1
|
Piacente F, Guccione G, Scarano N, Lunaccio D, Miro C, Abbotto E, Salis A, Tasso B, Dentice M, Bruzzone S, Cichero E, Millo E. Discovery of Novel Thiazole-Based SIRT2 Inhibitors as Anticancer Agents: Molecular Modeling, Chemical Synthesis and Biological Assays. Int J Mol Sci 2024; 25:11084. [PMID: 39456864 PMCID: PMC11508362 DOI: 10.3390/ijms252011084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The search and development of effective sirtuin small molecule inhibitors (SIRTIs) continues to draw great attention due to their wide range of pharmacological applications. Based on SIRTs' involvement in different biological pathways, their ligands were investigated for many diseases, such as cancer, neurodegenerative disorders, diabetes, cardiovascular diseases and autoimmune diseases. The elucidation of a substantial number of SIRT2-ligand complexes is steering the identification of novel and more selective modulators. Among them, SIRT2 in the presence of the SirReal2 analog series was the most studied. On this basis, we recently reported structure-based analyses leading to the discovery of thiazole-based compounds acting as SIRT2 inhibitors (T1, SIRT2 IC50 = 17.3 µM). Herein, ligand-based approaches followed by molecular docking simulations allowed us to evaluate in silico a novel small series of thiazoles (3a-3d and 5a, 5d) as putative SIRT2 inhibitors. Results from the computational studies revealed comparable molecular interaction fields (MIFs) and docking positionings of most of these compounds with respect to reference SIRT2Is. Biochemical and biological assays validated this study and pointed to compound 5a (SIRT2 IC50 = 9.0 µM) as the most interesting SIRT2I that was worthy of further development as an anticancer agent.
Collapse
Affiliation(s)
- Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (G.G.); (D.L.); (E.A.); (A.S.); (E.M.)
| | - Giorgia Guccione
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (G.G.); (D.L.); (E.A.); (A.S.); (E.M.)
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (B.T.)
| | - Dario Lunaccio
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (G.G.); (D.L.); (E.A.); (A.S.); (E.M.)
| | - Caterina Miro
- Department of Clinical Medicine & Surgery, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (C.M.); (M.D.)
| | - Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (G.G.); (D.L.); (E.A.); (A.S.); (E.M.)
| | - Annalisa Salis
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (G.G.); (D.L.); (E.A.); (A.S.); (E.M.)
| | - Bruno Tasso
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (B.T.)
| | - Monica Dentice
- Department of Clinical Medicine & Surgery, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (C.M.); (M.D.)
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (G.G.); (D.L.); (E.A.); (A.S.); (E.M.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (B.T.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (G.G.); (D.L.); (E.A.); (A.S.); (E.M.)
| |
Collapse
|
2
|
Sosa Ponce ML, Remedios MH, Moradi-Fard S, Cobb JA, Zaremberg V. SIR telomere silencing depends on nuclear envelope lipids and modulates sensitivity to a lysolipid. J Cell Biol 2023; 222:e202206061. [PMID: 37042812 PMCID: PMC10103788 DOI: 10.1083/jcb.202206061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/29/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
The nuclear envelope (NE) is important in maintaining genome organization. The role of lipids in communication between the NE and telomere regulation was investigated, including how changes in lipid composition impact gene expression and overall nuclear architecture. Yeast was treated with the non-metabolizable lysophosphatidylcholine analog edelfosine, known to accumulate at the perinuclear ER. Edelfosine induced NE deformation and disrupted telomere clustering but not anchoring. Additionally, the association of Sir4 at telomeres decreased. RNA-seq analysis showed altered expression of Sir-dependent genes located at sub-telomeric (0-10 kb) regions, consistent with Sir4 dispersion. Transcriptomic analysis revealed that two lipid metabolic circuits were activated in response to edelfosine, one mediated by the membrane sensing transcription factors, Spt23/Mga2, and the other by a transcriptional repressor, Opi1. Activation of these transcriptional programs resulted in higher levels of unsaturated fatty acids and the formation of nuclear lipid droplets. Interestingly, cells lacking Sir proteins displayed resistance to unsaturated-fatty acids and edelfosine, and this phenotype was connected to Rap1.
Collapse
Affiliation(s)
| | | | - Sarah Moradi-Fard
- Departments of Biochemistry and Molecular Biology and Oncology, Cumming School of Medicine, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Calgary, Canada
| | - Jennifer A. Cobb
- Departments of Biochemistry and Molecular Biology and Oncology, Cumming School of Medicine, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Calgary, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Shamardl HAMA, Ibrahim NA, Merzeban DH, Elamir AM, Golam RM, Elsayed AM. Resveratrol and Dulaglutide ameliorate adiposity and liver dysfunction in rats with diet-induced metabolic syndrome: Role of SIRT-1 / adipokines / PPARγ and IGF-1. Daru 2023:10.1007/s40199-023-00458-y. [PMID: 36991247 DOI: 10.1007/s40199-023-00458-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/05/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Adiposity and non-alcoholic fatty liver disease (NAFLD) are common characteristics of metabolic syndrome (MS). Understanding the underlying pathogenesis is crucial for the development of new remedies. Resveratrol controls obesity and glycemic disorders in patients with MS. OBJECTIVES This study aimed to evaluate the effect of resveratrol and dulaglutide on adipose tissues and liver in rats with MS, declaring their possible mechanisms. METHODS Rats allocated as Control, MS (induced by a high fat/ high sucrose diet for eight weeks), MS + Resveratrol (30 mg/kg/day orally), and MS + Dulaglutide (0.6 mg/kg twice weekly SC); drugs administration was in the last four weeks. Serum biochemical measurements were done. Liver and visceral fat were processed for biochemistry, histopathology, and immunohistochemistry. RESULTS MS results demonstrated significantly increased systolic and diastolic blood pressure, anthropometric measurements, serum levels of alanine aminotransferase (ALT), glycemic indices, and lipids with decreased HDL-C. Tissue levels of leptin, malondialdehyde (MDA), and TNF-α reactivity significantly increased. Expression of adiponectin, PPARγ, and insulin growth factor-1 (IGF-1) decreased. Also, Western blotting mRNA gene expression of liver SIRT-1 was down-regulated. Resveratrol and dulaglutide significantly and effectively reversed MS complexity, ameliorating all findings, particularly NAFLD and adiposity-induced inflammation. Resveratrol significantly appears superior to dulaglutide regarding the effects on hemodynamics, lipids, adipokines, IGF-1 levels, and adipocyte size. Parallel, dulaglutide has more influence on glycemic control. CONCLUSION Protective effects of the drugs may be through correlations between SIRT-1/adipokines/IGF-1 and PPARγ, improving the cross-talk between insulin resistance, obesity markers, liver dysfunction, and TNF-α. Promising multi-beneficial therapies of resveratrol or dulaglutide in MS are recommended clinically for this purpose. Showing the Experimental Design.
Collapse
Affiliation(s)
| | - Noha A Ibrahim
- Histology and Cell Biology Department, Faculty of Medicine, Fayoum University, Fayoum, 19052, Egypt
| | - Dina H Merzeban
- Medical Physiology DepartmentFaculty of Medicine, Fayoum University, Fayoum, 19052, Egypt
| | - Azza M Elamir
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Fayoum University, Fayoum, 19052, Egypt
| | - Rehab M Golam
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Fayoum University, Fayoum, 19052, Egypt
| | - Asmaa M Elsayed
- Histology and Cell Biology Department, Faculty of Medicine, Fayoum University, Fayoum, 19052, Egypt
| |
Collapse
|
4
|
Sandonà M, Cavioli G, Renzini A, Cedola A, Gigli G, Coletti D, McKinsey TA, Moresi V, Saccone V. Histone Deacetylases: Molecular Mechanisms and Therapeutic Implications for Muscular Dystrophies. Int J Mol Sci 2023; 24:4306. [PMID: 36901738 PMCID: PMC10002075 DOI: 10.3390/ijms24054306] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Histone deacetylases (HDACs) are enzymes that regulate the deacetylation of numerous histone and non-histone proteins, thereby affecting a wide range of cellular processes. Deregulation of HDAC expression or activity is often associated with several pathologies, suggesting potential for targeting these enzymes for therapeutic purposes. For example, HDAC expression and activity are higher in dystrophic skeletal muscles. General pharmacological blockade of HDACs, by means of pan-HDAC inhibitors (HDACi), ameliorates both muscle histological abnormalities and function in preclinical studies. A phase II clinical trial of the pan-HDACi givinostat revealed partial histological improvement and functional recovery of Duchenne Muscular Dystrophy (DMD) muscles; results of an ongoing phase III clinical trial that is assessing the long-term safety and efficacy of givinostat in DMD patients are pending. Here we review the current knowledge about the HDAC functions in distinct cell types in skeletal muscle, identified by genetic and -omic approaches. We describe the signaling events that are affected by HDACs and contribute to muscular dystrophy pathogenesis by altering muscle regeneration and/or repair processes. Reviewing recent insights into HDAC cellular functions in dystrophic muscles provides new perspectives for the development of more effective therapeutic approaches based on drugs that target these critical enzymes.
Collapse
Affiliation(s)
| | - Giorgia Cavioli
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Alessia Cedola
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), University of Rome “La Sapienza”, 00181 Rome, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), 73100 Lecce, Italy
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy
- CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Aging B2A, Sorbonne Université, 75005 Paris, France
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Viviana Moresi
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), University of Rome “La Sapienza”, 00181 Rome, Italy
| | - Valentina Saccone
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
5
|
Progress in Nonalcoholic Fatty Liver Disease: SIRT Family Regulates Mitochondrial Biogenesis. Biomolecules 2022; 12:biom12081079. [PMID: 36008973 PMCID: PMC9405760 DOI: 10.3390/biom12081079] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, insulin resistance, mitochondrial dysfunction, inflammation, and oxidative stress. As a group of NAD+-dependent III deacetylases, the sirtuin (SIRT1-7) family plays a very important role in regulating mitochondrial biogenesis and participates in the progress of NAFLD. SIRT family members are distributed in the nucleus, cytoplasm, and mitochondria; regulate hepatic fatty acid oxidation metabolism through different metabolic pathways and mechanisms; and participate in the regulation of mitochondrial energy metabolism. SIRT1 may improve NAFLD by regulating ROS, PGC-1α, SREBP-1c, FoxO1/3, STAT3, and AMPK to restore mitochondrial function and reduce steatosis of the liver. Other SIRT family members also play a role in regulating mitochondrial biogenesis, fatty acid oxidative metabolism, inflammation, and insulin resistance. Therefore, this paper comprehensively introduces the role of SIRT family in regulating mitochondrial biogenesis in the liver in NAFLD, aiming to further explain the importance of SIRT family in regulating mitochondrial function in the occurrence and development of NAFLD, and to provide ideas for the research and development of targeted drugs. Relatively speaking, the role of some SIRT family members in NAFLD is still insufficiently clear, and further research is needed.
Collapse
|
6
|
Khawar MB, Sohail AM, Li W. SIRT1: A Key Player in Male Reproduction. Life (Basel) 2022; 12:318. [PMID: 35207605 PMCID: PMC8880319 DOI: 10.3390/life12020318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/23/2022] Open
Abstract
Reproduction is the way to immortality for an individual, and it is essential to the continuation of the species. Sirtuins are involved in cellular homeostasis, energy metabolism, apoptosis, age-related problems, and sexual reproduction. Sirtuin 1 (SIRT1) belongs to the sirtuin family of deacetylases, and it is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase. It removes the acetyl group from a variety of substrates. SIRT1 regulates endocrine/metabolic, reproductive, and placental development by deacetylating histone, different transcription factors, and signal transduction molecules in a variety of cellular processes. It also plays a very important role in the synthesis and secretion of sex hormones via regulating the hypothalamus-pituitary-gonadal (HPG) axis. Moreover, SIRT1 participates in several key stages of spermatogenesis and sperm maturation. The current review will give a thorough overview of SIRT1's functions in male reproductive processes, thus paving the way for more research on restorative techniques and their uses in reproductive medicine.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Applied Molecular Biology and Biomedicine Laboratory, Department of Zoology, University of Narowal, Narowal 51600, Pakistan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Abdullah Muhammad Sohail
- Molecular Medicine and Cancer Therapeutics Laboratory, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore 54782, Pakistan
| | - Wei Li
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Zhang P, Konja D, Zhang Y, Xu A, Lee IK, Jeon JH, Bashiri G, Mitra A, Wang Y. Clusterin is involved in mediating the metabolic function of adipose SIRT1. iScience 2022; 25:103709. [PMID: 35072003 PMCID: PMC8762396 DOI: 10.1016/j.isci.2021.103709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/17/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
SIRT1 is a metabolic sensor regulating energy homeostasis. The present study revealed that mice with selective overexpression of human SIRT1 in adipose tissue (Adipo-SIRT1) were protected from high-fat diet (HFD)-induced metabolic abnormalities. Adipose SIRT1 was enriched at mitochondria-ER contacts (MERCs) to trigger mitohormesis and unfolded protein response (UPRmt), in turn preventing ER stress. As a downstream target of UPRmt, clusterin was significantly upregulated and acted together with SIRT1 to regulate the protein and lipid compositions at MERCs of adipose tissue. In mice lacking clusterin, HFD-induced metabolic abnormalities were significantly enhanced and could not be prevented by overexpression of SIRT1 in adipose tissue. Treatment with ER stress inhibitors restored adipose SIRT1-mediated beneficial effects on systemic energy metabolism. In summary, adipose SIRT1 facilitated the dynamic interactions and communications between mitochondria and ER, via MERCs, in turn triggering a mild mitochondrial stress to instigate the defense responses against dietary obesity-induced metabolic dysfunctions.
Collapse
Affiliation(s)
- Pengcheng Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Daniels Konja
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Yiwei Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Daegu41944, South Korea
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu41404, South Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Daegu41944, South Korea
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu41404, South Korea
| | - Ghader Bashiri
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Alok Mitra
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
8
|
Cha Y, Kim T, Jeon J, Jang Y, Kim PB, Lopes C, Leblanc P, Cohen BM, Kim KS. SIRT2 regulates mitochondrial dynamics and reprogramming via MEK1-ERK-DRP1 and AKT1-DRP1 axes. Cell Rep 2021; 37:110155. [PMID: 34965411 PMCID: PMC8780843 DOI: 10.1016/j.celrep.2021.110155] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/01/2021] [Accepted: 12/01/2021] [Indexed: 02/08/2023] Open
Abstract
During somatic reprogramming, cellular energy metabolism fundamentally switches from predominantly mitochondrial oxidative phosphorylation toward glycolysis. This metabolic reprogramming, also called the Warburg effect, is critical for the induction of pluripotency, but its molecular mechanisms remain poorly defined. Notably, SIRT2 is consistently downregulated during the reprogramming process and regulates glycolytic switch. Here, we report that downregulation of SIRT2 increases acetylation of mitogen-activated protein kinase (MAPK) kinase-1 (MEK1) at Lys175, resulting in activation of extracellular signal-regulated kinases (ERKs) and subsequent activation of the pro-fission factor dynamin-related protein 1 (DRP1). In parallel, downregulation of SIRT2 hyperacetylates the serine/threonine protein kinase AKT1 at Lys20 in a non-canonical way, activating DRP1 and metabolic reprogramming. Together, our study identified two axes, SIRT2-MEK1-ERK-DRP1 and SIRT2-AKT1-DRP1, that critically link mitochondrial dynamics and oxidative phosphorylation to the somatic reprogramming process. These upstream signals, together with SIRT2’s role in glycolytic switching, may underlie the Warburg effect observed in human somatic cell reprogramming. Mitochondrial remodeling has critical roles for the somatic cell reprogramming process. Cha et al. report the functional role of SIRT2 in mitochondrial dynamics and remodeling during the human somatic cell reprogramming process. They identify two axes, SIRT2-MEK1-ERK-DRP1 and SIRT2-AKT1-DRP1, that link SIRT2 downregulation to mitochondrial remodeling and somatic cell reprogramming.
Collapse
Affiliation(s)
- Young Cha
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA 02478, USA.
| | - Taewoo Kim
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA 02478, USA
| | - Jeha Jeon
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA 02478, USA
| | - Yongwoo Jang
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA 02478, USA; Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| | - Patrick B Kim
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA 02478, USA
| | - Claudia Lopes
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA 02478, USA
| | - Pierre Leblanc
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA 02478, USA
| | - Bruce M Cohen
- Department of Psychiatry and Program for Neuropsychiatric Research, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Kwang-Soo Kim
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA 02478, USA.
| |
Collapse
|
9
|
Caldas APS, Rocha DMUP, Bressan J, Hermsdorff HHM. Dietary fatty acids as nutritional modulators of sirtuins: a systematic review. Nutr Rev 2021; 79:235-246. [PMID: 32403131 DOI: 10.1093/nutrit/nuaa007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CONTEXT The sirtuins (SIRT1 to SIRT7) constitute a family of highly conserved nicotinamide adenine dinucleotide-dependent proteins. When activated, sirtuins control essential cellular processes to maintain metabolic homeostasis, while lack of expression of sirtuins has been related to chronic disease. OBJECTIVE The aim of this systematic review is to analyze the role of fat consumption as a modulator of human sirtuins. DATA SOURCES This review was conducted according to PRISMA guidelines. Studies were identified by searches of the electronic databases PubMed/MEDLINE, Scopus, and Web of Science. STUDY SELECTION Randomized clinical trials assessing the effect of fatty acid consumption on sirtuin mRNA expression, sirtuin protein expression, or sirtuin protein activity were eligible for inclusion. DATA EXTRACTION Two authors screened and determined the quality of the studies; disagreements were resolved by the third author. All authors compared the compiled data. RESULTS Seven clinical studies with 3 different types of interventions involving healthy and nonhealthy participants were selected. Only SIRT1 and SIRT3 were evaluated. Overall, the evidence from clinical studies to date is insufficient to understand how lipid consumption modulates sirtuins in humans. The best-characterized mechanism highlights oleic acid as a natural activator of SIRT1. CONCLUSION These results draw attention to a new field of interest in nutrition science. The possible activation of sirtuins by dietary fat manipulation may represent an important nutritional strategy for management of chronic and metabolic disease. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42018114456.
Collapse
Affiliation(s)
- Ana Paula S Caldas
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Daniela Mayumi U P Rocha
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
10
|
Sirt1 Activity in the Brain: Simultaneous Effects on Energy Homeostasis and Reproduction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031243. [PMID: 33573212 PMCID: PMC7908627 DOI: 10.3390/ijerph18031243] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022]
Abstract
Diet deeply impacts brain functions like synaptic plasticity and cognitive processes, neuroendocrine functions, reproduction and behaviour, with detrimental or protective effects on neuronal physiology and therefore consequences for health. In this respect, the activity of metabolic sensors within the brain is critical for the maintenance of health status and represents a possible therapeutic target for some diseases. This review summarizes the main activity of Sirtuin1 (Sirt1), a metabolic sensor within the brain with a focus on the link between the central control of energy homeostasis and reproduction. The possible modulation of Sirt1 by natural phytochemical compounds like polyphenols is also discussed.
Collapse
|
11
|
Videira NB, Dias MMG, Terra MF, de Oliveira VM, García-Arévalo M, Avelino TM, Torres FR, Batista FAH, Figueira ACM. PPAR Modulation Through Posttranslational Modification Control. NUCLEAR RECEPTORS 2021:537-611. [DOI: 10.1007/978-3-030-78315-0_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Sirt1-PPARS Cross-Talk in Complex Metabolic Diseases and Inherited Disorders of the One Carbon Metabolism. Cells 2020; 9:cells9081882. [PMID: 32796716 PMCID: PMC7465293 DOI: 10.3390/cells9081882] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Sirtuin1 (Sirt1) has a NAD (+) binding domain and modulates the acetylation status of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) and Fork Head Box O1 transcription factor (Foxo1) according to the nutritional status. Sirt1 is decreased in obese patients and increased in weight loss. Its decreased expression explains part of the pathomechanisms of the metabolic syndrome, diabetes mellitus type 2 (DT2), cardiovascular diseases and nonalcoholic liver disease. Sirt1 plays an important role in the differentiation of adipocytes and in insulin signaling regulated by Foxo1 and phosphatidylinositol 3′-kinase (PI3K) signaling. Its overexpression attenuates inflammation and macrophage infiltration induced by a high fat diet. Its decreased expression plays a prominent role in the heart, liver and brain of rat as manifestations of fetal programming produced by deficit in vitamin B12 and folate during pregnancy and lactation through imbalanced methylation/acetylation of PGC1α and altered expression and methylation of nuclear receptors. The decreased expression of Sirt1 produced by impaired cellular availability of vitamin B12 results from endoplasmic reticulum stress through subcellular mislocalization of ELAVL1/HuR protein that shuttles Sirt1 mRNA between the nucleus and cytoplasm. Preclinical and clinical studies of Sirt1 agonists have produced contrasted results in the treatment of the metabolic syndrome. A preclinical study has produced promising results in the treatment of inherited disorders of vitamin B12 metabolism.
Collapse
|
13
|
Apaya MK, Kuo TF, Yang MT, Yang G, Hsiao CL, Chang SB, Lin Y, Yang WC. Phytochemicals as modulators of β-cells and immunity for the therapy of type 1 diabetes: Recent discoveries in pharmacological mechanisms and clinical potential. Pharmacol Res 2020; 156:104754. [DOI: 10.1016/j.phrs.2020.104754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
|
14
|
Effect of Autophagy Regulated by Sirt1/FoxO1 Pathway on the Release of Factors Promoting Thrombosis from Vascular Endothelial Cells. Int J Mol Sci 2019; 20:ijms20174132. [PMID: 31450612 PMCID: PMC6747322 DOI: 10.3390/ijms20174132] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023] Open
Abstract
Factors promoting thrombosis such as von Willebrand factor (vWF) and P-selectin are essential for the development of atherosclerosis (AS) and arterial thrombosis. The processing, maturation and release of vWF are regulated by autophagy of vascular endothelial cells. The Sirt1/FoxO1 pathway is an important pathway to regulate autophagy of endothelial cells, therefore the Sirt1/FoxO1 pathway may be an important target for the prevention of thrombosis. We investigated the role of ox-LDL in the release of vWF and P-selectin and the expression of Sirt1 and FoxO1 by Western Blot, Flow Cytometry, ELISA, and tandem fluorescent mRFP-GFP-LC3. We found that vWF and P-selectin secretion increased and Sirt1/FoxO1 pathway was depressed in human umbilical vein endothelial cells (HUVEC) when treated with ox-LDL. Moreover, the expression of autophagy-related protein LC3-II/I and p62 increased. Then, we explored the relationship between autophagy regulated by the Sirt1/FoxO1 pathway and the secretion of vWF and P-selectin. We found that Sirt1/FoxO1, activated by the Sirt1 activators resveratrol (RSV) and SRT1720, decreased the secretion of vWF and P-selectin, which can be abolished by the autophagy inhibitor 3-MA. The expression of Rab7 increased when Sirt1/FoxO1 pathway was activated, and the accumulation of p62 was decreased. Autophagy flux was inhibited by ox-LDL and Sirt1/FoxO1 pathway might enhance autophagy flux through the promotion of the Rab7 expression. Taken together, our data suggest that by enhancing autophagy flux and decreasing the release of vWF and P-selectin, the Sirt1/FoxO1 pathway may be a promising target to prevent AS and arterial thrombosis.
Collapse
|
15
|
Xu J, Jackson CW, Khoury N, Escobar I, Perez-Pinzon MA. Brain SIRT1 Mediates Metabolic Homeostasis and Neuroprotection. Front Endocrinol (Lausanne) 2018; 9:702. [PMID: 30532738 PMCID: PMC6265504 DOI: 10.3389/fendo.2018.00702] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Sirtuins are evolutionarily conserved proteins that use nicotinamide adenine dinucleotide (NAD+) as a co-substrate in their enzymatic reactions. There are seven proteins (SIRT1-7) in the human sirtuin family, among which SIRT1 is the most conserved and characterized. SIRT1 in the brain, in particular, within the hypothalamus, plays crucial roles in regulating systemic energy homeostasis and circadian rhythm. Apart from this, SIRT1 has also been found to mediate beneficial effects in neurological diseases. In this review, we will first summarize how SIRT1 in the brain relates to obesity, type 2 diabetes, and circadian synchronization, and then we discuss the neuroprotective roles of brain SIRT1 in the context of cerebral ischemia and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jing Xu
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Charlie W. Jackson
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nathalie Khoury
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Iris Escobar
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Miguel A. Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
16
|
Li Y, Peng Z, Wang C, Li L, Leng Y, Chen R, Yuan H, Zhou S, Zhang Z, Chen AF. Novel role of PKR in palmitate-induced Sirt1 inactivation and endothelial cell senescence. Am J Physiol Heart Circ Physiol 2018; 315:H571-H580. [PMID: 29906232 DOI: 10.1152/ajpheart.00038.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endothelial cell senescence is regarded as a vital characteristic of cardiovascular diseases. Elevated palmitate (PA) is an independent risk factor of cardiovascular diseases, but its role in endothelial cell senescence is currently unknown. During the course of studying the prosenescent role of PA, we discovered a key role of dsRNA-dependent protein kinase [protein kinase R (PKR)] in endothelial senescence. Exposure of human umbilical vein endothelial cells (HUVECs) to PA-induced cell senescence is characterized by increased levels of senescence-associated β-galactose glucosidase activity, excessive production of reactive oxygen species production, impaired cellular proliferation, and G1 phase arrest. This phenomenon is associated with an increase of PKR autophosphorylation and decreased activity of sirtuin 1 (Sirt1), a pivotal antisenescent factor. PKR inactivation by PKR siRNA or its phosphorylation inhibitor 2-aminopurine significantly attenuated PA-induced HUVEC senescence by reversing Sirt1 activity and its downstream signaling. Moreover, to study the regulatory mechanism between PKR and Sirt1, we found that PKR promotes JNK activation to inhibit Sirt1 activity and that this effect could be reversed by the JNK inhibitor SP600125. These findings provide evidence that PKR mediates PA-induced HUVEC senescence by inhibiting Sirt1 signaling. Our study provides novel insights into the actions and mechanisms of PKR in endothelial senescence. NEW & NOTEWORTHY This study first provides a novel observation that dsRNA-dependent protein kinase (PKR) mediates palmitate-induced sirtuin 1 inactivation and subsequent human umbilical vein endothelial cell senescence. Most importantly, these new findings will provide a potential therapeutic strategy to improve free fatty acid-induced endothelial senescence by targeting PKR in cardiovascular diseases.
Collapse
Affiliation(s)
- Yapei Li
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhouyangfan Peng
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Chunle Wang
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Le Li
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yiping Leng
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Ruifang Chen
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Yuan
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Zhang
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- The Center of Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Alex F. Chen
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Surgery, University of Pittsburgh School of Medicine, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Guo Y, Xu C, Man AWC, Bai B, Luo C, Huang Y, Xu A, Vanhoutte PM, Wang Y. Endothelial SIRT1 prevents age-induced impairment of vasodilator responses by enhancing the expression and activity of soluble guanylyl cyclase in smooth muscle cells. Cardiovasc Res 2018; 115:678-690. [DOI: 10.1093/cvr/cvy212] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/02/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022] Open
Abstract
Abstract
Aims
Aged arteries are characterized by attenuated vasodilator and enhanced vasoconstrictor responses, which contribute to the development of diseases such as arterial hypertension, atherosclerosis, and heart failure. SIRT1 is a longevity regulator exerting protective functions against vascular ageing, although the underlying mechanisms remain largely unknown. This study was designed to elucidate the signalling pathways involved in endothelial SIRT1-mediated vasodilator responses in the arteries of young and old mice. In particular, the contributions of nitric oxide (NO), endothelial NO synthase (eNOS), cyclooxygenase (COX), and/or soluble guanylyl cyclase (sGC) were examined.
Methods and results
Wild type (WT) or eNOS knockout (eKO) mice were cross-bred with those overexpressing human SIRT1 selectively in the vascular endothelium (EC-SIRT1). Arteries were collected from the four groups of mice (WT, EC-SIRT1, eKO, and eKO-SIRT1) to measure isometric relaxations/contractions in response to various pharmacological agents. Reduction of NO bioavailability, hyper-activation of COX signalling, and down-regulation of sGC collectively contributed to the decreased vasodilator and increased vasoconstrictor responses in arteries of old WT mice. Overexpression of endothelial SIRT1 did not block the reduction in NO bioavailability but attenuated the hyper-activation of COX-2, thus protecting mice from age-induced vasoconstrictor responses in arteries of EC-SIRT1 mice. Deficiency of eNOS did not affect endothelial SIRT1-mediated anti-contractile activities in arteries of eKO-SIRT1 mice. Mechanistic studies revealed that overexpression of endothelial SIRT1 enhanced Notch signalling to up-regulate sGCβ1 in smooth muscle cells. Increased expression and activity of sGC prevented age-induced hyper-activation of COX-2 as well as the conversion of endothelium-dependent relaxations to contractions in arteries of EC-SIRT1 mice.
Conclusion
Age-induced down-regulation of sGC and up-regulation of COX-2 in arteries are at least partly attributable to the loss-of-endothelial SIRT1 function. Enhancing the endothelial expression and function of SIRT1 prevents early vascular ageing and maintains vasodilator responses, thus representing promising drug targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Yumeng Guo
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Cheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Andy W C Man
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Bo Bai
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Cuiting Luo
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yu Huang
- Institute of Vascular Medicine, Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, LKS Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| |
Collapse
|
18
|
Kumar A, Daitsh Y, Ben-Aderet L, Qiq O, Elayyan J, Batshon G, Reich E, Maatuf YH, Engel S, Dvir-Ginzberg M. A predicted unstructured C-terminal loop domain in SIRT1 is required for cathepsin B cleavage. J Cell Sci 2018; 131:jcs.214973. [PMID: 30054388 DOI: 10.1242/jcs.214973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
The C-terminus of SIRT1 can be cleaved by cathepsin B at amino acid H533 to generate a lower-functioning, N-terminally intact 75 kDa polypeptide (75SIRT1) that might be involved in age-related pathologies. However, the mechanisms underlying cathepsin B docking to and cleavage of SIRT1 are unclear. Here, we first identified several 75SIRT1 variants that are augmented with aging correlatively with increased cathepsin B levels in various mouse tissues, highlighting the possible role of this cleavage event in age-related pathologies. Then, based on H533 point mutation and structural modeling, we generated a functionally intact ΔSIRT1 mutant, lacking the internal amino acids 528-543 (a predicted C-terminus loop domain), which exhibits resistance to cathepsin B cleavage in vitro and in cell cultures. Finally, we showed that cells expressing ΔSIRT1 under pro-inflammatory stress are more likely to undergo caspase 9- dependent apoptosis than those expressing 75SIRT1. Thus, our data suggest that the 15-amino acid predicted loop motif embedded in the C-terminus of SIRT1 is susceptible to proteolytic cleavage by cathepsin B, leading to the formation of several N-terminally intact SIRT1 truncated variants in various aging mouse tissues.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ashok Kumar
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, POB 12272, Israel
| | - Yutti Daitsh
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, POB 12272, Israel
| | - Louisa Ben-Aderet
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, POB 12272, Israel
| | - Omar Qiq
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, POB 12272, Israel
| | - Jinan Elayyan
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, POB 12272, Israel
| | - George Batshon
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, POB 12272, Israel
| | - Eli Reich
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, POB 12272, Israel
| | - Yonatan Harel Maatuf
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, POB 12272, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 8410501, Israel
| | - Mona Dvir-Ginzberg
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, POB 12272, Israel
| |
Collapse
|
19
|
Nirwane A, Majumdar A. Understanding mitochondrial biogenesis through energy sensing pathways and its translation in cardio-metabolic health. Arch Physiol Biochem 2018; 124:194-206. [PMID: 29072101 DOI: 10.1080/13813455.2017.1391847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mitochondria play a pivotal role in physiological energy governance. Mitochondrial biogenesis comprises growth and division of pre-existing mitochondria, triggered by environmental stressors such as endurance exercise, caloric restriction, cold exposure and oxidative stress. For normal physiology, balance between energy intake, storage and expenditure is of utmost important for the coordinated regulation of energy homeostasis. In contrast, abnormalities in these regulations render the individual susceptible to cardiometabolic disorders. This review provides a comprehensive coverage and understanding on mitochondrial biogenesis achieved through energy-sensing pathways. This includes the complex coordination of nuclear, cytosolic and mitochondrial events involving energy sensors, transcription factors, coactivators and regulators. It focuses on the importance of mitochondrial biogenesis in cardiometabolic health. Lastly, converging on the benefits of caloric restriction and endurance exercise in achieving cardiometabolic health.
Collapse
Affiliation(s)
- Abhijit Nirwane
- a Department of Pharmacology , Bombay College of Pharmacy , Mumbai , India
- b Department of Pharmaceutical and Biomedical Sciences , University of Georgia , Athens , GA , USA
| | - Anuradha Majumdar
- a Department of Pharmacology , Bombay College of Pharmacy , Mumbai , India
| |
Collapse
|
20
|
Xu Y, Deng W, Zhang W. Long non-coding RNA TUG1 protects renal tubular epithelial cells against injury induced by lipopolysaccharide via regulating microRNA-223. Biomed Pharmacother 2018; 104:509-519. [PMID: 29800915 DOI: 10.1016/j.biopha.2018.05.069] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE). Long non-coding RNA taurine upregulated gene 1 (lncRNA TUG1) exerted critical regulatory effects on inhibiting cell injury and inflammation. However, its role in LN is still unclear. METHODS HK-2 cells were treated with lipopolysaccharide (LPS) to simulate cell inflammatory injury. Cell viability and apoptosis, as well as pro-inflammatory factors expression were measured, respectively. Then, HK-2 cells were transfected with pEX-TUG1 or sh-TUG1 to explore the effects of TUG1 on LPS-induced cell injury. Potential binding effects between TUG1 and microRNA-223 (miR-223), as well as between miR-223 and Sirtuin 1 (Sirt1) were verified. miR-223 mimic or miR-223 inhibitor was transfected to assess the effects of miR-223 on cell injury. Finally, the roles of Sirt1 in LPS-induced HK-2 cell injury and activation of phosphatidylinositol 3-kinase/protein kinase 3 (PI3K/AKT) and nuclear factor kappa B (NF-κB) pathways were explored. RESULTS LPS administration inhibited HK-2 cell viability and proliferation, increased expression of pro-inflammatory factors, and promoted cell apoptosis. TUG1 overexpression protected HK-2 cells against LPS-induced injury via negatively regulating miR-223 expression. TUG1 suppression had opposite effects. Sirt1 was a direct target gene of miR-223 in HK-2 cells, which participated in the effects of miR-223 on HK-2 cells and was related with the activation of PI3K/AKT and NF-κB pathways. CONCLUSION TUG1 protected HK-2 cells against LPS-induced inflammatory injury by regulating miR-223 and Sirt1 expression, and then activating PI3K/AKT and inactivating NF-κB pathways. TUG1 might be a potential therapeutic target for LN treatment.
Collapse
Affiliation(s)
- Yan Xu
- Department of Nephrology, Jining No. 1 People's Hospital, Jining, 272011, Shandong, China
| | - Wenyan Deng
- Department of Nephrology, Jining No. 1 People's Hospital, Jining, 272011, Shandong, China
| | - Wei Zhang
- Department of Nephrology, Jining No. 1 People's Hospital, Jining, 272011, Shandong, China.
| |
Collapse
|
21
|
Bai B, Man AWC, Yang K, Guo Y, Xu C, Tse HF, Han W, Bloksgaard M, De Mey JGR, Vanhoutte PM, Xu A, Wang Y. Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1. Oncotarget 2018; 7:39065-39081. [PMID: 27259994 PMCID: PMC5129914 DOI: 10.18632/oncotarget.9687] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/23/2016] [Indexed: 11/25/2022] Open
Abstract
Aims-SIRT1 exerts potent activity against cellular senescence and vascular ageing. By decreasing LKB1 protein levels, it promotes the survival and regeneration of endothelial cells. The present study aims to investigate the molecular mechanisms underlying SIRT1-mediated LKB1 degradation for the prevention of vascular ageing. Methods and Results-Co-immunoprecipitation assay demonstrated that SIRT1, via its amino-terminus, binds to the DOC domain of HERC2 [HECT and RLD domain containing E3 ubiquitin protein ligase 2], which then ubiquitinates LKB1 in the nuclear compartment of endothelial cells. Site-directed mutagenesis revealed that acetylation at lysine (K) 64 of LKB1 triggers the formation of SIRT1/HERC2/LKB1 protein complex and subsequent proteasomal degradation. In vitro cellular studies suggested that accumulation of acetylated LKB1 in the nucleus leads to endothelial activation, in turn stimulating the proliferation of vascular smooth muscle cells and the production of extracellular matrix proteins. Chromatin immunoprecipitation quantitative PCR confirmed that acetylated LKB1 interacts with and activates TGFβ1 promoter, which is inhibited by SIRT1. Knocking down either SIRT1 or HERC2 results in an increased association of LKB1 with the positive regulatory elements of TGFβ1 promoter. In mice without endothelial nitric oxide synthase, selective overexpression of human SIRT1 in endothelium prevents hypertension and age-related adverse arterial remodeling. Lentiviral-mediated knockdown of HERC2 abolishes the beneficial effects of endothelial SIRT1 on both arterial remodeling and arterial blood pressure control. Conclusion-By downregulating acetylated LKB1 protein via HERC2, SIRT1 fine-tunes the crosstalk between endothelial and vascular smooth muscle cells to prevent adverse arterial remodeling and maintain vascular homeostasis.
Collapse
Affiliation(s)
- Bo Bai
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.,Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Andy W C Man
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Kangmin Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yumeng Guo
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Cheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Hung-Fat Tse
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Maria Bloksgaard
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jo G R De Mey
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Charles S, Raj V, Arokiaraj J, Mala K. Caveolin1/protein arginine methyltransferase1/sirtuin1 axis as a potential target against endothelial dysfunction. Pharmacol Res 2017; 119:1-11. [PMID: 28126510 DOI: 10.1016/j.phrs.2017.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/20/2016] [Accepted: 01/22/2017] [Indexed: 12/23/2022]
Abstract
Endothelial dysfunction (ED), an established response to cardiovascular risk factors, is characterized by increased levels of soluble molecules secreted by endothelial cells (EC). Evidence suggest that ED is an independent predictor of cardiac events and that it is associated with a deficiency in production or bioavailability of nitric oxide (NO) and/or an imbalance in the relative contribution of endothelium-derived relaxing and contracting factors. ED can be reversed by treating cardiovascular risk factors, hence, beyond ambiguity, ED contributes to initiation and progression of atherosclerotic disease. Majority of cardiovascular risk factors act by a common pathway, oxidative stress (OS), characterized by an imbalance in bioavailability of NO and reactive oxygen species (ROS). Enhanced ROS, through several mechanisms, alters competence of EC that leads to ED, reducing its potential to maintain homeostasis and resulting in development of cardiovascular disease (CVD). Influential mechanisms that have been implicated in the development of ED include (i) presence of elevated levels of NOS inhibitor, asymmetric dimethylarginine (ADMA) due to augmented enzyme activity of protein arginine methyl transferase-1 (PRMT1); (ii) decrease in NO generation by endothelial nitric oxide synthase (eNOS) uncoupling, or by reaction of NO with free radicals and (iii) impaired post translational modification of protein (PTM) such as eNOS, caveolin-1 (cav1) and sirtuin-1 (SIRT1). However, the inter-related mechanisms that concur to developing ED is yet to be understood. The events that possibly overlay include OS-induced sequestration of SIRT1 to caveolae facilitating cav1-SIRT1 association; potential increase in lysine acetylation of enzymes such as eNOS and PRMT1 leading to enhanced ADMA formation; imbalance in acetylation-methylation ratio (AMR); diminished NO generation and ED. Here we review current literature from research showing interdependent association between cav1-PRMT1-SIRT1 to the outcomes of experimental and clinical research aiming to preserve endothelial function with gene- or pharmaco-therapy.
Collapse
Affiliation(s)
- Soniya Charles
- Department of Biotechnology, School of Bioengineering, SRM University, Potheri 603203, Tamil Nadu, India
| | - Vijay Raj
- Medical College Hospital and Research Center, SRM University, Potheri 603203, Tamil Nadu, India
| | - Jesu Arokiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM University, Potheri 603203, Tamil Nadu, India
| | - Kanchana Mala
- Medical College Hospital and Research Center, SRM University, Potheri 603203, Tamil Nadu, India.
| |
Collapse
|
23
|
Cloning and Characterization of Sirtuin3 (SIRT3). Methods Mol Biol 2016. [PMID: 27246217 DOI: 10.1007/978-1-4939-3667-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mitochondria play a pivotal role in maintaining cellular homeostasis and regulating longevity. SIRT3 is a mitochondrial sirtuin mediating the deacetylation of various metabolic and antioxidant enzymes, in turn controlling energy metabolism, stress resistance, and the pace of ageing. To study the function of SIRT3, a proteomics-based approach is employed for identifying the protein-binding partners of this enzyme in mitochondria.
Collapse
|
24
|
|
25
|
Jacobi JL, Yang B, Li X, Menze AK, Laurentz SM, Janle EM, Ferruzzi MG, McCabe GP, Chapple C, Kirchmaier AL. Impacts on Sirtuin Function and Bioavailability of the Dietary Bioactive Compound Dihydrocoumarin. PLoS One 2016; 11:e0149207. [PMID: 26882112 PMCID: PMC4755582 DOI: 10.1371/journal.pone.0149207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/28/2016] [Indexed: 12/18/2022] Open
Abstract
The plant secondary metabolite and common food additive dihydrocoumarin (DHC) is an inhibitor of the Sirtuin family of NAD+-dependent deacetylases. Sirtuins are key regulators of epigenetic processes that maintain silent chromatin in yeast and have been linked to gene expression, metabolism, apoptosis, tumorogenesis and age-related processes in multiple organisms, including humans. Here we report that exposure to the polyphenol DHC led to defects in several Sirtuin-regulated processes in budding yeast including the establishment and maintenance of Sir2p-dependent silencing by causing disassembly of silent chromatin, Hst1p-dependent repression of meiotic-specific genes during the mitotic cell cycle. As both transient and prolonged exposure to environmental and dietary factors have the potential to lead to heritable alterations in epigenetic states and to modulate additional Sirtuin-dependent phenotypes, we examined the bioavailability and digestive stability of DHC using an in vivo rat model and in vitro digestive simulator. Our analyses revealed that DHC was unstable during digestion and could be converted to melilotic acid (MA), which also caused epigenetic defects, albeit less efficiently. Upon ingestion, DHC was observed primarily in intestinal tissues, but did not accumulate over time and was readily cleared from the animals. MA displayed a wider tissue distribution and, in contrast to DHC, was also detected in the blood plasma, interstitial fluid, and urine, implying that the conversion of DHC to the less bioactive compound, MA, occurred efficiently in vivo.
Collapse
Affiliation(s)
- Jennifer L. Jacobi
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
| | - Bo Yang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
| | - Xu Li
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Anna K. Menze
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana, United States of America
| | - Sara M. Laurentz
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Elsa M. Janle
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana, United States of America
| | - Mario G. Ferruzzi
- Department of Food Science, Purdue University, West Lafayette, Indiana, United States of America
| | - George P. McCabe
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Ann L. Kirchmaier
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
26
|
Vascular Ageing and Exercise: Focus on Cellular Reparative Processes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3583956. [PMID: 26697131 PMCID: PMC4678076 DOI: 10.1155/2016/3583956] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022]
Abstract
Ageing is associated with an increased risk of developing noncommunicable diseases (NCDs), such as diabetes and cardiovascular disease (CVD). The increased risk can be attributable to increased prolonged exposure to oxidative stress. Often, CVD is preceded by endothelial dysfunction, which carries with it a proatherothrombotic phenotype. Endothelial senescence and reduced production and release of nitric oxide (NO) are associated with “vascular ageing” and are often accompanied by a reduced ability for the body to repair vascular damage, termed “reendothelialization.” Exercise has been repeatedly shown to confer protection against CVD and diabetes risk and incidence. Regular exercise promotes endothelial function and can prevent endothelial senescence, often through a reduction in oxidative stress. Recently, endothelial precursors, endothelial progenitor cells (EPC), have been shown to repair damaged endothelium, and reduced circulating number and/or function of these cells is associated with ageing. Exercise can modulate both number and function of these cells to promote endothelial homeostasis. In this review we look at the effects of advancing age on the endothelium and these endothelial precursors and how exercise appears to offset this “vascular ageing” process.
Collapse
|
27
|
Pereira CD, Severo M, Rafael L, Martins MJ, Neves D. Effects of natural mineral-rich water consumption on the expression of sirtuin 1 and angiogenic factors in the erectile tissue of rats with fructose-induced metabolic syndrome. Asian J Androl 2015; 16:631-8. [PMID: 24625878 PMCID: PMC4104095 DOI: 10.4103/1008-682x.122869] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Consuming a high-fructose diet induces metabolic syndrome (MS)-like features, including endothelial dysfunction. Erectile dysfunction is an early manifestation of endothelial dysfunction and systemic vascular disease. Because mineral deficiency intensifies the deleterious effects of fructose consumption and mineral ingestion is protective against MS, we aimed to characterize the effects of 8 weeks of natural mineral-rich water consumption on the structural organization and expression of vascular growth factors and receptors on the corpus cavernosum (CC) in 10% fructose-fed Sprague-Dawley rats (FRUCT). Differences were not observed in the organization of the CC either on the expression of vascular endothelial growth factor (VEGF) or the components of the angiopoietins/Tie2 system. However, opposing expression patterns were observed for VEGF receptors (an increase and a decrease for VEGFR1 and VEGFR2, respectively) in FRUCT animals, with these patterns being strengthened by mineral-rich water ingestion. Mineral-rich water ingestion (FRUCTMIN) increased the proportion of smooth muscle cells compared with FRUCT rats and induced an upregulatory tendency of sirtuin 1 expression compared with the control and FRUCT groups. Western blot results were consistent with the dual immunofluorescence evaluation. Plasma oxidized low-density lipoprotein and plasma testosterone levels were similar among the experimental groups, although a tendency for an increase in the former was observed in the FRUCTMIN group. The mineral-rich water-treated rats presented changes similar to those observed in rats treated with MS-protective polyphenol-rich beverages or subjected to energy restriction, which led us to hypothesize that the effects of mineral-rich water consumption may be more vast than those directly observed in this study.
Collapse
Affiliation(s)
- Cidália D Pereira
- Department of Biochemistry, Faculty of Medicine, University of Porto, Portugal
| | | | | | | | | |
Collapse
|
28
|
Effect of caloric restriction on the SIRT1/mTOR signaling pathways in senile mice. Brain Res Bull 2015; 116:67-72. [DOI: 10.1016/j.brainresbull.2015.06.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
|
29
|
Wanichthanarak K, Wongtosrad N, Petranovic D. Genome-wide expression analyses of the stationary phase model of ageing in yeast. Mech Ageing Dev 2015; 149:65-74. [PMID: 26079307 DOI: 10.1016/j.mad.2015.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 04/06/2015] [Accepted: 05/21/2015] [Indexed: 11/18/2022]
Abstract
Ageing processes involved in replicative lifespan (RLS) and chronological lifespan (CLS) have been found to be conserved among many organisms, including in unicellular Eukarya such as yeast Saccharomyces cerevisiae. Here we performed an integrated approach of genome wide expression profiles of yeast at different time points, during growth and starvation. The aim of the study was to identify transcriptional changes in those conditions by using several different computational analyses in order to propose transcription factors, biological networks and metabolic pathways that seem to be relevant during the process of chronological ageing in yeast. Specifically, we performed differential gene expression analysis, gene-set enrichment analysis and network-based analysis, and we identified pathways affected in the stationary phase and specific transcription factors driving transcriptional adaptations. The results indicate signal propagation from G protein-coupled receptors through signaling pathway components and other stress and nutrient-induced transcription factors resulting in adaptation of yeast cells to the lack of nutrients by activating metabolism associated with aerobic metabolism of carbon sources such as ethanol, glycerol and fatty acids. In addition, we found STE12, XBP1 and TOS8 as highly connected nodes in the subnetworks of ageing yeast.
Collapse
Affiliation(s)
- Kwanjeera Wanichthanarak
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Nutvadee Wongtosrad
- Department of Mathematical Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Dina Petranovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.
| |
Collapse
|
30
|
Xu C, Cai Y, Fan P, Bai B, Chen J, Deng HB, Che CM, Xu A, Vanhoutte PM, Wang Y. Calorie Restriction Prevents Metabolic Aging Caused by Abnormal SIRT1 Function in Adipose Tissues. Diabetes 2015; 64:1576-90. [PMID: 25475438 DOI: 10.2337/db14-1180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/27/2014] [Indexed: 11/13/2022]
Abstract
Adipose tissue is a pivotal organ determining longevity, due largely to its role in maintaining whole-body energy homeostasis and insulin sensitivity. SIRT1 is a NAD-dependent protein deacetylase possessing antiaging activities in a wide range of organisms. The current study demonstrates that mice with adipose tissue-selective overexpression of hSIRT1(H363Y), a dominant-negative mutant that disrupts endogenous SIRT1 activity, show accelerated development of metabolic aging. These mice, referred to as Adipo-H363Y, exhibit hyperglycemia, dyslipidemia, ectopic lipid deposition, insulin resistance, and glucose intolerance at a much younger age than their wild-type littermates. The metabolic defects of Adipo-H363Y are associated with abnormal epigenetic modifications and chromatin remodeling in their adipose tissues, as a result of excess accumulation of biotin, which inhibits endogenous SIRT1 activity, leading to increased inflammation, cellularity, and collagen deposition. The enzyme acetyl-CoA carboxylase 2 plays an important role in biotin accumulation within adipose tissues of Adipo-H363Y. Calorie restriction prevents biotin accumulation, abolishes abnormal histone biotinylation, and completely restores the metabolic and adipose functions of Adipo-H363Y. The effects are mimicked by short-term restriction of biotin intake, an approach potentially translatable to humans for maintaining the epigenetic and chromatin remodeling capacity of adipose tissues and preventing aging-associated metabolic disorders.
Collapse
Affiliation(s)
- Cheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yu Cai
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Pengcheng Fan
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Bo Bai
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Jie Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Han-Bing Deng
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Chi-Ming Che
- Department of Chemistry and Chemical Biology Center, Jockey Club Building for Interdisciplinary Research, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
31
|
Li L, Yoshitomi H, Wei Y, Qin L, Zhou J, Xu T, Wu X, Zhou T, Sun W, Guo X, Wu L, Wang H, Zhang Y, Li C, Liu T, Gao M. Tang-Nai-Kang alleviates pre-diabetes and metabolic disorders and induces a gene expression switch toward fatty acid oxidation in SHR.Cg-Leprcp/NDmcr rats. PLoS One 2015; 10:e0122024. [PMID: 25874615 PMCID: PMC4395456 DOI: 10.1371/journal.pone.0122024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/05/2015] [Indexed: 11/18/2022] Open
Abstract
Increased energy intake and reduced physical activity can lead to obesity, diabetes and metabolic syndrome. Transcriptional modulation of metabolic networks has become a focus of current drug discovery research into the prevention and treatment of metabolic disorders associated with energy surplus and obesity. Tang-Nai-Kang (TNK), a mixture of five herbal plant extracts, has been shown to improve abnormal glucose metabolism in patients with pre-diabetes. Here, we report the metabolic phenotype of SHR.Cg-Leprcp/NDmcr (SHR/cp) rats treated with TNK. Pre-diabetic SHR/cp rats were randomly divided into control, TNK low-dose (1.67 g/kg) and TNK high-dose (3.24 g/kg) groups. After high-dose treatment for 2 weeks, the serum triglycerides and free fatty acids in SHR/cp rats were markedly reduced compared to controls. After 3 weeks of administration, the high dose of TNK significantly reduced the body weight and fat mass of SHR/cp rats without affecting food consumption. Serum fasting glucose and insulin levels in the TNK-treated groups decreased after 6 weeks of treatment. Furthermore, TNK-treated rats exhibited obvious improvements in glucose intolerance and insulin resistance. The improved glucose metabolism may be caused by the substantial reduction in serum lipids and body weight observed in SHR/cp rats starting at 3 weeks of TNK treatment. The mRNA expression of NAD+-dependent deacetylase sirtuin 1 (SIRT1) and genes related to fatty acid oxidation was markedly up-regulated in the muscle, liver and adipose tissue after TNK treatment. Furthermore, TNK promoted the deacetylation of two well-established SIRT1 targets, PPARγ coactivator 1α (PGC1α) and forkhead transcription factor 1 (FOXO1), and induced the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in different tissues. These observations suggested that TNK may be an alternative treatment for pre-diabetes and metabolic syndrome by inducing a gene expression switch toward fat oxidation through the activation of SIRT1 and AMPK signaling.
Collapse
Affiliation(s)
- Linyi Li
- Health-cultivation Laboratory of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Hisae Yoshitomi
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Ying Wei
- Health-cultivation Laboratory of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Qin
- Health-cultivation Laboratory of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Jingxin Zhou
- Dongzhimen Hospital Eastern Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tunhai Xu
- Health-cultivation Laboratory of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Xinli Wu
- Health-cultivation Laboratory of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Tian Zhou
- Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wen Sun
- Health-cultivation Laboratory of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Xiangyu Guo
- Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wu
- Health-cultivation Laboratory of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Haiyan Wang
- Health-cultivation Laboratory of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhang
- Health-cultivation Laboratory of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Chunna Li
- Health-cultivation Laboratory of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Tonghua Liu
- Health-cultivation Laboratory of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
- * E-mail: (TL); (MG)
| | - Ming Gao
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
- * E-mail: (TL); (MG)
| |
Collapse
|
32
|
Abstract
During the development of the central nervous system (CNS), neurons and glia are derived from multipotent neural stem cells (NSCs) undergoing self-renewal. NSC commitment and differentiation are tightly controlled by intrinsic and external regulatory mechanisms in space- and time-related fashions. SIRT1, a silent information regulator 2 (Sir2) ortholog, is expressed in several areas of the brain and has been reported to be involved in the self-renewal, multipotency, and fate determination of NSCs. Recent studies have highlighted the role of the deacetylase activity of SIRT1 in the determination of the final fate of NSCs. This review summarizes the roles of SIRT1 in the expansion and differentiation of NSCs, specification of neuronal subtypes and glial cells, and reprogramming of functional neurons from embryonic stem cells and fibroblasts. This review also discusses potential signaling pathways through which SIRT1 can exhibit versatile functions in NSCs to regulate the cell fate decisions of neurons and glia.
Collapse
|
33
|
Chiu S, Woodbury-Fariña MA, Shad MU, Husni M, Copen J, Bureau Y, Cernovsky Z, Hou JJ, Raheb H, Terpstra K, Sanchez V, Hategan A, Kaushal M, Campbell R. The role of nutrient-based epigenetic changes in buffering against stress, aging, and Alzheimer's disease. Psychiatr Clin North Am 2014; 37:591-623. [PMID: 25455068 DOI: 10.1016/j.psc.2014.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Converging evidence identifies stress-related disorders as putative risk factors for Alzheimer Disease (AD). This article reviews evidence on the complex interplay of stress, aging, and genes-epigenetics interactions. The recent classification of AD into preclinical, mild cognitive impairment, and AD offers a window for intervention to prevent, delay, or modify the course of AD. Evidence in support of the cognitive effects of epigenetics-diet, and nutraceuticals is reviewed. A proactive epigenetics diet and nutraceuticals program holds promise as potential buffer against the negative impact of aging and stress responses on cognition, and can optimize vascular, metabolic, and brain health in the community.
Collapse
Affiliation(s)
- Simon Chiu
- Department of Psychiatry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6G 4X8, Canada.
| | - Michel A Woodbury-Fariña
- Department of Psychiatry, University of Puerto Rico School of Medicine, 307 Calle Eleonor Roosevelt, San Juan, PR 00918-2720, USA
| | - Mujeeb U Shad
- Oregon Health & Science University, Department Psychiatry, 3181 South West Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Mariwan Husni
- Northern Ontario Medical School/Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada; Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - John Copen
- Vancouver Island Health Authority, Department of Psychiatry, Victoria, BC, University of British Columbia-Victoria Medical Campus, Island Medical Program, University of Victoria, 3800 Finnerty Road, Victoria, BC V8N-1M5, Canada
| | - Yves Bureau
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry University of Western Ontario, London, ON N6G 4X8, Canada
| | - Zack Cernovsky
- Certificate Professional Qualification (CPQ), Clinical Psychology, Association of State and Provincial Psychology Board (ASPB): USA and Canada
| | - J Jurui Hou
- Epigenetics Research Group, Lawson Health Research Institute, St Joseph Health Care, 268 Grosvenor Street, London, ON N6A 4V2, Canada
| | - Hana Raheb
- Epigenetics Research Group, Lawson Health Research Institute, St Joseph Health Care, 268 Grosvenor Street, London, ON N6A 4V2, Canada
| | - Kristen Terpstra
- Accelerated B.Sc.N. Nursing Program, Lawrence S. Bloomberg, Faculty of Nursing, University of Toronto, 155 College Street, Suite 130 Toronto, ON M5T 1P8, Canada
| | - Veronica Sanchez
- McGill University, Meakins-Christie Labs, 3626 St., Urbain Street, Montreal, QC H2X 2P2, Canada
| | - Ana Hategan
- Geriatric Psychiatry Division, St. Joseph's Healthcare Hamilton /McMaster University Health Sciences, West 5th Campus 100 West 5th Hamilton, ON L8N 3K7, Canada
| | - Mike Kaushal
- Epigenetics Research Group, Lawson Health Research Institute, St Joseph Health Care, 268 Grosvenor Street, London, ON N6A 4V2, Canada
| | - Robbie Campbell
- Department of Psychiatry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6G 4X8, Canada
| |
Collapse
|
34
|
Abstract
Ageing is the most significant risk factor for a range of prevalent diseases, including cancer, cardiovascular disease, and diabetes. Accordingly, interventions are needed for delaying or preventing disorders associated with the ageing process, i.e., promotion of healthy ageing. Calorie restriction is the only nongenetic and the most robust approach to slow the process of ageing in evolutionarily divergent species, ranging from yeasts, worms, and flies to mammals. Although it has been known for more than 80 years that calorie restriction increases lifespan, a mechanistic understanding of this phenomenon remains elusive. Yeast silent information regulator 2 (Sir2), the founding member of the sirtuin family of protein deacetylases, and its mammalian homologue Sir2-like protein 1 (SIRT1), have been suggested to promote survival and longevity of organisms. SIRT1 exerts protective effects against a number of age-associated disorders. Caloric restriction increases both Sir2 and SIRT1 activity. This review focuses on the mechanistic insights between caloric restriction and Sir2/SIRT1 activation. A number of molecular links, including nicotinamide adenine dinucleotide, nicotinamide, biotin, and related metabolites, are suggested to be the most important conduits mediating caloric restriction-induced Sir2/SIRT1 activation and lifespan extension.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
35
|
Luo XY, Qu SL, Tang ZH, Zhang Y, Liu MH, Peng J, Tang H, Yu KL, Zhang C, Ren Z, Jiang ZS. SIRT1 in cardiovascular aging. Clin Chim Acta 2014; 437:106-14. [PMID: 25063737 DOI: 10.1016/j.cca.2014.07.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, with aging as the key independent risk factor. Effective interventions are necessary to delay aging. Sirtuin1 (SIRT1), a NAD(+)-dependent histone deacetylase, is closely related to lifespan extension. SIRT1 exerts beneficial effects on aging and age-related diseases, such as atherosclerosis. In this review, we summarize the current knowledge on the functions of SIRT1 in cardiovascular aging, focusing on the underlying molecular mechanisms, including inhibition of oxidative stress and inflammation, and induction of autophagy. We also demonstrate that moderate up-regulation or activation of SIRT1 in cardiovascular aging and age-related CVD may confer important application values.
Collapse
Affiliation(s)
- Xin-Yuan Luo
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Yuan Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Mi-Hua Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Juan Peng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Hui Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Kang-Lun Yu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China.
| |
Collapse
|
36
|
Kokkonen P, Mellini P, Nyrhilä O, Rahnasto-Rilla M, Suuronen T, Kiviranta P, Huhtiniemi T, Poso A, Jarho E, Lahtela-Kakkonen M. Quantitative insights for the design of substrate-based SIRT1 inhibitors. Eur J Pharm Sci 2014; 59:12-9. [PMID: 24747578 DOI: 10.1016/j.ejps.2014.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
Sirtuin 1 (SIRT1) is the most studied human sirtuin and it catalyzes the deacetylation reaction of acetylated lysine residues of its target proteins, for example histones. It is a promising drug target in the treatment of age-related diseases, such as neurodegenerative diseases and cancer. In this study, a series of known substrate-based sirtuin inhibitors was analyzed with comparative molecular field analysis (CoMFA), which is a three-dimensional quantitative structure-activity relationships (3D-QSAR) technique. The CoMFA model was validated both internally and externally, producing the statistical values concordance correlation coefficient (CCC) of 0.88, the mean value r(2)m of 0.66 and Q(2)F3 of 0.89. Based on the CoMFA interaction contours, 13 new potential inhibitors with high predicted activity were designed, and the activities were verified by in vitro measurements. This work proposes an effective approach for the design and activity prediction of new potential substrate-based SIRT1 inhibitors.
Collapse
Affiliation(s)
- Piia Kokkonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Paolo Mellini
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Olli Nyrhilä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Minna Rahnasto-Rilla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Tiina Suuronen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Päivi Kiviranta
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Tero Huhtiniemi
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Elina Jarho
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Maija Lahtela-Kakkonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| |
Collapse
|
37
|
Liguori R, Labruna G, Alfieri A, Martone D, Farinaro E, Contaldo F, Sacchetti L, Pasanisi F, Buono P. The FTO gene polymorphism (rs9939609) is associated with metabolic syndrome in morbidly obese subjects from southern Italy. Mol Cell Probes 2014; 28:195-9. [PMID: 24675148 DOI: 10.1016/j.mcp.2014.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/18/2014] [Accepted: 03/14/2014] [Indexed: 11/29/2022]
Abstract
Gene variants in MC4R, SIRT1 and FTO are associated with severe obesity and metabolic impairment in Caucasians. We investigated whether common variants in these genes are associated with metabolic syndrome (MetS) in a large group of morbidly obese young adults from southern Italy. One thousand morbidly obese subjects (62% women, mean body mass index 46.5 kg/m(2), mean age 32.6 years) whose families had lived in southern Italy for at least 2 generations were recruited. Single-nucleotide polymorphisms (SNPs) rs12970134, rs477181, rs502933 (MC4R locus), rs3818292, rs7069102, rs730821, rs2273773, rs12413112 (SIRT1 locus) and rs1421085, rs9939609, 9930506, 1121980 (FTO locus) were genotyped by Taqman assay; blood parameters were assayed by routine methods; the Fat Mass, Fat Free Mass, Respiratory Quotient, Basal Metabolic Rate (BMR) and waist circumference were also determined. Binomial logistic regression showed that the TA heterozygous genotype of SNP rs9939609 in the FTO gene was associated with the presence of MetS in our population [OR (95% CI): 2.53 (1.16-5.55)]. Furthermore, the FTO rs9939609 genotype accounted for 21.3% of the MetS phenotype together with total cholesterol, BMR and age. Our results extend the knowledge on genotype susceptibility for MetS in relation to a specific geographical area of residence.
Collapse
Affiliation(s)
- Rosario Liguori
- CEINGE Biotecnologie Avanzate S.C. a. r.l., Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Giuseppe Labruna
- IRCCS Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy
| | - Andreina Alfieri
- CEINGE Biotecnologie Avanzate S.C. a. r.l., Naples, Italy; Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy
| | - Domenico Martone
- CEINGE Biotecnologie Avanzate S.C. a. r.l., Naples, Italy; Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy
| | - Eduardo Farinaro
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Franco Contaldo
- Centro Interuniversitario di Studi e Ricerche sull'Obesità (CISRO) e Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Lucia Sacchetti
- CEINGE Biotecnologie Avanzate S.C. a. r.l., Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.
| | - Fabrizio Pasanisi
- Centro Interuniversitario di Studi e Ricerche sull'Obesità (CISRO) e Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Pasqualina Buono
- CEINGE Biotecnologie Avanzate S.C. a. r.l., Naples, Italy; Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy.
| |
Collapse
|
38
|
Bai B, Vanhoutte PM, Wang Y. Loss-of-SIRT1 function during vascular ageing: Hyperphosphorylation mediated by cyclin-dependent kinase 5. Trends Cardiovasc Med 2014; 24:81-4. [DOI: 10.1016/j.tcm.2013.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
|
39
|
Schluesener JK, Schluesener H. Plant polyphenols in the treatment of age-associated diseases: revealing the pleiotropic effects of icariin by network analysis. Mol Nutr Food Res 2013; 58:49-60. [PMID: 24311544 DOI: 10.1002/mnfr.201300409] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/18/2013] [Accepted: 10/30/2013] [Indexed: 12/15/2022]
Abstract
Polyphenols are a broad class of compounds. Some are ingested in substantial quantities from nutritional sources, more are produced by medicinal plants, and some of them are taken as drugs. It is becoming clear, that a single polyphenol is impacting several cellular pathways. Thus, a network approach is becoming feasible, describing the interaction of a single polyphenol with cellular networks. Here we have selected icariin to draw a prototypic network of icariin activities. Icariin appears to be a promising drug to treat major age-related diseases, like neurodegeneration, memory and depressive disorders, chronic inflammation, diabetes, and osteoporosis. It interacts with several relevant pathways, like PDE, TGF-ß, MAPK, PPAR, NOS, IGF, Sirtuin, and others. Such networks will be useful to future comparative studies of complex effects of polyphenols.
Collapse
Affiliation(s)
- Jan Kevin Schluesener
- Division of Immunopathology of the Nervous System, Department of Neuropathology, Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
40
|
Ishibashi Y, Nakashima S, Matsui T, Yamagishi SI. Rosuvastatin restores advanced glycation end product-induced decrease in sirtuin1 (SIRT1) mRNA levels in THP-1 monocytic cells through its anti-oxidative properties. Int J Cardiol 2013; 169:e102-3. [DOI: 10.1016/j.ijcard.2013.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Fuentes E, Guzmán-Jofre L, Moore-Carrasco R, Palomo I. Role of PPARs in inflammatory processes associated with metabolic syndrome (Review). Mol Med Rep 2013; 8:1611-6. [PMID: 24100795 DOI: 10.3892/mmr.2013.1714] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 07/24/2013] [Indexed: 12/23/2022] Open
Abstract
Metabolic syndrome (MS) includes the presence of arterial hypertension, insulin resistance, dyslipidemia, cardiovascular disease (CVD) and abdominal obesity, which is associated with a chronic inflammatory response, characterized by abnormal adipokine production, and the activation of certain pro-inflammatory signaling pathways. Furthermore, the changes presented by the adipose tissue in MS favors the secretion of several molecular mediators capable of activating or suppressing a number of transcription factors, such as the peroxisome proliferator-activated receptors (PPARs), whose main functions include storage regulation and fatty acid catabolization. When they are activated by their ligands (synthetic or endogenous), they control several genes involved in intermediate metabolism, which make them, together with the PPAR gamma coactivator-1-α (PGC-1) and the silent information regulator T1 (SIRT1), good targets for treating metabolic diseases and their cardiovascular complications.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, 3460000 Talca, Chile
| | | | | | | |
Collapse
|