1
|
Dragunas G, Koster CS, de Souza Xavier Costa N, Melgert BN, Munhoz CD, Gosens R, Mauad T. Neuroplasticity and neuroimmune interactions in fatal asthma. Allergy 2024. [PMID: 39484998 DOI: 10.1111/all.16373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/21/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Alteration of airway neuronal function and density and bidirectional interaction between immune cells and sensory peripheral nerves have been proposed to trigger and perpetuate inflammation that contribute to asthma severity. To date, few studies analysed neuroplasticity and neuroinflammation in tissue of asthmatic individuals. We hypothesized that the presence of these phenomena would be a pathological feature in fatal asthma. METHODS We have quantified the expression of the pan-neuronal marker PGP9.5 and the neuronal sensory-derived neuropeptide calcitonin gene-related peptide (CGRP) in the large airways of 12 individuals deceased due to an asthma attack and compared to 10 control lung samples. The proximity between nerve bundles to eosinophils, mast cells and CADM1+ cells was also quantified. We have additionally developed a hPSC-derived sensory neuron/mast cell co-culture model, from where mast cells were purified and differences in gene expression profile assessed. RESULTS Fatal asthma patients presented a higher PGP9.5 and CGRP positive area in the airways, indicating sensory neuroplasticity. Eosinophils, mast cells and CADM1+ cells were observed in close contact or touching the airway nerve bundles, and this was found to be statistically higher in fatal asthma samples. In vitro co-culture model showed that human mast cells adhere to sensory neurons and develop a distinct gene expression profile characterized by upregulated expression of genes related to heterophilic adhesion, activation and differentiation markers, such as CADM4, PTGS2, C-KIT, GATA2, HDC, CPA3, ATXN1 and VCAM1. CONCLUSIONS Our results support a significant role for neuroplasticity and neuroimmune interactions in fatal asthma, that could be implicated in the severity of the fatal attack. Accordingly, the presence of physical neuron and mast cell interaction leads to differential gene expression profile in the later cell type.
Collapse
Affiliation(s)
- Guilherme Dragunas
- Departamento de Farmacologia, Universidade de São Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Carli S Koster
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | | | - Barbro N Melgert
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Carolina D Munhoz
- Departamento de Farmacologia, Universidade de São Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Thais Mauad
- Departamento de Patologia, LIM-05, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Gliwińska A, Badeńska M, Dworak M, Świętochowska E, Badeński A, Bjanid O, Trembecka-Dubel E, Morawiec-Knysak A, Szczepańska M. Assessment of brain-derived neurotrophic factor and irisin concentration in children with chronic kidney disease: a pilot study. BMC Nephrol 2024; 25:318. [PMID: 39334009 PMCID: PMC11430335 DOI: 10.1186/s12882-024-03767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Patients suffering from chronic kidney disease (CKD) are particularly placed at risk of multiorgan complications. One of them is malnutrition, which adds up to a higher mortality factor among them. This study was designed to determine the usefulness of brain-derived neurotrophic factor (BDNF) and irisin assays in the assessment of CKD development. The study group included 28 children with CKD at stages 2-5 treated conservatively. The outcome of our study revealed decreased serum BDNF and irisin levels in CKD patients, whereas urine concentrations were increased for BDNF and decreased for irisin, comparing to healthy controls. There was a positive correlation between anthropometric measures and urine BDNF concentration, as well as anthropometric measures and both serum and urine irisin levels in the study group, however no dependence of the tested markers on the stage of CKD was observed. In recent years, a role of myokines was described as vital for maintaining metabolic homeostasis therefore we suspect a potential role of these multifaceted markers in detecting malnutrition in CKD children.
Collapse
Affiliation(s)
- Aleksandra Gliwińska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, 40-055, Silesia, Poland.
| | - Marta Badeńska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, 40-055, Silesia, Poland
| | - Marta Dworak
- Department of Pediatric Nephrology with Dialysis Division for Children, Independent Public Clinical Hospital No. 1, Zabrze, 41-800, Silesia, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, 40-055, Silesia, Poland
| | - Andrzej Badeński
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, 40-055, Silesia, Poland
| | - Omar Bjanid
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, 40-055, Silesia, Poland
| | - Elżbieta Trembecka-Dubel
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, 40-055, Silesia, Poland
| | - Aurelia Morawiec-Knysak
- Department of Pediatric Nephrology with Dialysis Division for Children, Independent Public Clinical Hospital No. 1, Zabrze, 41-800, Silesia, Poland
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, 40-055, Silesia, Poland
| |
Collapse
|
3
|
Liang P, Peng M, Tao J, Wang B, Wei J, Lin L, Cheng B, Xiong S, Li J, Li C, Yu Z, Li C, Wang J, Li H, Chen Z, Fan J, Liang W, He J. Development of a genome atlas for discriminating benign, preinvasive, and invasive lung nodules. MedComm (Beijing) 2024; 5:e644. [PMID: 39036344 PMCID: PMC11258453 DOI: 10.1002/mco2.644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
To tackle misdiagnosis in lung cancer screening with low-dose computed tomography (LDCT), we aimed to compile a genome atlas for differentiating benign, preinvasive, and invasive lung nodules and characterize their molecular pathogenesis. We collected 432 lung nodule tissue samples from Chinese patients, spanning benign, atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IA). We performed comprehensive sequencing, examining somatic variants, gene expressions, and methylation levels. Our findings uncovered EGFR and TP53 mutations as key drivers in - early lung cancer development, with EGFR mutation frequency increasing with disease progression. Both EGFR mutations and EGF/EGFR hypo-methylation activated the EGFR pathway, fueling cancer growth. Transcriptome analysis identified four lung nodule subtypes (G1-4) with distinct molecular features and immune cell infiltrations: EGFR-driven G1, EGFR/TP53 co-mutation G2, inflamed G3, stem-like G4. Estrogen/androgen response was associated with the EGFR pathway, proposing a new therapy combining tyrosine kinase inhibitors with antiestrogens. Preinvasive nodules exhibited stem cell pathway enrichment, potentially hindering invasion. Epigenetic regulation of various genes was essential for lung cancer initiation and development. This study provides insights into the molecular mechanism of neoplastic progression and identifies potential diagnostic biomarkers and therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Peng Liang
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Minhua Peng
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Jinsheng Tao
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Bo Wang
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Jinwang Wei
- Department of Data ScienceGenomicare Biotechnology (Shanghai) Co., Ltd.ShanghaiChina
- Department of Data ScienceShanghai CreateCured Biotechnology Co., Ltd.ShanghaiChina
| | - Lixuan Lin
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Bo Cheng
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Shan Xiong
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Jianfu Li
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Caichen Li
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Ziwen Yu
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Chunyan Li
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Jun Wang
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Hui Li
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Zhiwei Chen
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
- AnchorDx Inc.FremontCaliforniaUSA
| | - Jian‐Bing Fan
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
- Department of PathologySouthern Medical UniversityGuangzhouGuangdongChina
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Jianxing He
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| |
Collapse
|
4
|
D'Amico F, Lugarà C, Luppino G, Giuffrida C, Giorgianni Y, Patanè EM, Manti S, Gambadauro A, La Rocca M, Abbate T. The Influence of Neurotrophins on the Brain-Lung Axis: Conception, Pregnancy, and Neonatal Period. Curr Issues Mol Biol 2024; 46:2528-2543. [PMID: 38534776 DOI: 10.3390/cimb46030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Neurotrophins (NTs) are four small proteins produced by both neuronal and non-neuronal cells; they include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). NTs can exert their action through both genomic and non-genomic mechanisms by interacting with specific receptors. Initial studies on NTs have identified them only as functional molecules of the nervous system. However, recent research have shown that some tissues and organs (such as the lungs, skin, and skeletal and smooth muscle) as well as some structural cells can secrete and respond to NTs. In addition, NTs perform several roles in normal and pathological conditions at different anatomical sites, in both fetal and postnatal life. During pregnancy, NTs are produced by the mother, placenta, and fetus. They play a pivotal role in the pre-implantation process and in placental and embryonic development; they are also involved in the development of the brain and respiratory system. In the postnatal period, it appears that NTs are associated with some diseases, such as sudden infant death syndrome (SIDS), asthma, congenital central hypoventilation syndrome (CCHS), and bronchopulmonary dysplasia (BPD).
Collapse
Affiliation(s)
- Federica D'Amico
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Cecilia Lugarà
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Giovanni Luppino
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Carlo Giuffrida
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Ylenia Giorgianni
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Eleonora Maria Patanè
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Mariarosaria La Rocca
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Tiziana Abbate
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| |
Collapse
|
5
|
Drake LY, Wicher SA, Roos BB, Khalfaoui L, Nesbitt L, Fang YH, Pabelick CM, Prakash YS. Functional role of glial-derived neurotrophic factor in a mixed allergen murine model of asthma. Am J Physiol Lung Cell Mol Physiol 2024; 326:L19-L28. [PMID: 37987758 PMCID: PMC11279745 DOI: 10.1152/ajplung.00099.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.
Collapse
Affiliation(s)
- Li Y. Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Sarah A. Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Yun Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
6
|
Nenna R, Petrella C, Bonci E, Papoff P, di Jorgi M, Petrarca L, Conti MG, Barbato C, Pietrangeli A, Fiore M, Midulla F, BROME Group. Reduced Serum Brain-Derived Neurotrophic Factor in Infants Affected by Severe Bronchiolitis. Curr Neuropharmacol 2024; 22:2433-2442. [PMID: 39403060 PMCID: PMC11451311 DOI: 10.2174/1570159x22999240223153901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/18/2023] [Accepted: 10/29/2023] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Bronchiolitis is an acute viral infection of the lower respiratory tract, typical of infants in their first year of life and causing hypoxia in the most serious cases. Bronchiolitis recognizes various demographic risk factors that are associated with greater clinical severity; however, no laboratory factors are yet able to correlate with the clinical severity. Neurotrophins as Brain-Derived Neurotrophic Factor (BDNF) are mediators of neuronal plasticity. BDNF is constitutively expressed in smooth muscle cells and epithelium of the lower respiratory tract, and as it is released during inflammatory conditions, serum levels may have a relevant role in the prognosis of infants with bronchiolitis. OBJECTIVE In the present pilot study, we aimed to disclose the presence of serum BDNF in infants hospitalized with bronchiolitis at discharge as a disease severity indicator. METHODS AND RESULTS Serum BDNF, measured at hospital discharge, was significantly lower in severe bronchiolitis (expressed as O2-supplemented infants). Furthermore, no changes were disclosed for the Tropomyosin receptor kinase B, the main BDNF receptor and neurofilament light chain, a biomarker of neuronal degeneration. CONCLUSION Low serum BDNF in infants with severe bronchiolitis could be associated with a higher utilization by lung cells or with an altered production by lung cells. Therefore, further research is required to study if a decreased production or increased consumption of this biomarker is at the base of the above-mentioned findings.
Collapse
Affiliation(s)
- Raffaella Nenna
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, Italy
| | - Carla Petrella
- Department of Sense Organs, Medical Faculty, Institute of Biochemistry and Cell Biology (IBBC-CNR), Sapienza University of Rome, Viale del Policlinico 155-00161, Rome, Italy
| | - Enea Bonci
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, Italy
| | - Paola Papoff
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, Italy
| | - Margherita di Jorgi
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, Italy
| | - Laura Petrarca
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, Italy
| | - Maria Giulia Conti
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, Italy
| | - Christian Barbato
- Department of Sense Organs, Medical Faculty, Institute of Biochemistry and Cell Biology (IBBC-CNR), Sapienza University of Rome, Viale del Policlinico 155-00161, Rome, Italy
| | - Alessandra Pietrangeli
- Virology Laboratory, Department of Molecular Medicine, “Sapienza” University, Rome, Italy
| | - Marco Fiore
- Department of Sense Organs, Medical Faculty, Institute of Biochemistry and Cell Biology (IBBC-CNR), Sapienza University of Rome, Viale del Policlinico 155-00161, Rome, Italy
| | - Fabio Midulla
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale Regina Elena 324-00161, Roma, Italy
| | - BROME Group
- BROME Group: Guido Antonelli, Luigi Matera, Flaminia Bonci, Maria Giulia Conti, Greta Di Mattia, Antonella Frassanito, Enrica Mancino
| |
Collapse
|
7
|
Çerçi B, Gök A, Akyol A. Brain-derived neurotrophic factor: Its role in energy balance and cancer cachexia. Cytokine Growth Factor Rev 2023; 71-72:105-116. [PMID: 37500391 DOI: 10.1016/j.cytogfr.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in the development of the central and peripheral nervous system during embryogenesis. In the mature central nervous system, BDNF is required for the maintenance and enhancement of synaptic transmissions and the survival of neurons. Particularly, it is involved in the modulation of neurocircuits that control energy balance through food intake, energy expenditure, and locomotion. Regulation of BDNF in the central nervous system is complex and environmental factors affect its expression in murine models which may reflect to phenotype dramatically. Furthermore, BDNF and its high-affinity receptor tropomyosin receptor kinase B (TrkB), as well as pan-neurotrophin receptor (p75NTR) is expressed in peripheral tissues in adulthood and their signaling is associated with regulation of energy balance. BDNF/TrkB signaling is exploited by cancer cells as well and BDNF expression is increased in tumors. Intriguingly, previously demonstrated roles of BDNF in regulation of food intake, adipose tissue and muscle overlap with derangements observed in cancer cachexia. However, data about the involvement of BDNF in cachectic cancer patients and murine models are scarce and inconclusive. In the future, knock-in and/or knock-out experiments with murine cancer models could be helpful to explore potential new roles for BDNF in the development of cancer cachexia.
Collapse
Affiliation(s)
- Barış Çerçi
- Medical School, Hacettepe University, Ankara, Turkey.
| | - Ayşenur Gök
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey; Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara 06100, Turkey
| | - Aytekin Akyol
- Departmant of Pathology, Medical School, Hacettepe University, Ankara, Turkey; Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara 06100, Turkey
| |
Collapse
|
8
|
Liu QQ, Tian CJ, Li N, Chen ZC, Guo YL, Cheng DJ, Tang XY, Zhang XY. Brain-derived neurotrophic factor promotes airway smooth muscle cell proliferation in asthma through regulation of transient receptor potential channel-mediated autophagy. Mol Immunol 2023; 158:22-34. [PMID: 37094390 DOI: 10.1016/j.molimm.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE Increased proliferation of airway smooth muscle cells (ASMCs) is a key feature of airway remodeling in asthma. This study aims to determine whether brain-derived neurotrophic factor (BDNF) regulates ASMC proliferation and airway remodeling via the transient receptor potential channels (TRPCs)/autophagy axis. METHODS Human ASMCs were isolated and passively sensitized with human asthmatic serum. Protein levels of BDNF and its receptor TrkB, TRPC1/3/6, autophagy markers, intracellular Ca2+ concentration ([Ca2+]i), LC3 immunofluorescence, cell proliferation, cell cycle population were examined. Wistar rats were sensitized with OVA to establish asthma models. RESULTS In asthmatic serum-sensitized human ASMCs, BDNF overexpression or recombinant BDNF (rhBDNF) increased TrkB/TRPC1/3/6 axis, [Ca2+]i, autophagy level, cell proliferation, cell number in the S+G2/M phase and decreased cell number in the G0/G1 phase, whereas BDNF knockdown exerted the opposite effects. Furthermore, TRPC channel blocker SKF96365 and TRPC1/3/6 knockdown reversed the effects of the rhBDNF-mediated induction of [Ca2+]i, autophagy level, cell proliferation and cell number in the S+G2/M phase. Moreover, the autophagy inhibitor (3-MA) rescued the rhBDNF-mediated induction of cell proliferation and cell number in the S+G2/M phase. Further in vivo assays revealed that BDNF altered the pathology of airway remodeling, promoted the infiltration of inflammatory cells, promoted the proliferation of ASMCs, and upregulated the protein levels of TrkB, TRPC1/3/6, and autophagy markers in asthma model rats. CONCLUSION We conclude that BDNF promotes ASMCs proliferation in asthma through TRPC-mediated autophagy induction.
Collapse
Affiliation(s)
- Qian-Qian Liu
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Henan University, China
| | - Cui-Jie Tian
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China
| | - Nan Li
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China
| | - Zhuo-Chang Chen
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China
| | - Ya-Li Guo
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China
| | - Dong-Jun Cheng
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China
| | - Xue-Yi Tang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China
| | - Xiao-Yu Zhang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China.
| |
Collapse
|
9
|
Manti S, Xerra F, Spoto G, Butera A, Gitto E, Di Rosa G, Nicotera AG. Neurotrophins: Expression of Brain-Lung Axis Development. Int J Mol Sci 2023; 24:ijms24087089. [PMID: 37108250 PMCID: PMC10138985 DOI: 10.3390/ijms24087089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Neurotrophins (NTs) are a group of soluble growth factors with analogous structures and functions, identified initially as critical mediators of neuronal survival during development. Recently, the relevance of NTs has been confirmed by emerging clinical data showing that impaired NTs levels and functions are involved in the onset of neurological and pulmonary diseases. The alteration in NTs expression at the central and peripheral nervous system has been linked to neurodevelopmental disorders with an early onset and severe clinical manifestations, often named "synaptopathies" because of structural and functional synaptic plasticity abnormalities. NTs appear to be also involved in the physiology and pathophysiology of several airway diseases, neonatal lung diseases, allergic and inflammatory diseases, lung fibrosis, and even lung cancer. Moreover, they have also been detected in other peripheral tissues, including immune cells, epithelium, smooth muscle, fibroblasts, and vascular endothelium. This review aims to provide a comprehensive description of the NTs as important physiological and pathophysiological players in brain and lung development.
Collapse
Affiliation(s)
- Sara Manti
- Pediatric Unit, Department of Human and Pediatric Pathology "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy
| | - Federica Xerra
- Pediatric Unit, Department of Human and Pediatric Pathology "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, "Gaetano Barresi" University of Messina, 98124 Messina, Italy
| | - Ambra Butera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, "Gaetano Barresi" University of Messina, 98124 Messina, Italy
| | - Eloisa Gitto
- Intensive Pediatric Unit, Department of Human Pathology of the Adult and Developmental Age, "Gaetano Barresi" University of Messina, 98124 Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, "Gaetano Barresi" University of Messina, 98124 Messina, Italy
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, "Gaetano Barresi" University of Messina, 98124 Messina, Italy
| |
Collapse
|
10
|
Weihrauch T, Limberg MM, Gray N, Schmelz M, Raap U. Neurotrophins: Neuroimmune Interactions in Human Atopic Diseases. Int J Mol Sci 2023; 24:ijms24076105. [PMID: 37047077 PMCID: PMC10094011 DOI: 10.3390/ijms24076105] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Allergic diseases are accompanied by a variety of symptoms such as pruritus, coughing, sneezing, and watery eyes, which can result in severe physiological and even psychological impairments. The exact mechanisms of these conditions are not yet completely understood. However, recent studies demonstrated a high relevance of neurotrophins in allergic inflammation, as they induce cytokine release, mediate interaction between immune cells and neurons, and exhibit different expression levels in health and disease. In this review, we aim to give an overview of the current state of knowledge concerning the role of neurotrophins in atopic disorders such as atopic dermatitis, allergic asthma, and allergic rhinitis.
Collapse
Affiliation(s)
- Tobias Weihrauch
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
| | - Maren M Limberg
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
| | - Natalie Gray
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, MCTN, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
- University Clinic of Dermatology and Allergy, University of Oldenburg, 26133 Oldenburg, Germany
| |
Collapse
|
11
|
Gliwińska A, Czubilińska-Łada J, Więckiewicz G, Świętochowska E, Badeński A, Dworak M, Szczepańska M. The Role of Brain-Derived Neurotrophic Factor (BDNF) in Diagnosis and Treatment of Epilepsy, Depression, Schizophrenia, Anorexia Nervosa and Alzheimer's Disease as Highly Drug-Resistant Diseases: A Narrative Review. Brain Sci 2023; 13:brainsci13020163. [PMID: 36831706 PMCID: PMC9953867 DOI: 10.3390/brainsci13020163] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) belongs to the family of neurotrophins, which are growth factors with trophic effects on neurons. BDNF is the most widely distributed neurotrophin in the central nervous system (CNS) and is highly expressed in the prefrontal cortex (PFC) and hippocampus. Its distribution outside the CNS has also been demonstrated, but most studies have focused on its effects in neuropsychiatric disorders. Despite the advances in medicine in recent decades, neurological and psychiatric diseases are still characterized by high drug resistance. This review focuses on the use of BDNF in the developmental assessment, treatment monitoring, and pharmacotherapy of selected diseases, with a particular emphasis on epilepsy, depression, anorexia, obesity, schizophrenia, and Alzheimer's disease. The limitations of using a molecule with such a wide distribution range and inconsistent method of determination are also highlighted.
Collapse
Affiliation(s)
- Aleksandra Gliwińska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
- Correspondence: ; Tel.: +48-32-370-43-05; Fax: +48-32-370-42-92
| | - Justyna Czubilińska-Łada
- Department of Neonatal Intensive Care, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Gniewko Więckiewicz
- Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Andrzej Badeński
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marta Dworak
- Department of Pediatric Nephrology with Dialysis Division for Children, Independent Public Clinical Hospital No. 1, 41-800 Zabrze, Poland
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
12
|
Khalfaoui L, Pabelick CM. Airway smooth muscle in contractility and remodeling of asthma: potential drug target mechanisms. Expert Opin Ther Targets 2023; 27:19-29. [PMID: 36744401 DOI: 10.1080/14728222.2023.2177533] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Asthma is characterized by enhanced airway contractility and remodeling where airway smooth muscle (ASM) plays a key role, modulated by inflammation. Understanding the mechanisms by which ASM contributes to these features of asthma is essential for the development of novel asthma therapies. AREAS COVERED Inflammation in asthma contributes to a multitude of changes within ASM including enhanced airway contractility, proliferation, and fibrosis. Altered intracellular calcium ([Ca2+]i) regulation or Ca2+ sensitization contributes to airway hyperreactivity. Increased airway wall thickness from ASM proliferation and fibrosis contributes to structural changes seen with asthma. EXPERT OPINION ASM plays a significant role in multiple features of asthma. Increased ASM contractility contributes to hyperresponsiveness, while altered ASM proliferation and extracellular matrix production promote airway remodeling both influenced by inflammation of asthma and conversely even influencing the local inflammatory milieu. While standard therapies such as corticosteroids or biologics target inflammation, cytokines, or their receptors to alleviate asthma symptoms, these approaches do not address the underlying contribution of ASM to hyperresponsiveness and particularly remodeling. Therefore, novel therapies for asthma need to target abnormal contractility mechanisms in ASM and/or the contribution of ASM to remodeling, particularly in asthmatics resistant to current therapies.
Collapse
Affiliation(s)
- Latifa Khalfaoui
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA
| | - Christina M Pabelick
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Matloobi A, Buday T, Brozmanova M, Konarska M, Poliacek I, Martvon L, Plevkova J. The effect of stimulation and unloading of baroreceptors on cough in experimental conditions. Respir Physiol Neurobiol 2022; 303:103921. [PMID: 35595217 DOI: 10.1016/j.resp.2022.103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
Abstract
Cough, the main airway defensive process, is modulated by multiple sensory inputs from the respiratory system and outside of it. This modulation is one of the mechanisms that contributes to the sensitization of cough pathways at the peripheral and/or central level via neuroplasticity and it manifests most often as augmented coughing. Cardiorespiratory coupling is an important mechanism responsible for a match between oxygenation and cardiac output and bidirectional relationships exist between respiration and cardiovascular function. While the impact of cough with the robust swings of the intrathoracic pressure on haemodynamic parameters and heart electrophysiology are well characterized, little is known about the modulation of cough by haemodynamic parameters - mainly the blood pressure. Some circumstantial findings from older animal studies and more recent sophisticated analysis confirm that baroreceptor stimulation and unloading alters coughing evoked in experiments. Clinical relevance of such findings is not presently known.
Collapse
Affiliation(s)
- A Matloobi
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - T Buday
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - M Brozmanova
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - M Konarska
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - I Poliacek
- Department of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - L Martvon
- Centre for Medical Education Support, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic
| | - J Plevkova
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic; Centre for Medical Education Support, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic.
| |
Collapse
|
14
|
Klimov V, Cherevko N, Klimov A, Novikov P. Neuronal-Immune Cell Units in Allergic Inflammation in the Nose. Int J Mol Sci 2022; 23:6938. [PMID: 35805946 PMCID: PMC9266453 DOI: 10.3390/ijms23136938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Immune cells and immune-derived molecules, endocrine glands and hormones, the nervous system and neuro molecules form the combined tridirectional neuroimmune network, which plays a significant role in the communication pathways and regulation at the level of the whole organism and local levels, in both healthy persons and patients with allergic rhinitis based on an allergic inflammatory process. This review focuses on a new research paradigm devoted to neuronal-immune cell units, which are involved in allergic inflammation in the nose and neuroimmune control of the nasal mucociliary immunologically active epithelial barrier. The categorization, cellular sources of neurotransmitters and neuropeptides, and their prevalent profiles in constituting allergen tolerance maintenance or its breakdown are discussed. Novel data on the functional structure of the nasal epithelium based on a transcriptomic technology, single-cell RNA-sequencing results, are considered in terms of neuroimmune regulation. Notably, the research of pathogenesis and therapy for atopic allergic diseases, including recently identified local forms, from the viewpoint of the tridirectional interaction of the neuroimmune network and discrete neuronal-immune cell units is at the cutting-edge.
Collapse
Affiliation(s)
- Vladimir Klimov
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
| | - Natalia Cherevko
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
| | - Andrew Klimov
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
| | - Pavel Novikov
- Immunology & Allergy Dept, Siberian State Medical University, 634041 Tomsk, Russia; (N.C.); (A.K.); (P.N.)
- Medical Association “Center for Family Medicine”, 634050 Tomsk, Russia
| |
Collapse
|
15
|
Zhang N, Xu J, Jiang C, Lu S. Neuro-Immune Regulation in Inflammation and Airway Remodeling of Allergic Asthma. Front Immunol 2022; 13:894047. [PMID: 35784284 PMCID: PMC9245431 DOI: 10.3389/fimmu.2022.894047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
Allergic asthma is a common chronic inflammation of the airways and causes airway remodeling eventually. For a long time, investigators have been focusing on the immunological mechanism of asthma. However, in recent years, the role of neuro-regulation in the occurrence of asthma has gradually attracted investigators’ attention. In this review, we firstly describe neuro-immune regulation in inflammation of allergic asthma from two aspects: innate immunity and adaptive immunity. Secondly, we introduce neuro-immune regulation in airway remodeling of asthma. Finally, we prospect the role of pulmonary neuroendocrine cells in the development of asthma. In general, the amount of researches is limited. Further researches on the neural regulation during the occurrence of asthma will help us clarify the mechanism of asthma more comprehensively and find more effective ways to prevent and control asthma.
Collapse
Affiliation(s)
- Ning Zhang
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Institute of Molecular and Translational Medicine (IMTM), Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jing Xu
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Institute of Molecular and Translational Medicine (IMTM), Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Congshan Jiang
- National Regional Children’s Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi’an Key Laboratory of Children’s Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Congshan Jiang, ; Shemin Lu,
| | - Shemin Lu
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Institute of Molecular and Translational Medicine (IMTM), Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Regional Children’s Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi’an Key Laboratory of Children’s Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Congshan Jiang, ; Shemin Lu,
| |
Collapse
|
16
|
Singh A, Singh J, Rattan S. Evidence for the presence and release of BDNF in the neuronal and non-neuronal structures of the internal anal sphincter. Neurogastroenterol Motil 2022; 34:e14099. [PMID: 33624396 PMCID: PMC9558559 DOI: 10.1111/nmo.14099] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Data on the neuromodulatory effects of brain-derived neurotrophic factor (BDNF) in the gastrointestinal tract were recently reported, but there are still no data on the presence, distribution, and release of BDNF in the gastrointestinal tract, including the internal anal sphincter (IAS). METHODS We examined the presence and distribution of BDNF and its receptor TrkB in the different IAS structures (neuronal and non-neuronal) via immunohistochemical and immunocytochemical analyses. We also monitored the release of BDNF in an IAS muscle bath (consisting of smooth muscle cells [SMCs], myenteric plexus, and submucosal plexus) before and after different agonists, and electrical field stimulation in the absence and presence of neurotoxin tetrodotoxin. KEY RESULTS BDNF/TrkB was found to be present in all layers of the IAS, especially the smooth muscle, mucosa, myenteric plexus, and submucosal plexus. Detailed analyses revealed a significant colocalization between BDNF and TrkB in different structures, especially in the smooth muscle, the SMCs, and both plexuses. Data further showed higher levels of BDNF in the cytosol and that of TrkB toward the periphery of the SMCs. CONCLUSIONS & INFERENCES These studies showed that BDNF/TrkB was present not only in the enteric nervous system (ENS), but also in the SMCs. For the neuromodulatory effects, BDNF is released locally from the ENS ((myenteric (10.01 ± 0.23 pg/ml) and submucosal plexus (9.05 ± 0.51 pg/ml)) and the SMCs (18.63 ± 1.63 pg/ml). Collectively, these findings have pathophysiological and therapeutic implications regarding the role of BDNF/TrkB in the IAS-associated rectoanal motility disorders.
Collapse
Affiliation(s)
- Arjun Singh
- Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Room #320 College, Philadelphia, Pennsylvania 19107, USA
| | - Jagmohan Singh
- Department of Pharmacology and Experimental Therapeutics, Jefferson Alumni Hall, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, USA
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Room #320 College, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
17
|
Drake MG, Cook M, Fryer AD, Jacoby DB, Scott GD. Airway Sensory Nerve Plasticity in Asthma and Chronic Cough. Front Physiol 2021; 12:720538. [PMID: 34557110 PMCID: PMC8452850 DOI: 10.3389/fphys.2021.720538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Airway sensory nerves detect a wide variety of chemical and mechanical stimuli, and relay signals to circuits within the brainstem that regulate breathing, cough, and bronchoconstriction. Recent advances in histological methods, single cell PCR analysis and transgenic mouse models have illuminated a remarkable degree of sensory nerve heterogeneity and have enabled an unprecedented ability to test the functional role of specific neuronal populations in healthy and diseased lungs. This review focuses on how neuronal plasticity contributes to development of two of the most common airway diseases, asthma and chronic cough, and discusses the therapeutic implications of emerging treatments that target airway sensory nerves.
Collapse
Affiliation(s)
- Matthew G. Drake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Cook
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Allison D. Fryer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - David B. Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Gregory D. Scott
- Department of Pathology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
18
|
Banerjee P, Balraj P, Ambhore NS, Wicher SA, Britt RD, Pabelick CM, Prakash YS, Sathish V. Network and co-expression analysis of airway smooth muscle cell transcriptome delineates potential gene signatures in asthma. Sci Rep 2021; 11:14386. [PMID: 34257337 PMCID: PMC8277837 DOI: 10.1038/s41598-021-93845-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Airway smooth muscle (ASM) is known for its role in asthma exacerbations characterized by acute bronchoconstriction and remodeling. The molecular mechanisms underlying multiple gene interactions regulating gene expression in asthma remain elusive. Herein, we explored the regulatory relationship between ASM genes to uncover the putative mechanism underlying asthma in humans. To this end, the gene expression from human ASM was measured with RNA-Seq in non-asthmatic and asthmatic groups. The gene network for the asthmatic and non-asthmatic group was constructed by prioritizing differentially expressed genes (DEGs) (121) and transcription factors (TFs) (116). Furthermore, we identified differentially connected or co-expressed genes in each group. The asthmatic group showed a loss of gene connectivity due to the rewiring of major regulators. Notably, TFs such as ZNF792, SMAD1, and SMAD7 were differentially correlated in the asthmatic ASM. Additionally, the DEGs, TFs, and differentially connected genes over-represented in the pathways involved with herpes simplex virus infection, Hippo and TGF-β signaling, adherens junctions, gap junctions, and ferroptosis. The rewiring of major regulators unveiled in this study likely modulates the expression of gene-targets as an adaptive response to asthma. These multiple gene interactions pointed out novel targets and pathways for asthma exacerbations.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Premanand Balraj
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | | | - Sarah A Wicher
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Rodney D Britt
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Sudro 108A, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
19
|
Singh A, Rattan S. BDNF rescues aging-associated internal anal sphincter dysfunction. Am J Physiol Gastrointest Liver Physiol 2021; 321:G87-G97. [PMID: 34075793 PMCID: PMC8321795 DOI: 10.1152/ajpgi.00090.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aging can lead to rectoanal incontinence due to internal anal sphincter (IAS) dysfunction, which is characterized by a decrease in IAS tone and contractility and an increase in nonadrenergic noncholinergic (NANC) relaxation. We aimed to determine whether brain-derived neurotropic factor (BDNF) rescues this aging-associated IAS dysfunction (AAID). To do so, we studied the effects of BDNF on the basal and G protein-coupled receptors (GPCR)-stimulated IAS smooth muscle tone and on NANC relaxation in Fischer 344 rats representing different age groups [26-mo-old (aging) vs. 6-mo-old (young)], before and after tyrosine kinase receptor B (TrkB) antagonist K252a. We also used isolated smooth muscle cells (SMCs) to determine the effects of BDNF before and after different agonists. For some studies, we monitored NO release using smooth muscle perfusates. BDNF reversed AAID by rescuing the basal IAS tone and agonists [thromboxane A2 analog (U46619) and angiotensin II (ANG II)]-induced contractility, and NANC relaxation. These rescue effects of BDNF were selective as K252a attenuated the changes in the IAS without modifying the effects of K+depolarization. Because of the direct association between the basal and GPCR-stimulated IAS tone and RhoA/ROCK activation, we speculate that this pathway in the rescue effects of BDNF. Conversely, our data suggest that aging-associated increased NANC relaxation is reversed by decreased release of NO and decrease in the sensitivity of the released inhibitory neurotransmitter. In summary, BDNF rescue of AAID involves RhoA/ROCK and inhibitory neurotransmission. These data have direct implications for the role of BDNF in the pathophysiology and therapeutic targeting of aging-associated rectoanal motility disorders.NEW & NOTEWORTHY These studies demonstrate that brain-derived neurotropic factor (BDNF) rescues the aging-associated internal anal sphincter (IAS) dysfunction, characterized by a decrease in IAS tone, and increase in non-adrenergic noncholinergic relaxation. We determined the effects of BDNF on the basal and GPCR (TXA2 and ANG II)-stimulated IAS tone, and on NANC relaxation, before and after TrkB inhibitor K252a. BDNF may have an important role in the pathophysiology and therapeutic targeting of certain rectoanal motility disorders.
Collapse
Affiliation(s)
- Arjun Singh
- Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Li Y, Huang Y, Cheng X, He Y, Hu X. Whole body hypoxic preconditioning-mediated multiorgan protection in db/db mice via nitric oxide-BDNF-GSK-3β-Nrf2 signaling pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:281-296. [PMID: 34187947 PMCID: PMC8255126 DOI: 10.4196/kjpp.2021.25.4.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 11/15/2022]
Abstract
The beneficial effects of hypoxic preconditioning are abolished in the diabetes. The present study was designed to investigate the protective effects and mechanisms of repeated episodes of whole body hypoxic preconditioning (WBHP) in db/db mice. The protective effects of preconditioning were explored on diabetesinduced vascular dysfunction, cognitive impairment and ischemia-reperfusion (IR)-induced increase in myocardial injury. Sixteen-week old db/db (diabetic) and C57BL/6 (non-diabetic) mice were employed. There was a significant impairment in cognitive function (Morris Water Maze test), endothelial function (acetylcholineinduced relaxation in aortic rings) and a significant increase in IR-induced heart injury (Langendorff apparatus) in db/db mice. WBHP stimulus was given by exposing mice to four alternate cycles of low (8%) and normal air O2 for 10 min each. A single episode of WBHP failed to produce protection; however, two and three episodes of WBHP significantly produced beneficial effects on the heart, brain and blood vessels. There was a significant increase in the levels of brain-derived neurotrophic factor (BDNF) and nitric oxide (NO) in response to 3 episodes of WBHP. Moreover, pretreatment with the BDNF receptor, TrkB antagonist (ANA-12) and NO synthase inhibitor (LNAME) attenuated the protective effects imparted by three episodes of WBHP. These pharmacological agents abolished WBHP-induced restoration of p-GSK-3β/GSK-3β ratio and Nrf2 levels in IR-subjected hearts. It is concluded that repeated episodes of WHBP attenuate cognitive impairment, vascular dysfunction and enhancement in IRinduced myocardial injury in diabetic mice be due to increase in NO and BDNF levels that may eventually activate GSK-3β and Nrf2 signaling pathway to confer protection.
Collapse
Affiliation(s)
- Yuefang Li
- Cadre Ward the No.901 Hospital of the Joint Logistics Support Unit of the Chinese People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Yan Huang
- Cadre Ward the No.901 Hospital of the Joint Logistics Support Unit of the Chinese People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Xi Cheng
- Cadre Ward the No.901 Hospital of the Joint Logistics Support Unit of the Chinese People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Youjun He
- Cadre Ward the No.901 Hospital of the Joint Logistics Support Unit of the Chinese People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Xin Hu
- Cadre Ward the No.901 Hospital of the Joint Logistics Support Unit of the Chinese People's Liberation Army, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
21
|
Bhallamudi S, Roos BB, Teske JJ, Wicher SA, McConico A, M Pabelick C, Sathish V, Prakash YS. Glial-derived neurotrophic factor in human airway smooth muscle. J Cell Physiol 2021; 236:8184-8196. [PMID: 34170009 DOI: 10.1002/jcp.30489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/18/2021] [Accepted: 06/09/2021] [Indexed: 11/09/2022]
Abstract
Airway smooth muscle (ASM) cells modulate the local airway milieu via production of inflammatory mediators and growth factors including classical neurotrophins, such as brain-derived neurotrophic factor (BDNF). The glial cell-derived neurotrophic factor (GDNF) family of ligands (GFLs) are nonclassical neurotrophins and their role in the airway is barely understood. The major GFLs, GDNF and Neurturin (NRTN) bind to GDNF family receptor (GFR) α1 and α2 respectively that pair with Ret receptor to accomplish signaling. In this study, we found GDNF is expressed in human lung and increased in adult asthma, while human ASM expresses GDNF and its receptors. Accordingly, we used human ASM cells to test the hypothesis that ASM expression and autocrine signaling by GFLs regulate [Ca2+ ]i . Serum-deprived ASM cells from non-asthmatics were exposed to 10 ng/ml GDNF or NRTN for 15 min (acute) or 24 h (chronic). In fura-2 loaded cells, acute GDNF or NRTN alone induced [Ca2+ ]i responses, and further enhanced responses to 1 µM ACh or 10 µM histamine. Ret inhibitor (SPP86; 10 µM) or specific GDNF chelator GFRα1-Fc (1 µg/ml) showed roles of these receptors in GDNF effects. In contrast, NRTN did not enhance [Ca2+ ]i response to histamine. Furthermore, conditioned media of nonasthmatic and asthmatic ASM cells showed GDNF secretion. SPP86, Ret inhibitor and GFRα1-Fc chelator markedly decreased [Ca2+ ]i response compared with vehicle, highlighting autocrine effects of secreted GDNF. Chronic GDNF treatment increased histamine-induced myosin light chain phosphorylation. These novel data demonstrate GFLs particularly GDNF/GFRα1 influence ASM [Ca2+ ]i and raise the possibility that GFLs are potential targets of airway hyperresponsiveness.
Collapse
Affiliation(s)
- Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah A Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea McConico
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
22
|
Pharmacogenetic Polygenic Risk Score for Bronchodilator Response in Children and Adolescents with Asthma: Proof-of-Concept. J Pers Med 2021; 11:jpm11040319. [PMID: 33923870 PMCID: PMC8073919 DOI: 10.3390/jpm11040319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
Genome-wide association studies (GWAS) of response to asthma medications have primarily focused on Caucasian populations, with findings that may not be generalizable to minority populations. We derived a polygenic risk score (PRS) for response to albuterol as measured by bronchodilator response (BDR), and examined the PRS in a cohort of Hispanic school-aged children with asthma. We leveraged a published GWAS of BDR to identify relevant genetic variants, and ranked the top variants according to their Combined Annotation Dependent Depletion (CADD) scores. Variants with CADD scores greater than 10 were used to compute the PRS. Once we derived the PRS, we determined the association of the PRS with BDR in a cohort of Hispanic children with asthma (the Genetics of Asthma in Costa Rica Study (GACRS)) in adjusted linear regression models. Mean BDR in GACRS participants was5.6% with a standard deviation of 10.2%. We observed a 0.63% decrease in BDR in response to albuterol for a standard deviation increase in the PRS (p = 0.05). We also observed decreased odds of a BDR response at or above the 12% threshold for a one standard deviation increase in the PRS (OR = 0.80 (95% CI 0.67 to 0.95)). Our findings show that combining variants from a pharmacogenetic GWAS into a PRS may be useful for predicting medication response in asthma.
Collapse
|
23
|
Ambhore NS, Kalidhindi RSR, Sathish V. Sex-Steroid Signaling in Lung Diseases and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:243-273. [PMID: 33788197 DOI: 10.1007/978-3-030-63046-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sex/gender difference exists in the physiology of multiple organs. Recent epidemiological reports suggest the influence of sex-steroids in modulating a wide variety of disease conditions. Sex-based discrepancies have been reported in pulmonary physiology and various chronic inflammatory responses associated with lung diseases like asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, and rare lung diseases. Notably, emerging clinical evidence suggests that several respiratory diseases affect women to a greater degree, with increased severity and prevalence than men. Although sex-specific differences in various lung diseases are evident, such differences are inherent to sex-steroids, which are major biological variables in men and women who play a central role to control these differences. The focus of this chapter is to comprehend the sex-steroid biology in inflammatory lung diseases and to understand the mechanistic role of sex-steroids signaling in regulating these diseases. Exploring the roles of sex-steroid signaling in the regulation of lung diseases and inflammation is crucial for the development of novel and effective therapy. Overall, we will illustrate the importance of differential sex-steroid signaling in lung diseases and their possible clinical implications for the development of complementary and alternative medicine to treat lung diseases.
Collapse
Affiliation(s)
- Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | | | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
24
|
D'Souza A, Dave KM, Stetler RA, S. Manickam D. Targeting the blood-brain barrier for the delivery of stroke therapies. Adv Drug Deliv Rev 2021; 171:332-351. [PMID: 33497734 DOI: 10.1016/j.addr.2021.01.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
A variety of neuroprotectants have shown promise in treating ischemic stroke, yet their delivery to the brain remains a challenge. The endothelial cells lining the blood-brain barrier (BBB) are emerging as a dynamic factor in the response to neurological injury and disease, and the endothelial-neuronal matrix coupling is fundamentally neuroprotective. In this review, we discuss approaches that target the endothelium for drug delivery both across the BBB and to the BBB as a viable strategy to facilitate neuroprotective effects, using the example of brain-derived neurotrophic factor (BDNF). We highlight the advances in cell-derived extracellular vesicles (EVs) used for CNS targeting and drug delivery. We also discuss the potential of engineered EVs as a potent strategy to deliver BDNF or other drug candidates to the ischemic brain, particularly when coupled with internal components like mitochondria that may increase cellular energetics in injured endothelial cells.
Collapse
|
25
|
Rubin L, Stabler CT, Schumacher-Klinger A, Marcinkiewicz C, Lelkes PI, Lazarovici P. Neurotrophic factors and their receptors in lung development and implications in lung diseases. Cytokine Growth Factor Rev 2021; 59:84-94. [PMID: 33589358 DOI: 10.1016/j.cytogfr.2021.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
Although lung innervation has been described by many studies in humans and rodents, the regulation of the respiratory system induced by neurotrophins is not fully understood. Here, we review current knowledge on the role of neurotrophins and the expression and function of their receptors in neurogenesis, vasculogenesis and during the embryonic development of the respiratory tree and highlight key implications relevant to respiratory diseases.
Collapse
Affiliation(s)
- Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Collin T Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA.
| | - Adi Schumacher-Klinger
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| | - Cezary Marcinkiewicz
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA.
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA.
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
26
|
Roos BB, Teske JJ, Bhallamudi S, Pabelick CM, Sathish V, Prakash YS. Neurotrophin Regulation and Signaling in Airway Smooth Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:109-121. [PMID: 34019266 PMCID: PMC11042712 DOI: 10.1007/978-3-030-68748-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Structural and functional aspects of bronchial airways are key throughout life and play critical roles in diseases such as asthma. Asthma involves functional changes such as airway irritability and hyperreactivity, as well as structural changes such as enhanced cellular proliferation of airway smooth muscle (ASM), epithelium, and fibroblasts, and altered extracellular matrix (ECM) and fibrosis, all modulated by factors such as inflammation. There is now increasing recognition that disease maintenance following initial triggers involves a prominent role for resident nonimmune airway cells that secrete growth factors with pleiotropic autocrine and paracrine effects. The family of neurotrophins may be particularly relevant in this regard. Long recognized in the nervous system, classical neurotrophins such as brain-derived neurotrophic factor (BDNF) and nonclassical ligands such as glial-derived neurotrophic factor (GDNF) are now known to be expressed and functional in non-neuronal systems including lung. However, the sources, targets, regulation, and downstream effects are still under investigation. In this chapter, we discuss current state of knowledge and future directions regarding BDNF and GDNF in airway physiology and on pathophysiological contributions in asthma.
Collapse
Affiliation(s)
- Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
27
|
Gill SE, Dos Santos CC, O'Gorman DB, Carter DE, Patterson EK, Slessarev M, Martin C, Daley M, Miller MR, Cepinskas G, Fraser DD. Transcriptional profiling of leukocytes in critically ill COVID19 patients: implications for interferon response and coagulation. Intensive Care Med Exp 2020; 8:75. [PMID: 33306162 PMCID: PMC7729690 DOI: 10.1186/s40635-020-00361-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND COVID19 is caused by the SARS-CoV-2 virus and has been associated with severe inflammation leading to organ dysfunction and mortality. Our aim was to profile the transcriptome in leukocytes from critically ill patients positive for COVID19 compared to those negative for COVID19 to better understand the COVID19-associated host response. For these studies, all patients admitted to our tertiary care intensive care unit (ICU) suspected of being infected with SARS-CoV-2, using standardized hospital screening methodologies, had blood samples collected at the time of admission to the ICU. Transcriptome profiling of leukocytes via ribonucleic acid sequencing (RNAseq) was then performed and differentially expressed genes as well as significantly enriched gene sets were identified. RESULTS We enrolled seven COVID19 + (PCR positive, 2 SARS-CoV-2 genes) and seven age- and sex-matched COVID19- (PCR negative) control ICU patients. Cohorts were well-balanced with the exception that COVID19- patients had significantly higher total white blood cell counts and circulating neutrophils and COVID19 + patients were more likely to suffer bilateral pneumonia. The mortality rate for this cohort of COVID19 + ICU patients was 29%. As indicated by both single-gene based and gene set (GSEA) approaches, the major disease-specific transcriptional responses of leukocytes in critically ill COVID19 + ICU patients were: (i) a robust overrepresentation of interferon-related gene expression; (ii) a marked decrease in the transcriptional level of genes contributing to general protein synthesis and bioenergy metabolism; and (iii) the dysregulated expression of genes associated with coagulation, platelet function, complement activation, and tumour necrosis factor/interleukin 6 signalling. CONCLUSIONS Our findings demonstrate that critically ill COVID19 + patients on day 1 of admission to the ICU display a unique leukocyte transcriptional profile that distinguishes them from COVID19- patients, providing guidance for future targeted studies exploring novel prognostic and therapeutic aspects of COVID19.
Collapse
Affiliation(s)
- Sean E Gill
- Lawson Health Research Institute, London, ON, Canada. .,Physiology and Pharmacology, Western University, London, ON, Canada. .,Medicine, Western University, London, ON, Canada. .,Victoria Research Labs, Room A6-134, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| | - Claudia C Dos Santos
- Interdepartmental Division of Critical Care Medicine and Keenan Center for Biomedical Research of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - David B O'Gorman
- Lawson Health Research Institute, London, ON, Canada.,Biochemistry, Western University, London, ON, Canada
| | - David E Carter
- London Regional Genomics Centre, Western University, London, ON, Canada
| | | | - Marat Slessarev
- Lawson Health Research Institute, London, ON, Canada.,Medicine, Western University, London, ON, Canada
| | - Claudio Martin
- Lawson Health Research Institute, London, ON, Canada.,Medicine, Western University, London, ON, Canada
| | - Mark Daley
- Lawson Health Research Institute, London, ON, Canada.,Computer Science, Western University, London, ON, Canada
| | - Michael R Miller
- Lawson Health Research Institute, London, ON, Canada.,Pediatrics, Western University, London, ON, Canada
| | - Gediminas Cepinskas
- Lawson Health Research Institute, London, ON, Canada.,Medical Biophysics, Western University, London, ON, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London, ON, Canada. .,Physiology and Pharmacology, Western University, London, ON, Canada. .,Pediatrics, Western University, London, ON, Canada. .,London Health Sciences Centre, Room C2-C82, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| | | |
Collapse
|
28
|
Sreter KB, Popovic-Grle S, Lampalo M, Konjevod M, Tudor L, Nikolac Perkovic M, Jukic I, Bingulac-Popovic J, Safic Stanic H, Markeljevic J, Pivac N, Svob Strac D. Plasma Brain-Derived Neurotrophic Factor (BDNF) Concentration and BDNF/ TrkB Gene Polymorphisms in Croatian Adults with Asthma. J Pers Med 2020; 10:E189. [PMID: 33114368 PMCID: PMC7712770 DOI: 10.3390/jpm10040189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its tropomyosin-related kinase B (TrkB) receptor might contribute to normal lung functioning and immune responses; however, their role in asthma remains unclear. Plasma BDNF concentrations, as well as BDNF and NTRK2 (TrkB gene) polymorphisms, were investigated in 120 asthma patients and 120 healthy individuals using enzyme-linked immunosorbent assay and polymerase chain reaction, respectively. The genotype and allele frequencies of BDNF Val66Met (rs6265) and NTRK2 rs1439050 polymorphisms did not differ between healthy individuals and asthma patients, nor between patients grouped according to severity or different asthma phenotypes. Although plasma BDNF concentrations were higher among healthy subjects carrying the BDNF Val66Met GG genotype compared to the A allele carriers, such differences were not detected in asthma patients, suggesting the influences of other factors. Plasma BDNF concentration was not affected by NTRK2 rs1439050 polymorphism. Asthma patients had higher plasma BDNF concentrations than control subjects; however, no differences were found between patients subdivided according to asthma severity, or Type-2, allergic, and eosinophilic asthma. Higher plasma BDNF levels were observed in asthma patients with aspirin sensitivity and aspirin-exacerbated respiratory disease. These results suggest that plasma BDNF may serve as a potential peripheral biomarker for asthma, particularly asthma with aspirin sensitivity.
Collapse
Affiliation(s)
- Katherina B. Sreter
- Department of Clinical Immunology, Pulmonology and Rheumatology, University Hospital Centre “Sestre Milosrdnice”, 10000 Zagreb, Croatia; (K.B.S.); (J.M.)
| | - Sanja Popovic-Grle
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (S.P.-G.); (M.L.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marina Lampalo
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (S.P.-G.); (M.L.)
| | - Marcela Konjevod
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| | - Lucija Tudor
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| | - Matea Nikolac Perkovic
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| | - Irena Jukic
- Croatian Institute of Transfusion Medicine, 10000 Zagreb, Croatia; (I.J.); (J.B.-P.); (H.S.S.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Jasna Bingulac-Popovic
- Croatian Institute of Transfusion Medicine, 10000 Zagreb, Croatia; (I.J.); (J.B.-P.); (H.S.S.)
| | - Hana Safic Stanic
- Croatian Institute of Transfusion Medicine, 10000 Zagreb, Croatia; (I.J.); (J.B.-P.); (H.S.S.)
| | - Jasenka Markeljevic
- Department of Clinical Immunology, Pulmonology and Rheumatology, University Hospital Centre “Sestre Milosrdnice”, 10000 Zagreb, Croatia; (K.B.S.); (J.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| |
Collapse
|
29
|
Jing S, Li X, Liu W, Li X. Brain-Derived Neurotrophic Factor Inhibits the Wound-Healing and Cell Proliferative Ability of Human Airway Epithelial Cells in Asthmatic Children. Med Sci Monit 2020; 26:e923680. [PMID: 33068389 PMCID: PMC7577073 DOI: 10.12659/msm.923680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Asthma is a chronic disease with high morbidity rates. Brain-derived neurotrophic factor (BDNF) has been proven to induce airway hyper-responsiveness, but the function of BDNF in the wound-healing process of asthmatic human airway epithelial cells (HAECs) remains unclear. This study investigated the effects of BDNF in asthmatic children with injured HAECs. Material/Methods HAECs were obtained from healthy children and asthmatic children through bronchoscopy, and then cultured in air-liquid (ALI) interface with or without BDNF. A mechanical injury model was established for the wound-healing assay. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was performed to measure BDNF mRNA expressions, while western blot assay was used for the measurement of BDNF and CCND1 protein expressions. Cell proliferation of impaired HAECs was assayed in a 3H-thymidine incorporation experiment. Results The mRNA and protein levels of BDNF were overexpressed, and the wound-healing ability of HAECs decreased in asthma samples. Also, the cell proliferation of HAECs was suppressed in the asthmatic injury model and the injury-induced increase of CCND1 protein expressions was inhibited in asthma. Although mRNA and protein expressions of BDNF remained unchanging in healthy HAECs, there was an increase in impaired asthmatic HAECs. Upregulating BDNF led to a decrease in wound-healing ability of HAECs in both healthy children and children with asthma. Simultaneously, overexpressed BDNF reduced the CCND1 protein expressions in healthy HAECs, but had little impact on asthmatic HAECs. Conclusions Brain-derived neurotrophic factor (BDNF) inhibited wound-healing and cell proliferative ability of human airway epithelial cells (HAECs) in asthmatic children.
Collapse
Affiliation(s)
- Shuguang Jing
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Xinghua Li
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Wei Liu
- Department of Pharmacy, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Xia Li
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| |
Collapse
|
30
|
Abstract
The neurotrophic factor BDNF is an important regulator for the development of brain circuits, for synaptic and neuronal network plasticity, as well as for neuroregeneration and neuroprotection. Up- and downregulations of BDNF levels in human blood and tissue are associated with, e.g., neurodegenerative, neurological, or even cardiovascular diseases. The changes in BDNF concentration are caused by altered dynamics in BDNF expression and release. To understand the relevance of major variations of BDNF levels, detailed knowledge regarding physiological and pathophysiological stimuli affecting intra- and extracellular BDNF concentration is important. Most work addressing the molecular and cellular regulation of BDNF expression and release have been performed in neuronal preparations. Therefore, this review will summarize the stimuli inducing release of BDNF, as well as molecular mechanisms regulating the efficacy of BDNF release, with a focus on cells originating from the brain. Further, we will discuss the current knowledge about the distinct stimuli eliciting regulated release of BDNF under physiological conditions.
Collapse
Affiliation(s)
- Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, D-66482, Zweibrücken, Germany.
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University, D-39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
31
|
Emili M, Guidi S, Uguagliati B, Giacomini A, Bartesaghi R, Stagni F. Treatment with the flavonoid 7,8-Dihydroxyflavone: a promising strategy for a constellation of body and brain disorders. Crit Rev Food Sci Nutr 2020; 62:13-50. [DOI: 10.1080/10408398.2020.1810625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| |
Collapse
|
32
|
Goldsteen PA, Dolga AM, Gosens R. Advanced Modeling of Peripheral Neuro-Effector Communication and -Plasticity. Physiology (Bethesda) 2020; 35:348-357. [PMID: 32783607 DOI: 10.1152/physiol.00010.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The peripheral nervous system (PNS) plays crucial roles in physiology and disease. Neuro-effector communication and neuroplasticity of the PNS are poorly studied, since suitable models are lacking. The emergence of human pluripotent stem cells (hPSCs) has great promise to resolve this deficit. hPSC-derived PNS neurons, integrated into organ-on-a-chip systems or organoid cultures, allow co-cultures with cells of the local microenvironment to study neuro-effector interactions and to probe mechanisms underlying neuroplasticity.
Collapse
Affiliation(s)
- Pien A Goldsteen
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
Li T, Yu Y, Song Y, Li X, Lan D, Zhang P, Xiao Y, Xing Y. Activation of BDNF/TrkB pathway promotes prostate cancer progression via induction of epithelial-mesenchymal transition and anoikis resistance. FASEB J 2020; 34:9087-9101. [PMID: 32390303 DOI: 10.1096/fj.201802159rrr] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCa) is one of the most common malignant diseases in male worldwide, yet, the molecular mechanisms involved in PCa progression are still poorly understood. This study aimed to investigate the roles of the brain-derived neurotrophic factor/tropomyosin receptor kinase B (BDNF/TrkB) pathway in PCa progression. It was demonstrated by immunohistochemical analysis that both BDNF and TrkB were overexpressed in PCa tissues and elevated TrkB expression was tightly related with lymph node metastasis and advanced stage of PCa. In vitro studies showed that stimulation with rhBDNF or overexpression of TrkB in PCa cells promoted cell migration, invasion, and anoikis resistance. Overexpression of TrkB also resulted in epithelial-mesenchymal transition (EMT)-like transformation in cell morphology, whereas RNA interference-mediated TrkB depletion caused reversion of EMT. Further investigation demonstrated that protein kinase B (AKT) was responsible for BDNF/TrkB signaling-induced pro-migratory and pro-invasive effects, EMT, and anoikis resistance. Finally, in vivo studies confirmed that enhanced TrkB expression facilitated tumor growth, whereas downregulation of TrkB suppressed tumor growth. Our findings illustrate that BDNF/TrkB pathway is crucial for PCa progression, which may provide a novel therapeutic strategy for the treatment of advanced PCa.
Collapse
Affiliation(s)
- Tao Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yarong Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuechao Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongyang Lan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Jiang XH, Li CQ, Feng GY, Luo MJ, Sun QX, Huang J. Mycobacterium vaccae nebulization protects Balb/c mice against bronchial asthma through neural mechanisms. J Asthma 2020; 58:1003-1012. [PMID: 32329381 DOI: 10.1080/02770903.2020.1761381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Bronchial asthma can be effectively controlled but not be cured, its etiology and pathogenesis are still unclear, and there are no effective preventive measures. The key characteristic of asthma is chronic airway inflammation, and recent research has found that airway neurogenic inflammation plays an important role in asthma. We previously found that Mycobacterium vaccae nebulization protects against asthma. Therefore, this objective of this study is to explore the effect of M. vaccae nebulization on asthmatic neural mechanisms. METHODS A total 18 of female Balb/c mice were randomized into normal, asthma control, and M. vaccae nebulization (Neb.group) groups, and mice in the Neb.group were nebulized with M. vaccae one month before the asthmatic model was established. Then, 1 month later, the mice were sensitized and challenged with ovalbumin. Twenty-four hours after the last challenge, mouse airway responsiveness; pulmonary brain-derived neurotropic factor (BDNF), neurofilament-medium length (NF-M, using NF09 antibody), and acetylcholine expression; and nerve growth factor (NGF) mRNA level were determined. RESULTS We found that the BDNF, NF09, acetylcholine expression, and NGF mRNA level were decreased in the Neb.group compared with levels in the asthma control group. CONCLUSION M. vaccae nebulization may protected in Balb/c mice against bronchial asthma through neural mechanisms.
Collapse
Affiliation(s)
- Xiao-Hong Jiang
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chao-Qian Li
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guang-Yi Feng
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ming-Jie Luo
- Department of Respiratory Medicine, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi, China
| | - Qi-Xiang Sun
- The Graduate School, Guangxi Medical University, Nanning, Guangxi, China
| | - Jianlin Huang
- The Graduate School, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
35
|
Jiang XH, Li CQ, Feng GY, Luo MJ, Sun QX. One-Week Nebulization of Mycobacterium vaccae Can Protect Against Pulmonary Respiratory Syncytial Virus Infection in Balb/c Mice. J Aerosol Med Pulm Drug Deliv 2020; 33:249-257. [PMID: 32301643 DOI: 10.1089/jamp.2019.1573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Respiratory syncytial virus (RSV) infection is the most common cause of acute lower respiratory tract infection in children, leading to their death. Currently, no effective prevention and treatment methods for RSV infection are available. RSV and many other unknown viruses pose a serious threat to human health. Our previous study demonstrated that Mycobacterium vaccae nebulization can protect against allergic asthma. As RSV infection and asthma are closely related, we hypothesized that M. vaccae could protect against pulmonary RSV infection. Therefore, we evaluated the effect of M. vaccae on RSV infection in Balb/c mice. Methods: The mice were randomized into three groups: normal, RSV, and M. vaccae. One week before the RSV infection model was established, the mice in the M. vaccae group were nebulized with M. vaccae. On the fourth day after RSV infection, airway responsiveness, airway inflammation, pulmonary RSV infection, mRNA levels of pulmonary toll-like receptor (TLR) 7 and TLR8, and pulmonary NF09, acetylcholine, and epidermal growth factor regulator (EGFR) expression levels in all mice were measured. Results: The airway inflammation in the M. vaccae group was alleviated compared with that in the RSV group. In the M. vaccae group, the pulmonary mRNA level of RSV and the pulmonary expression levels of NF09, acetylcholine, and EGFR were decreased considerably, whereas the mRNA levels of TLR7 and TLR8 were increased significantly. Conclusions: One-week nebulization of M. vaccae can protect against RSV infection in Balb/c mice. The mechanism involves the regulation of neurotransmitters and expression of TLR7, TLR8, and EGFR.
Collapse
Affiliation(s)
- Xiao-Hong Jiang
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao-Qian Li
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guang-Yi Feng
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Ming-Jie Luo
- Department of Respiratory Medicine, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Qi-Xiang Sun
- The Graduate School of Guangxi Medical University, Nanning, China
| |
Collapse
|
36
|
Dragunas G, Woest ME, Nijboer S, Bos ST, van Asselt J, de Groot AP, Vohlídalová E, Vermeulen CJ, Ditz B, Vonk JM, Koppelman GH, van den Berge M, Ten Hacken NHT, Timens W, Munhoz CD, Prakash YS, Gosens R, Kistemaker LEM. Cholinergic neuroplasticity in asthma driven by TrkB signaling. FASEB J 2020; 34:7703-7717. [PMID: 32277855 PMCID: PMC7302963 DOI: 10.1096/fj.202000170r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Parasympathetic neurons in the airways control bronchomotor tone. Increased activity of cholinergic neurons are mediators of airway hyperresponsiveness (AHR) in asthma, however, mechanisms are not elucidated. We describe remodeling of the cholinergic neuronal network in asthmatic airways driven by brain‐derived neurotrophic factor (BDNF) and Tropomyosin receptor kinase B (TrkB). Human bronchial biopsies were stained for cholinergic marker vesicular acetylcholine transporter (VAChT). Human lung gene expression and single nucleotide polymorphisms (SNP) in neuroplasticity‐related genes were compared between asthma and healthy patients. Wild‐type (WT) and mutated TrkB knock‐in mice (Ntrk2tm1Ddg/J) with impaired BDNF signaling were chronically exposed to ovalbumin (OVA). Neuronal VAChT staining and airway narrowing in response to electrical field stimulation in precision cut lung slices (PCLS) were assessed. Increased cholinergic fibers in asthmatic airway biopsies was found, paralleled by increased TrkB gene expression in human lung tissue, and SNPs in the NTRK2 [TrkB] and BDNF genes linked to asthma. Chronic allergen exposure in mice resulted in increased density of cholinergic nerves, which was prevented by inhibiting TrkB. Increased nerve density resulted in AHR in vivo and in increased nerve‐dependent airway reactivity in lung slices mediated via TrkB. These findings show cholinergic neuroplasticity in asthma driven by TrkB signaling and suggest that the BDNF‐TrkB pathway may be a potential target.
Collapse
Affiliation(s)
- Guilherme Dragunas
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pharmacology, University of São Paulo, São Paulo, Brazil
| | - Manon E Woest
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Susan Nijboer
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sophie T Bos
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janet van Asselt
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anne P de Groot
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Eva Vohlídalová
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Corneel J Vermeulen
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, UMCG, Groningen, the Netherlands
| | - Benedikt Ditz
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, UMCG, Groningen, the Netherlands
| | - Judith M Vonk
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Epidemiology, UMCG, Groningen, the Netherlands
| | - Gerard H Koppelman
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pediatric Pulmonology and Pediatric Allergology, University Medical Center Groningen, University of Groningen, Beatrix Children's Hospital, Groningen, the Netherlands
| | - Maarten van den Berge
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, UMCG, Groningen, the Netherlands
| | - Nick H T Ten Hacken
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, UMCG, Groningen, the Netherlands
| | - Wim Timens
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pathology, UMCG, Groningen, the Netherlands
| | - Carolina D Munhoz
- Department of Pharmacology, University of São Paulo, São Paulo, Brazil
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
37
|
Kalidhindi RSR, Ambhore NS, Bhallamudi S, Loganathan J, Sathish V. Role of Estrogen Receptors α and β in a Murine Model of Asthma: Exacerbated Airway Hyperresponsiveness and Remodeling in ERβ Knockout Mice. Front Pharmacol 2020; 10:1499. [PMID: 32116656 PMCID: PMC7010956 DOI: 10.3389/fphar.2019.01499] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/19/2019] [Indexed: 01/18/2023] Open
Abstract
Epidemiological data suggests increased prevalence of asthma in females than males, suggesting a plausible role for sex-steroids, especially estrogen in the lungs. Estrogen primarily acts through estrogen-receptors (ERα and ERβ), which play a differential role in asthma. Our previous studies demonstrated increased expression of ERβ in asthmatic human airway smooth muscle (ASM) cells and its activation diminished ASM proliferation in vitro and airway hyperresponsiveness (AHR) in vivo in a mouse (wild-type, WT) model of asthma. In this study, we evaluated the receptor specific effect of circulating endogenous estrogen in regulating AHR and remodeling using ERα and ERβ knockout (KO) mice. C57BL/6J WT, ERα KO, and ERβ KO mice were challenged intranasally with a mixed-allergen (MA) or PBS. Lung function was measured using flexiVent followed by collection of broncho-alveolar lavage fluid for differential leukocyte count (DLC), histology using hematoxylin and eosin (H&E) and Sirius red-fast green (SRFG) and detecting αsmooth muscle actin (α-SMA), fibronectin and vimentin expression using immunofluorescence (IF). Resistance (Rrs), elastance (Ers), tissue-damping (G) and tissue-elasticity (H) were significantly increased, whereas compliance (Crs) was significantly decreased in WT, ERα KO, and ERβ KO mice (males and females) challenged with MA compared to PBS. Interestingly, ERβ KO mice showed declined lung function compared to ERα KO and WT mice at baseline. MA induced AHR, remodeling and immune-cell infiltration was more prominent in females compared to males across all populations, while ERβ KO females showed maximum AHR and DLC, except for neutrophil count. Histology using H&E suggests increased smooth muscle mass in airways with recruitment of inflammatory cells, while SRFG staining showed increased collagen deposition in MA challenged ERβ KO mice compared to ERα KO and WT mice (males and females), with pronounced effects in ERβ KO females. Furthermore, IF studies showed increased expression of α-SMA, fibronectin and vimentin in MA challenged populations compared to PBS, with prominent changes in ERβ KO females. This novel study indicates ERβ plays a pivotal role in airway remodeling and AHR and understanding the mechanisms involved might help to surface it out as a potential target to treat asthma.
Collapse
Affiliation(s)
| | | | | | | | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
38
|
Singh A, Mohanty I, Singh J, Rattan S. BDNF augments rat internal anal sphincter smooth muscle tone via RhoA/ROCK signaling and nonadrenergic noncholinergic relaxation via increased NO release. Am J Physiol Gastrointest Liver Physiol 2020; 318:G23-G33. [PMID: 31682160 PMCID: PMC6985850 DOI: 10.1152/ajpgi.00247.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Presently, there are no studies examining the neuromodulatory effects of brain-derived neurotropic factor (BDNF) on the basal internal anal sphincter (IAS) tone and nonadrenergic noncholinergic (NANC) relaxation. To examine this, we determined the neuromuscular effects of BDNF on basal IAS smooth muscle tone and the smooth muscle cells (SMCs) and the effects of NANC nerve stimulation before and after high-affinity receptor tyrosine kinase receptor B (TrkB) antagonist K252a. We also investigated the mechanisms underlying BDNF-augmented increase in the IAS tone and NANC relaxation. We found that BDNF-increased IAS tone and SMC contractility were TTX resistant and attenuated by K252a. TrkB-specific agonist 7,8-dihydroxyflavone, similar to BDNF, also produced a concentration-dependent increase in the basal tone, whereas TrkB inhibitors K252a and ANA-12 produced a decrease in the tone. In addition, BDNF produced leftward shifts in the concentration-response curves with U46619 and ANG II (but not with bethanechol and K+ depolarization), and these shifts were reversed by K252a. Effects of Y27632 and Western blot data indicated that the BDNF-induced increase in IAS tone was mediated via RhoA/ROCK. BDNF-augmented NANC relaxation by electrical field stimulation was found to be mediated via the nitric oxide (NO)/soluble guanylate cyclase (sGC) pathway rather than via increased sensitivity to NO. In conclusion, the net effect of BDNF was that it caused an increase in the basal IAS tone via RhoA/ROCK signaling. BDNF also augmented NANC relaxation via NO/sGC. These findings may have relevance to the role of BDNF in the pathophysiology and therapeutic targeting of the IAS-associated rectoanal motility disorders.NEW & NOTEWORTHY These studies for the first time to our knowledge demonstrate that increased levels of brain-derived neurotrophic factor (BDNF; conceivably released from smooth muscle cells and/or the enteric neurons) has two major effects. First, BDNF augments the internal anal sphincter (IAS) tone via tyrosine kinase receptor B/thromboxane A2-receptor, angiotensin II receptor type 1/RhoA/ROCK signaling; and second, it increases nonadrenergic noncholinergic relaxation via nitric oxide/soluble guanylate cyclase. These studies may have relevance in therapeutic targeting in the anorectal motility disorders associated with the IAS.
Collapse
Affiliation(s)
- Arjun Singh
- 1Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ipsita Mohanty
- 2Department of Pharmacology, Drexel University, Philadelphia, Pennsylvania
| | - Jagmohan Singh
- 3Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Satish Rattan
- 1Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Fogarty MJ, Marin Mathieu N, Mantilla CB, Sieck GC. Aging reduces succinate dehydrogenase activity in rat type IIx/IIb diaphragm muscle fibers. J Appl Physiol (1985) 2019; 128:70-77. [PMID: 31774353 DOI: 10.1152/japplphysiol.00644.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In aged rats, diaphragm muscle (DIAm) reduced specific force and fiber cross-sectional area, sarcopenia, is selective for vulnerable type IIx and/or IIb DIAm fibers, with type I and IIa fibers being resilient. In humans, the oxidative capacity [as measured by maximum succinate dehydrogenase (SDHmax) activity] of fast-type muscle is reduced with aging, with slow-type muscle being unaffected. We hypothesized that in aged Fischer rat DIAm exhibiting sarcopenia, reduced SDHmax activity would occur in type IIx and/or IIb fibers. Rats obtained from the NIA colony (6, 18, and 24 mo old) were euthanized, and ~2-mm-wide DIAm strips were obtained. For SDHmax and fiber type assessments, DIAm strips were stretched (approximately optimal length), fresh frozen in isopentane, and sectioned on a cryostat at 6 μm. SDHmax, quantified by intensity of nitroblue tetrazolium diformazan precipitation, was assessed in a fiber type-specific manner by comparing serial sections labeled with myosin heavy chain (MyHC) antibodies differentiating type I (MyHCSlow), IIa (MyHC2A), and IIx and/or IIb fibers. Isometric DIAm force and fatigue were assessed in DIAm strips by muscle stimulation with supramaximal pulses at a variety of frequencies (5-100 Hz) delivered in 1-s trains. By 24 mo, DIAm sarcopenia was apparent and SDHmax in type IIx and/or IIb fibers activity was reduced ~35% compared with 6-mo-old control DIAm. These results underscore the remarkable fiber type selectivity of type IIx and/or IIb fibers to age-associated perturbations and suggest that reduced mitochondrial oxidative capacity is associated with DIAm sarcopenia.NEW & NOTEWORTHY We examined the oxidative capacity as measured by maximum succinate dehydrogenase activity in older (18 or 24 mo old) Fischer 344 rat diaphragm muscle (DIAm) compared with young rats (6 mo old). In 24-mo-old rats, SDH activity was reduced in type IIx/b DIAm fibers. These SDH changes were concomitant with sarcopenia (reduced specific force and atrophy of type IIx/b DIAm fibers) at 24 mo old. At 18 mo old, there was no change in SDH activity and no evidence of sarcopenia.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Natalia Marin Mathieu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
40
|
Ong J, van den Berg A, Faiz A, Boudewijn IM, Timens W, Vermeulen CJ, Oliver BG, Kok K, Terpstra MM, van den Berge M, Brandsma CA, Kluiver J. Current Smoking is Associated with Decreased Expression of miR-335-5p in Parenchymal Lung Fibroblasts. Int J Mol Sci 2019; 20:ijms20205176. [PMID: 31635387 PMCID: PMC6829537 DOI: 10.3390/ijms20205176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/22/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Cigarette smoking causes lung inflammation and tissue damage. Lung fibroblasts play a major role in tissue repair. Previous studies have reported smoking-associated changes in fibroblast responses and methylation patterns. Our aim was to identify the effect of current smoking on miRNA expression in primary lung fibroblasts. Small RNA sequencing was performed on lung fibroblasts from nine current and six ex-smokers with normal lung function. MiR-335-5p and miR-335-3p were significantly downregulated in lung fibroblasts from current compared to ex-smokers (false discovery rate (FDR) <0.05). Differential miR-335-5p expression was validated with RT-qPCR (p-value = 0.01). The results were validated in lung tissue from current and ex-smokers and in bronchial biopsies from non-diseased smokers and never-smokers (p-value <0.05). The methylation pattern of the miR-335 host gene, determined by methylation-specific qPCR, did not differ between current and ex-smokers. To obtain insights into the genes regulated by miR-335-5p in fibroblasts, we overlapped all proven miR-335-5p targets with our previously published miRNA targetome data in lung fibroblasts. This revealed Rb1, CARF, and SGK3 as likely targets of miR-335-5p in lung fibroblasts. Our study indicates that miR-335-5p downregulation due to current smoking may affect its function in lung fibroblasts by targeting Rb1, CARF and SGK3.
Collapse
Affiliation(s)
- Jennie Ong
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
| | - Anke van den Berg
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
| | - Alen Faiz
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB) Faculty of Science, Ultimo, NSW 2007, Australia.
| | - Ilse M Boudewijn
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
| | - Cornelis J Vermeulen
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Respiratory Cellular and Molecular Biology, The University of Sydney, New South Wales 2037, Australia.
- University of Technology Sydney, School of Life Sciences, Sydney, New South Wales 2007, Australia.
| | - Klaas Kok
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9713 GZ Groningen, The Netherlands.
| | - Martijn M Terpstra
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9713 GZ Groningen, The Netherlands.
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
| | - Joost Kluiver
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
41
|
Kistemaker LEM, Prakash YS. Airway Innervation and Plasticity in Asthma. Physiology (Bethesda) 2019; 34:283-298. [PMID: 31165683 PMCID: PMC6863372 DOI: 10.1152/physiol.00050.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Airway nerves represent a mechanistically and therapeutically important aspect that requires better highlighting in the context of diseases such as asthma. Altered structure and function (plasticity) of afferent and efferent airway innervation can contribute to airway diseases. We describe established anatomy, current understanding of how plasticity occurs, and contributions of plasticity to asthma, focusing on target-derived growth factors (neurotrophins). Perspectives toward novel treatment strategies and future research are provided.
Collapse
Affiliation(s)
- L E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen , Groningen , The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
42
|
More CE, Papp C, Harsanyi S, Gesztelyi R, Mikaczo A, Tajti G, Kardos L, Seres I, Lorincz H, Csapo K, Zsuga J. Altered irisin/BDNF axis parallels excessive daytime sleepiness in obstructive sleep apnea patients. Respir Res 2019; 20:67. [PMID: 30952206 PMCID: PMC6449996 DOI: 10.1186/s12931-019-1033-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/26/2019] [Indexed: 02/08/2023] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea hypopnea syndrome (OSAHS) is a sleep-related breathing disorder, characterized by excessive daytime sleepiness (EDS), paralleled by intermittent collapse of the upper airway. EDS may be the symptom of OSAHS per se but may also be due to the alteration of central circadian regulation. Irisin is a putative myokine and has been shown to induce BDNF expression in several sites of the brain. BDNF is a key factor regulating photic entrainment and consequent circadian alignment and adaptation to the environment. Therefore, we hypothesized that EDS accompanying OSAHS is reflected by alteration of irisin/BDNF axis. METHODS Case history, routine laboratory parameters, serum irisin and BDNF levels, polysomnographic measures and Epworth Sleepiness Scale questionnaire (ESS) were performed in a cohort of OSAHS patients (n = 69). Simple and then multiple linear regression was used to evaluate data. RESULTS We found that EDS reflected by the ESS is associated with higher serum irisin and BDNF levels; β: 1.53; CI: 0.35, 6.15; p = 0.012 and β: 0.014; CI: 0.0.005, 0.023; p = 0.02, respectively. Furthermore, influence of irisin and BDNF was significant even if the model accounted for their interaction (p = 0.006 for the terms serum irisin, serum BDNF and their interaction). Furthermore, a concentration-dependent effect of both serum irisin and BDNF was evidenced with respect to their influence on the ESS. CONCLUSIONS These results suggest that the irisin-BDNF axis influences subjective daytime sleepiness in OSAS patients reflected by the ESS. These results further imply the possible disruption of the circadian regulation in OSAHS. Future interventional studies are needed to confirm this observation.
Collapse
Affiliation(s)
- Csaba E More
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Csaba Papp
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Szilvia Harsanyi
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Angela Mikaczo
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Gabor Tajti
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Laszlo Kardos
- Institute of Clinical Pharmacology, Infectious Diseases and Allergology, Kenezy Gyula Teaching County Hospital and Outpatient Clinic, Bartok Bela ut 2-26, Debrecen, 4031, Hungary
| | - Ildiko Seres
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Hajnalka Lorincz
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Krisztina Csapo
- Department of Neurology, Faculty of Medicine, University of Debrecen, Moricz Zsigmond krt. 22, Debrecen, 4032, Hungary
| | - Judit Zsuga
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary.
| |
Collapse
|
43
|
Eyileten C, Mirowska-Guzel D, Milanowski L, Zaremba M, Rosiak M, Cudna A, Kaplon-Cieslicka A, Opolski G, Filipiak KJ, Malek L, Postula M. Serum Brain-Derived Neurotrophic Factor is Related to Platelet Reactivity and Metformin Treatment in Adult Patients With Type 2 Diabetes Mellitus. Can J Diabetes 2019; 43:19-26. [DOI: 10.1016/j.jcjd.2018.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/31/2018] [Indexed: 01/23/2023]
|
44
|
Britt RD, Thompson MA, Wicher SA, Manlove LJ, Roesler A, Fang YH, Roos C, Smith L, Miller JD, Pabelick CM, Prakash YS. Smooth muscle brain-derived neurotrophic factor contributes to airway hyperreactivity in a mouse model of allergic asthma. FASEB J 2019; 33:3024-3034. [PMID: 30351991 PMCID: PMC6338659 DOI: 10.1096/fj.201801002r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/01/2018] [Indexed: 01/14/2023]
Abstract
Recent studies have demonstrated an effect of neurotrophins, particularly brain-derived neurotrophic factor (BDNF), on airway contractility [ via increased airway smooth muscle (ASM) intracellular calcium [Ca2+]i] and remodeling (ASM proliferation and extracellular matrix formation) in the context of airway disease. In the present study, we examined the role of BDNF in allergen-induced airway inflammation using 2 transgenic models: 1) tropomyosin-related kinase B (TrkB) conditional knockin (TrkBKI) mice allowing for inducible, reversible disruption of BDNF receptor kinase activity by administration of 1NMPP1, a PP1 derivative, and 2) smooth muscle-specific BDNF knockout (BDNFfl/fl/SMMHC11Cre/0) mice. Adult mice were intranasally challenged with PBS or mixed allergen ( Alternaria alternata, Aspergillus fumigatus, house dust mite, and ovalbumin) for 4 wk. Our data show that administration of 1NMPP1 in TrkBKI mice during the 4-wk allergen challenge blunted airway hyperresponsiveness (AHR) and reduced fibronectin mRNA expression in ASM layers but did not reduce inflammation per se. Smooth muscle-specific deletion of BDNF reduced AHR and blunted airway fibrosis but did not significantly alter airway inflammation. Together, our novel data indicate that TrkB signaling is a key modulator of AHR and that smooth muscle-derived BDNF mediates these effects during allergic airway inflammation.-Britt, R. D., Jr., Thompson, M. A., Wicher, S. A., Manlove, L. J., Roesler, A., Fang, Y.-H., Roos, C., Smith, L., Miller, J. D., Pabelick, C. M., Prakash, Y. S. Smooth muscle brain-derived neurotrophic factor contributes to airway hyperreactivity in a mouse model of allergic asthma.
Collapse
Affiliation(s)
- Rodney D. Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Michael A. Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Sarah A. Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Logan J. Manlove
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Anne Roesler
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Yun-Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Carolyn Roos
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Leslie Smith
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Christina M. Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Y. S. Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| |
Collapse
|
45
|
Ambhore NS, Katragadda R, Raju Kalidhindi RS, Thompson MA, Pabelick CM, Prakash YS, Sathish V. Estrogen receptor beta signaling inhibits PDGF induced human airway smooth muscle proliferation. Mol Cell Endocrinol 2018; 476:37-47. [PMID: 29680290 PMCID: PMC6120801 DOI: 10.1016/j.mce.2018.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023]
Abstract
Airway smooth muscle (ASM) cell hyperplasia driven by persistent inflammation is a hallmark feature of remodeling in asthma. Sex steroid signaling in the lungs is of considerable interest, given epidemiological data showing more asthma in pre-menopausal women and aging men. Our previous studies demonstrated that estrogen receptor (ER) expression increases in asthmatic human ASM; however, very limited data are available regarding differential roles of ERα vs. ERβ isoforms in human ASM cell proliferation. In this study, we evaluated the effect of selective ERα and ERβ modulators on platelet-derived growth factor (PDGF)-stimulated ASM proliferation and the mechanisms involved. Asthmatic and non-asthmatic primary human ASM cells were treated with PDGF, 17β-estradiol, ERα-agonist and/or ERβ-agonist and/or G-protein-coupled estrogen receptor 30 (GPR30/GPER) agonist and proliferation was measured using MTT and CyQuant assays followed by cell cycle analysis. Transfection of small interfering RNA (siRNA) ERα and ERβ significantly altered the human ASM proliferation. The specificity of siRNA transfection was confirmed by Western blot analysis. Gene and protein expression of cell cycle-related antigens (PCNA and Ki67) and C/EBP were measured by RT-PCR and Western analysis, along with cell signaling proteins. PDGF significantly increased ASM proliferation in non-asthmatic and asthmatic cells. Treatment with PPT showed no significant effect on PDGF-induced proliferation, whereas WAY interestingly suppressed proliferation via inhibition of ERK1/2, Akt, and p38 signaling. PDGF-induced gene expression of PCNA, Ki67 and C/EBP in human ASM was significantly lower in cells pre-treated with WAY. Furthermore, WAY also inhibited PDGF-activated PCNA, C/EBP, cyclin-D1, and cyclin-E. Overall, we demonstrate ER isoform-specific signaling in the context of ASM proliferation. Activation of ERβ can diminish remodeling in human ASM by inhibiting pro-proliferative signaling pathways, and may point to a novel perception for blunting airway remodeling.
Collapse
Affiliation(s)
| | - Rathnavali Katragadda
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | | | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA; Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
46
|
Mishra S, Shah MI, Sarkar M, Asati N, Rout C. ILDgenDB: integrated genetic knowledge resource for interstitial lung diseases (ILDs). DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:5035482. [PMID: 29897484 PMCID: PMC6007225 DOI: 10.1093/database/bay053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/17/2018] [Indexed: 12/31/2022]
Abstract
Interstitial lung diseases (ILDs) are a diverse group of ∼200 acute and chronic pulmonary disorders that are characterized by variable amounts of inflammation, fibrosis and architectural distortion with substantial morbidity and mortality. Inaccurate and delayed diagnoses increase the risk, especially in developing countries. Studies have indicated the significant roles of genetic elements in ILDs pathogenesis. Therefore, the first genetic knowledge resource, ILDgenDB, has been developed with an objective to provide ILDs genetic data and their integrated analyses for the better understanding of disease pathogenesis and identification of diagnostics-based biomarkers. This resource contains literature-curated disease candidate genes (DCGs) enriched with various regulatory elements that have been generated using an integrated bioinformatics workflow of databases searches, literature-mining and DCGs–microRNA (miRNAs)–single nucleotide polymorphisms (SNPs) association analyses. To provide statistical significance to disease-gene association, ILD-specificity index and hypergeomatric test scores were also incorporated. Association analyses of miRNAs, SNPs and pathways responsible for the pathogenesis of different sub-classes of ILDs were also incorporated. Manually verified 299 DCGs and their significant associations with 1932 SNPs, 2966 miRNAs and 9170 miR-polymorphisms were also provided. Furthermore, 216 literature-mined and proposed biomarkers were identified. The ILDgenDB resource provides user-friendly browsing and extensive query-based information retrieval systems. Additionally, this resource also facilitates graphical view of predicted DCGs–SNPs/miRNAs and literature associated DCGs–ILDs interactions for each ILD to facilitate efficient data interpretation. Outcomes of analyses suggested the significant involvement of immune system and defense mechanisms in ILDs pathogenesis. This resource may potentially facilitate genetic-based disease monitoring and diagnosis. Database URL: http://14.139.240.55/ildgendb/index.php
Collapse
Affiliation(s)
- Smriti Mishra
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234, India
| | - Mohammad I Shah
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234, India
| | - Malay Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh 171001, India
| | - Nimisha Asati
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234, India
| | - Chittaranjan Rout
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234, India
| |
Collapse
|
47
|
Kuban KCK, Heeren T, O'Shea TM, Joseph RM, Fichorova RN, Douglass L, Jara H, Frazier JA, Hirtz D, Taylor HG, Rollins JV, Paneth N. Among Children Born Extremely Preterm a Higher Level of Circulating Neurotrophins Is Associated with Lower Risk of Cognitive Impairment at School Age. J Pediatr 2018; 201:40-48.e4. [PMID: 30029870 PMCID: PMC6684153 DOI: 10.1016/j.jpeds.2018.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To test the hypothesis that higher blood levels of neurotrophic proteins (proteins that support neuronal survival and function) in the first 2 weeks of life are associated with a lower risk of cognitive impairment at 10 years. STUDY DESIGN We evaluated 812 10-year-old children with neonatal blood specimens enrolled in the multicenter prospective Extremely Low Gestational Age Newborn Study, assessing 22 blood proteins collected on 3 days over the first 2 weeks of life. Using latent profile analysis, we derived a cognitive function level based on standardized cognitive and executive function tests. We defined high exposure as the top quartile neurotrophic protein blood level on ≥2 days either for ≥4 proteins or for a specific cluster of neurotrophic proteins (defined by latent class analysis). Multinomial logistic regression analyzed associations between high exposures and cognitive impairment. RESULTS Controlling for the effects of inflammatory proteins, persistently elevated blood levels of ≥4 neurotrophic proteins were associated with reduced risk of moderate (OR, 0.35; 95% CI, 0.18-0.67) and severe cognitive impairment (OR, 0.22; 95% CI, 0.09-0.53). Children with a cluster of elevated proteins including angiopoietin 1, brain-derived neurotrophic factor, and regulated upon activation, normal T-cell expressed, and secreted had a reduced risk of adverse cognitive outcomes (OR range, 0.31-0.6). The risk for moderate to severe cognitive impairment was least with 0-1 inflammatory and >4 neurotrophic proteins. CONCLUSIONS Persisting elevations of circulating neurotrophic proteins during the first 2 weeks of life are associated with lowered risk of impaired cognition at 10 years of age, controlling for increases in inflammatory proteins.
Collapse
Affiliation(s)
- Karl C K Kuban
- Department of Pediatrics, Division of Pediatric Neurology, Boston Medical Center, Boston, MA.
| | - Timothy Heeren
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - T Michael O'Shea
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of North Carolina, Chapel Hill, NC
| | - Robert M Joseph
- Department of Anatomy and Neuroanatomy, Boston University School of Medicine, Boston, MA
| | - Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Laurie Douglass
- Department of Pediatrics, Division of Pediatric Neurology, Boston Medical Center, Boston, MA
| | - Hernan Jara
- Department of Radiology, Boston University School of Medicine, Boston, MA
| | - Jean A Frazier
- Department of Psychiatry, Eunice Kennedy Shriver Center, UMASS Medical School/ University of Massachusetts Memorial Health Care, Worcester, MA
| | - Deborah Hirtz
- National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - H Gerry Taylor
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH
| | - Julie Vanier Rollins
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of North Carolina, Chapel Hill, NC
| | - Nigel Paneth
- Department of Epidemiology and Biostatistics and Pediatrics & Human Development, Michigan State University, East Lansing, MI
| |
Collapse
|
48
|
Chronic asthma-induced behavioral and hippocampal neuronal morphological changes are concurrent with BDNF, cofilin1 and Cdc42/RhoA alterations in immature mice. Brain Res Bull 2018; 143:194-206. [PMID: 30227235 DOI: 10.1016/j.brainresbull.2018.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/03/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Recent studies have found that persistent hypoxia caused by chronic asthma, especially during childhood, affects the development and function of the brain, but the mechanism is unclear. In the present study, BDNF and its signal pathway was investigated in mediating chronic asthma induced-neuronal changes that lead to behavior alterations. METHODS The chronic asthma model was induced by sensitization with ovalbumin for more than 9 weeks in immature mice. Morris water maze test (MWMT), open field test (OFT) and elevated plus maze test (EPMT) were used to conduct behavioral evaluation. Neuronal morphology in hippocampal CA1, CA3 and DG was assessed using ImageJ's Sholl plugin and RESCONSTRUCT software. BDNF signaling pathway related molecules was determined by Western blotting. RESULTS Chronic asthma does affect the behavioral performances of immature mice evaluated in MWMT, OFT, and EPMT. The analysis by three-dimensional reconstruction software found that following the behavioral alteration of asthmatic mice, dendritic changes also occurred in hippocampal neurons, including shortened dendrite length, significantly reduced number of dendritic branches, decreased density of dendritic spines, and reduced percentage of functional dendritic spine types. At the same time, by immunofluorescence and western blotting, we also found that alterations in dendritic morphology were consistent with activation of cofilin1 and changes in BDNF-Cdc42/RhoA levels. Some of the changes mentioned above can be alleviated by intranasal administration of budesonide. CONCLUSION Our data suggest that response similar to nicotine withdrawal or/and hypoxia induced by childhood chronic asthma enhances the BDNF-Cdc42/RhoA signaling pathway and activates cofilin1, leading to the remodeling of actin, causing the loss of dendritic spines and atrophy of dendrites, eventually resulting in behavioral alterations.
Collapse
|
49
|
Sherkawy MM, Abo-Youssef AM, Salama AAA, Ismaiel IE. Fluoxetine protects against OVA induced bronchial asthma and depression in rats. Eur J Pharmacol 2018; 837:25-32. [PMID: 30145150 DOI: 10.1016/j.ejphar.2018.08.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
Abstract
Depression is very common in asthmatic patients and may increases risk for morbidity and mortality. The present work aimed to investigate the protective effect of fluoxetine, on behavioral and biochemical changes, associated with ovalbumin (OVA) - induced bronchial asthma and depression in rats. Rats were sensitized with intraperitoneal administration of OVA plus aluminum hydroxide for 3 consecutive days then at day 11 followed by OVA intranasal challenge at days 19, 20, 21. Rats were either pretreated with dexamethasone, fluoxetine10mg/kg or fluoxetine 20 mg/kg. At the end of the experiment, various tests were performed, including open field, forced swimming and respiratory function tests. Blood was drawn for serum IgE detection. Finally, rats were euthanized, brain-derived neurotrophic factor (BDNF) was estimated in bronchoalveolar lavage (BAL) fluid and lung content of reduced glutathione (GSH), superoxide dismutase (SOD), tumor necrosis factor-alpha (TNF-α) and interleukin 4 (IL-4) were determined. Histopathological study was also performed. The results showed that fluoxetine significantly ameliorated OVA- induced biochemical and behavioral changes. Fluoxetine may protect against OVA-induced asthma and depression in rats. This effect may be mediated at least in part by its antioxidant, anti-inflammatory and immunosuppressant effect.
Collapse
Affiliation(s)
- Marwa M Sherkawy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Amira M Abo-Youssef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | | | | |
Collapse
|
50
|
Francis K, Dougali A, Sideri K, Kroupis C, Vasdekis V, Dima K, Douzenis A. Brain-derived neurotrophic factor (BDNF) in children with ASD and their parents: a 3-year follow-up. Acta Psychiatr Scand 2018. [PMID: 29532458 DOI: 10.1111/acps.12872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Several lines of evidence point to a probable relationship between brain-derived neurotrophic factor (BDNF) and autism spectrum disorder (ASD), but studies have yielded inconsistent findings on the BDNF serum level in ASD. The study aimed to assess those levels in children with ASD and their families. METHOD BDNF serum levels were measured in 45 ASD children without intellectual disability (ID) and allergies, age 30-42 months and age-matched normal controls. BDNF serum levels in the parents of the ASD subjects were compared to normal controls. BDNF serum levels in the ASD subjects were followed up for 3 years and correlated with adaptive functioning changes. RESULTS BDNF serum levels were measured to be lower in children with ASD and independent of all the major baseline characteristics of the subjects. Having a child with ASD raises the BDNF levels in parents comparing to controls. Prospectively, no correlation between the change of BDNF variables in time and the change of the Vineland scores was found. CONCLUSIONS Our results contradict those from recent published meta-analyses with the age, the presence of ID and allergies being possible contributing factors. The parents' data indeed point to a role of BDNF in the pathophysiology of ASD.
Collapse
Affiliation(s)
- K Francis
- 2nd Department of Psychiatry, Athens University Medical School, 'Attikon' General Hospital, Athens, Greece.,Child and Adolescent Psychiatric Unit, Kuwait Centre for Mental Health, Kuwait, Kuwait
| | - A Dougali
- 2nd Department of Psychiatry, Athens University Medical School, 'Attikon' General Hospital, Athens, Greece
| | - K Sideri
- Allergy Research Center, Attikon General Hospital, University of Athens Medical School, Athens, Greece
| | - C Kroupis
- Laboratory of Clinical Biochemistry, Attikon University Hospital, Medical School, University of Athens, Athens, Greece
| | - V Vasdekis
- Department of Statistics, Athens University of Economic and Business, Athens, Greece
| | - K Dima
- Laboratory of Clinical Biochemistry, Attikon University Hospital, Medical School, University of Athens, Athens, Greece
| | - A Douzenis
- 2nd Department of Psychiatry, Athens University Medical School, 'Attikon' General Hospital, Athens, Greece
| |
Collapse
|