1
|
Dhurandhar Y, Tomar S, Das A, Singh AP, Prajapati JL, Bodakhe SH, Namdeo KP. Unlocking the Potential of Oxymatrine: A Comprehensive Review of Its Neuroprotective Mechanisms and Therapeutic Prospects in Neurological Disorders. ACS Chem Neurosci 2024; 15:4245-4257. [PMID: 39539195 DOI: 10.1021/acschemneuro.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Sophora flavescens, the source of oxymatrine, is gaining popularity due to its potential in neuroprotection and treatment of various neurological conditions like epilepsy, depression, Parkinson's, Alzheimer's and multiple sclerosis. Its natural occurrence and promising preliminary research highlight its ability to reduce nerve cell damage and inflammation, attributed to its antiapoptotic, antioxidant and anti-inflammatory properties. However, challenges like solubility, potential adverse effects and limited bioavailability hinder its full therapeutic utilization. Current strategies, including formulation optimization and innovative drug delivery systems, aim to enhance its efficacy and safety. Despite its potential, further research is necessary to overcome these obstacles and maximize its clinical effectiveness. Conclusively, oxymatrine demonstrates distinct neuroprotective properties, offering unique advantages over other agents currently being studied or used in clinical practice for neurological disorders. nevertheless, additional study is necessary to surmount current obstacles and maximize its effectiveness for clinical settings. This study provides a comprehensive overview of oxymatrine's neuroprotective mechanisms and therapeutic potential while emphasizing the need for continued investigation and development for practical clinical application.
Collapse
Affiliation(s)
- Yogita Dhurandhar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Shubham Tomar
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ashmita Das
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - As Pee Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Jeevan Lal Prajapati
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Kamta P Namdeo
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|
2
|
Wal P, Aziz N, Prajapati H, Soni S, Wal A. Current Landscape of Various Techniques and Methods of Gene Therapy through CRISPR Cas9 along with its Pharmacological and Interventional Therapies in the Treatment of Type 2 Diabetes Mellitus. Curr Diabetes Rev 2024; 20:e201023222414. [PMID: 37867274 DOI: 10.2174/0115733998263079231011073803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is frequently referred to as a "lifestyle illness". In 2000, India (31.7 million) had the greatest global prevalence of diabetes mellitus, followed by China (20.8 million), the United States (17.7 million), and other countries. In recent years, the treatment of gene therapy (T2DM) has attracted intensive interest. OBJECTIVE We aimed to critically review the literature on the various techniques and methods, which may be a possible novel approach through the gene therapy CRISPR Cas9 and some other gene editing techniques for T2DM. Interventional and pharmacological approaches for the treatment of T2DM were also included to identify novel therapies for its treatment. METHOD An extensive literature survey was done on databases like PubMed, Elsevier, Science Direct and Springer. CONCLUSION It can be concluded from the study that recent advancements in gene-editing technologies, such as CRISPR Cas9, have opened new avenues for the development of novel therapeutic approaches for T2DM. CRISPR Cas9 is a powerful tool that enables precise and targeted modifications of the genome.
Collapse
Affiliation(s)
- Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India
| | - Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India
| | - Harshit Prajapati
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India
| | - Shashank Soni
- Department of Pharmaceutics, Amity Institute of Pharmacy, Lucknow, Amity University, Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India
| |
Collapse
|
3
|
Pejchinovski I, Turkkan S, Pejchinovski M. Recent Advances of Proteomics in Management of Acute Kidney Injury. Diagnostics (Basel) 2023; 13:2648. [PMID: 37627907 PMCID: PMC10453063 DOI: 10.3390/diagnostics13162648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Acute Kidney Injury (AKI) is currently recognized as a life-threatening disease, leading to an exponential increase in morbidity and mortality worldwide. At present, AKI is characterized by a significant increase in serum creatinine (SCr) levels, typically followed by a sudden drop in glomerulus filtration rate (GFR). Changes in urine output are usually associated with the renal inability to excrete urea and other nitrogenous waste products, causing extracellular volume and electrolyte imbalances. Several molecular mechanisms were proposed to be affiliated with AKI development and progression, ultimately involving renal epithelium tubular cell-cycle arrest, inflammation, mitochondrial dysfunction, the inability to recover and regenerate proximal tubules, and impaired endothelial function. Diagnosis and prognosis using state-of-the-art clinical markers are often late and provide poor outcomes at disease onset. Inappropriate clinical assessment is a strong disease contributor, actively driving progression towards end stage renal disease (ESRD). Proteins, as the main functional and structural unit of the cell, provide the opportunity to monitor the disease on a molecular level. Changes in the proteomic profiles are pivotal for the expression of molecular pathways and disease pathogenesis. Introduction of highly-sensitive and innovative technology enabled the discovery of novel biomarkers for improved risk stratification, better and more cost-effective medical care for the ill patients and advanced personalized medicine. In line with those strategies, this review provides and discusses the latest findings of proteomic-based biomarkers and their prospective clinical application for AKI management.
Collapse
Affiliation(s)
- Ilinka Pejchinovski
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Sibel Turkkan
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Martin Pejchinovski
- Department of Analytical Instruments Group, Thermo Fisher Scientific, 82110 Germering, Germany
| |
Collapse
|
4
|
Proline-specific peptidase activities (DPP4, PRCP, FAP and PREP) in plasma of hospitalized COVID-19 patients. Clin Chim Acta 2022; 531:4-11. [PMID: 35283094 PMCID: PMC8920094 DOI: 10.1016/j.cca.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/18/2022] [Accepted: 03/06/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND COVID-19 patients experience several features of dysregulated immune system observed in sepsis. We previously showed a dysregulation of several proline-selective peptidases such as dipeptidyl peptidase 4 (DPP4), fibroblast activation protein alpha (FAP), prolyl oligopeptidase (PREP) and prolylcarboxypeptidase (PRCP) in sepsis. In this study, we investigated whether these peptidases are similarly dysregulated in hospitalized COVID-19 patients. METHODS Fifty-six hospitalized COVID-19 patients and 32 healthy controls were included. Enzymatic activities of DPP4, FAP, PREP and PRCP were measured in samples collected shortly after hospital admission and in longitudinal follow-up samples. RESULTS Compared to healthy controls, both DPP4 and FAP activities were significantly lower in COVID-19 patients at hospital admission and FAP activity further decreased significantly in the first week of hospitalization. While PRCP activity remained unchanged, PREP activity was significantly increased in COVID-19 patients at hospitalization and further increased during hospital stay and stayed elevated until the day of discharge. CONCLUSION The changes in activities of proline-selective peptidases in plasma are very similar in COVID-19 and septic shock patients. The pronounced decrease in FAP activity deserves further investigation, both from a pathophysiological viewpoint and as its utility as a part of a biomarker panel.
Collapse
|
5
|
Neuroprotective Effects of the DPP4 Inhibitor Vildagliptin in In Vivo and In Vitro Models of Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23042388. [PMID: 35216503 PMCID: PMC8877991 DOI: 10.3390/ijms23042388] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/25/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the midbrain. Restoration of nigrostriatal dopamine neurons has been proposed as a potential therapeutic strategy for PD. Because currently used PD therapeutics only help relieve motor symptoms and do not treat the cause of the disease, highly effective drugs are needed. Vildagliptin, a dipeptidyl peptidase 4 (DPP4) inhibitor, is an anti-diabetic drug with various pharmacological properties including neuroprotective effects. However, the detailed effects of vildagliptin against PD are not fully understood. We investigated the effects of vildagliptin on PD and its underlying molecular mechanisms using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model and a 1-methyl-4-phenylpyridium (MPP+)-induced cytotoxicity model. Vildagliptin (50 mg/kg) administration significantly attenuated MPTP-induced motor deficits as evidenced by rotarod, pole, and nest building tests. Immunohistochemistry and Western blot analysis revealed that vildagliptin increased tyrosine hydroxylase-positive cells in the SNpc and striatum, which was reduced by MPTP treatment. Furthermore, vildagliptin activated MPTP-decreased PI3k/Akt and mitigated MPTP-increased ERK and JNK signaling pathways in the striatum. Consistent with signaling transduction in the mouse striatum, vildagliptin reversed MPP+-induced dephosphorylation of PI3K/Akt and phosphorylation of ERK and JNK in SH-SY5Y cells. Moreover, vildagliptin attenuated MPP+-induced conversion of LC3B-II in SH-SY5Y cells, suggesting its role in autophagy inhibition. Taken together, these findings indicate that vildagliptin has protective effects against MPTP-induced motor dysfunction by inhibiting dopaminergic neuronal apoptosis, which is associated with regulation of PI3k/Akt, ERK, and JNK signaling transduction. Our findings suggest vildagliptin as a promising repurposing drug to treat PD.
Collapse
|
6
|
Modulation of Prostanoids Profile and Counter-Regulation of SDF-1α/CXCR4 and VIP/VPAC2 Expression by Sitagliptin in Non-Diabetic Rat Model of Hepatic Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:ijms222313155. [PMID: 34884960 PMCID: PMC8658172 DOI: 10.3390/ijms222313155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular mechanisms underlying the beneficial effect of sitagliptin repurposed for hepatic ischemia-reperfusion injury (IRI) are poorly understood. We aimed to evaluate the impact of IRI and sitagliptin on the hepatic profile of eicosanoids (LC-MS/MS) and expression/concentration (RTqPCR/ELISA) of GLP-1/GLP-1R, SDF-1α/CXCR4 and VIP/VPAC1, VPAC2, and PAC1 in 36 rats. Animals were divided into four groups and subjected to ischemia (60 min) and reperfusion (24 h) with or without pretreatment with sitagliptin (5 mg/kg) (IR and SIR) or sham-operated with or without sitagliptin pretreatment (controls and sitagliptin). PGI2, PGE2, and 13,14-dihydro-PGE1 were significantly upregulated in IR but not SIR, while sitagliptin upregulated PGD2 and 15-deoxy-12,14-PGJ2. IR and sitagliptin non-significantly upregulated GLP-1 while Glp1r expression was borderline detectable. VIP concentration and Vpac2 expression were downregulated in IR but not SIR, while Vpac1 was significantly downregulated solely in SIR. IRI upregulated both CXCR4 expression and concentration, and sitagliptin pretreatment abrogated receptor overexpression and downregulated Sdf1. In conclusion, hepatic IRI is accompanied by an elevation in proinflammatory prostanoids and overexpression of CXCR4, combined with downregulation of VIP/VPAC2. Beneficial effects of sitagliptin during hepatic IRI might be mediated by drug-induced normalization of proinflammatory prostanoids and upregulation of PGD2 and by concomitant downregulation of SDF-1α/CXCR4 and reinstating VIP/VCAP2 signaling.
Collapse
|
7
|
Wu TJ, Hsieh YJ, Lu CW, Lee CJ, Hsu BG. Linagliptin Protects against Endotoxin-Induced Acute Kidney Injury in Rats by Decreasing Inflammatory Cytokines and Reactive Oxygen Species. Int J Mol Sci 2021; 22:ijms222011190. [PMID: 34681847 PMCID: PMC8540923 DOI: 10.3390/ijms222011190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/23/2022] Open
Abstract
Septic shock can increase pro-inflammatory cytokines, reactive oxygen species (ROS), and multiple organ dysfunction syndrome (MODs) and even lead to death. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been proven to exert potential antioxidant and anti-inflammatory effects. We investigated the effects of linagliptin on endotoxic shock and acute kidney injury (AKI) in animal and cell models. In the cell model, linagliptin attenuated ROS by activating the AMP-activated protein kinase (AMPK) pathway, restoring nuclear-factor-erythroid-2-related factor (Nrf2) and heme oxygenase 1 (HO-1) protein, and decreasing pro-inflammatory cytokines (tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β)). In the animal model, 14-week-old conscious Wistar–Kyoto rats were randomly divided into three groups (n = 8 in each group). Endotoxin shock with MODs was induced by the intravenous injection of Klebsiella pneumoniae lipopolysaccharide (LPS, 20 mg/kg). Linagliptin improved animal survival without affecting hemodynamic profiles. In the histopathology and immunohistochemistry examinations of the rat kidneys, linagliptin (10 mg/kg) suppressed nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and inducible nitric oxide synthase (iNOS), decreased injury scores, and preserved E-cadherin expression from LPS damage. In conclusion, linagliptin ameliorated endotoxin-shock-induced AKI by reducing ROS via AMPK pathway activation and suppressing the release of TNF-α and IL-1β in conscious rats.
Collapse
Affiliation(s)
- Tsung-Jui Wu
- Division of Nephrology, Department of Medicine, Hualien Armed Forces General Hospital, Hualien 97144, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
- Division of Nephrology, Department of Internal medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yi-Jen Hsieh
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
| | - Chia-Wen Lu
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
| | - Chung-Jen Lee
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 97005, Taiwan
- Correspondence: (C.-J.L.); (B.-G.H.); Tel.: +886-3-856-1825 (B.-G.H.)
| | - Bang-Gee Hsu
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
- Correspondence: (C.-J.L.); (B.-G.H.); Tel.: +886-3-856-1825 (B.-G.H.)
| |
Collapse
|
8
|
Wang M, Liu Y, Liang Y, Naruse K, Takahashi K. Systematic Understanding of Pathophysiological Mechanisms of Oxidative Stress-Related Conditions-Diabetes Mellitus, Cardiovascular Diseases, and Ischemia-Reperfusion Injury. Front Cardiovasc Med 2021; 8:649785. [PMID: 33928135 PMCID: PMC8076504 DOI: 10.3389/fcvm.2021.649785] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) plays a role in intracellular signal transduction under physiological conditions while also playing an essential role in diseases such as hypertension, ischemic heart disease, and diabetes, as well as in the process of aging. The influence of ROS has some influence on the frequent occurrence of cardiovascular diseases (CVD) in diabetic patients. In this review, we considered the pathophysiological relationship between diabetes and CVD from the perspective of ROS. In addition, considering organ damage due to ROS elevation during ischemia-reperfusion, we discussed heart and lung injuries. Furthermore, we have focused on the transient receptor potential (TRP) channels and L-type calcium channels as molecular targets for ROS in ROS-induced tissue damages and have discussed about the pathophysiological mechanism of the injury.
Collapse
Affiliation(s)
| | | | | | | | - Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
9
|
Du J, Sun Q, Wang Z, Wang F, Chen F, Wang H, Shang G, Chen X, Ding S, Li C, Wu D, Zhang W, Zhong M, Li Y. Tubular epithelial cells derived-exosomes containing CD26 protects mice against renal ischemia/reperfusion injury by maintaining proliferation and dissipating inflammation. Biochem Biophys Res Commun 2021; 553:134-140. [PMID: 33770578 DOI: 10.1016/j.bbrc.2021.03.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 01/21/2023]
Abstract
Ischemia-reperfusion injury (IR) is the leading cause of acute kidney injury (AKI). No effective drugs to treat IR-related AKI are currently available. Recent pre-clinical trials have evaluated the therapeutic potential of extracellular vesicles-exosomes to chronic kidney disease. Here, we found exosomes derived from the tubular epithelial cell in IR condition (ExoIR) enriched CD26, compared with control (ExoNormal). Tracking exosomes in vivo certified tubular epithelial cell uptake exosomes. We have isolated exosomes with overexpression of CD26 (ExoCD26+) from culture media from tubular epithelial cell line transferred by adenovirus vectors. After administration of exosomes (100 mg) or bovine serum albumin (BSA, equivalent protein control) in IR or sham operation mice after 72 h via tail vein injection, the renal function impairment and histology injury were relived in mice receiving ExoCD26+. Immunofluorescence staining with proliferating cell nuclear antigen revealed ExoCD26+ recovered proliferation of cells partly after IR injury. Cell cycle modulator, p53 and p21 were upregulated in IR mice receiving BSA control, ExoNormal, and ExoIR. ExoCD26+ significantly blunt this protein upregulation. Inflammatory cell infiltration and chemokine receptor (CXCR4) were dissipated in IR mice receiving ExoCD26+. Downstream chemokine of CXCR4, stromal derived factor-1 (SDF1) also decreased after administration of ExoCD26+ in IR mice. Finally, ExoCD26+ suppressed inundant collagenⅠ expression in IR kidney. In conclusion, Tubular epithelial cells derived-exosomes containing CD26 might be one of the therapy modes for IR-AKI by maintaining proliferation and dissipating inflammation.
Collapse
Affiliation(s)
- Juan Du
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiang Sun
- Department of Vascular Surgery, Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhihao Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan, Shandong, China
| | - Feng Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Critical Care Medicine, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Fangfang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hao Wang
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guokai Shang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaomei Chen
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shifang Ding
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chen Li
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dawei Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yihui Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
10
|
Sherif IO, Al-Shaalan NH. Alleviation of remote lung injury following liver ischemia/reperfusion: Possible protective role of vildagliptin. Int Immunopharmacol 2021; 91:107305. [PMID: 33388732 DOI: 10.1016/j.intimp.2020.107305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Lung injury is a serious condition encountered following hepatic ischemia/reperfusion (IR). This study aimed to explore whether a dipeptidyl peptidase-4 inhibitor agent vildagliptin (V) could alleviate the lung injury caused by hepatic IR in a rat model and if so elucidate its molecular protective mechanism. Three groups of rats were used. Sham group: received normal saline and exposed to a sham operation, IR group: received normal saline and subjected to the operation of hepatic I (45 min)/ R (180 min), V+IR group: received for 10 days intraperitoneal injection of V (10 mg/kg/day). After reperfusion, liver and lung were collected for biochemical and histological evaluation. Hepatic IR exhibited significant elevation in serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) enzyme levels, serum and lung malondialdehyde (MDA) and tumor necrosis factor-alpha (TNF-α) in addition to lung nitric oxide (NO) levels, hypoxia-inducible factor 1-alpha (HIF-1α) mRNA and protein levels, hepatocyte growth factor (HGF) mRNA expression, and inducible nitric oxide synthase (iNOS) mRNA and protein expressions in lung tissue along with a marked reduction in the serum and lung content of catalase in comparison to the sham group. Moreover, liver and lung injury in the IR group was detected by histopathological examination. Vildagliptin ameliorated markedly the biochemical changes as well as liver and lung architecture in comparison to the IR group. Vildagliptin mitigated the induced lung injury by hepatic IR via suppression of oxidative stress markers, pro-inflammatory cytokine TNF-α as well as the HIF1-α/iNOS/HGF expressions in lung tissue.
Collapse
Affiliation(s)
- Iman O Sherif
- Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Nora H Al-Shaalan
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
11
|
Ahmad I, Arifianti AE, Sakti AS, Saputri FC, Mun’im A. Simultaneous Natural Deep Eutectic Solvent-Based Ultrasonic-Assisted Extraction of Bioactive Compounds of Cinnamon Bark and Sappan Wood as a Dipeptidyl Peptidase IV Inhibitor. Molecules 2020; 25:molecules25173832. [PMID: 32842548 PMCID: PMC7504365 DOI: 10.3390/molecules25173832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/30/2022] Open
Abstract
Cinnamon bark (Cinnamomum burmannii) and sappan wood (Caesalpinia sappan) have been reported to be beneficial for Type-2 Diabetes Mellitus (T2DM) and the combination is commonly used by Indonesian herbal industries. In the present study, the simultaneous extraction of bioactive compounds from both plants was conducted using natural deep eutectic solvent (NADES), their content analyzed using high-performance liquid chromatography (HPLC), and their dipeptidyl peptidase IV (DPP IV) inhibitory activity evaluated. An additional in silico molecular docking analysis was conducted to ensure their activity. The results showed that NADES (with a composition of choline chloride–glycerol) extraction from cinnamon and sappan wood had DPP IV inhibitory activity of 205.0 and 1254.0 µg/mL, respectively. Brazilin as a marker substance from sappan wood was responsible for the DPP IV inhibitory activity, while none of the marker substances chosen for cinnamon bark (trans-cinnamaldehyde, coumarin, and trans-cinnamic acid) were found to have significant DPP IV inhibitory activity. These results were confirmed by molecular docking conducted in brazilin, trans-cinnamaldehyde, coumarin, and trans-cinnamic acid.
Collapse
Affiliation(s)
- Islamudin Ahmad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, East Kalimantan 75119, Indonesia;
| | - Ayun Erwina Arifianti
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia;
| | - Aditya Sindu Sakti
- Graduate Program of Herbal Medicine, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia; (A.S.S.); (F.C.S.)
| | - Fadlina Chany Saputri
- Graduate Program of Herbal Medicine, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia; (A.S.S.); (F.C.S.)
| | - Abdul Mun’im
- Graduate Program of Herbal Medicine, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia; (A.S.S.); (F.C.S.)
- Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia
- Correspondence: ; Tel.: +62-21-7270031
| |
Collapse
|
12
|
Kalhotra P, Chittepu VC, Osorio-Revilla G, Gallardo-Velazquez T. Phytochemicals in Garlic Extract Inhibit Therapeutic Enzyme DPP-4 and Induce Skeletal Muscle Cell Proliferation: A Possible Mechanism of Action to Benefit the Treatment of Diabetes Mellitus. Biomolecules 2020; 10:biom10020305. [PMID: 32075130 PMCID: PMC7072494 DOI: 10.3390/biom10020305] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023] Open
Abstract
Diabetes mellitus is a severe health problem in Mexico, and its prevalence is increasing exponentially every year. Recently, DPP-4 (dipeptidyl peptidase-4) inhibitors have become attractive oral anti-hyperglycemic agents to reduce the pathology of diabetes. Gliptin’s family, such as sitagliptin, vildagliptin, and alogliptin, are in clinical use to treat diabetes mellitus but possess side effects. Therefore, there is a specific need to look for new therapeutic scaffolds (biomolecules). Garlic bulb is widely used as a traditional remedy for the treatment of diabetes. The garlic extracts are scientifically proven to control glucose levels in patients with diabetes, despite the unknown mechanism of action. The aim of the study is to investigate the antidiabetic effects of ultrasonication assisted garlic bulb extract. To achieve this, in-vitro assays such as DPP-4 inhibitory and antioxidant activities were investigated. Further, functional group analysis using FTIR and identification of phytochemicals using mass spectrometry analysis was performed. The results showed that 70.9 µg/mL of garlic bulb extract inhibited 50% DPP-4 activity. On top of that, the garlic extract exhibited a 20% scavenging activity, equivalent to 10 µg/mL of ascorbic acid. Molecular docking simulations on identified phytochemicals using mass spectrometry revealed their potential binding at the DPP-4 druggable region, and therefore the possible DPP-4 inhibition mechanism. These results suggest that prepared garlic extract contains phytochemicals that inhibit DPP-4 and have antioxidant activity. Also, the prepared extract induces skeletal muscle cell proliferation that demonstrates the antidiabetic effect and its possible mechanism of action.
Collapse
Affiliation(s)
- Poonam Kalhotra
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, CP. Ciudad de Mexico 11340, Mexico;
| | - Veera C.S.R. Chittepu
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politecnico Nacional, Av. Wilfrido Massieu S/N, Col. Unidad Profesional Adolfo López Mateos, Zacatenco, CP. Ciudad de Mexico 07738, Mexico (G.O.-R.)
| | - Guillermo Osorio-Revilla
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politecnico Nacional, Av. Wilfrido Massieu S/N, Col. Unidad Profesional Adolfo López Mateos, Zacatenco, CP. Ciudad de Mexico 07738, Mexico (G.O.-R.)
| | - Tzayhri Gallardo-Velazquez
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, CP. Ciudad de Mexico 11340, Mexico;
- Correspondence: ; Tel.: +(55)-572-960-00
| |
Collapse
|
13
|
Asleh R, Sheikh-Ahmad M, Briasoulis A, Kushwaha SS. The influence of anti-hyperglycemic drug therapy on cardiovascular and heart failure outcomes in patients with type 2 diabetes mellitus. Heart Fail Rev 2019; 23:445-459. [PMID: 29270818 DOI: 10.1007/s10741-017-9666-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Patients with type 2 diabetes mellitus (DM) are at a substantially increased risk of heart failure (HF) and HF mortality. Despite the lack of evidence that tight glycemic control reduces the incidence of cardiovascular (CV) events, a growing body of evidence suggests that the choice of glucose-lowering agents may influence outcomes including HF. Thiazolidinediones are associated with a significant risk of HF. For metformin, sulphonylureas and insulin, little data is available to indicate the impact on HF. The glucagon-like peptide-1 (GLP-1) agonists, liraglutide and semaglutide, have been shown to reduce major CV events, but did not affect rates of hospitalization for HF. Clinical trials have demonstrated diverse effects of Dipeptidyl peptidase-4 (DPP-4) inhibitors on HF; saxagliptin showed an increased risk of HF admissions, alogliptin was associated with higher rates of new HF admissions, while sitagliptin had a neutral effect. The sodium-glucose cotransporter 2 (SGLT2) inhibitors, empagliflozin and canagliflozin, have been recently shown to reduce the incidence of HF and cardiovascular mortality in patients with and without a history of HF. This review will summarize key findings of the impact of glucose-lowering agents on CV safety and HF-associated outcomes, present available data on the underlying mechanisms for the benefits of the SGLT2 inhibitors on HF, and discuss strategies to improve outcomes in patients with DM and high CV risk.
Collapse
Affiliation(s)
- Rabea Asleh
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. SW, Gonda 5 S, Rochester, MN, 55905, USA.
| | | | - Alexandros Briasoulis
- Department of Cardiovascular Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sudhir S Kushwaha
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. SW, Gonda 5 S, Rochester, MN, 55905, USA
| |
Collapse
|
14
|
Vildagliptin Attenuates Hepatic Ischemia/Reperfusion Injury via the TLR4/NF- κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3509091. [PMID: 30405876 PMCID: PMC6204182 DOI: 10.1155/2018/3509091] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 12/15/2022]
Abstract
The Toll-like receptor-4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway is vital in the pathogenesis of hepatic ischemia/reperfusion (HIR) injury. Dipeptidyl peptidase-4 (DPP4) inhibitors exert protective effects on IR injury of the kidney, heart, and lung; however, their effect on the liver is still unknown. Thus, the purpose of this study was to examine whether pretreatment with vildagliptin (Vilda), a DPP4 inhibitor, produces hepatic protection against IR injury and to investigate its influence on TLR4/NF-κB signaling in a rat model. Thirty male Wistar rats were divided into 3 groups: the sham group: subjected to a sham operation and received normal saline; the HIR group: subjected to HIR and received normal saline; and the Vilda + HIR group: subjected to HIR with pretreatment of 10 mg/kg/day Vilda for 10 days intraperitoneally. Hepatic ischemia lasted for 45 minutes followed by 3-hour reperfusion; then blood and liver samples were collected for biochemical and histopathological examination. The HIR group produced a significant increase in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), hepatic malondialdehyde (MDA), nitric oxide (NO), and tumor necrosis factor alpha (TNF-α) levels and a significant reduction in the hepatic catalase level in comparison to the sham group. Moreover, a significant upregulation of gene and protein expressions of TLR4, NF-κB, and high-mobility group box-1 (HMGB1) along with caspase-3 protein expression was observed in the HIR group when compared with the sham group. Histopathological examination of the liver from the HIR group showed necrosis, sinusoidal congestion, hemorrhage, and hepatocyte degeneration. Administration of Vilda ameliorated the biochemical and histopathological changes caused by HIR. Vildagliptin showed for the first time a hepatoprotective effect in HIR injury through downregulation of TLR4/NF-κB/HMGB1 and caspase-3 hepatic expressions.
Collapse
|
15
|
Dipeptidyl peptidase IV (DPP-4) inhibition alleviates pulmonary arterial remodeling in experimental pulmonary hypertension. J Transl Med 2018; 98:1333-1346. [PMID: 29789684 DOI: 10.1038/s41374-018-0080-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/03/2018] [Accepted: 04/19/2018] [Indexed: 12/18/2022] Open
Abstract
Dipeptidyl peptidase IV (DPP-4) is well known for its role in glucose homeostasis, and DPP-4 inhibitor (DPP-4i) exhibits multiple actions in cardiovascular diseases. However, the effect of DPP-4i on pulmonary hypertension (PH) remains unclear. Therefore, this study aims to investigate the effect of DPP-4i on pulmonary arterial remodeling in rats with PH and the potential underlying mechanisms. Our results show that DPP-4 was expressed in epithelial cells, endothelial cells, smooth muscle cells, and inflammatory cells in lung. DPP-4i (Sitagliptin) attenuated right ventricular systolic pressure (RVSP), right ventricle remodeling, hypertrophy of pulmonary arterial medial layer, inflammatory cell infiltration, and endothelial-mesenchymal transition (EndMT) in monocrotaline (MCT)-induced PH rats. Similarly, DPP-4i also alleviated bleomycin- and chronic hypoxia-induced PH in rats. In cultured human pulmonary arterial smooth muscle cells (PASMCs), DPP-4i inhibited platelet derived growth factor (PDGF)-BB-induced proliferation and migration, which was abolished by phosphatase and tensin homolog deleted on chromosome ten (PTEN) knockout. These results demonstrate that DPP-4 inhibition alleviates pulmonary arterial remodeling in experimental PH by inhibiting proliferation and migration of PASMCs.
Collapse
|
16
|
Abbas SS, Mahmoud HM, Schaalan MF, El-Abhar HS. Involvement of brain natriuretic peptide signaling pathway in the cardioprotective action of sitagliptin. Pharmacol Rep 2018; 70:720-729. [PMID: 29935398 DOI: 10.1016/j.pharep.2018.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 01/18/2018] [Accepted: 02/06/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND The current study is focusing on the role of brain natriuretic peptide (BNP), a substrate of dipeptidyl peptidase-4 (DPP-4) enzyme, and its signaling survival pathway in the cardioprotective mechanism of sitagliptin, a DPP-4 inhibitor. METHODS Male Wistar rats were randomized into 7 groups, sham, I/R, KT-5823 (selective protein kinase (PK) G inhibitor), 5-HD (selective mito-KATP channel blocker), sitagliptin (300mg/kg, po), sitagliptin+KT-5823, and sitagliptin+5-HD. Sitagliptin was administered for 3 days prior to induction of coronary I/R, while either KT-5823 or 5-HD was administered intravenously 5min before coronary ligation. RESULTS Pretreatment with sitagliptin provided significant protection against I/R injury as manifested by decreasing, percentage of infarct size, suppressing the elevated ST segment, reducing the increased cardiac enzymes, as well as DPP-4 activity and elevating both heart rate (HR) and left ventricular developed pressure (LVDP). However, the addition of either blocker to sitagliptin regimen reversed partly its cardioprotective effects. Although I/R increased BNP content, it unexpectedly decreased that of cGMP; nevertheless, sitagliptin elevated both parameters, an effect that was not affected by the use of the two blockers. On the molecular level, sitagliptin decreased caspase-3 activity and downregulated the mRNA levels of BNP, Bax, and Cyp D, while upregulated that of Bcl2. The use of either KT-5823 or 5-HD with sitagliptin hindered its effect on the molecular markers tested. CONCLUSIONS The results of the present study suggest that the cardioprotective effect of sitagliptin is mediated partly, but not solely, through the BNP/cGMP/PKG survival signaling pathway.
Collapse
Affiliation(s)
- Samah S Abbas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - Hesham M Mahmoud
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona F Schaalan
- Department of Biochemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Linagliptin attenuates chronic post-ischemia pain: Possible anti-inflammatory and anti-oxidant mechanisms. Eur J Pharmacol 2018; 828:110-118. [DOI: 10.1016/j.ejphar.2018.03.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 02/08/2023]
|
18
|
Effects of incretin-based therapies on renal function. Eur J Pharmacol 2018; 818:103-109. [DOI: 10.1016/j.ejphar.2017.10.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/03/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023]
|
19
|
Lei Y, Hu L, Yang G, Piao L, Jin M, Cheng X. Dipeptidyl Peptidase-IV Inhibition for the Treatment of Cardiovascular Disease - Recent Insights Focusing on Angiogenesis and Neovascularization. Circ J 2017; 81:770-776. [PMID: 28344207 DOI: 10.1253/circj.cj-16-1326] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dipeptidyl peptidase IV (DPP-IV) is a complex enzyme that acts as a membrane-anchored cell surface exopeptidase and transmits intracellular signals through a small intracellular tail. DPP-IV exists in human blood in a soluble form, and truncates a large number of peptide hormones, chemokines, cytokines, and growth factors in vitro and in vivo. DPP-IV has gained considerable interest as a therapeutic target, and a variety of DPP-IV inhibitors that prolong the insulinotropic effects of glucagon-like peptide-1 (GLP-1) are widely used in clinical settings as antidiabetic drugs. Indeed, DPP-IV is upregulated in proinflammatory states, including obesity and cardiovascular disease with and without diabetes mellitus. Consistent with this maladaptive role, DPP-IV inhibitors seem to exert a protective role in cardiovascular disease. In addition to their GLP-1-dependent vascular protective actions, DPP-IV inhibitors exhibit GLP-1-independent beneficial effects on angiogenesis/neovascularization via several signaling pathways (e.g., stromal cell-derived factor-1α/C-X-C chemokine receptor type-4, vascular endothelial growth factor-A/endothelial nitric oxide synthase, etc.). This review focuses on recent findings in this field, highlighting the role of DPP-IV in therapeutic angiogenesis/neovascularization in ischemic heart disease and peripheral artery disease.
Collapse
Affiliation(s)
- Yanna Lei
- Department of ICU, Yanbian University Hospital
| | - Lina Hu
- Department of Public Health, Guilin Medical College
| | - Guang Yang
- Department of Cardiology, Yanbian University Hospital
| | - Limei Piao
- Department of Cardiology, Yanbian University Hospital
| | - Minggen Jin
- Department of ICU, Yanbian University Hospital
| | - Xianwu Cheng
- Department of Cardiology, Yanbian University Hospital.,Institute of Innovation for Future Society, Nagoya University.,Department of Cardiovascular Internal Medicine, Kyung Hee University Hospital, Kyung Hee University
| |
Collapse
|
20
|
Beckers PAJ, Gielis JF, Van Schil PE, Adriaensen D. Lung ischemia reperfusion injury: the therapeutic role of dipeptidyl peptidase 4 inhibition. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:129. [PMID: 28462209 DOI: 10.21037/atm.2017.01.41] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4) is a cell surface protease that has been reported to play a role in glucose homeostasis, cancer, HIV, autoimmunity, immunology and inflammation. A role for DPP4 in ischemia-reperfusion injury (IRI) in the heart has been established. Dipeptidyl peptidase 4 inhibition (DPP4i) appeared to decrease infarct size, improves cardiac function and promotes myocardial regeneration. Lung ischemia reperfusion injury is caused by a complex mechanism in which macrophages and neutrophils play an important role. Generation of reactive oxygen species (ROS), uncoupling of nitric oxide synthase (NOS), activation of nuclear factor-κB (NF-κB), activation of nicotinamide adenine dinucleotide phosphate metabolism, and generation of pro-inflammatory cytokines lead to acute lung injury (ALI). In this review we present the current knowledge on DPP4 as a target to treat IRI in the lung. We also provide evidence of the roles of the DPP4 substrates glucagon-like peptide 1 (GLP-1), vasoactive intestinal peptide (VIP) and stromal cell-derived factor-1α (SDF-1α) in protection against oxidative stress through activation of the mitogen-activated protein kinase (MAPK) 1/2 and phosphatidylinositol 3'-kinase (PI3K)/Akt signal transduction pathways.
Collapse
Affiliation(s)
- Paul A J Beckers
- Antwerp Surgical Training, Anatomy & Research Center, Department of Medicine, University of Antwerp, Wilrijk, Belgium
| | - Jan F Gielis
- Antwerp Surgical Training, Anatomy & Research Center, Department of Medicine, University of Antwerp, Wilrijk, Belgium
| | - Paul E Van Schil
- Antwerp Surgical Training, Anatomy & Research Center, Department of Medicine, University of Antwerp, Wilrijk, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
21
|
Jang JH, Yamada Y, Janker F, De Meester I, Baerts L, Vliegen G, Inci I, Chatterjee S, Weder W, Jungraithmayr W. Anti-inflammatory effects on ischemia/reperfusion-injured lung transplants by the cluster of differentiation 26/dipeptidylpeptidase 4 (CD26/DPP4) inhibitor vildagliptin. J Thorac Cardiovasc Surg 2017; 153:713-724.e4. [DOI: 10.1016/j.jtcvs.2016.10.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/24/2022]
|
22
|
Vliegen G, Raju TK, Adriaensen D, Lambeir AM, De Meester I. The expression of proline-specific enzymes in the human lung. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:130. [PMID: 28462210 DOI: 10.21037/atm.2017.03.36] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathophysiology of lung diseases is very complex and proteolytic enzymes may play a role or could be used as biomarkers. In this review, the literature was searched to make an overview of what is known on the expression of the proline-specific peptidases dipeptidyl peptidase (DPP) 4, 8, 9, prolyl oligopeptidase (PREP) and fibroblast activation protein α (FAP) in the healthy and diseased lung. Search terms included asthma, chronic obstructive pulmonary disease (COPD), lung cancer, fibrosis, ischemia reperfusion injury and pneumonia. Knowledge on the loss or gain of protein expression and activity during disease might tie these enzymes to certain cell types, substrates or interaction partners that are involved in the pathophysiology of the disease, ultimately leading to the elucidation of their functional roles and a potential therapeutic target. Most data could be found on DPP4, while the other enzymes are less explored. Published data however often appear to be conflicting, the applied methods divers and the specificity of the assays used questionable. In conclusion, information on the expression of the proline-specific peptidases in the healthy and diseased lung is lacking, begging for further well-designed research.
Collapse
Affiliation(s)
- Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tom K Raju
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
23
|
Nistala R, Savin V. Diabetes, hypertension, and chronic kidney disease progression: role of DPP4. Am J Physiol Renal Physiol 2017; 312:F661-F670. [PMID: 28122713 DOI: 10.1152/ajprenal.00316.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022] Open
Abstract
The protein dipeptidyl peptidase 4 (DPP4) is a target in diabetes management and reduction of associated cardiovascular risk. Inhibition of the enzymatic function and genetic deletion of DPP4 is associated with tremendous benefits to the heart, vasculature, adipose tissue, and the kidney in rodent models of obesity, diabetes and hypertension, and associated complications. The recently concluded, "Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus-Thrombolysis in Myocardial Infarction 53" trial revealed a reduction in proteinuria in chronic kidney disease patients (stages 1-3). These results have spurred immense interest in the nonenzymatic and enzymatic role of DPP4 in the kidney. DPP4 is expressed predominantly in the glomeruli and S1-S3 segments of the nephron and to a lesser extent in other segments. DPP4 is known to facilitate absorption of cleaved dipeptides and regulate the function of the sodium/hydrogen exchanger-3 in the proximal tubules. DPP4, also known as CD26, has an important role in costimulation of lymphocytes via caveolin-1 on antigen-presenting cells in peripheral blood. Herein, we present our perspectives for the ongoing interest in the role of DPP4 in the kidney.
Collapse
Affiliation(s)
- Ravi Nistala
- Division of Nephrology and Hypertension, Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri; and
| | - Virginia Savin
- Department of Nephrology, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| |
Collapse
|
24
|
Bertone V, Tarantola E, Freitas I. Enzyme-Histochemistry Technique for Visualizing the Dipeptidyl-Peptidase IV (DPP-IV) Activity in the Liver Biliary Tree. Methods Mol Biol 2017; 1560:45-53. [PMID: 28155144 DOI: 10.1007/978-1-4939-6788-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dipeptidyl-peptidase IV is an enzyme involved in a lot of biochemical processes, where it modifies a number of regulatory proteins by removing the terminal peptides by hydrolysis. Here we describe a histochemical method to demonstrate with accuracy and precision its in situ activity on cryostatic section of Wistar rat liver by means of a simultaneous azo-coupling method.
Collapse
Affiliation(s)
- Vittorio Bertone
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via A. Ferrata, 9, 27100, Pavia, Italy.
| | - Eleonora Tarantola
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via A. Ferrata, 9, 27100, Pavia, Italy
| | - Isabel Freitas
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via A. Ferrata, 9, 27100, Pavia, Italy
| |
Collapse
|
25
|
Park KS, Kwak S, Cho YM, Park KS, Jang HC, Kim SY, Jung HS. Vildagliptin reduces plasma stromal cell-derived factor-1α in patients with type 2 diabetes compared with glimepiride. J Diabetes Investig 2016; 8:218-226. [PMID: 27575011 PMCID: PMC5334315 DOI: 10.1111/jdi.12572] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/03/2016] [Accepted: 08/28/2016] [Indexed: 01/20/2023] Open
Abstract
AIMS/INTRODUCTION Dipeptidyl peptidase-4 inhibitors might have pleiotropic protective effects on cardiovascular disease (CVD), in contrast to sulfonylureas. Therefore, we compared various CVD risk factors between vildagliptin and glimepiride. MATERIALS AND METHODS We carried out a randomized, prospective and crossover trial. A total of 16 patients with type 2 diabetes whose glycated hemoglobin was >7% were randomized to add vildagliptin or glimepiride. After 12-week treatment, each drug was replaced with the other for another 12 weeks. Before and after each treatment, glucose homeostasis and CVD risk factors were assessed, and the continuous glucose monitoring system was applied to calculate glycemic variability. RESULTS The mean age of the participants was 60 years, 31% were men, body mass index 25.5 kg/m2 and HbA1c 8.41%. Both vildagliptin and glimepiride significantly decreased glycated hemoglobin and glycemic variability indices. Despite the improved glucose homeostasis, favorable change of CVD markers was not prominent in both the arms, along with significant weight gain. Only plasma stromal cell-derived factor (SDF)-1α decreased by 30% in the vildagliptin arm. According to regression analyses, the reduction of SDF-1α was independently associated with vildagliptin usage and serum interleukin-6 changes, but white blood cells were not related with the SDF-1α changes. CONCLUSION Compared with glimepiride, vildagliptin arrestingly decreased plasma SDF-1α, and its clinical implications should be further investigated.
Collapse
Affiliation(s)
- Kyeong Seon Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - SooHeon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hak C Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Seong Yeon Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hye Seung Jung
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
26
|
Fenouillet E, Vigouroux A, Steinberg JG, Chagvardieff A, Retornaz F, Guieu R, Jammes Y. Association of biomarkers with health-related quality of life and history of stressors in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Transl Med 2016; 14:251. [PMID: 27580693 PMCID: PMC5006431 DOI: 10.1186/s12967-016-1010-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/16/2016] [Indexed: 12/15/2022] Open
Abstract
Background Myalgic encephalomyelitis chronic fatigue syndrome (ME/CFS) is a common debilitating disorder associated with an intense fatigue, a reduced physical activity, and an impaired quality of life. There are no established biological markerof the syndrome. The etiology is unknown and its pathogenesis appears to be multifactorial. Various stressors, including intense physical activity, severe infection, and emotional stress are reported in the medical history of ME/CFS patients which raises the question whether any physiological and biological abnormalities usually found in these patients could be indicative of the etiology and/or the quality-of-life impairment. Methods Thirty-six patients and 11 age-matched healthy controls were recruited. The following variables that appear to address common symptoms of ME/CFS were studied here: (1) muscle fatigue during exercise has been investigated by monitoring the compound muscle action potential (M-wave); (2) the excessive oxidative stress response to exercise was measured via two plasma markers (thiobarbituric acid reactive substances: TBARS; reduced ascorbic-acid: RAA); (3) a potential inflammatory component was addressed via expression of CD26 on peripheral blood mononuclear cells; (4) quality-of-life impairment was assessed using the London Handicap Scale (LHS) and the Medical Outcome Study Short Form-36 (SF-36). The medical history of each patient, including the presence of stressors such as intense sports practice, severe acute infection and/or severe emotional stress was documented. Results We observed that: (1) there were striking differences between cases and controls with regard to three biological variables: post-exercise M-wave, TBARS variations and CD26-expression at rest; (2) each of these three variables correlated with the other two; (3) abnormalities in the biomarkers associated with health-related quality of life: the LHS score was negatively correlated with the exercise-induced TBARS increase and positively correlated with CD26-expression while the pain component of SF-36 was negatively correlated with CD26-expression; (4) the TBARS increase and the M-wave decrease were the highest, and the CD26-expression level the lowest in patients who had been submitted to infectious stressors. Conclusion In ME/CFS patients, severe alterations of the muscle excitability, the redox status, as well as the CD26-expression level are correlated with a marked impairment of the quality-of-life. They are particularly significant when infectious stressors are reported in the medical history.
Collapse
Affiliation(s)
- Emmanuel Fenouillet
- DS-ACI UMR MD2, Faculty of Medicine, Aix-Marseille University, Bd. Pierre Dramard, 13916, Marseille Cedex 20, France.,CNRS, Institut des Sciences Biologiques, Marseille, France
| | - Aude Vigouroux
- Clinical Respiratory Physiology Laboratory, Nord Hospital, Marseille, France
| | - Jean Guillaume Steinberg
- DS-ACI UMR MD2, Faculty of Medicine, Aix-Marseille University, Bd. Pierre Dramard, 13916, Marseille Cedex 20, France
| | | | | | - Regis Guieu
- DS-ACI UMR MD2, Faculty of Medicine, Aix-Marseille University, Bd. Pierre Dramard, 13916, Marseille Cedex 20, France
| | - Yves Jammes
- DS-ACI UMR MD2, Faculty of Medicine, Aix-Marseille University, Bd. Pierre Dramard, 13916, Marseille Cedex 20, France. .,Clinical Respiratory Physiology Laboratory, Nord Hospital, Marseille, France.
| |
Collapse
|
27
|
Baerts L, Brouns R, Kehoe K, Verkerk R, Engelborghs S, De Deyn PP, Hendriks D, De Meester I. Acute Ischemic Stroke Severity, Progression, and Outcome Relate to Changes in Dipeptidyl Peptidase IV and Fibroblast Activation Protein Activity. Transl Stroke Res 2016; 8:157-164. [PMID: 27561653 DOI: 10.1007/s12975-016-0493-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 08/13/2016] [Accepted: 08/15/2016] [Indexed: 01/08/2023]
Abstract
Dipeptidyl peptidase IV (DPPIV) inhibition may be a promising therapeutic strategy for acute stroke treatment, given its potential to prolong the biological half-life of neuroprotective substrates. A related protease, fibroblast activation protein (FAP), was recently shown to inactivate the same substrates. Therefore, it should also be investigated as a potential target in stroke. The study aimed to investigate whether stroke severity and outcome correlate with DPPIV and FAP activities and their kinetics shortly after acute ischemic stroke. DPPIV and FAP activities were analyzed in the serum of 50 hyperacute stroke patients at admission, 1 day, 3 days, and 7 days after stroke onset and in 50 age-matched healthy controls. This was done as part of the Middelheim's Interdisciplinary Stroke Study. DPPIV activity tended to increase shortly after stroke compared to the control population. DPPIV and FAP activities steadily decreased in the first week after stroke onset. Higher infarct volumes (≥5 ml) and a more severe stroke (NIHSS >7) at admission were correlated with a stronger decrease in the activities of both enzymes. Moreover, these patients more often developed a progressive stroke, were more often institutionalized. Patients with a stronger increase in DPPIV activity at admission and decrease in the activity of both DPPIV and FAP during the first week after stroke onset had a more severe stroke and worse short-term outcomes.
Collapse
Affiliation(s)
- Lesley Baerts
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, Building S, room D.S.513, 2610, Wilrijk-Antwerp, Belgium
| | - Raf Brouns
- Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium.,Center for Neurosciences, Vrije universiteit Brussel, Brussels, Belgium
| | - Kaat Kehoe
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, Building S, room D.S.513, 2610, Wilrijk-Antwerp, Belgium
| | - Robert Verkerk
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, Building S, room D.S.513, 2610, Wilrijk-Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge beuken, Antwerp, Belgium
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge beuken, Antwerp, Belgium
| | - Dirk Hendriks
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, Building S, room D.S.513, 2610, Wilrijk-Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, Building S, room D.S.513, 2610, Wilrijk-Antwerp, Belgium.
| |
Collapse
|
28
|
Malagrino PA, Venturini G, Yogi PS, Dariolli R, Padilha K, Kiers B, Gois TC, Cardozo KHM, Carvalho VM, Salgueiro JS, Girardi ACC, Titan SMDO, Krieger JE, Pereira AC. Proteome analysis of acute kidney injury - Discovery of new predominantly renal candidates for biomarker of kidney disease. J Proteomics 2016; 151:66-73. [PMID: 27457269 DOI: 10.1016/j.jprot.2016.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/12/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023]
Abstract
The main bottleneck in studies aiming to identify novel biomarkers in acute kidney injury (AKI) has been the identification of markers that are organ and process specific. Here, we have used different tissues from a controlled porcine renal ischemia/reperfusion (I/R) model to identify new, predominantly renal biomarker candidates for kidney disease. Urine and serum samples were analyzed in pre-ischemia, ischemia (60min) and 4, 11 and 16h post-reperfusion, and renal cortex samples after 24h of reperfusion. Peptides were analyzed on the Q-Exactive™. In renal cortex proteome, we observed an increase in the synthesis of proteins in the ischemic kidney compared to the contralateral, highlighted by transcription factors and epithelial adherens junction proteins. Intersecting the set of proteins up- or down-regulated in the ischemic tissue with both serum and urine proteomes, we identified 6 proteins in the serum that may provide a set of targets for kidney injury. Additionally, we identified 49, being 4 predominantly renal, proteins in urine. As prove of concept, we validated one of the identified biomarkers, dipeptidyl peptidase IV, in a set of patients with diabetic nephropathy. In conclusion, we identified 55 systemic proteins, some of them predominantly renal, candidates for biomarkers of renal disease. BIOLOGICAL SIGNIFICANCE The main bottleneck in studies aiming to identify novel biomarkers in acute kidney injury (AKI) has been the identification of markers that are predominantly renal. In fact, putative biomarkers for this condition have also been identified in a number of other clinical scenarios, such as cardiovascular diseases, chronic kidney failure or in patients being treated in intensive care units from a number of conditions. Here we propose a comprehensive, sequential screening procedure able to identify and validate potential biomarkers for kidney disease, using kidney ischemia/reperfusion as a paradigm for a kidney pathological event.
Collapse
Affiliation(s)
- Pamella Araujo Malagrino
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil.
| | - Gabriela Venturini
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Patrícia Schneider Yogi
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Kallyandra Padilha
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Bianca Kiers
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Tamiris Carneiro Gois
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil
| | | | | | | | - Adriana Castello Costa Girardi
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Silvia Maria de Oliveira Titan
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Alexandre Costa Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil.
| |
Collapse
|
29
|
Takada S, Masaki Y, Kinugawa S, Matsumoto J, Furihata T, Mizushima W, Kadoguchi T, Fukushima A, Homma T, Takahashi M, Harashima S, Matsushima S, Yokota T, Tanaka S, Okita K, Tsutsui H. Dipeptidyl peptidase-4 inhibitor improved exercise capacity and mitochondrial biogenesis in mice with heart failure via activation of glucagon-like peptide-1 receptor signalling. Cardiovasc Res 2016; 111:338-47. [PMID: 27450980 DOI: 10.1093/cvr/cvw182] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/23/2016] [Indexed: 02/07/2023] Open
Abstract
AIMS Exercise capacity is reduced in heart failure (HF) patients, due mostly to skeletal muscle abnormalities including impaired energy metabolism, mitochondrial dysfunction, fibre type transition, and atrophy. Glucagon-like peptide-1 (GLP-1) has been shown to improve exercise capacity in HF patients. We investigated the effects of the administration of a dipeptidyl peptidase (DPP)-4 inhibitor on the exercise capacity and skeletal muscle abnormalities in an HF mouse model after myocardial infarction (MI). METHODS AND RESULTS MI was created in male C57BL/6J mice by ligating the left coronary artery, and a sham operation was performed in other mice. The mice were then divided into two groups according to the treatment with or without a DPP-4 inhibitor, MK-0626 [1 mg/kg body weight (BW)/day] provided in the diet. Four weeks later, the exercise capacity evaluated by treadmill test was revealed to be limited in the MI mice, and it was ameliorated in the MI + MK-0626 group without affecting the infarct size or cardiac function. The citrate synthase activity, mitochondrial oxidative phosphorylation capacity, supercomplex formation, and their quantity were reduced in the skeletal muscle from the MI mice, and these decreases were normalized in the MI + MK-0626 group, in association with the improvement of mitochondrial biogenesis. Immunohistochemical staining also revealed that a shift toward the fast-twitch fibre type in the MI mice was also reversed by MK-0626. Favourable effects of MK-0626 were significantly inhibited by treatment of GLP-1 antagonist, Exendin-(9-39) (150 pmol/kg BW/min, subcutaneous osmotic pumps) in MI + MK-0626 mice. Similarly, exercise capacity and mitochondrial function were significantly improved by treatment of GLP-1 agonist, Exendin-4 (1 nmol/kg/BW/h, subcutaneous osmotic pumps). CONCLUSIONS A DPP-4 inhibitor may be a novel therapeutic agent against the exercise intolerance seen in HF patients by improving the mitochondrial biogenesis in their skeletal muscle.
Collapse
Affiliation(s)
- Shingo Takada
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoshihiro Masaki
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Junichi Matsumoto
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Mizushima
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomoyasu Kadoguchi
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tsuneaki Homma
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masashige Takahashi
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shinichi Harashima
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koichi Okita
- Graduate School of Program in Lifelong Sport, Hokusho University, Ebetsu, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
30
|
Fiordaliso F, Maggioni S, Balconi G, Schiarea S, Corbelli A, De Luigi A, Figliuzzi M, Antoniou X, Chiabrando C, Masson S, Cervo L, Latini R. Effects of dipeptidyl peptidase-4 (DPP-4) inhibition on angiogenesis and hypoxic injury in type 2 diabetes. Life Sci 2016; 154:87-95. [PMID: 27040669 DOI: 10.1016/j.lfs.2016.03.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/17/2016] [Accepted: 03/28/2016] [Indexed: 12/31/2022]
Abstract
AIMS We examined whether, in diabetic Ob/Ob mice, the dipeptidyl peptidase-4 (DPP-4) inhibitor (PKF275-055), an antihyperglycemic drug, that inhibits the biological inactivation of SDF-1 (stromal cell-derived factor-1), may increase endothelial progenitor cells (EPCs) mobilization and incorporation, which, in turn, may regenerate capillaries and reduce myocardial ischemia induced by strenuous exercise. MAIN METHODS Half of sixteen control and Ob/Ob mice and eight Ob/Ob mice treated with PKF275-055 for four weeks underwent a forced swim protocol. Oral glucose tolerance, circulating EPCs, capillary ultrastructure and density, hypoxic areas and SDF-1 localization in myocardium were measured. KEY FINDINGS Ob/Ob mice were glucose intolerant, had a significant low number of circulating EPCs and myocardial capillaries compared to lean controls. The DPP-4 inhibitor significantly improved their glucose tolerance, doubled the number of circulating EPCs, stimulated the formation of functional vessels and SDF-1 localization in the endothelium of myocardial capillaries and arterioles. Cardiac hypoxia after forced swim in Ob/Ob mice was significantly reduced when they were treated with the DPP-4 inhibitor. SIGNIFICANCE DPP-4 inhibition may re-establish an adequate capillary network in the myocardium of diabetic Ob/Ob mice by the mobilization and SDF-1-mediated incorporation of EPCs and, consequently, reducing the susceptibility to myocardial ischemic injury provoked by strenuous exercise.
Collapse
Affiliation(s)
- Fabio Fiordaliso
- Department of Cardiovascular Research, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milan, Italy.
| | - Serena Maggioni
- Department of Cardiovascular Research, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milan, Italy
| | - Giovanna Balconi
- Department of Cardiovascular Research, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milan, Italy
| | - Silvia Schiarea
- Department of Environmental Health Sciences, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milan, Italy
| | - Alessandro Corbelli
- Department of Cardiovascular Research, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milan, Italy
| | - Ada De Luigi
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milan, Italy
| | - Marina Figliuzzi
- Department of Biomedical Engineering, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 24126 Bergamo, Italy
| | - Xenia Antoniou
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milan, Italy
| | - Chiara Chiabrando
- Department of Environmental Health Sciences, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milan, Italy
| | - Serge Masson
- Department of Cardiovascular Research, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milan, Italy
| | - Luigi Cervo
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milan, Italy
| | - Roberto Latini
- Department of Cardiovascular Research, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156 Milan, Italy
| |
Collapse
|
31
|
Bando YK, Murohara T. Heart Failure as a Comorbidity of Diabetes: Role of Dipeptidyl Peptidase 4. J Atheroscler Thromb 2015; 23:147-54. [PMID: 26607352 DOI: 10.5551/jat.33225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Heart failure is a primary cause of death worldwide, and it is notable that heart failure patients exhibit a high incidence of diabetes. On the other hand, comorbid diabetes significantly worsens the prognosis of heart failure, even independently of complicated coronary artery disease.To date, heart failure caused by diabetes has been designated as "diabetic cardiomyopathy (DMC)," and a recent cohort study of the large-scale (1.9 million people) research platform of linked electronic medical records in UK (CALIBER registry) demonstrated that heart failure and peripheral arterial disease are the most common initial manifestations of cardiovascular disease in type 2 diabetes. The underlying pathophysiology has been characterized as microvasculopathy, myocardial hypertrophy, and cardiac fibrosis; however, these evidences are mostly obtained under a preclinical setting, and its clinical application on DMC in terms of its diagnosis and therapeutic intervention yet has reached practical. Our group has focused on and clarified the molecular mechanisms underlying DMC both in preclinical and clinical settings and has found the primary role of "dipeptidyl peptidase-4 (DPP4)" in the pathogenesis of diabetic microvasculopathy in the heart. Moreover, there are evidences implicating the potent role of circulating DPP4 activity in the diagnosis of diastolic heart failure. The present review aimed to review the current comprehension regarding diabetes and heart failure and discuss the therapeutic and diagnostic roles of DPP4.
Collapse
Affiliation(s)
- Yasuko K Bando
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | | |
Collapse
|
32
|
Yamada Y, Jang JH, De Meester I, Baerts L, Vliegen G, Inci I, Yoshino I, Weder W, Jungraithmayr W. CD26 costimulatory blockade improves lung allograft rejection and is associated with enhanced interleukin-10 expression. J Heart Lung Transplant 2015; 35:508-17. [PMID: 26755203 DOI: 10.1016/j.healun.2015.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 10/15/2015] [Accepted: 11/19/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The ectoenzyme CD26/dipeptidyl peptidase 4 (DPP4) has costimulatory activity that contributes to T cell activation and proliferation. Here, we aimed to target this costimulatory activity for the attenuation of the alloreactive Th17-cell response during acute rejection after mouse lung transplantation. METHODS To test the CD26-costimulatory blockade in vitro, mixed lymphocyte reaction was performed between major histocompatibility complex class I and II fully mismatched cells (CD4(+) splenocytes, C57BL/6, responders, and antigen-presenting cells, BALB/c, stimulators) by adding the CD26 inhibitor vildagliptin (0-15 μg). Lung transplantation between BALB/c (donor) and C57BL/6 (recipient) mice was performed, including controls, CD26-inhibited (CD26-I, daily administration of vildagliptin [GLSynthesis, Worcester, MA], 10 mg/kg subcutaneous), and CD26 knockout (CD26KO) mice was performed. Analysis on Day 1 and 5 after transplant included immunohistochemistry, fluorescence-activated cell sorting, and enzyme-linked immunosorbent assay (ELISA) for immune cell detection and their key cytokines. RESULTS In vitro, there was a significant reduction of the Th17 cytokines interleukin (IL)-17 and IL-21. In vivo, CD26-I-treated and CD26KO mice showed significantly preserved macroscopic and histologic characteristics on Day 5 (p < 0.01), a higher partial pressure of arterial oxygen/fraction of inspired oxygen ratio (p ≤ 0.05), fewer infiltrating CD3(+) T cells (p < 0.01), but more interstitial macrophages on Day 1 (p < 0.01) compared with control. Fewer IL-17(+) cells were found in CD26-I allografts on Day 1 (p = 0.05). Higher levels of IL-10 in CD26-I and CD26KO allografts on day 5 were seen (p < 0.05). IL-10/CD206 double-staining (alternative macrophages) revealed more positive cells in CD26-I and CD26KO on Day 1 and 5 (p < 0.01). CONCLUSIONS CD26 costimulatory blockade promotes lung allograft acceptance via reduced T cell infiltration, less expression of IL-17, and increased expression of IL-10, likely to be derived from alternatively activated macrophages.
Collapse
Affiliation(s)
- Yoshito Yamada
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland; Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Jae-Hwi Jang
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Ingrid De Meester
- Department of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Lesley Baerts
- Department of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Gwendolyn Vliegen
- Department of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Ilhan Inci
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Walter Weder
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
33
|
Waumans Y, Baerts L, Kehoe K, Lambeir AM, De Meester I. The Dipeptidyl Peptidase Family, Prolyl Oligopeptidase, and Prolyl Carboxypeptidase in the Immune System and Inflammatory Disease, Including Atherosclerosis. Front Immunol 2015; 6:387. [PMID: 26300881 PMCID: PMC4528296 DOI: 10.3389/fimmu.2015.00387] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/13/2015] [Indexed: 12/19/2022] Open
Abstract
Research from over the past 20 years has implicated dipeptidyl peptidase (DPP) IV and its family members in many processes and different pathologies of the immune system. Most research has been focused on either DPPIV or just a few of its family members. It is, however, essential to consider the entire DPP family when discussing any one of its members. There is a substantial overlap between family members in their substrate specificity, inhibitors, and functions. In this review, we provide a comprehensive discussion on the role of prolyl-specific peptidases DPPIV, FAP, DPP8, DPP9, dipeptidyl peptidase II, prolyl carboxypeptidase, and prolyl oligopeptidase in the immune system and its diseases. We highlight possible therapeutic targets for the prevention and treatment of atherosclerosis, a condition that lies at the frontier between inflammation and cardiovascular disease.
Collapse
Affiliation(s)
- Yannick Waumans
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Lesley Baerts
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Kaat Kehoe
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| |
Collapse
|
34
|
Suppression of lung metastases by the CD26/DPP4 inhibitor Vildagliptin in mice. Clin Exp Metastasis 2015; 32:677-87. [PMID: 26233333 DOI: 10.1007/s10585-015-9736-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/24/2015] [Indexed: 01/09/2023]
Abstract
Metastases rather than primary cancers determine nowadays the survival of patients. One of the most common primary malignancies is colorectal cancer and this type of tumor is characterized by a high tendency to spread metastases to the lung and liver. CD26/DPP4 is a transmembrane molecule with enzymatic functions which cleaves biologically active peptides. Recently, CD26/DPP4 has become the focus of cancer research and it was shown that CD26/DPP4-positive cancer cells display increased metastatic activity. Here, we tested if the CD26/DPP4-inhibitor Vildagliptin suppresses the development and growth of mouse colorectal lung metastases. This inhibitor of CD26/DPP4 was employed on mouse (C57BL/6) colorectal lung metastases, established by intravenous injection of the syngeneic cell line MC38. For mechanistic analysis, a subcutaneous tumor model was used. The treatment with Vildagliptin significantly suppressed both, the incidence and growth of lung metastases. Autophagy markers (LC3, p62, and ATF4) decreased, apoptosis increased (TUNEL, pH3/Ki-76), and the cell cycle regulator pCDC2 was inhibited. In conclusion, we here showed an anti-tumor effect of Vildagliptin via downregulation of autophagy resulting in increased apoptosis and modulation of the cell cycle. We therefore propose Vildagliptin for the evaluation as a new therapeutic approach for the treatment of colorectal cancer lung metastases.
Collapse
|
35
|
Ferrannini E, DeFronzo RA. Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes. Eur Heart J 2015; 36:2288-96. [PMID: 26063450 DOI: 10.1093/eurheartj/ehv239] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/16/2015] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by multiple pathophysiologic abnormalities. With time, multiple glucose-lowering medications are commonly required to reduce and maintain plasma glucose concentrations within the normal range. Type 2 diabetes mellitus individuals also are at a very high risk for microvascular complications and the incidence of heart attack and stroke is increased two- to three-fold compared with non-diabetic individuals. Therefore, when selecting medications to normalize glucose levels in T2DM patients, it is important that the agent not aggravate, and ideally even improve, cardiovascular risk factors (CVRFs) and reduce cardiovascular morbidity and mortality. In this review, we examine the effect of oral (metformin, sulfonylureas, meglitinides, thiazolidinediones, DPP4 inhibitors, SGLT2 inhibitors, and α-glucosidase inhibitors) and injectable (glucagon-like peptide-1 receptor agonists and insulin) glucose-lowering drugs on established CVRFs and long-term studies of cardiovascular outcomes. Firm evidence that in T2DM cardiovascular disease can be reversed or prevented by improving glycaemic control is still incomplete and must await large, long-term clinical trials in patients at low risk using modern treatment strategies, i.e., drug combinations designed to maximize HbA1c reduction while minimizing hypoglycaemia and excessive weight gain.
Collapse
Affiliation(s)
- Ele Ferrannini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Ralph A DeFronzo
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
36
|
Bruzzese L, Rostain JC, Née L, Condo J, Mottola G, Adjriou N, Mercier L, Berge-Lefranc JL, Fromonot J, Kipson N, Lucciano M, Durand-Gorde JM, Jammes Y, Guieu R, Ruf J, Fenouillet E. Effect of hyperoxic and hyperbaric conditions on the adenosinergic pathway and CD26 expression in rat. J Appl Physiol (1985) 2015; 119:140-7. [PMID: 25997945 DOI: 10.1152/japplphysiol.00223.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/19/2015] [Indexed: 11/22/2022] Open
Abstract
The nucleoside adenosine acts on the nervous and cardiovascular systems via the A2A receptor (A2AR). In response to oxygen level in tissues, adenosine plasma concentration is regulated in particular via its synthesis by CD73 and via its degradation by adenosine deaminase (ADA). The cell-surface endopeptidase CD26 controls the concentration of vasoactive and antioxidant peptides and hence regulates the oxygen supply to tissues and oxidative stress response. Although overexpression of adenosine, CD73, ADA, A2AR, and CD26 in response to hypoxia is well documented, the effects of hyperoxic and hyperbaric conditions on these elements deserve further consideration. Rats and a murine Chem-3 cell line that expresses A2AR were exposed to 0.21 bar O2, 0.79 bar N2 (terrestrial conditions; normoxia); 1 bar O2 (hyperoxia); 2 bar O2 (hyperbaric hyperoxia); 0.21 bar O2, 1.79 bar N2 (hyperbaria). Adenosine plasma concentration, CD73, ADA, A2AR expression, and CD26 activity were addressed in vivo, and cAMP production was addressed in cellulo. For in vivo conditions, 1) hyperoxia decreased adenosine plasma level and T cell surface CD26 activity, whereas it increased CD73 expression and ADA level; 2) hyperbaric hyperoxia tended to amplify the trend; and 3) hyperbaria alone lacked significant influence on these parameters. In the brain and in cellulo, 1) hyperoxia decreased A2AR expression; 2) hyperbaric hyperoxia amplified the trend; and 3) hyperbaria alone exhibited the strongest effect. We found a similar pattern regarding both A2AR mRNA synthesis in the brain and cAMP production in Chem-3 cells. Thus a high oxygen level tended to downregulate the adenosinergic pathway and CD26 activity. Hyperbaria alone affected only A2AR expression and cAMP production. We discuss how such mechanisms triggered by hyperoxygenation can limit, through vasoconstriction, the oxygen supply to tissues and the production of reactive oxygen species.
Collapse
Affiliation(s)
- Laurie Bruzzese
- UMR MD2, Institute of Biological Research, French Defense Ministry (IRBA), Aix Marseille University, Marseille, France
| | - Jean-Claude Rostain
- UMR MD2, Institute of Biological Research, French Defense Ministry (IRBA), Aix Marseille University, Marseille, France
| | - Laëtitia Née
- UMR MD2, Institute of Biological Research, French Defense Ministry (IRBA), Aix Marseille University, Marseille, France; Department of Anesthesia and Intensive Care, Timone University Hospital, Marseille, France
| | - Jocelyne Condo
- UMR MD2, Institute of Biological Research, French Defense Ministry (IRBA), Aix Marseille University, Marseille, France
| | - Giovanna Mottola
- UMR MD2, Institute of Biological Research, French Defense Ministry (IRBA), Aix Marseille University, Marseille, France; Laboratory of Biochemistry, Timone University Hospital, Marseille, France
| | - Nabil Adjriou
- UMR MD2, Institute of Biological Research, French Defense Ministry (IRBA), Aix Marseille University, Marseille, France
| | - Laurence Mercier
- Laboratory of Molecular Biology, Conception Hospital, Marseille, France
| | | | - Julien Fromonot
- UMR MD2, Institute of Biological Research, French Defense Ministry (IRBA), Aix Marseille University, Marseille, France; Laboratory of Biochemistry, Timone University Hospital, Marseille, France
| | - Nathalie Kipson
- UMR MD2, Institute of Biological Research, French Defense Ministry (IRBA), Aix Marseille University, Marseille, France
| | - Michel Lucciano
- UMRT24, French Institute of Science and Technology for Transport, Development, and Networks (IFSTTAR), Aix Marseille University, Marseille, France
| | - Josée-Martine Durand-Gorde
- UMR MD2, Institute of Biological Research, French Defense Ministry (IRBA), Aix Marseille University, Marseille, France
| | - Yves Jammes
- UMR MD2, Institute of Biological Research, French Defense Ministry (IRBA), Aix Marseille University, Marseille, France
| | - Régis Guieu
- UMR MD2, Institute of Biological Research, French Defense Ministry (IRBA), Aix Marseille University, Marseille, France; Laboratory of Biochemistry, Timone University Hospital, Marseille, France
| | - Jean Ruf
- UMR MD2, Institute of Biological Research, French Defense Ministry (IRBA), Aix Marseille University, Marseille, France; National Institute of Health and Medical Research (INSERM), Paris France
| | - Emmanuel Fenouillet
- UMR MD2, Institute of Biological Research, French Defense Ministry (IRBA), Aix Marseille University, Marseille, France; National Center of Scientific Research (CNRS), Institute of Biological Science, Paris, France
| |
Collapse
|
37
|
Dingenouts CKE, Goumans MJ, Bakker W. Mononuclear cells and vascular repair in HHT. Front Genet 2015; 6:114. [PMID: 25852751 PMCID: PMC4369645 DOI: 10.3389/fgene.2015.00114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/05/2015] [Indexed: 12/31/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) or Rendu–Osler–Weber disease is a rare genetic vascular disorder known for its endothelial dysplasia causing arteriovenous malformations and severe bleedings. HHT-1 and HHT-2 are the most prevalent variants and are caused by heterozygous mutations in endoglin and activin receptor-like kinase 1, respectively. An undervalued aspect of the disease is that HHT patients experience persistent inflammation. Although endothelial and mural cells have been the main research focus trying to unravel the mechanism behind the disease, wound healing is a process with a delicate balance between inflammatory and vascular cells. Inflammatory cells are part of the mononuclear cells (MNCs) fraction, and can, next to eliciting an immune response, also have angiogenic potential. This biphasic effect of MNC can hold a promising mechanism to further elucidate treatment strategies for HHT patients. Before MNC are able to contribute to repair, they need to home to and retain in ischemic and damaged tissue. Directed migration (homing) of MNCs following tissue damage is regulated by the stromal cell derived factor 1 (SDF1). MNCs that express the C-X-C chemokine receptor 4 (CXCR4) migrate toward the tightly regulated gradient of SDF1. This directed migration of monocytes and lymphocytes can be inhibited by dipeptidyl peptidase 4 (DPP4). Interestingly, MNC of HHT patients express elevated levels of DPP4 and show impaired homing toward damaged tissue. Impaired homing capacity of the MNCs might therefore contribute to the impaired angiogenesis and tissue repair observed in HHT patients. This review summarizes recent studies regarding the role of MNCs in the etiology of HHT and vascular repair, and evaluates the efficacy of DPP4 inhibition in tissue integrity and repair.
Collapse
Affiliation(s)
- Calinda K E Dingenouts
- Department of Molecular Cell Biology, Leiden University Medical Center Leiden, Netherlands
| | - Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center Leiden, Netherlands
| | - Wineke Bakker
- Department of Molecular Cell Biology, Leiden University Medical Center Leiden, Netherlands
| |
Collapse
|
38
|
Salles TA, dos Santos L, Barauna VG, Girardi ACC. Potential role of dipeptidyl peptidase IV in the pathophysiology of heart failure. Int J Mol Sci 2015; 16:4226-49. [PMID: 25690036 PMCID: PMC4346954 DOI: 10.3390/ijms16024226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 12/14/2022] Open
Abstract
Dipeptidyl peptidase IV (DPPIV) is a widely expressed multifunctional serine peptidase that exists as a membrane-anchored cell surface protein or in a soluble form in the plasma and other body fluids. Numerous substrates are cleaved at the penultimate amino acid by DPPIV, including glucagon-like peptide-1 (GLP-1), brain natriuretic peptide (BNP) and stromal cell-derived factor-1 (SDF-α), all of which play important roles in the cardiovascular system. In this regard, recent reports have documented that circulating DPPIV activity correlates with poorer cardiovascular outcomes in human and experimental heart failure (HF). Moreover, emerging evidence indicates that DPPIV inhibitors exert cardioprotective and renoprotective actions in a variety of experimental models of cardiac dysfunction. On the other hand, conflicting results have been found when translating these promising findings from preclinical animal models to clinical therapy. In this review, we discuss how DPPIV might be involved in the cardio-renal axis in HF. In addition, the potential role for DPPIV inhibitors in ameliorating heart disease is revised, focusing on the effects of the main DPPIV substrates on cardiac remodeling and renal handling of salt and water.
Collapse
Affiliation(s)
- Thiago A Salles
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-000, SP, Brazil.
| | - Leonardo dos Santos
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria 29043-900, ES, Brazil.
| | - Valério G Barauna
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria 29043-900, ES, Brazil.
| | - Adriana C C Girardi
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-000, SP, Brazil.
| |
Collapse
|
39
|
Tarantola E, Bertone V, Milanesi G, Gruppi C, Ferrigno A, Vairetti M, Barni S, Freitas I. Dipeptidylpeptidase-IV activity and expression reveal decreased damage to the intrahepatic biliary tree in fatty livers submitted to subnormothermic machine-perfusion respect to conventional cold storage. Eur J Histochem 2014; 58:2414. [PMID: 25308846 PMCID: PMC4194394 DOI: 10.4081/ejh.2014.2414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 02/08/2023] Open
Abstract
Graft steatosis is a risk factor for poor initial function after liver transplantation. Biliary complications are frequent even after normal liver transplantation. A subnormothermic machine perfusion (MP20) preservation procedure was developed by our group with high potential for reducing injury to hepatocytes and sinusoidal cells of lean and fatty livers respect to conventional cold storage (CS). We report the response of the biliary tree to CS or MP20, in lean and obese Zucker rat liver. Dipeptidylpeptidase-IV (DPP-IV), crucial for the inactivation of incretins and neuropeptides, was used as a marker. Liver morphology and canalicular network of lean livers were similar after CS/reperfusion or MP20/reperfusion. CS preservation of fatty livers induced serious damage to the parenchyma and to the canalicular activity/ expression of DPP-IV, whereas with MP20 the morphology and canalicular network were similar to those of untreated lean liver. CS and MP20 had similar effects on DPP-IV activity and expression in the upper segments of the intrahepatic biliary tree of fatty livers. DPP-IV expression was significantly increased after MP20 respect to CS or to the controls, both for lean and obese animals. Our data support the superiority of MP20 over CS for preserving fatty livers. Dipeptidylpeptidase-IV activity and expression reveal decreased damage to the intrahepatic biliary tree in fatty livers submitted to subnormothermic machine-perfusion respect to conventional cold storage.
Collapse
|
40
|
Ectoenzymes in leukocyte migration and their therapeutic potential. Semin Immunopathol 2014; 36:163-76. [PMID: 24638888 DOI: 10.1007/s00281-014-0417-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/19/2014] [Indexed: 02/07/2023]
Abstract
Inflammation causes or accompanies a huge variety of diseases. Migration of leukocytes from the blood into the tissues, in the tissues, and from the tissues to lymphatic vasculature is crucial in the formation and resolution of inflammatory infiltrates. In addition to classical adhesion and activation molecules, several other molecules are known to contribute to the leukocyte traffic. Several of them belong to ectoenzymes, which are cell surface molecules having catalytically active sites outside the cell. We will review here how several ectoenzymes present on leukocytes or endothelial cell surface function as adhesins and/or modulate the extravasation cascade through their enzymatic activities. Moreover, their therapeutic potential as immune modulators in different experimental inflammation models and in clinical trials will be discussed.
Collapse
|
41
|
Abstract
As the link between heart failure (HF) and diabetes mellitus (DM) becomes unignorable, so the need is further increasing for pathological comprehension: What is "diabetic cardiomyopathy (DMC)?" In response to current concern, the most updated guidelines stated by the ACCF/AHA and by the ESC/EASD take one step further, including the definition of DMC, although it is a matter yet to be completed. For more than 40 years, coronary artery disease and hypertension have been considered as the main causes of diabetes-related cardiac dysfunction. HF was originally considered as a result of reduced left ventricular ejection fraction (HF-REF); however, it has been recognized that HF symptoms are often observed in patients with preserved EF (HF-PEF). DMC includes HF with both reduced and preserved entities independent of coronary stenosis and hypertension. Cardiologists are thus facing a sort of chaos without clear guidelines for the "deadly intersection" of DM and HF. Today, the increasing interest and concern have caused DMC to be revisited and the first step in controlling the chaos around DMC is to organize and analyze all of the available evidence from preclinical and clinical studies. This review aims to illustrate the current concepts of DMC by shedding light on the new molecular mechanisms. (Circ J 2014; 78: 576-583).
Collapse
Affiliation(s)
- Yasuko K Bando
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | | |
Collapse
|
42
|
Juillerat-Jeanneret L. Dipeptidyl peptidase IV and its inhibitors: therapeutics for type 2 diabetes and what else? J Med Chem 2013; 57:2197-212. [PMID: 24099035 DOI: 10.1021/jm400658e] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The proline-specific dipeptidyl aminopeptidase IV (DPP IV, DPP-4, CD26), widely expressed in mammalians, releases X-Pro/Ala dipeptides from the N-terminus of peptides. DPP IV is responsible of the degradation of the incretin peptide hormones regulating blood glucose levels. Several families of DPP IV inhibitors have been synthesized and evaluated. Their positive effects on the degradation of the incretins and the control of blood glucose levels have been demonstrated in biological models and in clinical trials. Presently, several DPP IV inhibitors, the "gliptins", are approved for type 2 diabetes or are under clinical evaluation. However, the gliptins may also be of therapeutic interest for other diseases beyond the inhibition of incretin degradation. In this Perspective, the biological functions and potential substrates of DPP IV enzymes are reviewed and the characteristics of the DPP IV inhibitors are discussed in view of type 2 diabetes and further therapeutic interest.
Collapse
|
43
|
Sivaraman V, Yellon DM. Pharmacologic therapy that simulates conditioning for cardiac ischemic/reperfusion injury. J Cardiovasc Pharmacol Ther 2013; 19:83-96. [PMID: 24038018 DOI: 10.1177/1074248413499973] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cardiovascular disease remains a leading cause of deaths due to noncommunicable diseases, of which ischemic heart disease forms a large percentage. The main therapeutic strategy to treat ischemic heart disease is reperfusion that could either be medical or surgical. However, reperfusion following ischemia is known to increase the infarct size further. Newer strategies such as ischemic preconditioning (IPC), ischemic postconditioning, and remote IPC have been shown to condition the myocardium to ischemia-reperfusion injury and thus reduce the final infarct size. Research over the past 3 decades has deepened our understanding of cellular and subcellular pathways that mediate ischemia-reperfusion injury. This in turn has resulted in the development of several pharmacological agents that act as conditioning agents, which reduce the final myocardial infarct size following ischemia-reperfusion. This review discusses many of these agents, their mechanisms of action, and the animal and clinical evidence behind them.
Collapse
Affiliation(s)
- Vivek Sivaraman
- 1The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | | |
Collapse
|
44
|
Scheen AJ. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors: from risk factors to clinical outcomes. Postgrad Med 2013; 125:7-20. [PMID: 23748503 DOI: 10.3810/pgm.2013.05.2659] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) are oral incretin-based glucose-lowering agents with proven efficacy and safety in the management of type 2 diabetes mellitus (T2DM). In addition, preclinical data and mechanistic studies suggest a possible additional non-glycemic beneficial action on blood vessels and the heart, via both glucagon-like peptide-1-dependent and glucagon-like peptide-1-independent effects. As a matter of fact, DPP-4 inhibitors improve several cardiovascular risk factors: they improve glucose control (mainly by reducing the risk of postprandial hyperglycemia) and are weight neutral; may lower blood pressure somewhat; improve postprandial (and even fasting) lipemia; reduce inflammatory markers; diminish oxidative stress; improve endothelial function; and reduce platelet aggregation in patients with T2DM. In addition, positive effects on the myocardium have been described in patients with ischemic heart disease. Results of post hoc analyses of phase 2/3 controlled trials suggest a possible cardioprotective effect with a trend (sometimes significant) toward lower incidence of major cardiovascular events with sitagliptin, vildagliptin, saxagliptin, linagliptin, or alogliptin compared with placebo or other active glucose-lowering agents. However, the definite relationship between DPP-4 inhibition and better cardiovascular outcomes remains to be proven. Major prospective clinical trials involving various DPP-4 inhibitors with predefined cardiovascular outcomes are under way in patients with T2DM and a high-risk cardiovascular profile: the Sitagliptin Cardiovascular Outcome Study (TECOS) on sitagliptin, the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients With Diabetes Mellitus-Thrombolysis in Myocardial Infarction (SAVOR-TIMI) 53 trial on saxagliptin, the Cardiovascular Outcomes Study of Alogliptin in Subjects With Type 2 Diabetes and Acute Coronary Syndrome (EXAMINE) trial on alogliptin, and the Cardiovascular Outcome Study of Linagliptin Versus Glimepiride in Patients With Type 2 Diabetes (CAROLINA) on linagliptin. If these trials confirm that a DPP-4 inhibitor can reduce the cardiovascular burden of T2DM, it would be major progress that would dramatically influence the management of the disease.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Sart Tilman, University of Liège, Liège, Belgium.
| |
Collapse
|
45
|
Ou X, O'Leary HA, Broxmeyer HE. Implications of DPP4 modification of proteins that regulate stem/progenitor and more mature cell types. Blood 2013; 122:161-9. [PMID: 23637126 PMCID: PMC3709652 DOI: 10.1182/blood-2013-02-487470] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/14/2013] [Indexed: 12/28/2022] Open
Abstract
Dipeptidylpeptidase (DPP) 4 has the potential to truncate proteins with a penultimate alanine, proline, or other selective amino acids at the N-terminus. DPP4 truncation of certain chemokines, colony-stimulating factors, and interleukins have recently been linked to regulation of hematopoietic stem/progenitor cells, more mature blood cells, and other cell types. We believe that the potential role of DPP4 in modification of many regulatory proteins, and their subsequent effects on numerous stem/progenitor and other cell-type functions has not been adequately appreciated. This review addresses the potential implications of the modifying effects of DPP4 on a large number of cytokines and other growth-regulating factors with either proven or putative DPP4 truncation sites on hematopoietic cells, and subsequent effects of DPP4-truncated proteins on multiple aspects of steady-state and stressed hematopoiesis, including stem/progenitor cell, and more mature cell, function.
Collapse
Affiliation(s)
- Xuan Ou
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
46
|
Fadini GP, Avogaro A. Dipeptidyl peptidase-4 inhibition and vascular repair by mobilization of endogenous stem cells in diabetes and beyond. Atherosclerosis 2013; 229:23-9. [DOI: 10.1016/j.atherosclerosis.2013.04.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/28/2013] [Accepted: 04/08/2013] [Indexed: 12/13/2022]
|
47
|
Mosenzon O, Raz I, Scirica BM, Hirshberg B, Stahre CI, Steg PG, Davidson J, Ohman P, Price DL, Frederich B, Udell JA, Braunwald E, Bhatt DL. Baseline characteristics of the patient population in the Saxagliptin Assessment of Vascular Outcomes Recorded in patients with diabetes mellitus (SAVOR)-TIMI 53 trial. Diabetes Metab Res Rev 2013; 29:417-26. [PMID: 23564755 DOI: 10.1002/dmrr.2413] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS SAVOR-TIMI 53 was designed to study the effects of the DPP-4 inhibitor saxagliptin on cardiovascular outcomes in high risk type 2 diabetes patients with diverse levels of diabetes control and background anti-diabetic drugs. The goal of this article is to describe the baseline characteristics of this hypothesis driven study. MATERIALS AND METHODS A total of 16 496 diabetic patients from North America (31.9%), Western Europe (26.0%), Eastern Europe (17.3%), Latin America (16.4%) and Asia (8.3%), with either established cardiovascular disease (78.3%) or with ≥two additional cardiovascular risk factors (21.7%) were randomised to saxagliptin or placebo. Biomarkers of inflammation and insulin resistance were taken at baseline and 2 years later in order to correlate saxagliptin effect on cardiovascular outcome to its effect on inflammation and insulin resistance. RESULTS Mean [+/-standard deviation (SD)] age was 65.0 (+/-8.6) years, 66.9% were male, body mass index was 31.2 kg/m² (+/-5.6), mean diabetes duration was 11.9 years (+/-8.9) and the mean HbA1c 8.0% (+/-1.4%). HbA1c < 7% was most prevalent among North Americans (30.8%) and least among Asians (15.1%), whereas HbA1c > 9% was 30.7% in Latin America 27.0% in Asia and 15.1% in North America. Diabetic retinopathy was reported in 12.3% of patients, nephropathy in 17.7% and amputation in 2.5%. Diabetic treatments categories were as follows: no medication (5.4%), 1 oral anti-diabetic drug (OAD) (25.0%), ≥2 OAD (27.7%) and/or insulin (40.9%). The prevalence of micro-albuminuria was twice as high among insulin users compared with users of ≥2 OAD. Baseline statin use (78.3% overall) varied by region. CONCLUSION The SAVOR-TIMI 53 patient population, with differing background diabetes control and anti-diabetic treatment, provides global representation of diabetic patients with established cardiovascular disease or at high risk for cardiovascular disease and is well-positioned to determine the effect of saxagliptin on cardiovascular events.
Collapse
Affiliation(s)
- O Mosenzon
- Diabetes Unit, Department of Medicine, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang H, Lin H, Mo X, Chen G, Lin L. Synergistic relationship between dipeptidyl peptidase IV and neutral endopeptidase expression and the combined prognostic significance in osteosarcoma patients. Med Oncol 2013; 30:608. [PMID: 23686701 DOI: 10.1007/s12032-013-0608-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/10/2013] [Indexed: 12/12/2022]
Abstract
Neutral endopeptidase (NEP/CD10) and dipeptidyl peptidase IV (DPP IV/CD26) are both ubiquitous glycopeptidases which play important roles in tumor pathogenesis and development. The aim of this study was to investigate the expression patterns and the prognostic significance of CD10 and CD26 in osteosarcoma patients. CD10 and CD26 expression in 116 pairs of primary osteosarcoma and corresponding noncancerous bone tissue samples from the same specimens were detected by immunohistochemistry. The Spearman's correlation was calculated between the expression levels of CD10 and CD26 in osteosarcoma tissues. The associations of CD10 and CD26 expression with the clinicopathologic features and with the prognosis of osteosarcoma were subsequently assessed. Both CD10 expression and CD26 expression in osteosarcoma tissues were significantly higher than those in corresponding noncancerous bone tissue samples (both P < 0.001). Overexpression of CD10 and CD26 were respectively observed in 68.10 % (79/116) and 70.69 % (82/116) of osteosarcoma tissues. A significant correlation was found between CD10 expression and CD26 expression in osteosarcoma tissues (r = 0.83, P < 0.001). In addition, combined overexpression of CD10 and CD26 was observed in 52.59 % (61/116) of osteosarcoma tissues. CD10-high/CD26-high expression was significantly correlated with advanced clinical stage (P = 0.001), positive metastatic status (P = 0.001), shorter overall (P < 0.001) and disease-free (P < 0.001) survival in patients with osteosarcomas. Furthermore, multivariate survival analysis showed that clinical stage, metastatic status, CD10 expression, CD26 expression and combined expression of CD10/CD26 were all independent prognostic factors for predicting both overall and disease-free survival of osteosarcoma patients. Interestingly, combined expression of CD10/CD26 had a better prognostic value than other features. This retrospective study offer the convincing evidence for the first time that the overexpression of CD10 or CD26 may be an important feature of human osteosarcomas, and the combined expression of CD10/CD26 may be an efficient prognostic indicator for this disease.
Collapse
Affiliation(s)
- Hongtao Zhang
- Orthopedics Department, Zhongshan City People's Hospital, Zhongshan 528403, China
| | | | | | | | | |
Collapse
|
49
|
Dipeptidyl peptidases in atherosclerosis: expression and role in macrophage differentiation, activation and apoptosis. Basic Res Cardiol 2013; 108:350. [DOI: 10.1007/s00395-013-0350-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 03/18/2013] [Accepted: 04/06/2013] [Indexed: 12/20/2022]
|
50
|
El Messaoudi S, Rongen GA, Riksen NP. Metformin Therapy in Diabetes: The Role of Cardioprotection. Curr Atheroscler Rep 2013; 15:314. [DOI: 10.1007/s11883-013-0314-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|