not require HINT1 or σ1R but appear to be mediated by calcium-activated calmodulin. Thus, TRPA1 channels may associate with NMDARs to promote ascending acute and chronic pain signals and to control MOR antinociception.
Collapse
|
30
|
Wang M, Thyagarajan B. Pain pathways and potential new targets for pain relief. Biotechnol Appl Biochem 2020; 69:110-123. [PMID: 33316085 DOI: 10.1002/bab.2086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022]
Abstract
Pain is an unpleasant sensory and emotional experience that affects a sizable percentage of people on a daily basis. Sensory neurons known as nociceptors built specifically to detect damaging stimuli can be found throughout the body. They transmit information about noxious stimuli from mechanical, thermal, and chemical sources to the central nervous system and higher brain centers via electrical signals. Nociceptors express various channels and receptors such as voltage-gated sodium and calcium channels, transient receptor potential channels, and opioid receptors that allow them to respond in a highly specific manner to noxious stimuli. Attenuating the pain response can be achieved by inhibiting or altering the expression of these pain targets. Achieving a deeper understanding of how these receptors can be affected at the molecular level can lead to the development of novel pain therapies. This review will discuss the mechanisms of pain, introduce the various receptors that are responsible for detecting pain, and future directions in pharmacological therapies.
Collapse
Affiliation(s)
- Menglan Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Baskaran Thyagarajan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
31
|
Yoshida M, Yamamiya R, Shimizu Y, Yoshimura K. Transgenic Chlamydomonas Expressing Human Transient Receptor Potential Ankyrin 1 (TRPA1) Channels to Assess the Effect of Agonists and Antagonists. Front Pharmacol 2020; 11:578955. [PMID: 33117171 PMCID: PMC7550780 DOI: 10.3389/fphar.2020.578955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) channel is an ion channel whose gating is controlled by agonists, such as allyl isothiocyanate (AITC), and temperature. Since TRPA1 is associated with various disease symptoms and chemotherapeutic side effects, it is a frequent target of drug development. To facilitate the screening of TRPA1 agonists and antagonists, this study aimed to develop a simple bioassay for TRPA1 activity. To this end, transgenic Chlamydomonas reinhardtii expressing human TRPA1 was constructed. The transformants exhibited positive phototaxis at high temperatures (≥20°C) but negative phototaxis at low temperatures (≤15°C); wild-type cells showed positive phototaxis at all temperatures examined. In the transgenic cells, negative phototaxis was inhibited by TRPA1 antagonists, such as HC030031, A-967079, and AP18, at low temperatures. Negative phototaxis was induced by TRPA1 agonists, such as icilin and AITC, at high temperatures. The effects of these agonists were blocked by TRPA1 antagonists. In wild-type cells, none of these substances had any effects on phototaxis. These results indicate that the action of TRPA1 agonists and antagonists can be readily assessed using the behavior of C. reinhardtii expressing human TRPA1 as an assessment tool.
Collapse
Affiliation(s)
- Megumi Yoshida
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Ryodai Yamamiya
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Yuto Shimizu
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Kenjiro Yoshimura
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan.,Bio-Inteligence for Well Being, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
32
|
Phospho-Mimetic Mutation at Ser602 Inactivates Human TRPA1 Channel. Int J Mol Sci 2020; 21:ijms21217995. [PMID: 33121177 PMCID: PMC7663402 DOI: 10.3390/ijms21217995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
The Transient Receptor Potential Ankyrin 1 (TRPA1) channel is an integrative molecular sensor for detecting environmental irritant compounds, endogenous proalgesic and inflammatory agents, pressure, and temperature. Different post-translational modifications participate in the discrimination of the essential functions of TRPA1 in its physiological environment, but the underlying structural bases are poorly understood. Here, we explored the role of the cytosolic N-terminal residue Ser602 located near a functionally important allosteric coupling domain as a potential target of phosphorylation. The phosphomimetic mutation S602D completely abrogated channel activation, whereas the phosphonull mutations S602G and S602N produced a fully functional channel. Using mutagenesis, electrophysiology, and molecular simulations, we investigated the possible structural impact of a modification (mutation or phosphorylation) of Ser602 and found that this residue represents an important regulatory site through which the intracellular signaling cascades may act to reversibly restrict or “dampen” the conformational space of the TRPA1 channel and promote its transitions to the closed state.
Collapse
|
33
|
Souza Monteiro de Araujo D, Nassini R, Geppetti P, De Logu F. TRPA1 as a therapeutic target for nociceptive pain. Expert Opin Ther Targets 2020; 24:997-1008. [PMID: 32838583 PMCID: PMC7610834 DOI: 10.1080/14728222.2020.1815191] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction Chronic pain affects approximatively 30–50% of the population globally. Pathologies such as migraine, diabetic neuropathy, nerve injury and treatment with chemotherapeutic agents, can induce chronic pain. Members of the transient receptor potential (TRP) channels, including the TRP ankyrin 1 (TRPA1), have a major role in pain. Areas covered We focus on TRPA1 as a therapeutic target for pain relief. The structure, localization, and activation of the channel and its implication in different pathways to signal pain are described. This paper underlines the role of pharmacological interventions on TRPA1 to reduce pain in numerous pain conditions. We conducted a literature search in PubMed up to and including July 2020. Expert opinion Our understanding of the molecular mechanisms underlying the sensitization of central and peripheral nociceptive pathways is limited. Preclinical evidence indicates that, in murine models of pain diseases, numerous mechanisms converge on the pathway that encompasses oxidative stress and Schwann cell TRPA1 to sustain chronic pain. Programs to identify and develop treatments to attenuate TRPA1-mediated chronic pain have emerged from this knowledge. Antagonists explored as a novel class of analgesics have a new and promising target in the TRPA1 expressed by peripheral glial cells.
Collapse
Affiliation(s)
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence , Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence , Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence , Florence, Italy
| |
Collapse
|
34
|
Choi H, Oh C, Hyun J, Yang J, Song MJ, Lee HS, Lee YJ. Triterpene Glycosides Isolated from the Edible Sea Cucumber Bohadschia vitiensis and Their Antagonistic Activity against Transient Receptor Potential Ankyrin 1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5349-5355. [PMID: 32324385 DOI: 10.1021/acs.jafc.0c00847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a cation channel that plays a critical role in the occurrence and transmission of pain. By screening 393 marine invertebrate extracts for their antagonistic activity against TRPA1, it was found that the extract of the edible sea cucumber Bohadschia vitiensis had a remarkable potency. Bioassay-guided separation of the extract resulted in the isolation of six triterpene glycosides, including a novel analog. All six isolated compounds exhibited high inhibitory potency against TRPA1 (IC50 values ranging from 0.60 to 3.26 μM), which is comparable to that of a previously developed synthetic antagonist (A-967079). The discovery of TRPA1 antagonists, originated from this edible sea cucumber, opens the door for the elaboration of the valuable triterpene scaffold for the development of novel safe analgesics.
Collapse
Affiliation(s)
- Hansol Choi
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyangro, Busan 49111, Republic of Korea
| | - Chulhong Oh
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology, 2670 Iljudong-ro, Gujwa-eup, Jeju 63349, Republic of Korea
| | - JeongMi Hyun
- Gyeonggido Business and Science Accelerator, 107 Gwanggyoro, Suwon 16229, Republic of Korea
| | - Jeungeun Yang
- Gyeonggido Business and Science Accelerator, 107 Gwanggyoro, Suwon 16229, Republic of Korea
| | - Myung Jin Song
- Gyeonggido Business and Science Accelerator, 107 Gwanggyoro, Suwon 16229, Republic of Korea
| | - Hyi-Seung Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyangro, Busan 49111, Republic of Korea
| | - Yeon-Ju Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyangro, Busan 49111, Republic of Korea
| |
Collapse
|
35
|
Zimova L, Barvikova K, Macikova L, Vyklicka L, Sinica V, Barvik I, Vlachova V. Proximal C-Terminus Serves as a Signaling Hub for TRPA1 Channel Regulation via Its Interacting Molecules and Supramolecular Complexes. Front Physiol 2020; 11:189. [PMID: 32226391 PMCID: PMC7081373 DOI: 10.3389/fphys.2020.00189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
Our understanding of the general principles of the polymodal regulation of transient receptor potential (TRP) ion channels has grown impressively in recent years as a result of intense efforts in protein structure determination by cryo-electron microscopy. In particular, the high-resolution structures of various TRP channels captured in different conformations, a number of them determined in a membrane mimetic environment, have yielded valuable insights into their architecture, gating properties and the sites of their interactions with annular and regulatory lipids. The correct repertoire of these channels is, however, organized by supramolecular complexes that involve the localization of signaling proteins to sites of action, ensuring the specificity and speed of signal transduction events. As such, TRP ankyrin 1 (TRPA1), a major player involved in various pain conditions, localizes into cholesterol-rich sensory membrane microdomains, physically interacts with calmodulin, associates with the scaffolding A-kinase anchoring protein (AKAP) and forms functional complexes with the related TRPV1 channel. This perspective will contextualize the recent biochemical and functional studies with emerging structural data with the aim of enabling a more thorough interpretation of the results, which may ultimately help to understand the roles of TRPA1 under various physiological and pathophysiological pain conditions. We demonstrate that an alteration to the putative lipid-binding site containing a residue polymorphism associated with human asthma affects the cold sensitivity of TRPA1. Moreover, we present evidence that TRPA1 can interact with AKAP to prime the channel for opening. The structural bases underlying these interactions remain unclear and are definitely worth the attention of future studies.
Collapse
Affiliation(s)
- Lucie Zimova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| | - Kristyna Barvikova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| | - Lucie Macikova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Lenka Vyklicka
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| | - Viktor Sinica
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
| | - Ivan Barvik
- Division of Biomolecular Physics, Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czechia
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
36
|
Fialho MFP, Brum EDS, Pegoraro NS, Couto ACG, Trevisan G, Cruz L, Oliveira SM. Topical transient receptor potential ankyrin 1 antagonist treatment attenuates nociception and inflammation in an ultraviolet B radiation-induced burn model in mice. J Dermatol Sci 2020; 97:135-142. [PMID: 31982303 DOI: 10.1016/j.jdermsci.2020.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ultraviolet B (UVB) radiation exposure promotes sunburn and thereby acute and chronic inflammatory processes, contributing to pain development and maintenance. New therapeutic alternatives are necessary because typical treatments can cause adverse effects. An attractive alternative would be to target the transient receptor potential ankyrin 1 (TRPA1), a calcium-permeable, non-selective cation channel, which is involved in a variety of inflammatory pain models. OBJECTIVE Evaluate the peripheral participation of TRPA1 using a topical treatment (HC030031 gel formulation; a selective TRPA1 antagonist) in nociception and inflammation caused by a UVB radiation-induced burn model in male mice (25-30 g). METHODS The mice were anaesthetised, and just the right hind paw was exposed to UVB radiation (0.75 J/cm2). Topical treatments were applied immediately after irradiation and once a day for 8 days. RESULTS HC030031 gel presented suitable pH and spreadability factor, ensuring its quality and the therapeutic effect. HC030031 0.05 % reversed UVB-induced mechanical and cold allodynia, with maximum inhibition (Imax) of 69 ± 13 % and 100 % (on day 4), respectively. HC030031 0.05 % also reduced the paw edema and MPO activity, with Imax of 77 ± 6 % (on day 5) and 69 ± 28 %, respectively. Likewise, UVB radiation increased the H2O2 levels (a TRPA1 agonist) and the Ca2+ influx in mice spinal cord synaptosomes. UVB radiation-induced Ca2+ influx was reduced by HC030031. CONCLUSION These findings confirm the activation of the TRPA1 channel by UVB radiation, suggesting that topical TRPA1 antagonists can be a new strategy for the adjuvant treatment of sunburn-associated pain and inflammation.
Collapse
Affiliation(s)
- Maria Fernanda Pessano Fialho
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Evelyne da Silva Brum
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Natháli Schopf Pegoraro
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Ana Claudia Gontijo Couto
- Institute of Genetics and Biochemistry, Graduate Program in Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Letícia Cruz
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
37
|
Calcium Channel α2δ1 Subunit Mediates Secondary Orofacial Hyperalgesia Through PKC-TRPA1/Gap Junction Signaling. THE JOURNAL OF PAIN 2020; 21:238-257. [DOI: 10.1016/j.jpain.2019.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/06/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
|
38
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
39
|
Lindsay CD, Timperley CM. TRPA1 and issues relating to animal model selection for extrapolating toxicity data to humans. Hum Exp Toxicol 2019; 39:14-36. [PMID: 31578097 DOI: 10.1177/0960327119877460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) ion channel is a sensor for irritant chemicals, has ancient lineage, and is distributed across animal species including humans, where it features in many organs. Its activation by a diverse panel of electrophilic molecules (TRPA1 agonists) through electrostatic binding and/or covalent attachment to the protein causes the sensation of pain. This article reviews the species differences between TRPA1 channels and their responses, to assess the suitability of different animals to model the effects of TRPA1-activating electrophiles in humans, referring to common TRPA1 activators (exogenous and endogenous) and possible mechanisms of action relating to their toxicology. It concludes that close matching of in vitro and in vivo models will help optimise the identification of relevant biochemical and physiological responses to benchmark the efficacy of potential therapeutic drugs, including TRPA1 antagonists, to counter the toxic effects of those electrophiles capable of harming humans. The analysis of the species issue provided should aid the development of medical treatments to counter poisoning by such chemicals.
Collapse
Affiliation(s)
- C D Lindsay
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory (Dstl), Salisbury, UK
| | - C M Timperley
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory (Dstl), Salisbury, UK
| |
Collapse
|
40
|
Logashina YA, Korolkova YV, Kozlov SA, Andreev YA. TRPA1 Channel as a Regulator of Neurogenic Inflammation and Pain: Structure, Function, Role in Pathophysiology, and Therapeutic Potential of Ligands. BIOCHEMISTRY (MOSCOW) 2019; 84:101-118. [PMID: 31216970 DOI: 10.1134/s0006297919020020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TRPA1 is a cation channel located on the plasma membrane of many types of human and animal cells, including skin sensory neurons and epithelial cells of the intestine, lungs, urinary bladder, etc. TRPA1 is the major chemosensor that also responds to thermal and mechanical stimuli. Substances that activate TRPA1, e.g., allyl isothiocyanates (pungent components of mustard, horseradish, and wasabi), cinnamaldehyde from cinnamon, organosulfur compounds from garlic and onion, tear gas, acrolein and crotonaldehyde from cigarette smoke, etc., cause burning, mechanical and thermal hypersensitivity, cough, eye irritation, sneezing, mucus secretion, and neurogenic inflammation. An increased activity of TRPA1 leads to the emergence of chronic pruritus and allergic dermatitis and is associated with episodic pain syndrome, a hereditary disease characterized by episodes of debilitating pain triggered by stress. TRPA1 is now considered as one of the targets for developing new anti-inflammatory and analgesic drugs. This review summarizes information on the structure, function, and physiological role of this channel, as well as describes known TRPA1 ligands and their significance as therapeutic agents in the treatment of inflammation-associated pain.
Collapse
Affiliation(s)
- Yu A Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - Yu V Korolkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - S A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Ya A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| |
Collapse
|
41
|
Giorgi S, Nikolaeva-Koleva M, Alarcón-Alarcón D, Butrón L, González-Rodríguez S. Is TRPA1 Burning Down TRPV1 as Druggable Target for the Treatment of Chronic Pain? Int J Mol Sci 2019; 20:ijms20122906. [PMID: 31197115 PMCID: PMC6627658 DOI: 10.3390/ijms20122906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Over the last decades, a great array of molecular mediators have been identified as potential targets for the treatment of chronic pain. Among these mediators, transient receptor potential (TRP) channel superfamily members have been thoroughly studied. Namely, the nonselective cationic channel, transient receptor potential ankyrin subtype 1 (TRPA1), has been described as a chemical nocisensor involved in noxious cold and mechanical sensation and as rivalling TRPV1, which traditionally has been considered as the most important TRP channel involved in nociceptive transduction. However, few TRPA1-related drugs have succeeded in clinical trials. In the present review, we attempt to discuss the latest data on the topic and future directions for pharmacological intervention.
Collapse
Affiliation(s)
- Simona Giorgi
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Magdalena Nikolaeva-Koleva
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
- AntalGenics, SL. Ed. Quorum III, Parque Científico Universidad Miguel Hernández, Avda de la Universidad s/n, 03202 Elche, Spain.
| | - David Alarcón-Alarcón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Laura Butrón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Sara González-Rodríguez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
42
|
Wu T, Wang M, Wu W, Luo Q, Jiang L, Tao H, Deng M. Spider venom peptides as potential drug candidates due to their anticancer and antinociceptive activities. J Venom Anim Toxins Incl Trop Dis 2019; 25:e146318. [PMID: 31210759 PMCID: PMC6551028 DOI: 10.1590/1678-9199-jvatitd-14-63-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
Spider venoms are known to contain proteins and polypeptides that perform various
functions including antimicrobial, neurotoxic, analgesic, cytotoxic, necrotic,
and hemagglutinic activities. Currently, several classes of natural molecules
from spider venoms are potential sources of chemotherapeutics against tumor
cells. Some of the spider peptide toxins produce lethal effects on tumor cells
by regulating the cell cycle, activating caspase pathway or inactivating
mitochondria. Some of them also target the various types of ion channels
(including voltage-gated calcium channels, voltage-gated sodium channels, and
acid-sensing ion channels) among other pain-related targets. Herein we review
the structure and pharmacology of spider-venom peptides that are being used as
leads for the development of therapeutics against the pathophysiological
conditions including cancer and pain.
Collapse
Affiliation(s)
- Ting Wu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Meng Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wenfang Wu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Qianxuan Luo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
43
|
Maatuf Y, Geron M, Priel A. The Role of Toxins in the Pursuit for Novel Analgesics. Toxins (Basel) 2019; 11:toxins11020131. [PMID: 30813430 PMCID: PMC6409898 DOI: 10.3390/toxins11020131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic pain is a major medical issue which reduces the quality of life of millions and inflicts a significant burden on health authorities worldwide. Currently, management of chronic pain includes first-line pharmacological therapies that are inadequately effective, as in just a portion of patients pain relief is obtained. Furthermore, most analgesics in use produce severe or intolerable adverse effects that impose dose restrictions and reduce compliance. As the majority of analgesic agents act on the central nervous system (CNS), it is possible that blocking pain at its source by targeting nociceptors would prove more efficient with minimal CNS-related side effects. The development of such analgesics requires the identification of appropriate molecular targets and thorough understanding of their structural and functional features. To this end, plant and animal toxins can be employed as they affect ion channels with high potency and selectivity. Moreover, elucidation of the toxin-bound ion channel structure could generate pharmacophores for rational drug design while favorable safety and analgesic profiles could highlight toxins as leads or even as valuable therapeutic compounds themselves. Here, we discuss the use of plant and animal toxins in the characterization of peripherally expressed ion channels which are implicated in pain.
Collapse
Affiliation(s)
- Yossi Maatuf
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Matan Geron
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Avi Priel
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| |
Collapse
|
44
|
Psychophysical and vasomotor evidence for interdependency of TRPA1 and TRPV1-evoked nociceptive responses in human skin: an experimental study. Pain 2019; 159:1989-2001. [PMID: 29847470 DOI: 10.1097/j.pain.0000000000001298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The TRPA1 and TRPV1 receptors are important pharmaceutical targets for antipruritic and analgesic therapy. Obtaining further knowledge on their roles and interrelationship in humans is therefore crucial. Preclinical results are contradictory concerning coexpression and functional interdependency of TRPV1 and TRPA1, but no human evidence exists. This human experimental study investigated whether functional responses from the subpopulation of TRPA1 nociceptors could be evoked after defunctionalization of TRPV1 nociceptors by cutaneous application of high-concentration capsaicin. Two quadratic areas on each forearm were randomized to pretreatment with an 8% topical capsaicin patch or vehicle for 24 hours. Subsequently, areas were provoked by transdermal 1% topical capsaicin (TRPV1 agonist) or 10% topical allyl isothiocyanate ("AITC," a TRPA1 agonist), delivered by 12 mm Finn chambers. Evoked pain intensities were recorded during pretreatments and chemical provocations. Quantitative sensory tests were performed before and after provocations to assess changes of heat pain sensitivity. Imaging of vasomotor responses was used to assess neurogenic inflammation after the chemical provocations. In the capsaicin-pretreated areas, both the subsequent 1% capsaicin- and 10% AITC-provoked pain was inhibited by 92.9 ± 2.5% and 86.9 ± 5.0% (both: P < 0.001), respectively. The capsaicin-ablated skin areas showed significant heat hypoalgesia at baseline (P < 0.001) as well as heat antihyperalgesia, and inhibition of neurogenic inflammation evoked by both 1% capsaicin and 10% AITC provocations (both: P < 0.001). Ablation of cutaneous capsaicin-sensitive afferents caused consistent and equal inhibition of both TRPV1- and TRPA1-provoked responses assessed psychophysically and by imaging of vasomotor responses. This study suggests that TRPA1 nociceptive responses in human skin strongly depend on intact capsaicin-sensitive, TRPV1 fibers.
Collapse
|
45
|
De Logu F, Li Puma S, Landini L, Tuccinardi T, Poli G, Preti D, De Siena G, Patacchini R, Tsagareli MG, Geppetti P, Nassini R. The acyl-glucuronide metabolite of ibuprofen has analgesic and anti-inflammatory effects via the TRPA1 channel. Pharmacol Res 2019; 142:127-139. [PMID: 30794923 DOI: 10.1016/j.phrs.2019.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
Ibuprofen is a widely used non-steroidal anti-inflammatory drug (NSAID) that exerts analgesic and anti-inflammatory actions. The transient receptor potential ankyrin 1 (TRPA1) channel, expressed primarily in nociceptors, mediates the action of proalgesic and inflammatory agents. Ibuprofen metabolism yields the reactive compound, ibuprofen-acyl glucuronide, which, like other TRPA1 ligands, covalently interacts with macromolecules. To explore whether ibuprofen-acyl glucuronide contributes to the ibuprofen analgesic and anti-inflammatory actions by targeting TRPA1, we used in vitro tools (TRPA1-expressing human and rodent cells) and in vivo mouse models of inflammatory pain. Ibuprofen-acyl glucuronide, but not ibuprofen, inhibited calcium responses evoked by reactive TRPA1 agonists, including allyl isothiocyanate (AITC), in cells expressing the recombinant and native human channel and in cultured rat primary sensory neurons. Responses by the non-reactive agonist, menthol, in a mutant human TRPA1 lacking key cysteine-lysine residues, were not affected. In addition, molecular modeling studies evaluating the covalent interaction of ibuprofen-acyl glucuronide with TRPA1 suggested the key cysteine residue C621 as a probable alkylation site for the ligand. Local administration of ibuprofen-acyl glucuronide, but not ibuprofen, in the mouse hind paw attenuated nociception by AITC and other TRPA1 agonists and the early nociceptive response (phase I) to formalin. Systemic ibuprofen-acyl glucuronide and ibuprofen, but not indomethacin, reduced phase I of the formalin response. Carrageenan-evoked allodynia in mice was reduced by local ibuprofen-acyl glucuronide, but not by ibuprofen, whereas both drugs attenuated PGE2 levels. Ibuprofen-acyl glucuronide, but not ibuprofen, inhibited the release of IL-8 evoked by AITC from cultured bronchial epithelial cells. The reactive ibuprofen metabolite selectively antagonizes TRPA1, suggesting that this novel action of ibuprofen-acyl glucuronide might contribute to the analgesic and anti-inflammatory activities of the parent drug.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Simone Li Puma
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Lorenzo Landini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | | | - Giulio Poli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Delia Preti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Gaetano De Siena
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Riccardo Patacchini
- Department of Corporate Drug Development, Chiesi Farmaceutici SpA, Parma, Italy
| | - Merab G Tsagareli
- Laboratory of Pain and Analgesia, Beritashvili Center for Experimental Biomedicine, Tbilisi, Georgia
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| |
Collapse
|
46
|
Brum EDS, Becker G, Fialho MFP, Casoti R, Trevisan G, Oliveira SM. TRPA1 involvement in analgesia induced by Tabernaemontana catharinensis ethyl acetate fraction in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:248-258. [PMID: 30668375 DOI: 10.1016/j.phymed.2018.09.201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ionic channels such as the transient receptor potential ankyrin 1 (TRPA1) are essential for the detection and transmission of painful stimuli. In this sense, new TRPA1 antagonists have been searched as analgesics. PURPOSE Preclinical studies support the antinociceptive activity of Tabernaemontana catharinensis ethyl acetate fraction (Eta), which has constituents previously identified as TRPA1 antagonists (gallic acid). It was verified for the first time the involvement of the TRPA1 on Eta's antinociceptive and anti-inflammatory effects in mice pain models. STUDY DESIGN It was evaluated the Eta's effect (0.01-100 mg/kg, oral route) on nociceptive (spontaneous nociception, mechanical and cold allodynia) and inflammatory (paw edema) parameters in pain models involved with TRPA1 activation. METHODS Firstly, it was investigated the ability of Eta to act on TRPA1 or TRPV1 channels (Ca2+influx and binding assays in mice spinal cords). Next, it was evaluated the Eta's antinociceptive and anti-inflammatory effects after intraplantar injection of TRPA1 agonists (hydrogen peroxide, cinnamaldehyde or allyl isothiocyanate) in male Swiss mice (30-35 g). Moreover, the Eta's antinociceptive effects were evaluated on complete Freund's adjuvant (CFA)-induced chronic inflammatory pain (CIP), postoperative pain and on paclitaxel-induced peripheral neuropathy (PIPN). Oxidative parameters were evaluated in mice paw utilized for CFA induced-CIP model. RESULTS Eta inhibited the TRPA1 agonist-induced Ca2+ influx [Imax = 72.4 ± 1.5%; IC50 = 0.023(0.004-0.125)µg/ml], but not TRPV1 agonist-induced, nor was able to displace [3H]-resiniferatoxin (TRPV1 agonist) binding. Eta (0.1-100 mg/kg) inhibited the spontaneous nociception [ID50 = 0.043(0.002-0.723)mg/kg], mechanical [ID50 = 7.417(1.426-38.570)mg/kg] and cold allodynia, and edema development caused by TRPA1 agonists. Moreover, Eta (100 mg/kg) prevented and reversed the CFA-induced CIP (Imax = 55.8 ± 13.7%, Imax = 80.4 ± 5.1%, respectively) and postoperative pain (Imax = 88.0 ± 11.6%, Imax = 51.3 ± 14.9%, respectively), been also effective in reversing the acute (Imax = 94.4 ± 12.4%) and chronic (Imax = 86.8 ± 8.6%) PIPN. These effects seem to occur by TRPA1 channels pathway, and independently of TRPV1 or oxidative mechanisms. CONCLUSION Our results demonstrate that Eta-induced antinociception and anti-inflammatory effects occur by TRPA1 inhibition making possible the use of this preparation as a potential therapeutic agent to treat pathological pains.
Collapse
Affiliation(s)
- Evelyne da Silva Brum
- Laboratory of Neurotoxicity and Psychopharmacology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Becker
- Laboratory of Neurotoxicity and Psychopharmacology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Laboratory of Neurotoxicity and Psychopharmacology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rosana Casoti
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriela Trevisan
- Departament of Physiology and Pharmacology, Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Laboratory of Neurotoxicity and Psychopharmacology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
47
|
Topical treatment with a transient receptor potential ankyrin 1 (TRPA1) antagonist reduced nociception and inflammation in a thermal lesion model in rats. Eur J Pharm Sci 2018; 125:28-38. [DOI: 10.1016/j.ejps.2018.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/29/2018] [Accepted: 09/15/2018] [Indexed: 02/06/2023]
|
48
|
Demartini C, Greco R, Zanaboni AM, Francesconi O, Nativi C, Tassorelli C, Deseure K. Antagonism of Transient Receptor Potential Ankyrin Type-1 Channels as a Potential Target for the Treatment of Trigeminal Neuropathic Pain: Study in an Animal Model. Int J Mol Sci 2018; 19:ijms19113320. [PMID: 30366396 PMCID: PMC6274796 DOI: 10.3390/ijms19113320] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
Transient receptor potential ankyrin type-1 (TRPA1) channels are known to actively participate in different pain conditions, including trigeminal neuropathic pain, whose clinical treatment is still unsatisfactory. The aim of this study was to evaluate the involvement of TRPA1 channels by means of the antagonist ADM_12 in trigeminal neuropathic pain, in order to identify possible therapeutic targets. A single treatment of ADM_12 in rats 4 weeks after the chronic constriction injury of the infraorbital nerve (IoN-CCI) significantly reduced the mechanical allodynia induced in the IoN-CCI rats. Additionally, ADM_12 was able to abolish the increased levels of TRPA1, calcitonin gene-related peptide (CGRP), substance P (SP), and cytokines gene expression in trigeminal ganglia, cervical spinal cord, and medulla induced in the IoN-CCI rats. By contrast, no significant differences between groups were seen as regards CGRP and SP protein expression in the pars caudalis of the spinal nucleus of the trigeminal nerve. ADM_12 also reduced TRP vanilloid type-1 (TRPV1) gene expression in the same areas after IoN-CCI. Our findings show the involvement of both TRPA1 and TRPV1 channels in trigeminal neuropathic pain, and in particular, in trigeminal mechanical allodynia. Furthermore, they provide grounds for the use of ADM_12 in the treatment of trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy.
| | - Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy.
| | - Anna Maria Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy.
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy.
| | - Oscar Francesconi
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy.
| | - Cristina Nativi
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy.
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy.
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy.
| | - Kristof Deseure
- Department of Medicine, Laboratory for Pain Research, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
49
|
Chłoń-Rzepa G, Ślusarczyk M, Jankowska A, Gawalska A, Bucki A, Kołaczkowski M, Świerczek A, Pociecha K, Wyska E, Zygmunt M, Kazek G, Sałat K, Pawłowski M. Novel amide derivatives of 1,3-dimethyl-2,6-dioxopurin-7-yl-alkylcarboxylic acids as multifunctional TRPA1 antagonists and PDE4/7 inhibitors: A new approach for the treatment of pain. Eur J Med Chem 2018; 158:517-533. [PMID: 30245393 DOI: 10.1016/j.ejmech.2018.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 12/31/2022]
Abstract
A series of novel amide derivatives of 1,3-dimethyl-2,6-dioxopurin-7-yl-alkylcarboxylic acids designed using a structure-based computational approach was synthesized and assayed to evaluate their ability to block human TRPA1 channel and inhibit PDE4B/7A activity. We identified compounds 16 and 27 which showed higher potency against TRPA1 compared to HC-030031. In turn, compound 36 was the most promising multifunctional TRPA1 antagonist and PDE4B/7A dual inhibitor with IC50 values in the range of that of the reference rolipram and BRL-50481, respectively. Compound 36 as a combined TRPA1/PDE4B/PDE7A ligand was characterized by a distinct binding mode in comparison to 16 and 27, in the given protein targets. The inhibition of both cAMP-specific PDE isoenzymes resulted in a strong anti-TNF-α effect of 36in vivo. Moreover, the potent anti-inflammatory and analgesic efficacy of 36 was observed in animal models of pain and inflammation (formalin test in mice and carrageenan-induced paw edema in rats). This compound also displayed significant antiallodynic properties in the early phase of chemotherapy-induced peripheral neuropathy in mice. In turn, the pure TRPA1 antagonists 16 and 27 revealed a statistically significant antiallodynic effect in the formalin test and in the von Frey test performed in both phases of oxaliplatin-induced allodynia. Antiallodynic activity of the test compounds 16, 27 and 36 was observed at a dose range comparable to that of the reference drug - pregabalin. In conclusion, the proposed approach of pain treatment based on the concomitant blocking of TRPA1 channel and PDE4B/7A inhibitory activity appears to be interesting research direction for the future search for novel analgesics.
Collapse
Affiliation(s)
- Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna str, 30-688, Kraków, Poland.
| | - Marietta Ślusarczyk
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna str, 30-688, Kraków, Poland
| | - Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna str, 30-688, Kraków, Poland
| | - Alicja Gawalska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna str, 30-688, Kraków, Poland
| | - Adam Bucki
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna str, 30-688, Kraków, Poland
| | - Marcin Kołaczkowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna str, 30-688, Kraków, Poland
| | - Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna str, 30-688, Kraków, Poland
| | - Krzysztof Pociecha
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna str, 30-688, Kraków, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna str, 30-688, Kraków, Poland
| | - Małgorzata Zygmunt
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna str, 30-688, Kraków, Poland
| | - Grzegorz Kazek
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna str, 30-688, Kraków, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna str, 30-688, Kraków, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna str, 30-688, Kraków, Poland
| |
Collapse
|
50
|
Dose-response study of topical allyl isothiocyanate (mustard oil) as a human surrogate model of pain, hyperalgesia, and neurogenic inflammation. Pain 2018; 158:1723-1732. [PMID: 28614189 DOI: 10.1097/j.pain.0000000000000979] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Despite being a ubiquitous animal pain model, the natural TRPA1-agonist allyl isothiocyanate (AITC, also known as "mustard oil") has only been sparsely investigated as a potential human surrogate model of pain, sensitization, and neurogenic inflammation. Its dose-response as an algogenic, sensitizing irritant remains to be elucidated in human skin. Three concentrations of AITC (10%, 50%, and 90%) and vehicle (paraffin) were applied for 5 minutes to 3 × 3 cm areas on the volar forearms in 14 healthy volunteers, and evoked pain intensity (visual analog scale 0-100 mm) and pain quality were assessed. In addition, a comprehensive battery of quantitative sensory tests was conducted, including assessment of mechanical and thermal sensitivity. Neurogenic inflammation was quantified using full-field laser perfusion imaging. Erythema and hyperpigmentation were assessed before, immediately after, and ≈64 hours after AITC exposure. AITC induced significant dose-dependent, moderate-to-severe spontaneous burning pain, mechanical and heat hyperalgesia, and dynamic mechanical allodynia (P < 0.05). No significant differences in induced pain hypersensitivity were observed between the 50% and 90% AITC concentrations. Acute and prolonged inflammation was evoked by all concentrations, and assessments by full-field laser perfusion imaging demonstrated a significant dose-dependent increase with a ceiling effect from 50% to 90%. Topical AITC application produces pain and somatosensory sensitization in a dose-dependent manner with optimal concentrations recommended to be >10% and ≤50%. The model is translatable to humans and could be useful in pharmacological proof-of-concept studies of TRPA1-antagonists, analgesics, and anti-inflammatory compounds or for exploratory clinical purposes, eg, loss- or gain-of-function in peripheral neuropathies.
Collapse
|